1
|
Pavlisko EN, Adam BA, Berry GJ, Calabrese F, Cortes-Santiago N, Glass CH, Goddard M, Greenland JR, Kreisel D, Levine DJ, Martinu T, Verleden SE, Weigt SS, Roux A. The 2022 Banff Meeting Lung Report. Am J Transplant 2024; 24:542-548. [PMID: 37931751 DOI: 10.1016/j.ajt.2023.10.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/11/2023] [Indexed: 11/08/2023]
Abstract
The Lung Session of the 2022 16th Banff Foundation for Allograft Pathology Conference-held in Banff, Alberta-focused on non-rejection lung allograft pathology and novel technologies for the detection of allograft injury. A multidisciplinary panel reviewed the state-of-the-art of current histopathologic entities, serologic studies, and molecular practices, as well as novel applications of digital pathology with artificial intelligence, gene expression analysis, and quantitative image analysis of chest computerized tomography. Current states of need as well as prospective integration of the aforementioned tools and technologies for complete assessment of allograft injury and its impact on lung transplant outcomes were discussed. Key conclusions from the discussion were: (1) recognition of limitations in current standard of care assessment of lung allograft dysfunction; (2) agreement on the need for a consensus regarding the standardized approach to the collection and assessment of pathologic data, inclusive of all lesions associated with graft outcome (eg, non-rejection pathology); and (3) optimism regarding promising novel diagnostic modalities, especially minimally invasive, which should be integrated into large, prospective multicenter studies to further evaluate their utility in clinical practice for directing personalized therapies to improve graft outcomes.
Collapse
Affiliation(s)
- Elizabeth N Pavlisko
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA.
| | - Benjamin A Adam
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| | - Gerald J Berry
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Fiorella Calabrese
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova Medical School, Padova, Italy
| | - Nahir Cortes-Santiago
- Department of Pathology and Immunology, Texas Children's Hospital, Houston, Texas, USA
| | - Carolyn H Glass
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Martin Goddard
- Pathology Department, Royal Papworth Hospital, NHS Trust, Papworth Everard, Cambridge, UK
| | - John R Greenland
- Department of Medicine, University of California, San Francisco, USA; Veterans Affairs Health Care System, San Francisco, California, USA
| | - Daniel Kreisel
- Department of Surgery, Department of Pathology and Immunology, Washington University, St. Louis, Missouri, USA
| | - Deborah J Levine
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, California, USA
| | - Tereza Martinu
- Division of Respirology, Department of Medicine, University Health Network and University of Toronto, Toronto, Ontario, Canada; Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Stijn E Verleden
- Lung Transplant Unit, Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium; Department of ASTARC, University of Antwerp, Wilrijk, Belgium
| | - S Sam Weigt
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Antoine Roux
- Department of Respiratory Medicine, Foch Hospital, Suresnes, France
| |
Collapse
|
2
|
Keller MB, Tian X, Jang MK, Meda R, Charya A, Ozisik D, Berry GJ, Marboe CC, Kong H, Ponor IL, Aryal S, Orens JB, Shah PD, Nathan SD, Agbor-Enoh S. Organizing pneumonia is associated with molecular allograft injury and the development of antibody-mediated rejection. J Heart Lung Transplant 2024; 43:563-570. [PMID: 37972825 DOI: 10.1016/j.healun.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/28/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND The association between organizing pneumonia (OP) after lung transplantation with the development of acute rejection (AR) remains undefined. In addition, molecular allograft injury, as measured by donor-derived cell-free DNA (dd-cfDNA), during episodes of OP and its relationship to episodes of AR, chronic lung allograft dysfunction (CLAD), or death is unknown. METHODS This multicenter, prospective cohort study collected serial plasma samples from 188 lung transplant recipients for dd-cfDNA at the time of bronchoscopy with biopsy. Multivariable Cox regression was used to analyze the association between OP with the development of AR (antibody-mediated rejection (AMR) and acute cellular rejection (ACR)), CLAD, and death. Multivariable models were performed to test the association of dd-cfDNA at OP with the risk of AR, CLAD, or death. RESULTS In multivariable analysis, OP was associated with increased risk of AMR (hazard ratio (HR) = 2.26, 95% confidence interval (CI) 1.04-4.92, p = 0.040) but not ACR (HR = 1.29, 95% CI: 0.66-2.5, p = 0.45) or the composite outcome of CLAD or death (HR = 0.88, 95% CI, 0.47-1.65, p = 0.69). Median levels of dd-cfDNA were higher in OP compared to stable controls (1.33% vs 0.43%, p = 0.0006). Multivariable analysis demonstrated that levels of dd-cfDNA at diagnosis of OP were associated with increased risk of both AMR (HR = 1.29, 95% CI 1.03-1.62, p = 0.030) and death (HR = 1.16, 95% CI, 1.02-1.31, p = 0.026). CONCLUSIONS OP is independently associated with an increased risk of AMR but not CLAD or death. The degree of molecular allograft injury at the diagnosis of OP may further predict the risk of AMR and death.
Collapse
Affiliation(s)
- Michael B Keller
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Laboratory of Applied Precision Omics (APO), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland; Division of Pulmonary and Critical Care Medicine, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Xin Tian
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Moon Kyoo Jang
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Laboratory of Applied Precision Omics (APO), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Rohan Meda
- Laboratory of Applied Precision Omics (APO), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Ananth Charya
- University of Maryland Medical Center, Baltimore, Maryland
| | - Deniz Ozisik
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Gerald J Berry
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Stanford University School of Medicine, Stanford, California
| | - Charles C Marboe
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons of Columbia University, New York, New York
| | - Hyesik Kong
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Laboratory of Applied Precision Omics (APO), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Ileana L Ponor
- Department of Medicine, Johns Hopkins Bayview Medical Center, Baltimore, Maryland
| | - Shambhu Aryal
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Advanced Lung Disease and Lung Transplant Program, Inova Fairfax Hospital, Fairfax, Virginia
| | - Jonathan B Orens
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Division of Pulmonary and Critical Care Medicine, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Pali D Shah
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Division of Pulmonary and Critical Care Medicine, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Steven D Nathan
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Advanced Lung Disease and Lung Transplant Program, Inova Fairfax Hospital, Fairfax, Virginia
| | - Sean Agbor-Enoh
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Laboratory of Applied Precision Omics (APO), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland; Division of Pulmonary and Critical Care Medicine, The Johns Hopkins School of Medicine, Baltimore, Maryland.
| |
Collapse
|
3
|
Halitim P, Tissot A. [Chronic lung allograft dysfunction in 2022, past and updates]. Rev Mal Respir 2023; 40:324-334. [PMID: 36858879 DOI: 10.1016/j.rmr.2023.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/24/2023] [Indexed: 03/03/2023]
Abstract
INTRODUCTION While short-term results of lung transplantation have improved considerably, long-term survival remains below that achieved for other solid organ transplants. CURRENT KNOWLEDGE The main cause of late mortality is chronic lung allograft dysfunction (CLAD), which affects nearly half of the recipients 5 years after transplantation. Immunological and non-immune risk factors have been identified. These factors activate the innate and adaptive immune system, leading to lesional and altered wound-healing processes, which result in fibrosis affecting the small airways or interstitial tissue. Several phenotypes of CLAD have been identified based on respiratory function and imaging pattern. Aside from retransplantation, which is possible for only small number of patients, no treatment can reverse the CLAD process. PERSPECTIVES Current therapeutic research is focused on anti-fibrotic treatments and photopheresis. Basic research has identified numerous biomarkers that could prove to be relevant as therapeutic targets. CONCLUSION While the pathophysiological mechanisms of CLAD are better understood than before, a major therapeutic challenge remains.
Collapse
Affiliation(s)
- P Halitim
- Service de pneumologie et soins intensifs, Hôpital européen Georges-Pompidou, Assistance publique-Hôpitaux de Paris, 75015 Paris, France; Service de pneumologie, CHU de Nantes, l'Institut du thorax, Nantes Université, Inserm, Center for Research in Transplantation and Translational Immunology, UMR 1064, 44093 Nantes cedex, France
| | - A Tissot
- Service de pneumologie, CHU de Nantes, l'Institut du thorax, Nantes Université, Inserm, Center for Research in Transplantation and Translational Immunology, UMR 1064, 44093 Nantes cedex, France.
| |
Collapse
|
4
|
Biomarkers for Chronic Lung Allograft Dysfunction: Ready for Prime Time? Transplantation 2023; 107:341-350. [PMID: 35980878 PMCID: PMC9875844 DOI: 10.1097/tp.0000000000004270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Chronic lung allograft dysfunction (CLAD) remains a major hurdle impairing lung transplant outcome. Parallel to the better clinical identification and characterization of CLAD and CLAD phenotypes, there is an increasing urge to find adequate biomarkers that could assist in the earlier detection and differential diagnosis of CLAD phenotypes, as well as disease prognostication. The current status and state-of-the-art of biomarker research in CLAD will be discussed with a particular focus on radiological biomarkers or biomarkers found in peripheral tissue, bronchoalveolar lavage' and circulating blood' in which significant progress has been made over the last years. Ultimately, although a growing number of biomarkers are currently being embedded in the follow-up of lung transplant patients, it is clear that one size does not fit all. The future of biomarker research probably lies in the rigorous combination of clinical information with findings in tissue, bronchoalveolar lavage' or blood. Only by doing so, the ultimate goal of biomarker research can be achieved, which is the earlier identification of CLAD before its clinical manifestation. This is desperately needed to improve the prognosis of patients with CLAD after lung transplantation.
Collapse
|
5
|
Shino MY, Todd JL, Neely ML, Kirchner J, Frankel CW, Snyder LD, Pavlisko EN, Fishbein GA, Schaenman JM, Mason K, Kesler K, Martinu T, Singer LG, Tsuang W, Budev M, Shah PD, Reynolds JM, Williams N, Robien MA, Palmer SM, Weigt SS, Belperio JA. Plasma CXCL9 and CXCL10 at allograft injury predict chronic lung allograft dysfunction. Am J Transplant 2022; 22:2169-2179. [PMID: 35634722 PMCID: PMC9427677 DOI: 10.1111/ajt.17108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 01/25/2023]
Abstract
Histopathologic lung allograft injuries are putative harbingers for chronic lung allograft dysfunction (CLAD). However, the mechanisms responsible are not well understood. CXCL9 and CXCL10 are potent chemoattractants of mononuclear cells and potential propagators of allograft injury. We hypothesized that these chemokines would be quantifiable in plasma, and would associate with subsequent CLAD development. In this prospective multicenter study, we evaluated 721 plasma samples for CXCL9/CXCL10 levels from 184 participants at the time of transbronchial biopsies during their first-year post-transplantation. We determined the association between plasma chemokines, histopathologic injury, and CLAD risk using Cox proportional hazards models. We also evaluated CXCL9/CXCL10 levels in bronchoalveolar lavage (BAL) fluid and compared plasma to BAL with respect to CLAD risk. Plasma CXCL9/CXCL10 levels were elevated during the injury patterns associated with CLAD, acute rejection, and acute lung injury, with a dose-response relationship between chemokine levels and CLAD risk. Importantly, there were strong interactions between injury and plasma CXCL9/CXCL10, where histopathologic injury associated with CLAD only in the presence of elevated plasma chemokines. We observed similar associations and interactions with BAL CXCL9/CXCL10 levels. Elevated plasma CXCL9/CXCL10 during allograft injury may contribute to CLAD pathogenesis and has potential as a minimally invasive immune monitoring biomarker.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Nikki Williams
- National Institute of Allergy and Infectious Diseases; Washington DC
| | - Mark A. Robien
- National Institute of Allergy and Infectious Diseases; Washington DC
| | | | - S. Sam Weigt
- University of California Los Angeles; Los Angeles, CA
| | | |
Collapse
|
6
|
Miller CL, O JM, Allan JS, Madsen JC. Novel approaches for long-term lung transplant survival. Front Immunol 2022; 13:931251. [PMID: 35967365 PMCID: PMC9363671 DOI: 10.3389/fimmu.2022.931251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Allograft failure remains a major barrier in the field of lung transplantation and results primarily from acute and chronic rejection. To date, standard-of-care immunosuppressive regimens have proven unsuccessful in achieving acceptable long-term graft and patient survival. Recent insights into the unique immunologic properties of lung allografts provide an opportunity to develop more effective immunosuppressive strategies. Here we describe advances in our understanding of the mechanisms driving lung allograft rejection and highlight recent progress in the development of novel, lung-specific strategies aimed at promoting long-term allograft survival, including tolerance.
Collapse
Affiliation(s)
- Cynthia L. Miller
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
| | - Jane M. O
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
| | - James S. Allan
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| | - Joren C. Madsen
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
- Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
7
|
Rosenheck J, Keller B, Fehringer G, Demko Z, Bohrade S, Ross D. Why Cell-Free DNA Can Be a “Game Changer” for Lung Allograft Monitoring for Rejection and Infection. CURRENT PULMONOLOGY REPORTS 2022; 11:75-85. [PMID: 35910533 PMCID: PMC9315332 DOI: 10.1007/s13665-022-00292-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2022] [Indexed: 02/06/2023]
Abstract
Purpose of Review Although there has been improvement in short-term clinical outcomes for patients following lung transplant (LT), advances have not translated into longer-term allograft survival. Furthermore, invasive biopsies are still standard of practice for monitoring LT recipients for allograft injury. We review the relevant literature supporting the role of using plasma donor-derived cell-free DNA (dd-cfDNA) as a non-invasive biomarker for LT allograft injury surveillance and discuss future research directions. Recent Findings Accumulating data has demonstrated that dd-cfDNA is associated with molecular and cellular injury due to acute (cellular and antibody-mediated) rejection, chronic lung allograft dysfunction, and relevant infectious pathogens. Strong performance in distinguishing rejection and allograft injury from stable patients has set the stage for clinical trials to assess dd-cfDNA utility for surveillance of LT patients. Research investigating the potential role of dd-cfDNA methylation signatures to map injured tissue and cell-free DNA in detecting allograft injury-related pathogens is ongoing. Summary There is an amassed breadth of clinical data to support a role for dd-cfDNA in monitoring rejection and other forms of allograft injury. Rigorously designed, robust clinical trials that encompass the diversity in patient demographics are paramount to furthering our understanding and adoption of plasma dd-cfDNA for surveillance of lung allograft health.
Collapse
Affiliation(s)
- J.P. Rosenheck
- Division of Pulmonary, Critical Care & Sleep Medicine, The Ohio State University, Columbus, OH USA
| | - B.C. Keller
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA USA
| | - G. Fehringer
- Medical Affairs in Organ Health, Natera, Inc., San Carlos, USA
| | - Z.P. Demko
- Medical Affairs in Organ Health, Natera, Inc., San Carlos, USA
| | - S.M. Bohrade
- Medical Affairs in Organ Health, Natera, Inc., San Carlos, USA
| | - D.J. Ross
- Medical Affairs in Organ Health, Natera, Inc., San Carlos, USA
- Lung Transplant & Molecular Diagnostics, Natera, Inc, San Carlos, CA USA
| |
Collapse
|
8
|
Shino MY, Zhang Q, Li N, Derhovanessian A, Ramsey A, Saggar R, Britton IN, Amubieya OO, Lari SM, Hickey M, Reed EF, Noble PW, Stripp BR, Fishbein GA, Lynch JP, Ardehali A, Sayah DM, Weigt SS, Belperio JA. The allograft injury marker CXCL9 determines prognosis of anti-HLA antibodies after lung transplantation. Am J Transplant 2022; 22:565-573. [PMID: 34464505 PMCID: PMC10826889 DOI: 10.1111/ajt.16827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 08/01/2021] [Accepted: 08/17/2021] [Indexed: 01/25/2023]
Abstract
Despite the common detection of non-donor specific anti-HLA antibodies (non-DSAs) after lung transplantation, their clinical significance remains unclear. In this retrospective single-center cohort study of 325 lung transplant recipients, we evaluated the association between donor-specific HLA antibodies (DSAs) and non-DSAs with subsequent CLAD development. DSAs were detected in 30% of recipients and were associated with increased CLAD risk, with higher HRs for both de novo and high MFI (>5000) DSAs. Non-DSAs were detected in 56% of recipients, and 85% of DSA positive tests had concurrent non-DSAs. In general, non-DSAs did not increase CLAD risk in multivariable models accounting for DSAs. However, non-DSAs in conjunction with high BAL CXCL9 levels were associated with increased CLAD risk. Multivariable proportional hazards models demonstrate the importance of the HLA antibody-CXCL9 interaction: CLAD risk increases when HLA antibodies (both DSAs and non-DSAs) are detected in conjunction with high CXCL9. Conversely, CLAD risk is not increased when HLA antibodies are detected with low CXCL9. This study supports the potential utility of BAL CXCL9 measurement as a biomarker to risk stratify HLA antibodies for future CLAD. The ability to discriminate between high versus low-risk HLA antibodies may improve management by allowing for guided treatment decisions.
Collapse
Affiliation(s)
- Michael Y. Shino
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Qiuheng Zhang
- Department of Immunogenetics, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Ning Li
- Department of Biomathematics, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Ariss Derhovanessian
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Allison Ramsey
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Rajan Saggar
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Ian N. Britton
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Olawale O. Amubieya
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Shahrzad M. Lari
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Michelle Hickey
- Department of Immunogenetics, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Elaine F. Reed
- Department of Immunogenetics, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Paul W. Noble
- Department of Medicine, Cedars Sinai Medical Center, Los Angeles, California
| | - Barry R. Stripp
- Department of Medicine, Cedars Sinai Medical Center, Los Angeles, California
| | - Gregory A. Fishbein
- Department of Pathology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Joseph P. Lynch
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Abbas Ardehali
- Division of Cardiothoracic Surgery, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - David M. Sayah
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - S. Sam Weigt
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - John A. Belperio
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
9
|
Chronic lung allograft dysfunction. Indian J Thorac Cardiovasc Surg 2021; 38:318-325. [DOI: 10.1007/s12055-021-01228-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/11/2021] [Accepted: 06/21/2021] [Indexed: 10/19/2022] Open
|
10
|
Shino MY, Li N, Todd JL, Neely ML, Kopetskie H, Sever ML, Kirchner J, Frankel CW, Snyder LD, Pavlisko EN, Martinu T, Singer LG, Tsuang W, Budev M, Shah PD, Reynolds JM, Williams N, Robien MA, Palmer SM, Weigt SS, Belperio JA. Correlation between BAL CXCR3 chemokines and lung allograft histopathologies: A multicenter study. Am J Transplant 2021; 21:3401-3410. [PMID: 33840162 PMCID: PMC8502500 DOI: 10.1111/ajt.16601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/28/2021] [Accepted: 03/28/2021] [Indexed: 01/25/2023]
Abstract
The histopathologic diagnosis of acute allograft injury is prognostically important in lung transplantation with evidence demonstrating a strong and consistent association between acute rejection (AR), acute lung injury (ALI), and the subsequent development of chronic lung allograft dysfunction (CLAD). The pathogenesis of these allograft injuries, however, remains poorly understood. CXCL9 and CXCL10 are CXC chemokines induced by interferon-γ and act as potent chemoattractants of mononuclear cells. We hypothesized that these chemokines are involved in the mononuclear cell recruitment associated with AR and ALI. We further hypothesized that the increased activity of these chemokines could be quantified as increased levels in the bronchoalveolar lavage fluid. In this prospective multicenter study, we evaluate the incidence of histopathologic allograft injury development during the first-year post-transplant and measure bronchoalveolar CXCL9 and CXCL10 levels at the time of the biopsy. In multivariable models, CXCL9 levels were 1.7-fold and 2.1-fold higher during AR and ALI compared with "normal" biopsies without histopathology. Similarly, CXCL10 levels were 1.6-fold and 2.2-fold higher during these histopathologies, respectively. These findings support the association of CXCL9 and CXCL10 with episodes of AR and ALI and provide potential insight into the pathogenesis of these deleterious events.
Collapse
Affiliation(s)
| | - Ning Li
- University of California Los Angeles; Los Angeles, CA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Nikki Williams
- National Institute of Allergy and Infectious Diseases; Washington DC
| | - Mark A. Robien
- National Institute of Allergy and Infectious Diseases; Washington DC
| | | | - S. Sam Weigt
- University of California Los Angeles; Los Angeles, CA
| | | |
Collapse
|
11
|
Vanstapel A, Goldschmeding R, Broekhuizen R, Nguyen T, Sacreas A, Kaes J, Heigl T, Verleden SE, De Zutter A, Verleden G, Weynand B, Verbeken E, Ceulemans LJ, Van Raemdonck DE, Neyrinck AP, Schoemans HM, Vanaudenaerde BM, Vos R. Connective Tissue Growth Factor Is Overexpressed in Explant Lung Tissue and Broncho-Alveolar Lavage in Transplant-Related Pulmonary Fibrosis. Front Immunol 2021; 12:661761. [PMID: 34122421 PMCID: PMC8187127 DOI: 10.3389/fimmu.2021.661761] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/07/2021] [Indexed: 11/25/2022] Open
Abstract
Background Connective tissue growth factor (CTGF) is an important mediator in several fibrotic diseases, including lung fibrosis. We investigated CTGF-expression in chronic lung allograft dysfunction (CLAD) and pulmonary graft-versus-host disease (GVHD). Materials and Methods CTGF expression was assessed by quantitative real-time polymerase chain reaction (qPCR) and immunohistochemistry in end-stage CLAD explant lung tissue (bronchiolitis obliterans syndrome (BOS), n=20; restrictive allograft syndrome (RAS), n=20), pulmonary GHVD (n=9). Unused donor lungs served as control group (n=20). Next, 60 matched lung transplant recipients (BOS, n=20; RAS, n=20; stable lung transplant recipients, n=20) were included for analysis of CTGF protein levels in plasma and broncho-alveolar lavage (BAL) fluid at 3 months post-transplant, 1 year post-transplant, at CLAD diagnosis or 2 years post-transplant in stable patients. Results qPCR revealed an overall significant difference in the relative content of CTGF mRNA in BOS, RAS and pulmonary GVHD vs. controls (p=0.014). Immunohistochemistry showed a significant higher percentage and intensity of CTGF-positive respiratory epithelial cells in BOS, RAS and pulmonary GVHD patients vs. controls (p<0.0001). BAL CTGF protein levels were significantly higher at 3 months post-transplant in future RAS vs. stable or BOS (p=0.028). At CLAD diagnosis, BAL protein content was significantly increased in RAS patients vs. stable (p=0.0007) and BOS patients (p=0.042). CTGF plasma values were similar in BOS, RAS, and stable patients (p=0.74). Conclusions Lung CTGF-expression is increased in end-stage CLAD and pulmonary GVHD; and higher CTGF-levels are present in BAL of RAS patients at CLAD diagnosis. Our results suggest a potential role for CTGF in CLAD, especially RAS, and pulmonary GVHD.
Collapse
Affiliation(s)
- Arno Vanstapel
- Department of Chronic Diseases and Metabolism, Katholieke Universiteit, Leuven, Belgium.,Department of Pathology, University Hospital Leuven, Leuven, Belgium
| | - Roel Goldschmeding
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Roel Broekhuizen
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Tri Nguyen
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Annelore Sacreas
- Department of Chronic Diseases and Metabolism, Katholieke Universiteit, Leuven, Belgium
| | - Janne Kaes
- Department of Chronic Diseases and Metabolism, Katholieke Universiteit, Leuven, Belgium
| | - Tobias Heigl
- Department of Chronic Diseases and Metabolism, Katholieke Universiteit, Leuven, Belgium
| | - Stijn E Verleden
- Department of Chronic Diseases and Metabolism, Katholieke Universiteit, Leuven, Belgium
| | - Alexandra De Zutter
- Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit, Leuven, Belgium
| | - Geert Verleden
- Department of Chronic Diseases and Metabolism, Katholieke Universiteit, Leuven, Belgium.,Department of Respiratory Diseases, Lung Transplant Unit, University Hospital Leuven, Leuven, Belgium
| | - Birgit Weynand
- Department of Chronic Diseases and Metabolism, Katholieke Universiteit, Leuven, Belgium.,Department of Pathology, University Hospital Leuven, Leuven, Belgium
| | - Erik Verbeken
- Department of Chronic Diseases and Metabolism, Katholieke Universiteit, Leuven, Belgium.,Department of Pathology, University Hospital Leuven, Leuven, Belgium
| | - Laurens J Ceulemans
- Department of Chronic Diseases and Metabolism, Katholieke Universiteit, Leuven, Belgium.,Department of Thoracic Surgery University Hospital Leuven, Leuven, Belgium
| | - Dirk E Van Raemdonck
- Department of Chronic Diseases and Metabolism, Katholieke Universiteit, Leuven, Belgium.,Department of Thoracic Surgery University Hospital Leuven, Leuven, Belgium
| | - Arne P Neyrinck
- Department of Cardiovascular Sciences, Katholieke Universiteit, Leuven, Belgium.,Department of Anesthesiology, University Hospital Leuven, Leuven, Belgium
| | | | - Bart M Vanaudenaerde
- Department of Chronic Diseases and Metabolism, Katholieke Universiteit, Leuven, Belgium
| | - Robin Vos
- Department of Chronic Diseases and Metabolism, Katholieke Universiteit, Leuven, Belgium.,Department of Respiratory Diseases, Lung Transplant Unit, University Hospital Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Amubieya O, Ramsey A, DerHovanessian A, Fishbein GA, Lynch JP, Belperio JA, Weigt SS. Chronic Lung Allograft Dysfunction: Evolving Concepts and Therapies. Semin Respir Crit Care Med 2021; 42:392-410. [PMID: 34030202 DOI: 10.1055/s-0041-1729175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The primary factor that limits long-term survival after lung transplantation is chronic lung allograft dysfunction (CLAD). CLAD also impairs quality of life and increases the costs of medical care. Our understanding of CLAD continues to evolve. Consensus definitions of CLAD and the major CLAD phenotypes were recently updated and clarified, but it remains to be seen whether the current definitions will lead to advances in management or impact care. Understanding the potential differences in pathogenesis for each CLAD phenotype may lead to novel therapeutic strategies, including precision medicine. Recognition of CLAD risk factors may lead to earlier interventions to mitigate risk, or to avoid risk factors all together, to prevent the development of CLAD. Unfortunately, currently available therapies for CLAD are usually not effective. However, novel therapeutics aimed at both prevention and treatment are currently under investigation. We provide an overview of the updates to CLAD-related terminology, clinical phenotypes and their diagnosis, natural history, pathogenesis, and potential strategies to treat and prevent CLAD.
Collapse
Affiliation(s)
- Olawale Amubieya
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Allison Ramsey
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Ariss DerHovanessian
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Gregory A Fishbein
- Department of Pathology, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Joseph P Lynch
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - John A Belperio
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - S Samuel Weigt
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
13
|
Sanders YY. New Clue: Prediction from Cell-Free DNA. J Clin Med 2020; 9:jcm9072307. [PMID: 32708076 PMCID: PMC7408910 DOI: 10.3390/jcm9072307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 01/05/2023] Open
Abstract
The main challenge for a positive long-term outcome in lung transplantation is the lack of early detection for chronic lung allograft dysfunction (CLAD). With advancements in technology, an increasing number of studies demonstrate that cell-free DNA (cfDNA) in body fluids could be used as a marker for disease diagnosis, prognosis or monitoring response to treatment. A previous report from this journal found the joint assessment of cfDNA and CXCL10 from brochoalveolar lavage (BAL) could determine the subphenotypes of CLAD and predict lung transplant survival. This is an exciting attempt in monitoring the progress for lung transplant recipients. More studies and better understanding of cfDNA are needed to develop an accessible and reliable biomarker to monitor the progress of CLAD to improve the long-term survival for lung transplant recipients.
Collapse
Affiliation(s)
- Yan Y Sanders
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
14
|
Kummer L, Zaradzki M, Vijayan V, Arif R, Weigand MA, Immenschuh S, Wagner AH, Larmann J. Vascular Signaling in Allogenic Solid Organ Transplantation - The Role of Endothelial Cells. Front Physiol 2020; 11:443. [PMID: 32457653 PMCID: PMC7227440 DOI: 10.3389/fphys.2020.00443] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Graft rejection remains the major obstacle after vascularized solid organ transplantation. Endothelial cells, which form the interface between the transplanted graft and the host’s immunity, are the first target for host immune cells. During acute cellular rejection endothelial cells are directly attacked by HLA I and II-recognizing NK cells, macrophages, and T cells, and activation of the complement system leads to endothelial cell lysis. The established forms of immunosuppressive therapy provide effective treatment options, but the treatment of chronic rejection of solid organs remains challenging. Chronic rejection is mainly based on production of donor-specific antibodies that induce endothelial cell activation—a condition which phenotypically resembles chronic inflammation. Activated endothelial cells produce chemokines, and expression of adhesion molecules increases. Due to this pro-inflammatory microenvironment, leukocytes are recruited and transmigrate from the bloodstream across the endothelial monolayer into the vessel wall. This mononuclear infiltrate is a hallmark of transplant vasculopathy. Furthermore, expression profiles of different cytokines serve as clinical markers for the patient’s outcome. Besides their effects on immune cells, activated endothelial cells support the migration and proliferation of vascular smooth muscle cells. In turn, muscle cell recruitment leads to neointima formation followed by reduction in organ perfusion and eventually results in tissue injury. Activation of endothelial cells involves antibody ligation to the surface of endothelial cells. Subsequently, intracellular signaling pathways are initiated. These signaling cascades may serve as targets to prevent or treat adverse effects in antibody-activated endothelial cells. Preventive or therapeutic strategies for chronic rejection can be investigated in sophisticated mouse models of transplant vasculopathy, mimicking interactions between immune cells and endothelium.
Collapse
Affiliation(s)
- Laura Kummer
- Department of Anesthesiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Marcin Zaradzki
- Institute of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Vijith Vijayan
- Institute for Transfusion Medicine, Hannover Medical School, Hanover, Germany
| | - Rawa Arif
- Institute of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Markus A Weigand
- Department of Anesthesiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephan Immenschuh
- Institute for Transfusion Medicine, Hannover Medical School, Hanover, Germany
| | - Andreas H Wagner
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Jan Larmann
- Department of Anesthesiology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
15
|
Abstract
Introduction: Lung transplantation remains an important treatment for patients with end stage lung disease. Chronic lung allograft dysfunction (CLAD) remains the greatest limiting factor for long term survival. As the diagnosis of CLAD is based on pulmonary function tests, significant lung injury is required before a diagnosis is feasible, likely when irreversible damage has already occurred. Therefore, research is ongoing for early CLAD recognition, with biomarkers making up a substantial amount of this research.Areas covered: The purpose of this review is to describe available biomarkers, focusing on those which aid in predicting CLAD and distinguishing between different CLAD phenotypes. We describe biomarkers presenting in bronchial alveolar lavage (BAL) as well as circulating in peripheral blood, both of which offer an appealing alternative to lung biopsy.Expert opinion: Development of CLAD involves complex, multiple immune and nonimmune mechanisms. Therefore, evaluation of potential CLAD biomarkers serves a dual purpose: clinically, the goal remains early detection and identification of patients at increased risk. Simultaneously, biomarkers offer insight into the different mechanisms involved in the pathophysiology of CLAD, leading to the development of possible interventions. The ultimate goal is the development of both preventive and early intervention strategies for CLAD to improve the overall survival of our lung transplant recipients.
Collapse
Affiliation(s)
- Osnat Shtraichman
- Division of Pulmonary, Allergy & Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Pulmonary institute, Rabin Medical Center, Petach Tikva, Israel; Sackler School of Medicine, Tel Aviv, Israel
| | - Joshua M Diamond
- Division of Pulmonary, Allergy & Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Tissot A, Danger R, Claustre J, Magnan A, Brouard S. Early Identification of Chronic Lung Allograft Dysfunction: The Need of Biomarkers. Front Immunol 2019; 10:1681. [PMID: 31379869 PMCID: PMC6650588 DOI: 10.3389/fimmu.2019.01681] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/04/2019] [Indexed: 01/12/2023] Open
Abstract
A growing number of patients with end-stage lung disease have benefited from lung transplantation (LT). Improvements in organ procurement, surgical techniques and intensive care management have greatly increased short-term graft survival. However, long-term outcomes remain limited, mainly due to the onset of chronic lung allograft dysfunction (CLAD), whose diagnosis is based on permanent loss of lung function after the development of irreversible lung lesions. CLAD is associated with high mortality and morbidity, and its exact physiopathology is still only partially understood. Many researchers and clinicians have searched for CLAD biomarkers to improve diagnosis, to refine the phenotypes associated with differential prognosis and to identify early biological processes that lead to CLAD to enable an early intervention that could modify the inevitable degradation of respiratory function. Donor-specific antibodies are currently the only biomarkers used in routine clinical practice, and their significance for accurately predicting CLAD is still debated. We describe here significant studies that have highlighted potential candidates for reliable and non-invasive biomarkers of CLAD in the fields of imaging and functional monitoring, humoral immunity, cell-mediated immunity, allograft injury, airway remodeling and gene expression. Such biomarkers would improve CLAD prediction and allow differential LT management regarding CLAD risk.
Collapse
Affiliation(s)
- Adrien Tissot
- Centre de Recherche en Transplantation et Immunologie (CRTI), INSERM, Université de Nantes, Nantes, France.,Service de Pneumologie, Institut du Thorax, CHU Nantes, Nantes, France
| | - Richard Danger
- Centre de Recherche en Transplantation et Immunologie (CRTI), INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Johanna Claustre
- Centre de Recherche en Transplantation et Immunologie (CRTI), INSERM, Université de Nantes, Nantes, France.,Service Hospitalo-Universitaire de Pneumologie - Physiologie, CHU Grenoble Alpes, Grenoble, France
| | - Antoine Magnan
- Centre de Recherche en Transplantation et Immunologie (CRTI), INSERM, Université de Nantes, Nantes, France.,Service de Pneumologie, Institut du Thorax, CHU Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,UMR S 1087 CNRS UMR 6291, Institut du Thorax, CHU Nantes, Université de Nantes, Nantes, France
| | - Sophie Brouard
- Centre de Recherche en Transplantation et Immunologie (CRTI), INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| |
Collapse
|
17
|
Scharenberg M, Vangeti S, Kekäläinen E, Bergman P, Al-Ameri M, Johansson N, Sondén K, Falck-Jones S, Färnert A, Ljunggren HG, Michaëlsson J, Smed-Sörensen A, Marquardt N. Influenza A Virus Infection Induces Hyperresponsiveness in Human Lung Tissue-Resident and Peripheral Blood NK Cells. Front Immunol 2019; 10:1116. [PMID: 31156653 PMCID: PMC6534051 DOI: 10.3389/fimmu.2019.01116] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 05/01/2019] [Indexed: 12/29/2022] Open
Abstract
NK cells in the human lung respond to influenza A virus- (IAV-) infected target cells. However, the detailed functional capacity of human lung and peripheral blood NK cells remains to be determined in IAV and other respiratory viral infections. Here, we investigated the effects of IAV infection on human lung and peripheral blood NK cells in vitro and ex vivo following clinical infection. IAV infection of lung- and peripheral blood-derived mononuclear cells in vitro induced NK cell hyperresponsiveness to K562 target cells, including increased degranulation and cytokine production particularly in the CD56brightCD16- subset of NK cells. Furthermore, lung CD16- NK cells showed increased IAV-mediated but target cell-independent activation compared to CD16+ lung NK cells or total NK cells in peripheral blood. IAV infection rendered peripheral blood NK cells responsive toward the normally NK cell-resistant lung epithelial cell line A549, indicating that NK cell activation during IAV infection could contribute to killing of surrounding non-infected epithelial cells. In vivo, peripheral blood CD56dimCD16+ and CD56brightCD16- NK cells were primed during acute IAV infection, and a small subset of CD16-CD49a+CXCR3+ NK cells could be identified, with CD49a and CXCR3 potentially promoting homing to and tissue-retention in the lung during acute infection. Together, we show that IAV respiratory viral infections prime otherwise hyporesponsive lung NK cells, indicating that both CD16+ and CD16- NK cells including CD16-CD49a+ tissue-resident NK cells could contribute to host immunity but possibly also tissue damage in clinical IAV infection.
Collapse
Affiliation(s)
- Marlena Scharenberg
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sindhu Vangeti
- Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Eliisa Kekäläinen
- Immunobiology Research Program & Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland.,HUSLAB, Division of Clinical Microbiology, Helsinki University Hospital, Helsinki, Finland
| | - Per Bergman
- Thoracic Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Mamdoh Al-Ameri
- Thoracic Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Niclas Johansson
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden.,Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Klara Sondén
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden.,Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Sara Falck-Jones
- Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Färnert
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden.,Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Jakob Michaëlsson
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Smed-Sörensen
- Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Nicole Marquardt
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
18
|
Weigt SS, Wang X, Palchevskiy V, Li X, Patel N, Ross DJ, Reynolds J, Shah PD, Danziger-Isakov LA, Sweet SC, Singer LG, Budev M, Palmer S, Belperio JA. Usefulness of gene expression profiling of bronchoalveolar lavage cells in acute lung allograft rejection. J Heart Lung Transplant 2019; 38:845-855. [PMID: 31122726 PMCID: PMC6663624 DOI: 10.1016/j.healun.2019.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 04/26/2019] [Accepted: 05/01/2019] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Chronic lung allograft dysfunction (CLAD) is the main limitation to long-term survival after lung transplantation. Because effective therapies are lacking, early identification and mitigation of risk factors is a pragmatic approach to improve outcomes. Acute cellular rejection (ACR) is the most pervasive risk factor for CLAD, but diagnosis requires transbronchial biopsy, which carries risks. We hypothesized that gene expression in the bronchoalveolar lavage (BAL) cell pellet (CP) could replace biopsy and inform on mechanisms of CLAD. METHODS We performed RNA sequencing on BAL CPs from 219 lung transplant recipients with A-grade ACR (n = 61), lymphocytic bronchiolitis (n = 58), infection (n = 41), or no rejection/infection (n = 59). Differential gene expression was based on absolute fold difference >2.0 and Benjamini-adjusted p-value ≤0.05. We used the Database for Annotation, Visualization and Integrated Discovery Bioinformatics Resource for pathway analyses. For classifier modeling, samples were randomly split into training (n = 154) and testing sets (n = 65). A logistic regression model using recursive feature elimination and 5-fold cross-validation was trained to optimize area under the curve (AUC). RESULTS Differential gene expression identified 72 genes. Enriched pathways included T-cell receptor signaling, natural killer cell–mediated cytotoxicity, and cytokine–cytokine receptor interaction. A 4-gene model (AUC = 0.72) and classification threshold defined in the training set exhibited fair performance in the testing set; accuracy was 76%, specificity 82%, and sensitivity 60%. In addition, classification as ACR was associated with worse CLAD-free survival (hazard ratio = 2.42; 95% confidence interval = 1.29–4.53). CONCLUSIONS BAL CP gene expression during ACR is enriched for immune response pathways and shows promise as a diagnostic tool for ACR, especially ACR that is a precursor of CLAD.
Collapse
Affiliation(s)
- S Samuel Weigt
- Departments of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA.
| | - Xiaoyan Wang
- Departments of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Vyacheslav Palchevskiy
- Departments of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Xinmin Li
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Naman Patel
- Departments of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - David J Ross
- Departments of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - John Reynolds
- Department of Medicine and Duke Clinical Research Institute Duke University, Durham, North Carolina, USA
| | - Pali D Shah
- Johns Hopkins Medicine, Baltimore, Maryland, USA
| | | | | | - Lianne G Singer
- University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | - Scott Palmer
- Department of Medicine and Duke Clinical Research Institute Duke University, Durham, North Carolina, USA
| | - John A Belperio
- Departments of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| |
Collapse
|
19
|
Yang JYC, Verleden SE, Zarinsefat A, Vanaudenaerde BM, Vos R, Verleden GM, Sarwal RD, Sigdel TK, Liberto JM, Damm I, Watson D, Sarwal MM. Cell-Free DNA and CXCL10 Derived from Bronchoalveolar Lavage Predict Lung Transplant Survival. J Clin Med 2019; 8:jcm8020241. [PMID: 30781765 PMCID: PMC6406976 DOI: 10.3390/jcm8020241] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/05/2019] [Accepted: 02/08/2019] [Indexed: 12/22/2022] Open
Abstract
Standard methods for detecting chronic lung allograft dysfunction (CLAD) and rejection have poor sensitivity and specificity and have conventionally required bronchoscopies and biopsies. Plasma cell-free DNA (cfDNA) has been shown to be increased in various types of allograft injury in transplant recipients and CXCL10 has been reported to be increased in the lung tissue of patients undergoing CLAD. This study used a novel cfDNA and CXCL10 assay to evaluate the noninvasive assessment of CLAD phenotype and prediction of survival from bronchoalveolar lavage (BAL) fluid. A total of 60 BAL samples (20 with bronchiolitis obliterans (BOS), 20 with restrictive allograft syndrome (RAS), and 20 with stable allografts (STA)) were collected from 60 unique lung transplant patients; cfDNA and CXCL10 were measured by the ELISA-based KIT assay. Median cfDNA was significantly higher in BOS patients (6739 genomic equivalents (GE)/mL) versus STA (2920 GE/mL) and RAS (4174 GE/mL) (p < 0.01 all comparisons). Likelihood ratio tests revealed a significant association of overall survival with cfDNA (p = 0.0083), CXCL10 (p = 0.0146), and the interaction of cfDNA and CXCL10 (p = 0.023) based on multivariate Cox proportional hazards regression. Dichotomizing patients based on the median cfDNA level controlled for the mean level of CXCL10 revealed an over two-fold longer median overall survival time in patients with low levels of cfDNA. The KIT assay could predict allograft survival with superior performance compared with traditional biomarkers. These data support the pursuit of larger prospective studies to evaluate the predictive performance of cfDNA and CXCL10 prior to lung allograft failure.
Collapse
Affiliation(s)
- Joshua Y C Yang
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
- KIT Bio, 2000 University Avenue, Palo Alto, CA 94303, USA.
| | - Stijn E Verleden
- Leuven Lung Transplant Unit, Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), KU Leuven, 3000 Leuven, Belgium.
| | - Arya Zarinsefat
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Bart M Vanaudenaerde
- Leuven Lung Transplant Unit, Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), KU Leuven, 3000 Leuven, Belgium.
| | - Robin Vos
- Leuven Lung Transplant Unit, Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), KU Leuven, 3000 Leuven, Belgium.
| | - Geert M Verleden
- Leuven Lung Transplant Unit, Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), KU Leuven, 3000 Leuven, Belgium.
| | - Reuben D Sarwal
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Tara K Sigdel
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Juliane M Liberto
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Izabella Damm
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Drew Watson
- KIT Bio, 2000 University Avenue, Palo Alto, CA 94303, USA.
| | - Minnie M Sarwal
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
- KIT Bio, 2000 University Avenue, Palo Alto, CA 94303, USA.
| |
Collapse
|
20
|
Shino MY, DerHovanessian A, Sayah DM, Saggar R, Ying Xue Y, Ardehali A, Stripp BR, Ross DJ, Lynch JP, Elashoff RM, Weigt SS, Belperio JA. The Impact of Allograft CXCL9 during Respiratory Infection on the Risk of Chronic Lung Allograft Dysfunction. ACTA ACUST UNITED AC 2018; 2. [PMID: 31414076 PMCID: PMC6693350 DOI: 10.21926/obm.transplant.1804029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background The long term clinical significance of respiratory infections after lung transplantation remains uncertain. Methods In this retrospective single-center cohort study of 441 lung transplant recipients, we formally evaluate the association between respiratory infection and chronic lung allograft dysfunction (CLAD). We furthermore hypothesized that bronchoalveolar lavage fluid (BALF) CXCL9 concentrations are augmented during respiratory infections, and that episodes of infection with elevated BALF CXCL9 are associated with greater CLAD risk. Results In univariable and multivariable models adjusted for other histopathologic injury patterns, respiratory infection, regardless of the causative organism, was a strong predictor of CLAD development (adjusted HR 1.8 95% CI 1.3-2.6). Elevated BALF CXCL9 concentrations during respiratory infections markedly increased CLAD risk in a dose-response manner. An episode of respiratory infection with CXCL9 concentrations greater than the 25th, 50th, and 75th percentile had adjusted HRs for CLAD of 1.8 (95% CI 1.1-2.8), 2.4 (95% CI 1.4-4.0) and 4.4 (95% CI 2.4-8.0), respectively. Conclusions Thus, we demonstrate that respiratory infections, regardless of the causative organism, are strong predictors of CLAD development. We furthermore demonstrate for the first time, the prognostic importance of BALF CXCL9 concentrations during respiratory infections on the risk of subsequent CLAD development.
Collapse
Affiliation(s)
- Michael Y Shino
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA
| | - Ariss DerHovanessian
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA
| | - David M Sayah
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA
| | - Rajan Saggar
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA
| | - Ying Ying Xue
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA
| | - Abbas Ardehali
- Division of Cardiothoracic Surgery, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1741, USA
| | - Barry R Stripp
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - David J Ross
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA
| | - Joseph P Lynch
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA
| | - Robert M Elashoff
- Department of Biomathematics, University of California at Los Angeles, Los Angeles, CA 90095-1652, USA
| | - S Samuel Weigt
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA
| | - John A Belperio
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA
| |
Collapse
|
21
|
Sacreas A, Yang JYC, Vanaudenaerde BM, Sigdel TK, Liberto JM, Damm I, Verleden GM, Vos R, Verleden SE, Sarwal MM. The common rejection module in chronic rejection post lung transplantation. PLoS One 2018; 13:e0205107. [PMID: 30289917 PMCID: PMC6173434 DOI: 10.1371/journal.pone.0205107] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/19/2018] [Indexed: 11/19/2022] Open
Abstract
Rationale Recent studies suggest that similar injury mechanisms are in place across different solid organ transplants, resulting in the identification of a common rejection module (CRM), consisting of 11 genes that are overexpressed during acute and, to a lesser extent, chronic allograft rejection. Objectives We wanted to evaluate the usefulness of the CRM module in identifying acute rejection (AR) and different phenotypes of chronic lung transplant rejection (CLAD), i.e., bronchiolitis obliterans syndrome (BOS) and restrictive allograft syndrome (RAS), using transbronchial brushings, broncho-alveolar lavage (BAL) samples, and explant tissue. Methods Gene expression measurements for the 11 CRM genes (CD6, TAP1, CXCL10, CXCL9, INPP5D, ISG20, LCK, NKG7, PSMB9, RUNX3, and BASP1) were performed via qRT-PCR in 14 transbronchial brushings (AR, n = 4; no AR, n = 10), 32 BAL samples (stable, n = 13; AR, n = 8; BOS, n = 9; RAS, n = 10), and 44 tissue specimens (unused donor lungs, n = 15; BOS, n = 13; RAS, n = 16). A geometric mean score was calculated to quantitate overall burden of immune injury and a new computational model was built for the most significant genes in lung transplant injury. Results Acute rejection showed a significant difference in almost every gene analysed, validating previous observations from microarray analysis. RAS tissue demonstrated a higher geometric mean score (6.35) compared to donor tissue (4.09, p = 0.018). Analysis of individual CRM genes showed an increased expression of ISG20, CXCL10 and CXCL9 in RAS. In BAL samples, no differences were detected in gene expression or geometric mean scores between the various groups (stable, 5.15; AR, 5.81; BOS, 5.62; RAS, 7.31). A newly modelled 2-gene tissue CRM score did not demonstrate any difference between BOS and RAS (p>0.05). However, the model was able to discriminate RAS from BOS tissue (AUC = 0.75, 95% CI = 0.55–0.94, p = 0.025). Conclusion Transcriptional tissue analysis for CRM genes in CLAD can identify acute rejection and distinguish RAS from BOS. The immune activation in RAS seems similar to acute rejection after kidney/liver/heart transplantation.
Collapse
Affiliation(s)
- Annelore Sacreas
- Leuven Lung Transplant Unit, Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Joshua Y. C. Yang
- Division of Transplant Surgery, Department of Surgery, University of California, San Francisco, San Francisco, California, United States of America
| | - Bart M. Vanaudenaerde
- Leuven Lung Transplant Unit, Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Tara K. Sigdel
- Division of Transplant Surgery, Department of Surgery, University of California, San Francisco, San Francisco, California, United States of America
| | - Juliane M. Liberto
- Division of Transplant Surgery, Department of Surgery, University of California, San Francisco, San Francisco, California, United States of America
| | - Izabella Damm
- Division of Transplant Surgery, Department of Surgery, University of California, San Francisco, San Francisco, California, United States of America
| | - Geert M. Verleden
- Leuven Lung Transplant Unit, Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Robin Vos
- Leuven Lung Transplant Unit, Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Stijn E. Verleden
- Leuven Lung Transplant Unit, Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
- * E-mail: (SEV); (MMS)
| | - Minnie M. Sarwal
- Division of Transplant Surgery, Department of Surgery, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail: (SEV); (MMS)
| |
Collapse
|