1
|
Woods JJ, Cosby AG, Wacker JN, Aguirre Quintana LM, Peterson A, Minasian SG, Abergel RJ. Macrocyclic 1,2-Hydroxypyridinone-Based Chelators as Potential Ligands for Thorium-227 and Zirconium-89 Radiopharmaceuticals. Inorg Chem 2023; 62:20721-20732. [PMID: 37590371 DOI: 10.1021/acs.inorgchem.3c02164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Thorium-227 (227Th) is an α-emitting radionuclide that has shown preclinical and clinical promise for use in targeted α-therapy (TAT), a type of molecular radiopharmaceutical treatment that harnesses high energy α particles to eradicate cancerous lesions. Despite these initial successes, there still exists a need for bifunctional chelators that can stably bind thorium in vivo. Toward this goal, we have prepared two macrocyclic chelators bearing 1,2-hydroxypyridinone groups. Both chelators can be synthesized in less than six steps from readily available starting materials, which is an advantage over currently available platforms. The complex formation constants (log βmlh) of these ligands with Zr4+ and Th4+, measured by spectrophotometric titrations, are greater than 34 for both chelators, indicating the formation of exceedingly stable complexes. Radiolabeling studies were performed to show that these ligands can bind [227Th]Th4+ at concentrations as low as 10-6 M, and serum stability experiments demonstrate the high kinetic stability of the formed complexes under biological conditions. Identical experiments with zirconium-89 (89Zr), a positron-emitting radioisotope used for positron emission tomography (PET) imaging, demonstrate that these chelators can also effectively bind Zr4+ with high thermodynamic and kinetic stability. Collectively, the data reported herein highlight the suitability of these ligands for use in 89Zr/227Th paired radioimmunotheranostics.
Collapse
Affiliation(s)
- Joshua J Woods
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alexia G Cosby
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jennifer N Wacker
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Luis M Aguirre Quintana
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Appie Peterson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Stefan G Minasian
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Nuclear Engineering, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Vlastara M, Rossin R, Hoeben FJ, de Roode KE, Boswinkel M, Kleijn LH, Nagarajah J, Rijpkema M, Robillard MS. Click-to-Release: Cleavable Radioimmunoimaging with [ 89Zr]Zr-DFO- Trans-Cyclooctene-Trastuzumab Increases Tumor-to-Blood Ratio. Theranostics 2023; 13:4004-4015. [PMID: 37554267 PMCID: PMC10405837 DOI: 10.7150/thno.84865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/23/2023] [Indexed: 08/10/2023] Open
Abstract
One of the main challenges of PET imaging with 89Zr-labeled monoclonal antibodies (mAbs) remains the long blood circulation of the radiolabeled mAbs, leading to high background signals, decreasing image quality. To overcome this limitation, here we report the use of a bioorthogonal linker cleavage approach (click-to-release chemistry) to selectively liberate [89Zr]Zr-DFO from trans-cyclooctene-functionalized trastuzumab (TCO-Tmab) in blood, following the administration of a tetrazine compound (trigger) in BT-474 tumor-bearing mice. Methods: We created a series of TCO-DFO constructs and evaluated their performance in [89Zr]Zr-DFO release from Tmab in vitro using different trigger compounds. The in vivo behavior of the best performing [89Zr]Zr-TCO-Tmab was studied in healthy mice first to determine the optimal dose of the trigger. To find the optimal time for the trigger administration, the rate of [89Zr]Zr-TCO-Tmab internalization was studied in BT-474 cancer cells. Finally, the trigger was administered 6 h or 24 h after [89Zr]Zr-TCO-Tmab- administration in tumor-bearing mice to liberate the [89Zr]Zr-DFO fragment. PET scans were obtained of tumor-bearing mice that received the trigger 6 h post-[89Zr]Zr-TCO-Tmab administration. Results: The [89Zr]Zr-TCO-Tmab and trigger pair with the best in vivo properties exhibited 83% release in 50% mouse plasma. In tumor-bearing mice the tumor-blood ratios were markedly increased from 1.0 ± 0.4 to 2.3 ± 0.6 (p = 0.0057) and from 2.5 ± 0.7 to 6.6 ± 0.9 (p < 0.0001) when the trigger was administered at 6 h and 24 h post-mAb, respectively. Same day PET imaging clearly showed uptake in the tumor combined with a strongly reduced background due to the fast clearance of the released [89Zr]Zr-DFO-containing fragment from the circulation through the kidneys. Conclusions: This is the first demonstration of the use of trans-cyclooctene-tetrazine click-to-release chemistry to release a radioactive chelator from a mAb in mice to increase tumor-to-blood ratios. Our results suggest that click-cleavable radioimmunoimaging may allow for substantially shorter intervals in PET imaging with full mAbs, reducing radiation doses and potentially even enabling same day imaging.
Collapse
Affiliation(s)
- Maria Vlastara
- Tagworks Pharmaceuticals, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | - Raffaella Rossin
- Tagworks Pharmaceuticals, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | | | - Kim E. de Roode
- Tagworks Pharmaceuticals, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | - Milou Boswinkel
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | | | - James Nagarajah
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Mark Rijpkema
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Marc S. Robillard
- Tagworks Pharmaceuticals, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| |
Collapse
|
3
|
Melendez-Alafort L, Ferro-Flores G, De Nardo L, Ocampo-García B, Bolzati C. Zirconium immune-complexes for PET molecular imaging: Current status and prospects. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.215005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
4
|
Bubenshchikov VB, Larenkov AA. Chelating Agents for Zirconium-89 in the Synthesis of Radiopharmaceuticals: Current State and Prospects of Development. RUSS J COORD CHEM+ 2022. [DOI: 10.1134/s1070328422110021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
The Race for Hydroxamate-Based Zirconium-89 Chelators. Cancers (Basel) 2021; 13:cancers13174466. [PMID: 34503276 PMCID: PMC8431476 DOI: 10.3390/cancers13174466] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Chelators are small molecules that can form a complex with a metal ion by coordinating electron rich atoms from the chelator to the electron-poor cation. Bifunctionalization of the chelator allows for the coupling of the chelator to a vector, such as a biomolecule. Using this approach, radiolabeling of biomolecules with metallic radionuclides can be performed, enabling nuclear imaging studies for diagnosis and radiotherapy of diseases. In the case of positron emission tomography (PET) of radiolabeled antibodies, this approach is called immunoPET. In this review we focus on chelators using hydroxamate groups to coordinate the radionuclide zirconium-89 ([89Zr]Zr4+, denoted as 89Zr in the following). The most common chelator used in this context is desferrioxamine (DFO). However, preclinical studies indicate that the 89Zr-DFO complex is not stable enough in vivo, in particular when combined with biomolecules with slow pharmacokinetics (e.g., antibodies). Subsequently, new chelators with improved properties have been developed, of which some show promising potential. The progress is summarized in this review. Abstract Metallic radionuclides conjugated to biological vectors via an appropriate chelator are employed in nuclear medicine for the diagnosis (imaging) and radiotherapy of diseases. For the application of radiolabeled antibodies using positron emission tomography (immunoPET), zirconium-89 has gained increasing interest over the last decades as its physical properties (t1/2 = 78.4 h, 22.6% β+ decay) match well with the slow pharmacokinetics of antibodies (tbiol. = days to weeks) allowing for late time point imaging. The most commonly used chelator for 89Zr in this context is desferrioxamine (DFO). However, it has been shown in preclinical studies that the hexadentate DFO ligand does not provide 89Zr-complexes of sufficient stability in vivo and unspecific uptake of the osteophilic radiometal in bones is observed. For clinical applications, this might be of concern not only because of an unnecessary dose to the patient but also an increased background signal. As a consequence, next generation chelators based on hydroxamate scaffolds for more stable coordination of 89Zr have been developed by different research groups. In this review, we describe the progress in this research field until end of 2020, including promising examples of new candidates of chelators currently in advanced stages for clinical translation that outrun the performance of the current gold standard DFO.
Collapse
|
6
|
Roy J, Jagoda EM, Basuli F, Vasalatiy O, Phelps TE, Wong K, Ton AT, Hagemann UB, Cuthbertson AS, Cole PE, Hassan R, Choyke PL, Lin FI. In Vitro and In Vivo Comparison of 3,2-HOPO Versus Deferoxamine-Based Chelation of Zirconium-89 to the Antimesothelin Antibody Anetumab. Cancer Biother Radiopharm 2021; 36:316-325. [PMID: 34014767 PMCID: PMC8161658 DOI: 10.1089/cbr.2020.4492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Introduction: [227Th]Th-3,2-HOPO-MSLN-mAb, a mesothelin (MSLN)-targeted thorium-227 therapeutic conjugate, is currently in phase I clinical trial; however, direct PET imaging using this conjugate is technically challenging. Thus, using the same MSLN antibody, we synthesized 3,2-HOPO and deferoxamine (DFO)-based zirconium-89 antibody conjugates, [89Zr]Zr-3,2-HOPO-MSLN-mAb and [89Zr]Zr-DFO-MSLN-mAb, respectively, and compared them in vitro and in vivo. Methods: [89Zr]Zr-3,2-HOPO-MSLN-mAb and [89Zr]Zr-DFO-MSLN-mAb were evaluated in vitro to determine binding affinity and immunoreactivity in HT29-MSLN and PDX (NCI-Meso16, NCI-Meso21) cells. For both the zirconium-89 conjugates, in vivo studies (biodistribution/imaging) were performed at days 1, 3, and 6, from which tissue uptake was determined. Results: Both the conjugates demonstrated a low nanomolar binding affinity for MSLN and >95% immunoreactivity. In all the three tumor types, biodistribution of [89Zr]Zr-DFO-MSLN-mAb resulted in higher tumor uptake(15.88-28-33%ID/g) at all time points compared with [89Zr]Zr-3,2-HOPO-MSLN-mAb(7–13.07%ID/g). [89Zr]Zr-3,2-HOPO-MSLN-mAb femur uptake was always higher than [89Zr]Zr-DFO-MSLN-mAb, and imaging results concurred with the biodistribution studies. Conclusions: Even though the conjugates exhibited a high binding affinity for MSLN, [89Zr]Zr-DFO-MSLN-mAb showed a higher tumor and lower femur uptake than [89Zr]Zr-3,2-HOPO-MSLN-mAb. Nevertheless, [89Zr]Zr-3,2-HOPO-MSLN-mAb could be used to study organ distribution and lesion uptake with the caveat of detecting MSLN-positive bone lesions. Clinical trial (NCT03507452).
Collapse
Affiliation(s)
- Jyoti Roy
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Elaine M Jagoda
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Falguni Basuli
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Olga Vasalatiy
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Tim E Phelps
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Karen Wong
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anita T Ton
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | - Raffit Hassan
- Thoracic and GI Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter L Choyke
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Frank I Lin
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Pandya DN, Henry KE, Day CS, Graves SA, Nagle VL, Dilling TR, Sinha A, Ehrmann BM, Bhatt NB, Menda Y, Lewis JS, Wadas TJ. Polyazamacrocycle Ligands Facilitate 89Zr Radiochemistry and Yield 89Zr Complexes with Remarkable Stability. Inorg Chem 2020; 59:17473-17487. [PMID: 33169605 DOI: 10.1021/acs.inorgchem.0c02722] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Over the last three decades, the chemistry of zirconium has facilitated antibody development and the clinical management of disease in the precision medicine era. Scientists have harnessed its reactivity, coordination chemistry, and nuclear chemistry to develop antibody-based radiopharmaceuticals incorporating zirconium-89 (89Zr: t1/2 = 78.4 h, β+: 22.8%, Eβ+max = 901 keV; EC: 77%, Eγ = 909 keV) to improve disease detection, identify patients for individualized therapeutic interventions. and monitor their response to those interventions. However, release of the 89Zr4+ ion from the radiopharmaceutical remains a concern, since it may confound the interpretation of clinical imaging data, negatively affect dosimetric calculations, and hinder treatment planning. In this report, we relate our novel observations involving the use of polyazamacrocycles as zirconium-89 chelators. We describe the synthesis and complete characterization of zirconium 2,2',2″,2‴-(1,4,7,10-tetraazacyclotridecane-1,4,7,10-tetrayl)tetraacetic acid (Zr-TRITA), zirconium 3,6,9,15-Tetraazabicyclo[9.3.1] pentadeca-1(15),11,13-triene-3,6,9-triacetic acid (Zr-PCTA), and zirconium 2,2',2″-(1,4,7-triazacyclononane-1,4,7-triyl)triacetic acid (Zr-NOTA). In addition, we elucidate the solid-state structure of each complex using single-crystal X-ray diffraction analysis. Finally, we found that [89Zr]Zr-PCTA and [89Zr]Zr-NOTA demonstrate excellent stability in vitro and in vivo and provide a rationale for these observations. These innovative findings have the potential to guide the development of safer and more robust immuno-PET agents to improve precision medicine applications.
Collapse
Affiliation(s)
- Darpan N Pandya
- Department of Radiology, University of Iowa, Iowa City, Iowa 52242, United States
| | - Kelly E Henry
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Cynthia S Day
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Stephen A Graves
- Department of Radiology, University of Iowa, Iowa City, Iowa 52242, United States
| | - Veronica L Nagle
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Thomas R Dilling
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Akesh Sinha
- Department of Radiology, University of Iowa, Iowa City, Iowa 52242, United States
| | - Brandie M Ehrmann
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Nikunj B Bhatt
- Department of Radiology, Columbia University, New York, New York 10032, United States
| | - Yusuf Menda
- Department of Radiology, University of Iowa, Iowa City, Iowa 52242, United States
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Thaddeus J Wadas
- Department of Radiology, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
8
|
Abstract
The thermodynamic stability of a metal-ligand complex, as measured by the formation constant (log β), is one of the most important parameters that determines metal ion selectivity and potential applications in, for example, radiopharmaceutical science. The stable coordination chemistry of radioactive 89Zr4+ in an aqueous environment is of paramount importance when developing positron-emitting radiotracers based on proteins (usually antibodies) for use with positron emission tomography. Desferrioxamine B (DFO) remains the chelate of choice for clinical applications of 89Zr-labeled proteins, but the coordination of DFO to Zr4+ ions is suboptimal. Many alternative ligands have been reported, but the challenges in measuring very high log β values with metal ions such as Zr4+ that tend to hydrolyze mean that accurate thermodynamic data are scarce. In this work, density functional theory (DFT) calculations were used to predict the reaction energetics for metal ion complexation. Computed values of pseudoformation constants (log β') are correlated with experimental data and showed an excellent linear relationship (R2 = 0.97). The model was then used to estimate the absolute and relative formation constants of 23 different Zr4+ complexes using a total of 17 different ligands, including many of the alternative bifunctional chelates that have been reported recently for use in 89Zr4+ radiochemistry. In addition, detailed computational studies were performed on the geometric isomerism and hydration state of Zr-desferrioxamine. Collectively, the results offer new insights into Zr4+ coordination chemistry that will help guide the synthesis of future ligands. The computational model developed here is straightforward and reproducible and can be readily applied in the design of other metal coordination compounds.
Collapse
Affiliation(s)
- Jason P Holland
- University of Zurich , Department of Chemistry , Winterthurerstrasse 190 , CH-8057 Zurich , Switzerland
| |
Collapse
|
9
|
Leiske MN, Walker JA, Zia A, Fletcher NL, Thurecht KJ, Davis TP, Kempe K. Synthesis of biscarboxylic acid functionalised EDTA mimicking polymers and their ability to form Zr(iv) chelation mediated nanostructures. Polym Chem 2020. [DOI: 10.1039/d0py00304b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We present a new biscarboxylic acid acrylate, which is used for the synthesis of double hydrophilic EDTA-mimicking block copolymers capable of self-assembly upon zirconium complexation.
Collapse
Affiliation(s)
- Meike N. Leiske
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- and Drug Delivery
- Disposition and Dynamics
- Monash Institute of Pharmaceutical Sciences
- Monash University
| | - Julia A. Walker
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- and Drug Delivery
- Disposition and Dynamics
- Monash Institute of Pharmaceutical Sciences
- Monash University
| | - Aadarash Zia
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- and Drug Delivery
- Disposition and Dynamics
- Monash Institute of Pharmaceutical Sciences
- Monash University
| | - Nicholas L. Fletcher
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology
- The University of Queensland
- St Lucia
- Australia
| | - Kristofer J. Thurecht
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology
- The University of Queensland
- St Lucia
- Australia
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- and Drug Delivery
- Disposition and Dynamics
- Monash Institute of Pharmaceutical Sciences
- Monash University
| | - Kristian Kempe
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- and Drug Delivery
- Disposition and Dynamics
- Monash Institute of Pharmaceutical Sciences
- Monash University
| |
Collapse
|
10
|
Buchwalder C, Jaraquemada-Peláez MDG, Rousseau J, Merkens H, Rodríguez-Rodríguez C, Orvig C, Bénard F, Schaffer P, Saatchi K, Häfeli UO. Evaluation of the Tetrakis(3-Hydroxy-4-Pyridinone) Ligand THPN with Zirconium(IV): Thermodynamic Solution Studies, Bifunctionalization, and in Vivo Assessment of Macromolecular 89Zr-THPN-Conjugates. Inorg Chem 2019; 58:14667-14681. [DOI: 10.1021/acs.inorgchem.9b02350] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Christian Buchwalder
- University of British Columbia, Faculty of Pharmaceutical Sciences, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | | | - Julie Rousseau
- BC Cancer Agency, Department of Functional Imaging, 600 West 10th Avenue, Vancouver, BC V5Z 4E6, Canada
| | - Helen Merkens
- BC Cancer Agency, Department of Functional Imaging, 600 West 10th Avenue, Vancouver, BC V5Z 4E6, Canada
| | - Cristina Rodríguez-Rodríguez
- University of British Columbia, Faculty of Pharmaceutical Sciences, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
- University of British Columbia, Department of Physics & Astronomy, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, University of British Columbia, Department of Chemistry, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - François Bénard
- BC Cancer Agency, Department of Functional Imaging, 600 West 10th Avenue, Vancouver, BC V5Z 4E6, Canada
| | - Paul Schaffer
- TRIUMF, Life Sciences Division, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
| | - Katayoun Saatchi
- University of British Columbia, Faculty of Pharmaceutical Sciences, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Urs O. Häfeli
- University of British Columbia, Faculty of Pharmaceutical Sciences, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
11
|
Raavé R, Sandker G, Adumeau P, Jacobsen CB, Mangin F, Meyer M, Moreau M, Bernhard C, Da Costa L, Dubois A, Goncalves V, Gustafsson M, Rijpkema M, Boerman O, Chambron JC, Heskamp S, Denat F. Direct comparison of the in vitro and in vivo stability of DFO, DFO* and DFOcyclo* for 89Zr-immunoPET. Eur J Nucl Med Mol Imaging 2019; 46:1966-1977. [PMID: 31161258 PMCID: PMC6647232 DOI: 10.1007/s00259-019-04343-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/29/2019] [Indexed: 12/03/2022]
Abstract
PURPOSE Currently, the most commonly used chelator for labelling antibodies with 89Zr for immunoPET is desferrioxamine B (DFO). However, preclinical studies have shown that the limited in vivo stability of the 89Zr-DFO complex results in release of 89Zr, which accumulates in mineral bone. Here we report a novel chelator DFOcyclo*, a preorganized extended DFO derivative that enables octacoordination of the 89Zr radiometal. The aim was to compare the in vitro and in vivo stability of [89Zr]Zr-DFOcyclo*, [89Zr]Zr-DFO* and [89Zr]Zr-DFO. METHODS The stability of 89Zr-labelled chelators alone and after conjugation to trastuzumab was evaluated in human plasma and PBS, and in the presence of excess EDTA or DFO. The immunoreactive fraction, IC50, and internalization rate of the conjugates were evaluated using HER2-expressing SKOV-3 cells. The in vivo distribution was investigated in mice with subcutaneous HER2+ SKOV-3 or HER2- MDA-MB-231 xenografts by PET/CT imaging and quantitative ex vivo tissue analyses 7 days after injection. RESULTS 89Zr-labelled DFO, DFO* and DFOcyclo* were stable in human plasma for up to 7 days. In competition with EDTA, DFO* and DFOcyclo* showed higher stability than DFO. In competition with excess DFO, DFOcyclo*-trastuzumab was significantly more stable than the corresponding DFO and DFO* conjugates (p < 0.001). Cell binding and internalization were similar for the three conjugates. In in vivo studies, HER2+ SKOV-3 tumour-bearing mice showed significantly lower bone uptake (p < 0.001) 168 h after injection with [89Zr]Zr-DFOcyclo*-trastuzumab (femur 1.5 ± 0.3%ID/g, knee 2.1 ± 0.4%ID/g) or [89Zr]Zr-DFO*-trastuzumab (femur 2.0 ± 0.3%ID/g, knee 2.68 ± 0.4%ID/g) than after injection with [89Zr]Zr-DFO-trastuzumab (femur 4.5 ± 0.6%ID/g, knee 7.8 ± 0.6%ID/g). Blood levels, tumour uptake and uptake in other organs were not significantly different at 168 h after injection. HER2- MDA-MB-231 tumour-bearing mice showed significantly lower tumour uptake (p < 0.001) after injection with [89Zr]Zr-DFOcyclo*-trastuzumab (16.2 ± 10.1%ID/g) and [89Zr]Zr-DFO-trastuzumab (19.6 ± 3.2%ID/g) than HER2+ SKOV-3 tumour-bearing mice (72.1 ± 14.6%ID/g and 93.1 ± 20.9%ID/g, respectively), while bone uptake was similar. CONCLUSION 89Zr-labelled DFOcyclo* and DFOcyclo*-trastuzumab showed higher in vitro and in vivo stability than the current commonly used 89Zr-DFO-trastuzumab. DFOcyclo* is a promising candidate to become the new clinically used standard chelator for 89Zr immunoPET.
Collapse
Affiliation(s)
- René Raavé
- Department of Radiology and Nuclear Medicine, Radboudumc, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Gerwin Sandker
- Department of Radiology and Nuclear Medicine, Radboudumc, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Pierre Adumeau
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Université Bourgogne Franche-Comté, 9 avenue A. Savary, 21078, Dijon Cedex, France
| | | | - Floriane Mangin
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Université Bourgogne Franche-Comté, 9 avenue A. Savary, 21078, Dijon Cedex, France
| | - Michel Meyer
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Université Bourgogne Franche-Comté, 9 avenue A. Savary, 21078, Dijon Cedex, France
| | - Mathieu Moreau
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Université Bourgogne Franche-Comté, 9 avenue A. Savary, 21078, Dijon Cedex, France
| | - Claire Bernhard
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Université Bourgogne Franche-Comté, 9 avenue A. Savary, 21078, Dijon Cedex, France
| | - Laurène Da Costa
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Université Bourgogne Franche-Comté, 9 avenue A. Savary, 21078, Dijon Cedex, France
| | - Adrien Dubois
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Université Bourgogne Franche-Comté, 9 avenue A. Savary, 21078, Dijon Cedex, France
| | - Victor Goncalves
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Université Bourgogne Franche-Comté, 9 avenue A. Savary, 21078, Dijon Cedex, France
| | - Magnus Gustafsson
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, DK-2760, Måløv, Denmark
| | - Mark Rijpkema
- Department of Radiology and Nuclear Medicine, Radboudumc, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Otto Boerman
- Department of Radiology and Nuclear Medicine, Radboudumc, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Jean-Claude Chambron
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Université Bourgogne Franche-Comté, 9 avenue A. Savary, 21078, Dijon Cedex, France.
- Institut de Chimie de Strasbourg, UMR 7177, CNRS, Université de Strasbourg, 1 rue Blaise Pascal, 67008, Strasbourg Cedex, France.
| | - Sandra Heskamp
- Department of Radiology and Nuclear Medicine, Radboudumc, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.
| | - Franck Denat
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Université Bourgogne Franche-Comté, 9 avenue A. Savary, 21078, Dijon Cedex, France.
| |
Collapse
|
12
|
Preparation of Zirconium-89 Solutions for Radiopharmaceutical Purposes: Interrelation Between Formulation, Radiochemical Purity, Stability and Biodistribution. Molecules 2019; 24:molecules24081534. [PMID: 31003494 PMCID: PMC6514948 DOI: 10.3390/molecules24081534] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 02/06/2023] Open
Abstract
Zirconium-89 is a promising radionuclide for nuclear medicine. The aim of the present work was to find a suitable method for obtaining zirconium-89 solutions for radiopharmaceutical purposes. For this purpose, the ion exchange behavior of zirconium-89 solutions was studied. Radio-TLC (thin layer chromatography) and biodistribution studies were carried out to understand speciation of zirconium-89 complexes and their role in the development of new radiopharmaceuticals. Three methods of zirconium-89 isolation were studied using ZR (hydroxamate) and Chelex-100 resins. It was found that ZR-resin alone is not enough to obtain stable zirconium-89 formulations. An easy and effective method of reconstitution of [89Zr]Zr-oxalate to [89Zr]Zr-citrate using Chelex-100 resin was developed. Developed procedures allow obtaining [89Zr]Zr-oxalate (in 0.1 M sodium oxalate solution) and [89Zr]Zr-citrate (in 0.1–1.0 M sodium citrate solution). These solutions are perfectly suitable and convenient for radiopharmaceutical purposes. Our results prove [89Zr]Zr-citrate to be advantageous over [89Zr]Zr-oxalate. During evaluation of speciation of zirconium-89 complexes, a new TLC method was developed, since it was proved that there is no comprehensive method for analysis or zirconium-89 preparations. The new method provides valuable insights about the content of “active” ionic form of zirconium-89. The interrelation of the chromatographic behavior of zirconium-89 preparations and their biodistribution was studied.
Collapse
|
13
|
La MT, Tran VH, Kim HK. Progress of Coordination and Utilization of Zirconium-89 for Positron Emission Tomography (PET) Studies. Nucl Med Mol Imaging 2019; 53:115-124. [PMID: 31057683 DOI: 10.1007/s13139-019-00584-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 02/07/2023] Open
Abstract
Radiometals have been commonly used in medical applications, and utilization of such metals continues to be an attractive research area. In particular, a variety of radiometals have been developed and implemented for molecular imaging. For such applications, 89Zr has been one of the most interesting radiometals currently used for tumor targeting. Several chemical ligands were developed as 89Zr chelators, and new coordinating methods have also been developed more recently. In addition, immuno-positron emission tomography (PET) studies using 89Zr-labeled monoclonal antibodies have been performed by several scientists. In this review, recent advances to the coordination of 89Zr and the utilization of 89Zr in PET studies are described.
Collapse
Affiliation(s)
- Minh Thanh La
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Cyclotron Research Center, Biomedical Research Institute, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk 54907 Republic of Korea
| | - Van Hieu Tran
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Cyclotron Research Center, Biomedical Research Institute, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk 54907 Republic of Korea
| | - Hee-Kwon Kim
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Cyclotron Research Center, Biomedical Research Institute, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk 54907 Republic of Korea
| |
Collapse
|
14
|
Bhatt NB, Pandya DN, Rideout-Danner S, Gage HD, Marini FC, Wadas TJ. A comprehensively revised strategy that improves the specific activity and long-term stability of clinically relevant 89Zr-immuno-PET agents. Dalton Trans 2018; 47:13214-13221. [PMID: 30178793 PMCID: PMC6192516 DOI: 10.1039/c8dt01841c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Zirconium-89 is currently being used in numerous clinical trials involving monoclonal antibodies and positron emission tomography. This report describes a revised strategy that reduces preparation time while increasing the specific activity of clinically relevant immuno-PET agents. Additionally, it demonstrates that n-acetyl-l-cysteine acts as a superior radioprotective agent that improves long-term stability without compromising antigen affinity in vivo.
Collapse
Affiliation(s)
- Nikunj B Bhatt
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Darpan N Pandya
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | | | - Howard D Gage
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Frank C Marini
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA. and Wake Forest Institute of Regenerative Medicine, Winston-Salem, NC 27157, USA
| | - Thaddeus J Wadas
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
15
|
Abstract
This Tutorial Review aims to provide an overview of the use of zirconium-89 complexes in biomedical imaging. Over the past decade there have been many new papers in this field, ranging from chemistry through to preclinical and clinical applications. Here we attempt to summarise the main developments that have occurred in this period. The primary focus is on coordination chemistry but other aspects such as isotope production, isotope properties, handling and radiochemical techniques and characterisation of cold and labelled complexes are included. Selected results from animal and human clinical studies are presented in the context of the stabilities and properties of the labelled bioconjugates.
Collapse
Affiliation(s)
- Jonathan R Dilworth
- Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| | - Sofia I Pascu
- Department of Chemistry, University of Bath, Claverton Down, BA2 7AY, UK.
| |
Collapse
|
16
|
Abstract
The interest in zirconium-89 (89Zr) as a positron-emitting radionuclide has grown considerably over the last decade due to its standardized production, long half-life of 78.2 h, favorable decay characteristics for positron emission tomography (PET) imaging and its successful use in a variety of clinical and preclinical applications. However, to be utilized effectively in PET applications it must be stably bound to a targeting ligand, and the most successfully used 89Zr chelator is desferrioxamine B (DFO), which is commercially available as the iron chelator Desferal®. Despite the prevalence of DFO in 89Zr-immuno-PET applications, the development of new ligands for this radiometal is an active area of research. This review focuses on recent advances in zirconium-89 chelation chemistry and will highlight the rapidly expanding ligand classes that are under investigation as DFO alternatives.
Collapse
Affiliation(s)
- Nikunj B Bhatt
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| | - Darpan N Pandya
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| | - Thaddeus J Wadas
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| |
Collapse
|
17
|
Summer D, Garousi J, Oroujeni M, Mitran B, Andersson KG, Vorobyeva A, Löfblom J, Orlova A, Tolmachev V, Decristoforo C. Cyclic versus Noncyclic Chelating Scaffold for 89Zr-Labeled ZEGFR:2377 Affibody Bioconjugates Targeting Epidermal Growth Factor Receptor Overexpression. Mol Pharm 2017; 15:175-185. [PMID: 29160082 PMCID: PMC5751887 DOI: 10.1021/acs.molpharmaceut.7b00787] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
Zirconium-89
is an emerging radionuclide for positron emission
tomography (PET) especially for biomolecules with slow pharmacokinetics
as due to its longer half-life, in comparison to fluorine-18 and gallium-68,
imaging at late time points is feasible. Desferrioxamine B (DFO),
a linear bifunctional chelator (BFC) is mostly used for this radionuclide
so far but shows limitations regarding stability. Our group recently
reported on fusarinine C (FSC) with similar zirconium-89 complexing
properties but potentially higher stability related to its cyclic
structure. This study was designed to compare FSC and DFO head-to-head
as bifunctional chelators for 89Zr-radiolabeled EGFR-targeting
ZEGFR:2377 affibody bioconjugates. FSC-ZEGFR:2377 and DFO-ZEGFR:2377
were evaluated regarding radiolabeling, in vitro stability,
specificity, cell uptake, receptor affinity, biodistribution, and
microPET-CT imaging. Both conjugates were efficiently labeled with
zirconium-89 at room temperature but radiochemical yields increased
substantially at elevated temperature, 85 °C. Both 89Zr-FSC-ZEGFR:2377 and 89Zr-DFO-ZEGFR:2377 revealed remarkable
specificity, affinity and slow cell-line dependent internalization.
Radiolabeling at 85 °C showed comparable results in A431 tumor
xenografted mice with minor differences regarding blood clearance,
tumor and liver uptake. In comparison 89Zr-DFO-ZEGFR:2377,
radiolabeled at room temperature, showed a significant difference
regarding tumor-to-organ ratios. MicroPET-CT imaging studies of 89Zr-FSC-ZEGFR:2377 as well as 89Zr-DFO-ZEGFR:2377
confirmed these findings. In summary we were able to show that FSC
is a suitable alternative to DFO for radiolabeling of biomolecules
with zirconium-89. Furthermore, our findings indicate that 89Zr-radiolabeling of DFO conjugates at higher temperature reduces
off-chelate binding leading to significantly improved tumor-to-organ
ratios and therefore enhancing image contrast.
Collapse
Affiliation(s)
- Dominik Summer
- Department of Nuclear Medicine, Medical University Innsbruck , Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Javad Garousi
- Institute of Immunology, Genetic and Pathology, Uppsala University , SE-75185 Uppsala, Sweden
| | - Maryam Oroujeni
- Institute of Immunology, Genetic and Pathology, Uppsala University , SE-75185 Uppsala, Sweden
| | - Bogdan Mitran
- Division of Molecular Imaging, Department of Medicinal Chemistry, Uppsala University , SE-751 83 Uppsala, Sweden
| | - Ken G Andersson
- Division of Protein Technology, KTH Royal Institute of Technology , SE-10691 Stockholm, Sweden
| | - Anzhelika Vorobyeva
- Institute of Immunology, Genetic and Pathology, Uppsala University , SE-75185 Uppsala, Sweden
| | - John Löfblom
- Division of Protein Technology, KTH Royal Institute of Technology , SE-10691 Stockholm, Sweden
| | - Anna Orlova
- Division of Molecular Imaging, Department of Medicinal Chemistry, Uppsala University , SE-751 83 Uppsala, Sweden
| | - Vladimir Tolmachev
- Institute of Immunology, Genetic and Pathology, Uppsala University , SE-75185 Uppsala, Sweden
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Medical University Innsbruck , Anichstrasse 35, A-6020 Innsbruck, Austria
| |
Collapse
|
18
|
Buchwalder C, Rodríguez-Rodríguez C, Schaffer P, Karagiozov SK, Saatchi K, Häfeli UO. A new tetrapodal 3-hydroxy-4-pyridinone ligand for complexation of 89zirconium for positron emission tomography (PET) imaging. Dalton Trans 2017; 46:9654-9663. [DOI: 10.1039/c7dt02196h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The first octadentate 3-hydroxy-4-pyridinone chelator was prepared and its monometallic 89Zr(iv)-complex was studied in vitro and in vivo.
Collapse
Affiliation(s)
| | | | | | | | - Katayoun Saatchi
- University of British Columbia
- Faculty of Pharmaceutical Sciences
- Vancouver
- Canada
| | - Urs O. Häfeli
- University of British Columbia
- Faculty of Pharmaceutical Sciences
- Vancouver
- Canada
| |
Collapse
|