1
|
Zhang G, Cai Y, Liang J, Jing Z, Wei W, Lv L, Dang X, Song Q. The decrease in zinc-finger E-box-binding homeobox-1 could accelerate steroid-induced osteonecrosis of the femoral head by repressing type-H vessel formation via Wnt/β-catenin pathway. Animal Model Exp Med 2024; 7:802-815. [PMID: 39686556 DOI: 10.1002/ame2.12507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/08/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Zinc-finger E-box-binding homeobox-1 (ZEB1) is predominantly found in type-H vessels. However, the roles of ZEB1 and type-H vessels in steroid-induced osteonecrosis of the femoral head (SONFH) are unclear. METHODS Human femoral heads were collected to detect the expression of ZEB1 and the levels of type-H vessels. Then, the SONFH model was developed by injecting C57BL/6 mice with lipopolysaccharide and methylprednisolone. Micro-computed tomography, angiography, double calcein labeling, immunofluorescence, immunohistochemistry, quantitative real-time polymerase chain reaction, and Western blotting were performed to detect the expression of ZEB1, the Wnt/β-catenin pathway, type-H vessels, and the extent to which ZEB1 mediates angiogenesis and osteogenesis. Human umbilical vein endothelial cells were also used to explore the relationship between ZEB1 and the Wnt/β-catenin pathway. RESULTS We found that ZEB1 expression and the formation of type-H vessels decreased in SONFH patients and in a mouse model. The number of vascular endothelial growth factors in the femoral heads also decreased. Moreover, the bone mineral density, trabecular number, mineral apposition rate, and expression of genes related to osteogenesis decreased. After ZEB1 knockdown, angiogenesis and osteogenesis decreased. However, the numbers of type-H vessels and the extent of angiogenesis and osteogenesis improved after activation of the Wnt/β-catenin pathway. CONCLUSIONS The ZEB1 expression decreased in SONFH, causing a decrease in type-H vessel, and it mediated angiogenesis and osteogenesis by regulating the Wnt/β-catenin pathway, ultimately accelerating the process of SONFH.
Collapse
Affiliation(s)
- Guangyang Zhang
- Orthopedic Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuanqing Cai
- Orthopedic Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jialin Liang
- Orthopedic Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhaopu Jing
- Orthopedic Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wang Wei
- Orthopedic Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Leifeng Lv
- Orthopedic Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoqian Dang
- Orthopedic Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qichun Song
- Orthopedic Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
2
|
Huang C, Wen Z, Niu J, Lin S, Wang W. Steroid-Induced Osteonecrosis of the Femoral Head: Novel Insight Into the Roles of Bone Endothelial Cells in Pathogenesis and Treatment. Front Cell Dev Biol 2021; 9:777697. [PMID: 34917616 PMCID: PMC8670327 DOI: 10.3389/fcell.2021.777697] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/16/2021] [Indexed: 01/18/2023] Open
Abstract
Steroid-induced osteonecrosis of the femoral head (SONFH) is a disease characterized by the collapse of the femoral head. SONFH occurs due to the overuse of glucocorticoids (GCs) in patients with immune-related diseases. Among various pathogenesis proposed, the mechanism related to impaired blood vessels is gradually becoming the most convincing hypothesis. Bone endothelial cells including bone microvascular endothelial cells (BMECs) and endothelial progenitor cells (EPCs) play a crucial role in the maintenance of vascular homeostasis. Therefore, bone endothelial cells are key regulators in the occurrence and progression of SONFH. Impaired angiogenesis, abnormal apoptosis, thrombosis and fat embolism caused by the dysfunctions of bone endothelial cells are considered to be the pathogenesis of SONFH. In addition, even with high disability rates, SONFH lacks effective therapeutic approach. Icariin (ICA, a flavonoid extracted from Epimedii Herba), pravastatin, and VO-OHpic (a potent inhibitor of PTEN) are candidate reagents to prevent and treat SONFH through improving above pathological processes. However, these reagents are still in the preclinical stage and will not be widely used temporarily. In this case, bone tissue engineering represented by co-transplantation of bone endothelial cells and bone marrow mesenchymal stem cells (BMSCs) may be another feasible therapeutic strategy.
Collapse
Affiliation(s)
- Cheng Huang
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing, China
| | - Zeqin Wen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Junjie Niu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Subin Lin
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Weiguo Wang
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
3
|
Dong H, Zhu T, Zhang M, Wang D, Wang X, Huang G, Wang S, Zhang M. Polymer Scaffolds-Enhanced Bone Regeneration in Osteonecrosis Therapy. Front Bioeng Biotechnol 2021; 9:761302. [PMID: 34631688 PMCID: PMC8498195 DOI: 10.3389/fbioe.2021.761302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022] Open
Abstract
Osteonecrosis without effective early treatment eventually leads to the collapse of the articular surface and causes arthritis. For the early stages of osteonecrosis, core decompression combined with bone grafting, is a procedure worthy of attention and clinical trial. And the study of bone graft substitutes has become a hot topic in the area of osteonecrosis research. In recent years, polymers have received more attention than other materials due to their excellent performance. However, because of the harsh microenvironment in osteonecrosis, pure polymers may not meet the stringent requirements of osteonecrosis research. The combined application of polymers and various other substances makes up for the shortcomings of polymers, and to meet a broad range of requirements for application in osteonecrosis therapy. This review focuses on various applying polymers in osteonecrosis therapy, then discusses the development of biofunctionalized composite polymers based on the polymers combined with different bioactive substances. At the end, we discuss their prospects for translation to clinical practice.
Collapse
Affiliation(s)
- Hengliang Dong
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Tongtong Zhu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Mingran Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Dapeng Wang
- Department of Orthopedics, Siping Central Hospital, Siping, China
| | - Xukai Wang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Guanning Huang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shuaishuai Wang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Minglei Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Jiang M, Liu L, Xiang X, Liang R, Qin X, Zhao J, Wei Q. An MSC bone-homing compound, Rab001, increases bone mass and reduces the incidence of osteonecrosis in a glucocorticoid-induced osteonecrosis mouse model. Clin Exp Pharmacol Physiol 2021; 48:770-781. [PMID: 33319413 DOI: 10.1111/1440-1681.13441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/18/2020] [Indexed: 11/30/2022]
Abstract
Currently, there are no effective medications to either prevent or slow the progression of atraumatic osteonecrosis (ON). The objective of this study is to determine the effects of bone-targeted delivery of mesenchymal stem cells on the prevalence of ON in a glucocorticoid (GC)-induced mouse model. Eight-week-old male BALB/c mice were randomized into groups that received placebo (PL), prednisolone (GC), or concurrent treatments with GC + mesenchymal stromal cells (MSCs), Rab001 or GC + Rab001 + MSCs. Human parathyroid hormone (hPTH) was used as a positive control for bone anabolism. Mice were killed after 30 days, and quantitative measurements of bone mass, bone strength, prevalent ON at the distal femoral epiphysis (DFE) were performed. Angiogenesis was accessed by RNA-Seq, the circulating angiogenic markers, as well as by immunohistochemical staining. We have showed that a novel agent, Rab001 that can noncovalently bind to mesenchymal stem cells (MSC) and direct them to the bone, prevents the incidence of glucocorticoid-induced osteonecrosis in the mouse. In contrast, PTH, a bone anabolic treatment, preserves bone mass but sustains higher ON incidence than Rab001+/- MSC-treated mice. The results of these experiments reveal that glucocorticoids increase the prevalence of ON, and agents that prevent loss of bone vascularity appear to prevent the development of ON. This intervention might be useful in patients with early stages of atraumatic ON.
Collapse
Affiliation(s)
- Min Jiang
- Guangxi Laide Kangshun Bio-pharmaceutical Technology Co., Ltd., Nanning, China
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lixian Liu
- Yunnan Vocational and Technical College of Agriculture, Kunming, China
| | - Xuexiang Xiang
- Guangxi Laide Kangshun Bio-pharmaceutical Technology Co., Ltd., Nanning, China
| | - Runmin Liang
- Guangxi Laide Kangshun Bio-pharmaceutical Technology Co., Ltd., Nanning, China
| | - Xuelian Qin
- Guangxi Laide Kangshun Bio-pharmaceutical Technology Co., Ltd., Nanning, China
| | - Jinmin Zhao
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
| | - Qingjun Wei
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
| |
Collapse
|
5
|
Sain A, Bansal H, Pattabiraman K, Sharma V. Present and future scope of recombinant parathyroid hormone therapy in orthopaedics. J Clin Orthop Trauma 2021; 17:54-58. [PMID: 33717971 PMCID: PMC7920101 DOI: 10.1016/j.jcot.2021.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/28/2020] [Accepted: 01/29/2021] [Indexed: 12/20/2022] Open
Abstract
Parathyroid Hormone (PTH) has a significant role in calcium metabolism. Its intermittent administration has an anabolic effect on bone mineralization. Teriparatide (PTH 1-34), a recombinant form of parathyroid hormone, is useful in the treatment of osteoporosis, fracture healing, non-union, stress fracture, augmentation of implant fixation with bone, and chondroprotection in osteoarthritis. The present review article will elaborate on the potential approved uses of recombinant PTH in orthopedics and its evolving role in the management of fracture osteosynthesis and other common challenging bone pathologies.
Collapse
Affiliation(s)
| | - Hemant Bansal
- Corresponding author. Department of Orthopaedics, JPN Apex Trauma Centre, AIIMS, New Delhi, India.
| | | | | |
Collapse
|
6
|
Chen J, Hendriks M, Chatzis A, Ramasamy SK, Kusumbe AP. Bone Vasculature and Bone Marrow Vascular Niches in Health and Disease. J Bone Miner Res 2020; 35:2103-2120. [PMID: 32845550 DOI: 10.1002/jbmr.4171] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/21/2020] [Accepted: 08/05/2020] [Indexed: 12/20/2022]
Abstract
Bone vasculature and bone marrow vascular niches supply oxygen, nutrients, and secrete angiocrine factors required for the survival, maintenance, and self-renewal of stem and progenitor cells. In the skeletal system, vasculature creates nurturing niches for bone and blood-forming stem cells. Blood vessels regulate hematopoiesis and drive bone formation during development, repair, and regeneration. Dysfunctional vascular niches induce skeletal aging, bone diseases, and hematological disorders. Recent cellular and molecular characterization of the bone marrow microenvironment has provided unprecedented insights into the complexity, heterogeneity, and functions of the bone vasculature and vascular niches. The bone vasculature is composed of distinct vessel subtypes that differentially regulate osteogenesis, hematopoiesis, and disease conditions in bones. Further, bone marrow vascular niches supporting stem cells are often complex microenvironments involving multiple different cell populations and vessel subtypes. This review provides an overview of the emerging vascular cell heterogeneity in bone and the new roles of the bone vasculature and associated vascular niches in health and disease. © 2020 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Junyu Chen
- Tissue and Tumor Microenvironments Group, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Michelle Hendriks
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Alexandros Chatzis
- Tissue and Tumor Microenvironments Group, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Saravana K Ramasamy
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Anjali P Kusumbe
- Tissue and Tumor Microenvironments Group, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Zhu T, Cui Y, Zhang M, Zhao D, Liu G, Ding J. Engineered three-dimensional scaffolds for enhanced bone regeneration in osteonecrosis. Bioact Mater 2020; 5:584-601. [PMID: 32405574 PMCID: PMC7210379 DOI: 10.1016/j.bioactmat.2020.04.008] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/11/2020] [Accepted: 04/11/2020] [Indexed: 12/15/2022] Open
Abstract
Osteonecrosis, which is typically induced by trauma, glucocorticoid abuse, or alcoholism, is one of the most severe diseases in clinical orthopedics. Osteonecrosis often leads to joint destruction, and arthroplasty is eventually required. Enhancement of bone regeneration is a critical management strategy employed in osteonecrosis therapy. Bone tissue engineering based on engineered three-dimensional (3D) scaffolds with appropriate architecture and osteoconductive activity, alone or functionalized with bioactive factors, have been developed to enhance bone regeneration in osteonecrosis. In this review, we elaborate on the ideal properties of 3D scaffolds for enhanced bone regeneration in osteonecrosis, including biocompatibility, degradability, porosity, and mechanical performance. In addition, we summarize the development of 3D scaffolds alone or functionalized with bioactive factors for accelerating bone regeneration in osteonecrosis and discuss their prospects for translation to clinical practice. Engineered three-dimensional scaffolds boost bone regeneration in osteonecrosis. The ideal properties of three-dimensional scaffolds for osteonecrosis treatment are discussed. Bioactive factors-functionalized three-dimensional scaffolds are promising bone regeneration devices for osteonecrosis management. The challenges and opportunities of engineered three-dimensional scaffolds for osteonecrosis therapy are predicted.
Collapse
Affiliation(s)
- Tongtong Zhu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, PR China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| | - Yutao Cui
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, 130041, PR China
| | - Mingran Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, PR China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| | - Duoyi Zhao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| | - Guangyao Liu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, PR China
- Corresponding author.
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| |
Collapse
|
8
|
Peng Y, Wu S, Li Y, Crane JL. Type H blood vessels in bone modeling and remodeling. Theranostics 2020; 10:426-436. [PMID: 31903130 PMCID: PMC6929606 DOI: 10.7150/thno.34126] [Citation(s) in RCA: 320] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 10/12/2019] [Indexed: 12/29/2022] Open
Abstract
In the mammalian skeletal system, osteogenesis and angiogenesis are intimately linked during bone growth and regeneration in bone modeling and during bone homeostasis in bone remodeling. Recent studies have expanded our knowledge about the molecular and cellular mechanisms responsible for coupling angiogenesis and bone formation. Type H vessels, termed such because of high expression of Endomucin (Emcn) and CD31, have recently been identified and have the ability to induce bone formation. Factors including platelet-derived growth factor type BB (PDGF-BB), slit guidance ligand 3 (SLIT3), hypoxia-inducible factor 1-alpha (HIF-1α), Notch, and vascular endothelial growth factor (VEGF) are involved in the coupling of angiogenesis and osteogenesis. This review summarizes the current understanding of signaling pathways that regulate type H vessels and how type H vessels modulate osteogenesis. Further studies dissecting the regulation and function of type H vessels will provide new insights into the role of bone vasculature in the metabolism of the skeleton. We also discuss considerations for therapeutic approaches targeting type H vessels to promote fracture healing, prevent pathological bone loss, osteonecrosis, osteoarthritis, and bone metastases.
Collapse
Affiliation(s)
- Yi Peng
- Department of Orthopedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Song Wu
- Department of Orthopedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Yusheng Li
- Department of Orthopedic Surgery, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 41000, China
| | - Janet L. Crane
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
9
|
Chiang CW, Chen WC, Lee CH, Chen CH. Intermittent Parathyroid Hormone Injection Can Decrease Femoral Head Collapse in the Vascular Deprivation of Rat Femoral Head Model. Indian J Orthop 2019; 53:340-346. [PMID: 30967706 PMCID: PMC6415556 DOI: 10.4103/ortho.ijortho_315_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUNDS Intermittent parathyroid hormone (intermittent PTH) injection has been shown to improve osteogenesis. We hypothesized that intermittent PTH injection could stimulate osteogenesis during the early phase of vascular deprivation-induced femoral neck osteonecrosis in a rat model. MATERIALS AND METHODS Eighteen Sprague-Dawley rats were divided into three groups (normal saline [CON], PTH 10 μg/kg [PTH-H], and PTH 1 μg/kg [PTH-L]) for 8 weeks by subcutaneous injection. All rats were sacrificed at postoperative 8 weeks, and all underwent a micro-computed tomography (μ-CT) examination for bone quality and quantity evaluation and histomorphometric analysis for microscopic histologic differences. RESULTS Under μ-CT examination, both the PTH-H and PTH-L groups revealed less bone resorption than the control group. The PTH-H group had a better bone protective effect than the PTH-L group. Bone mineral density was increased in the PTH-H and PTH-L groups compared to the control group. The uninjured left femoral head was enlarged in both PTH groups. The histologic examination showed that both PTH groups had new bone and cartilage formation. The control group had only dead bone without any osteogenesis. CONCLUSION Intermittent PTH injection could decrease bone resorption and improve bone density, compared to the control group, in vascular deprivation of the femoral head in a rat model. High-level intermittent PTH injection had a better effect than low-level intermittent PTH injection.
Collapse
Affiliation(s)
- Chih-Wei Chiang
- Bone and Joint Research Center, Department of Orthopedics and Traumatology Taipei Medical University Hospital, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan,Graduate Institiute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan,Address for correspondence: Dr. Chih-Wei Chiang, Department of Orthopedics and Traumatology, Taipei Medical University Hospital, 252, Wu-Hsin Street, Taipei (110), Taiwan. E-mail:
| | - Wei-Chuan Chen
- Bone and Joint Research Center, Department of Orthopedics and Traumatology Taipei Medical University Hospital, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chian-Her Lee
- Bone and Joint Research Center, Department of Orthopedics and Traumatology Taipei Medical University Hospital, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chih-Hwa Chen
- Bone and Joint Research Center, Department of Orthopedics and Traumatology Taipei Medical University Hospital, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan,Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering. Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
10
|
Arumugam B, Vishal M, Shreya S, Malavika D, Rajpriya V, He Z, Partridge NC, Selvamurugan N. Parathyroid hormone-stimulation of Runx2 during osteoblast differentiation via the regulation of lnc-SUPT3H-1:16 (RUNX2-AS1:32) and miR-6797-5p. Biochimie 2018; 158:43-52. [PMID: 30562548 DOI: 10.1016/j.biochi.2018.12.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/13/2018] [Indexed: 12/21/2022]
Abstract
Parathyroid hormone (PTH) acts as a regulator of calcium homeostasis and bone remodeling. Runx2, an essential transcription factor in bone, is required for osteoblast differentiation. Noncoding RNAs such as long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) play crucial roles in regulating gene expression in osteoblasts. In this study, we investigated the effects of PTH on osteoblast differentiation via Runx2, lncRNA, and miRNA expression in human bone marrow stromal cells (hBMSCs) and human osteoblastic cells (MG63). PTH-treatment of hBMSCs for 24 h, 7 days, and 14 days stimulated Runx2 mRNA expression. Using bioinformatics tools, we identified 17 lncRNAs originating from human Runx2 gene. Among these, lnc-SUPT3H-1:16 (RUNX2-AS1:32) expression was highly up-regulated by the 7 d PTH-treatment in hBMSCs. We also identified miR-6797-5p as the putative target of lnc-SUPT3H-1:16 and Runx2 using bioinformatics tools. PTH-treatment increased the expression of miR-6797-5p in hBMSCs, and overexpression of miR-6797-5p decreased osteoblast differentiation in MG63 cells, suggesting a role for lnc-SUPT3H-1:16 as sponge molecule. A luciferase gene reporter assay identified direct targeting of miR-6797-5p with lnc-SUPT3H-1:16 and 3'UTR Runx2 in MG63 cells. Thus, PTH stimulated the expression of lnc-SUPT3H-1:16, miR-6797-5p and Runx2, and due to the sponging mechanism of lnc- SUPT3H-1:16 towards miR-6797-5p, Runx2 was protected, resulting in the promotion of osteoblast differentiation.
Collapse
Affiliation(s)
- B Arumugam
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - M Vishal
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - S Shreya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - D Malavika
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - V Rajpriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Z He
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York University, NY, USA
| | - N C Partridge
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York University, NY, USA
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|
11
|
Lane NE, Mohan G, Yao W, Shidara K, Lay YAE, Junjing J, Dubrovsky A, Kimmel DB. Prevalence of glucocorticoid induced osteonecrosis in the mouse is not affected by treatments that maintain bone vascularity. Bone Rep 2018; 9:181-187. [PMID: 30510976 PMCID: PMC6260230 DOI: 10.1016/j.bonr.2018.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/24/2018] [Accepted: 10/31/2018] [Indexed: 02/07/2023] Open
Abstract
Objective Determine if LLP2A-Ale or PTH (1–34) affects the prevalence of glucocorticoid-induced osteonecrosis (ON) in a mouse model. Methods Eight-week-old young adult male BALB/cJ mice were weight-randomized into Control (Con), glucocorticoid (GC)-only, or concurrent treatments with GC and LLP2A-Ale (250 μg/kg or 500 μg/kg, IV, Days 1, 14, 28) or parathyroid hormone hPTH (1–34) (40 μg/kg, 5×/week). Mice were necropsied after 45 days for qualitative evaluation of prevalent ON and quantitative evaluation of vascularity in the distal femoral epiphysis (DFE); and quantitative evaluation of bone mass, microarchitecture, and strength in the distal femoral metaphysis and lumbar vertebral body. Results The prevalence of ON was 14% in the Con group and 36% in the GC-only group (P = 0.07). The prevalence of ON did not differ among GC-only, GC + LLP2A-Ale, and GC + PTH groups. GC-only mice had significantly lower trabecular and cortical bone strength than Con, while GC + LLP2A-Ale (500 μg/kg) and GC + PTH (1–34) groups had significantly greater trabecular bone strength than the GC-only group. GC + LLP2A-Ale (250 μg/kg and 500 μg/kg) and GC + PTH had significantly higher trabecular bone volume than GC-only mice at the vertebrae, distal femoral epiphyses and distal femoral metaphyses. DFE vascularity was lower in GC-only mice than in all other groups. Conclusion Neither LLP2A-Ale nor hPTH (1–34) reduced the prevalence of GC-induced ON, compared to GC-only mice. However, GC-treated mice given LLP2A-Ale or hPTH (1–34) had better bone mass, microarchitecture, and strength in trabecular-rich regions, and higher levels of vascularity than GC-only mice.
Collapse
Affiliation(s)
- Nancy E Lane
- Center for Musculoskeletal Health, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Geetha Mohan
- Center for Musculoskeletal Health, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Wei Yao
- Center for Musculoskeletal Health, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Kie Shidara
- Center for Musculoskeletal Health, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Yu-An Evan Lay
- Center for Musculoskeletal Health, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Jia Junjing
- Facility of Animal Science, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Alanna Dubrovsky
- Center for Musculoskeletal Health, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Donald B Kimmel
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
12
|
Zhou CH, Meng JH, Yang YT, Hu B, Hong JQ, Lv ZT, Chen K, Heng BC, Jiang GY, Zhu J, Cheng ZH, Zhang W, Cao L, Wang W, Shen WL, Yan SG, Wu HB. Cepharanthine Prevents Estrogen Deficiency-Induced Bone Loss by Inhibiting Bone Resorption. Front Pharmacol 2018; 9:210. [PMID: 29636680 PMCID: PMC5880888 DOI: 10.3389/fphar.2018.00210] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/26/2018] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis is a common health problem worldwide caused by an imbalance of bone formation vs. bone resorption. However, current therapeutic approaches aimed at enhancing bone formation or suppressing bone resorption still have some limitations. In this study, we demonstrated for the first time that cepharanthine (CEP, derived from Stephania cepharantha Hayata) exerted a protective effect on estrogen deficiency-induced bone loss. This protective effect was confirmed to be achieved through inhibition of bone resorption in vivo, rather than through enhancement of bone formation in vivo. Furthermore, the in vitro study revealed that CEP attenuated receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast formation, and suppressed bone resorption by impairing the c-Jun N-terminal kinase (JNK) and phosphatidylinositol 3-kinase (PI3K)-AKT signaling pathways. The inhibitory effect of CEP could be partly reversed by treatment with anisomycin (a JNK and p38 agonist) and/or SC79 (an AKT agonist) in vitro. Our results thus indicated that CEP could prevent estrogen deficiency-induced bone loss by inhibiting osteoclastogenesis. Hence, CEP might be a novel therapeutic agent for anti-osteoporosis therapy.
Collapse
Affiliation(s)
- Chen-He Zhou
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| | - Jia-Hong Meng
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| | - Yu-Te Yang
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| | - Bin Hu
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| | - Jian-Qiao Hong
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| | - Zheng-Tao Lv
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Boon Chin Heng
- Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, Hong Kong
| | - Guang-Yao Jiang
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| | - Jian Zhu
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| | - Zhao-Hui Cheng
- Department of Orthopaedic Surgery, Taizhou First People's Hospital, Taizhou, China
| | - Wei Zhang
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| | - Le Cao
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| | - Wei Wang
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| | - Wei-Liang Shen
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| | - Shi-Gui Yan
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| | - Hao-Bo Wu
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| |
Collapse
|