1
|
Krebs T, Bauer J, Graff S, Teich L, Sterneberg M, Gebert M, Seibel H, Seeger B, Hellmann J, Wessel Ø, Rimstad E, Surachetpong W, Steinhagen D, Jung‐Schroers V, Adamek M. Beating Cardiac Cell Cultures From Different Developmental Stages of Rainbow Trout as a Novel Approach for Replication of Cardiac Fish Viruses. JOURNAL OF FISH DISEASES 2025; 48:e14080. [PMID: 39821901 PMCID: PMC11976189 DOI: 10.1111/jfd.14080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/19/2025]
Abstract
Piscine orthoreovirus-1 and 3 (PRV-1, PRV-3) cause highly prevalent infection in cultured salmonids and can induce heart and skeletal muscle inflammation (HSMI) resulting in economic losses in aquaculture. However, to date, PRV-1 and PRV-3 have withstood replication in continuous cell lines. In this study, we used beating heart cell cultures obtained from different developmental stages of rainbow trout (Oncorhynchus mykiss) (RTC-L and RTC-A) and tested their ability to sustain replication of PRV-1 and PRV-3. Furthermore, we compared the replication pattern of the different viruses with those in the newly developed heart fibroblast cell line (RTH-F) and the traditional established rainbow trout gonad cell line (RTG-2). Neither RTCs nor RTH-F cell lines supported replication of PRV-1 and PRV-3. Comparative experiments showed varying susceptibility of the novel cultures to viral haemorrhagic septicaemia virus (VHSV), chum salmon reovirus (CSV), infectious pancreatic necrosis virus (IPNV), piscine myocarditis virus (PMCV), salmonid alphavirus 3 (SAV-3) and tilapia lake virus (TiLV), indicating their usability for work with multiple fish viruses. While confirming the difficulty of replicating PRV-1 and PRV-3, the results demonstrate the potential of novel heart-derived cell cultures as in vitro tools for studying fish viruses.
Collapse
Affiliation(s)
- Torben Krebs
- Fish Disease Research Unit, Centre for Infection MedicineUniversity of Veterinary Medicine HannoverHannoverGermany
| | - Julia Bauer
- Fish Disease Research Unit, Centre for Infection MedicineUniversity of Veterinary Medicine HannoverHannoverGermany
| | - Sarah Graff
- Working Group Fish Health and –Welfare, Section Aquaculture and Aquatic ResourcesFraunhofer Research Institution for Individualized and Cell‐Based Medical Engineering IMTEBüsumGermany
| | - Lukas Teich
- Fish Disease Research Unit, Centre for Infection MedicineUniversity of Veterinary Medicine HannoverHannoverGermany
| | - Markus Sterneberg
- Fish Disease Research Unit, Centre for Infection MedicineUniversity of Veterinary Medicine HannoverHannoverGermany
| | - Marina Gebert
- Working Group Fish Health and –Welfare, Section Aquaculture and Aquatic ResourcesFraunhofer Research Institution for Individualized and Cell‐Based Medical Engineering IMTEBüsumGermany
| | - Henrike Seibel
- Working Group Fish Health and –Welfare, Section Aquaculture and Aquatic ResourcesFraunhofer Research Institution for Individualized and Cell‐Based Medical Engineering IMTEBüsumGermany
| | - Bettina Seeger
- Institute for Food Quality and Food SafetyUniversity of Veterinary Medicine HannoverHannoverGermany
| | - John Hellmann
- Environment and Consumer Protection, Fisheries Ecology and AquacultureNorth Rhine Westphalian State Agency for NatureGermany
| | - Øystein Wessel
- Faculty of Veterinary MedicineNorwegian University of Life SciencesÅsNorway
| | - Espen Rimstad
- Faculty of Veterinary MedicineNorwegian University of Life SciencesÅsNorway
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary MedicineKasetsart UniversityBangkokThailand
| | - Dieter Steinhagen
- Fish Disease Research Unit, Centre for Infection MedicineUniversity of Veterinary Medicine HannoverHannoverGermany
| | - Verena Jung‐Schroers
- Fish Disease Research Unit, Centre for Infection MedicineUniversity of Veterinary Medicine HannoverHannoverGermany
| | - Mikolaj Adamek
- Fish Disease Research Unit, Centre for Infection MedicineUniversity of Veterinary Medicine HannoverHannoverGermany
| |
Collapse
|
2
|
Tsoulia T, Sundaram AY, Amundsen MM, Rimstad E, Wessel Ø, Jørgensen JB, Dahle MK. Comparison of transcriptome responses in blood cells of Atlantic salmon infected by three genotypes of Piscine orthoreovirus. FISH & SHELLFISH IMMUNOLOGY 2025; 157:110088. [PMID: 39662648 DOI: 10.1016/j.fsi.2024.110088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
Piscine orthoreovirus (PRV) infection is common in aquaculture of salmonids. The three known PRV genotypes (PRV-1-3) have host species specificity and cause different diseases, but all infect and replicate in red blood cells (RBCs) in early infection phase. PRV-1 is the causative agent of heart and skeletal muscle inflammation (HSMI) in farmed Atlantic salmon (Salmo salar), PRV-2 causes erythrocytic inclusion body syndrome (EIBS) in coho salmon (Oncorhynchus kisutch), while PRV-3 induces HSMI-like disease in farmed rainbow trout (Oncorhynchus mykiss). PRV-3 can also infect A. salmon without causing clinical disease and has been shown to cross-protect against PRV-1 infection and HSMI, while PRV-2 or inactivated adjuvanted PRV-1 vaccine only partially reduced HSMI pathologic changes. In the present work, we studied the transcriptional responses in blood cells of A. salmon two- and five-weeks post infection with PRV-1, PRV-2, PRV-3, or post injection with inactivated PRV-1 vaccine. PRV-1 and PRV-3 replicated well in A. salmon blood cells, and both induced the typical innate antiviral responses triggered by dsRNA viruses. Two weeks post infection, PRV-3 triggered stronger antiviral responses than PRV-1, despite their similar viral RNA replication levels, but after five weeks the induced responses were close to equal. PRV-2 and the InPRV-1 vaccine did not trigger the same typical antiviral responses as the replicating PRV-1 and PRV-3 genotypes, but induced genes involved in membrane trafficking and signaling pathways that may regulate physiological functions. These findings propose that the protection mediated by PRV-3 against a secondary infection by PRV-1 occur due to a potent and early activation of the same type of innate immune responses. The difference in the timing of antiviral responses may give PRV-1 an evolutionary edge, facilitating its dissemination to A. salmon heart, a critical step for HSMI development.
Collapse
Affiliation(s)
- Thomais Tsoulia
- Departments of Aquatic Animal Health and Analysis and Diagnostics, Norwegian Veterinary Institute, Ås, Norway; Department of Biotechnology, Fisheries and Economy, UiT Arctic University of Norway, Tromsø, Norway.
| | - Arvind Ym Sundaram
- Departments of Aquatic Animal Health and Analysis and Diagnostics, Norwegian Veterinary Institute, Ås, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Marit M Amundsen
- Departments of Aquatic Animal Health and Analysis and Diagnostics, Norwegian Veterinary Institute, Ås, Norway
| | - Espen Rimstad
- Department of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Øystein Wessel
- Department of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Jorunn B Jørgensen
- Department of Biotechnology, Fisheries and Economy, UiT Arctic University of Norway, Tromsø, Norway
| | - Maria K Dahle
- Departments of Aquatic Animal Health and Analysis and Diagnostics, Norwegian Veterinary Institute, Ås, Norway; Department of Biotechnology, Fisheries and Economy, UiT Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
3
|
Rozas-Serri M, Ildefonso R, Peña A, Jaramillo V, Correa R, Barrientos S, Muñoz A, Maldonado L, Peñaloza E. PRV-1b and PRV-3a infection is associated with the same clinical disease in coho salmon (Oncorhynchus kisutch) farmed in Chile: unraveling the pathogenesis of the orthoreoviral cardiomyopathy and hemolytic jaundice (OCHJ). Vet Res 2025; 56:17. [PMID: 39833914 PMCID: PMC11748349 DOI: 10.1186/s13567-024-01435-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/12/2024] [Indexed: 01/22/2025] Open
Abstract
Piscine orthoreovirus (PRV) is a virus that is widely distributed among global aquaculture populations of salmonid species. The coho salmon (Oncorhynchus kisutch) is a species of increasing productive and economic importance in Chile. The presence of PRV has generated concern about its impact on the health and welfare of this species. The objective of this study was to comparatively describe the clinical manifestations, pathological changes, and pathogenesis associated with PRV infection in two different farms of farmed coho salmon in Chile through a prospective longitudinal descriptive observational study. The results demonstrated that PRV-1b and PRV-3a are independently associated with the same clinical and pathological presentation in farmed coho salmon. Microscopic pathology of the disease associated with PRV-1b and PRV-3a was primarily characterized by degenerative and inflammatory findings in the heart and liver. Hematological and blood biochemistry biomarkers in fish exhibited alterations, manifesting as hemolytic anemia and prehepatic jaundice likely due to indirect hyperbilirubinemia. Pathogenesis of infection associated with both PRV-1b and PRV-3a would indicate a specific tropism for erythrocytes and cardiomyocytes of the spongy myocardium. It is noteworthy that despite a notable reduction in viral load of both PRV subgroups in tissues, the frequency of macroscopic lesions increased during the final phase of the study. In conclusion, the results indicate a strong correlation between infection by both PRV subgroups and the proposed orthoreoviral cardiomyopathy and hemolytic jaundice (OCHJ) disease. Further research on the pathogenesis and surveillance of PRV-1b and PRV-3a subgroups is pivotal to develop effective strategies for the control of OCHJ in farmed coho salmon.
Collapse
Affiliation(s)
| | | | - Andrea Peña
- Pathovet Labs, Los Lagos, Puerto Montt, Chile
| | | | | | | | - Ariel Muñoz
- Pathovet Labs, Los Lagos, Puerto Montt, Chile
| | | | | |
Collapse
|
4
|
Sørensen J, Cuenca A, Schmidt JG, Madsen SB, Iburg TM, Madsen L, Vendramin N. A novel high-throughput qPCR chip for solving co-infections in RAS farmed rainbow trout. Sci Rep 2024; 14:16802. [PMID: 39039114 PMCID: PMC11263403 DOI: 10.1038/s41598-024-65697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Recirculating aquaculture systems (RAS) have become more attractive due to reduced water consumption and effluent discharge. However, intensification of production increases the risk of introducing pathogens at farming sites. The emergence of uncultivable pathogens and RAS pathobiome diversity shifts the traditional disease paradigm from "one pathogen, one disease" to complex multiple-pathogen disease cases. Piscine orthoreovirus genotype 3 (PRV-3) is an excellent example, as it is capable of inducing anemia and heart pathology resembling heart and skeletal muscle inflammation under experimental conditions, and is associated with increased mortality in association with other pathogens in the field. The aim of this study was to develop a method for detection of multiple pathogens and putative pathogens, as co-infections are common in aquaculture. To do this, in the pilot study, we mapped the pathobiome of RAS-farmed rainbow trout (Oncorhynchus mykiss) (commercial RAS, farm A) using both standard diagnostic methods and metabarcording (16S rRNA) to investigate the gill microbiome. During this study, we observed infections with multiple pathogens, and detected two putative gill pathogens Candidatus Branchiomonas cysticola and Candidatus Piscichlamydia salmonis, both of which have been linked with complex gill disease in Atlantic salmon (Salmo salar). Based on the pilot study, we developed and tested a high throughput qPCR (HT-qPCR) chip targeting 22 viral and bacterial pathogens and putative pathogens, followed by a surveillance of a fish cohort in a commercial RAS farm during production (farm B). Co-infection with PRV-3 and Ca. B. cysticola combined with stress inducing management practices may explain the severe disease outbreak observed (37% mortality). The time course study sets the base for a future screening scheme for disease prediction and addresses limitations of the method when testing environmental DNA/RNA.
Collapse
Affiliation(s)
- Juliane Sørensen
- National Institute of Aquatic Resources DTU Aqua, Section for Fish and Shellfish Diseases, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Argelia Cuenca
- National Institute of Aquatic Resources DTU Aqua, Section for Fish and Shellfish Diseases, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Jacob Günther Schmidt
- National Institute of Aquatic Resources DTU Aqua, Section for Fish and Shellfish Diseases, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | | | - Tine Moesgaard Iburg
- National Institute of Aquatic Resources DTU Aqua, Section for Fish and Shellfish Diseases, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Lone Madsen
- National Institute of Aquatic Resources DTU Aqua, Section for Fish and Shellfish Diseases, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Niccoló Vendramin
- National Institute of Aquatic Resources DTU Aqua, Section for Fish and Shellfish Diseases, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark.
| |
Collapse
|
5
|
Bjørgen H, Brimsholm M, Lund M, Dahle MK, Rimstad E, Koppang EO. Red and melanized focal changes in the white skeletal muscle of farmed rainbow trout Oncorhynchus mykiss. DISEASES OF AQUATIC ORGANISMS 2024; 158:201-213. [PMID: 38934260 DOI: 10.3354/dao03797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Fillet discoloration by red and melanized focal changes (RFCs and MFCs) is common in farmed Atlantic salmon Salmo salar. In farmed rainbow trout Oncorhynchus mykiss, similar changes have been noted, but their prevalence and histological characteristics have not been investigated. Thus, we conducted a study encompassing 1293 rainbow trout from 3 different farm sites in Norway, all examined at the time of slaughter. Both macroscopic and histological assessments of the changes were performed. Reverse transcription (RT)-qPCR analyses and in situ hybridization (ISH) were used to detect the presence and location, respectively, of potential viruses. Only 1 RFC was detected in a single fillet, while the prevalence of MFCs ranged from 1.46 to 6.47% between populations. The changes were predominantly localized in the cranioventral region of the fillet. Histological examinations unveiled necrotic myocytes, fibrosis, and regeneration of myocytes. Melano-macrophages were found in the affected areas and in myoseptal adipose tissue. Organized granulomas were observed in only 1 fish. Notably, the presence of inflammatory cells, including melano-macrophages, appeared lower compared to what has been previously documented in Atlantic salmon MFCs. Instead, fibrosis and regeneration dominated. RT-qPCR and ISH revealed the presence of piscine orthoreovirus 1 (PRV-1) and salmonid alphavirus (SAV) in skeletal muscle. However, these viruses were not consistently associated with lesioned areas, contrasting previous findings in Atlantic salmon. In conclusion, rainbow trout develop MFCs of a different character than farmed Atlantic salmon, and we speculate whether the observed pathological differences are contributing to their reduced occurrence in farmed rainbow trout.
Collapse
Affiliation(s)
- Håvard Bjørgen
- Unit of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Malin Brimsholm
- Unit of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Morten Lund
- Pure Salmon Kaldnes, 3241 Sandefjord, Norway
| | | | - Espen Rimstad
- Unit of Virology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Erling Olaf Koppang
- Unit of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1433 Ås, Norway
| |
Collapse
|
6
|
Takano T, Miwa S, Matsuyama T, Kiryu I, Honjo M, Sakai T, Matsuura Y, Yamasaki M, Kumagai A, Nakayasu C. Clinical symptoms and histopathological changes in coho salmon affected by the erythrocytic inclusion body syndrome (EIBS) are caused by the infection of piscine orthoreovirus 2 (PRV-2). JOURNAL OF FISH DISEASES 2024; 47:e13939. [PMID: 38481093 DOI: 10.1111/jfd.13939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 05/12/2024]
Abstract
The relationship of histopathological changes and the infection of Piscine orthoreovirus 2 (PRV-2) was investigated in coho salmon that were suffering from the erythrocytic inclusion body syndrome (EIBS). Immunohistochemical observations revealed abundant σ1 protein of PRV-2 in the spongy layer of the ventricle of the heart, where severe myocarditis was observed. In the spleen, the virus protein was detected in many erythrocytes, some of which were spherical-shaped and apparently dead. The number of erythrocytes was decreased in the spleen compared to the apparently healthy fish. The virus protein was also detected in some erythrocytes in blood vessels. The viral protein was often detected in many macrophages ingesting erythrocytes or dead cell debris in the spleen or in the kidney sinusoids. Large amounts of the viral genomic segment L2 were also detected in these organs by RT-qPCR. Many necrotic foci were found in the liver, although the virus protein was not detected in the hepatocytes. These results suggest that the primary targets of PRV-2 are myocardial cells and erythrocytes and that clinical symptoms such as anaemia or jaundice and histopathological changes such as myocarditis in EIBS-affected coho salmon are caused by PRV-2 infection.
Collapse
Affiliation(s)
- Tomokazu Takano
- Pathology Division, Aquaculture Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Minami-ise, Japan
| | - Satoshi Miwa
- Pathology Division, Aquaculture Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Minami-ise, Japan
| | - Tomomasa Matsuyama
- Pathology Division, Aquaculture Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Minami-ise, Japan
| | - Ikunari Kiryu
- Pathology Division, Aquaculture Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Minami-ise, Japan
| | - Miho Honjo
- Miyagi Prefecture Fisheries Technology Institute, Ishinomaki, Japan
| | - Takamitsu Sakai
- Pathology Division, Aquaculture Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Minami-ise, Japan
| | - Yuta Matsuura
- Pathology Division, Aquaculture Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Minami-ise, Japan
| | - Masatoshi Yamasaki
- Pathology Division, Aquaculture Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Minami-ise, Japan
| | - Akira Kumagai
- Miyagi Prefecture Fisheries Technology Institute, Ishinomaki, Japan
| | - Chihaya Nakayasu
- Pathology Division, Aquaculture Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Minami-ise, Japan
| |
Collapse
|
7
|
Solarte-Murillo L, Reyes H, Ojeda L, Cárcamo JG, Pontigo JP, Loncoman CA. Analyses and Insights into Genetic Reassortment and Natural Selection as Key Drivers of Piscine orthoreovirus Evolution. Viruses 2024; 16:556. [PMID: 38675898 PMCID: PMC11053957 DOI: 10.3390/v16040556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 04/28/2024] Open
Abstract
Piscine orthoreovirus (PRV) is a pathogen that causes heart and skeletal muscle inflammation in Salmo salar and has also been linked to circulatory disorders in other farmed salmonids, such as Oncorhynchus kisutch and Oncorhynchus mykiss. The virus has a segmented, double-stranded RNA genome, which makes it possible to undergo genetic reassortment and increase its genomic diversity through point mutations. In this study, genetic reassortment in PRV was assessed using the full genome sequences available in public databases. This study used full genome sequences that were concatenated and genome-wide reassortment events, and phylogenetic analyses were performed using the recombination/reassortment detection program version 5 (RDP5 V 5.5) software. Additionally, each segment was aligned codon by codon, and overall mean distance and selection was tested using the Molecular Evolutionary Genetics Analysis X software, version 10.2 (MEGA X version 10.2). The results showed that there were 17 significant reassortment events in 12 reassortant sequences, involving genome exchange between low and highly virulent genotypes. PRV sequences from different salmonid host species did not appear to limit the reassortment. This study found that PRV frequently undergoes reassortment events to increase the diversity of its segmented genome, leading to antigenic variation and increased virulence. This study also noted that to date, no reassortment events have been described between PRV-1 and PRV-3 genotypes. However, the number of complete genomic sequences within each genotype is uneven. This is important because PRV-3 induces cross-protection against PRV-1, making it a potential vaccine candidate.
Collapse
Affiliation(s)
- Laura Solarte-Murillo
- Laboratorio de Virología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Humberto Reyes
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
| | - Loreto Ojeda
- Laboratorio de Bioquímica Farmacológica, Virología y Biotecnología, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
- Interdisciplinary Center for Aquaculture Research, INCAR, Concepción 4030000, Chile
| | - Juan G. Cárcamo
- Laboratorio de Bioquímica Farmacológica, Virología y Biotecnología, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
- Interdisciplinary Center for Aquaculture Research, INCAR, Concepción 4030000, Chile
| | - Juan Pablo Pontigo
- Laboratorio Institucional, Facultad de Ciencias de la Naturaleza, Escuela de Medicina Veterinaria, Universidad San Sebastián, Puerto Montt 5400000, Chile;
| | - Carlos A. Loncoman
- Laboratorio de Virología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile;
| |
Collapse
|
8
|
Kannimuthu D, Roh H, Peñaranda MMD, Wessel Ø, Mæhle S, Berhe GD, Nordbø J, Kvamme BO, Morton HC, Grove S. Long-term persistence of piscine orthoreovirus-1 (PRV-1) infection during the pre-smolt stages of Atlantic salmon in freshwater. Vet Res 2023; 54:69. [PMID: 37644605 PMCID: PMC10463814 DOI: 10.1186/s13567-023-01201-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/07/2023] [Indexed: 08/31/2023] Open
Abstract
Piscine orthoreovirus (PRV) causes heart and skeletal muscle inflammation (HSMI) in farmed Atlantic salmon. During salmon production cycles, HSMI has predominantly been observed after seawater transfer. More recently, better surveillance and longitudinal studies have detected occurrences of PRV-1 in freshwater broodstock farms and hatcheries. However, very little is known about the viral kinetics of PRV-1 or disease development of HSMI during these pre-smolt stages. In this study, we conducted a long-term PRV-1 challenge experiment to examine the profile of viral load, infectiousness and/or clearance in Atlantic salmon during their development from fry to parr stage. Atlantic salmon fry (mean weight: 1.1 ± 0.19 g) were infected with PRV-1 (high virulent variant) via intraperitoneal (IP) injection. The viral load reached a peak at 2-4 weeks post-challenge (wpc) in heart and muscle tissues. The virus was detected at relatively high levels in whole blood, spleen, and head kidney tissues until 65 wpc. Heart and muscle lesions typical of HSMI were clearly observed at 6 and 8 wpc but then subsided afterwards resolving inflammation. Innate and adaptive immune responses were elicited during the early/acute phase but returned to basal levels during the persistent phase of infection. Despite achieving high viremia, PRV-1 infection failed to cause any mortality during the 65-week virus challenge period. Cohabitation of PRV-1 infected fish (10 and 31 wpc) with naïve Atlantic salmon fry resulted in very low or no infection. Moreover, repeated chasing stress exposures did not affect the viral load or shedding of PRV-1 at 26 and 44 wpc. The present findings provide knowledge about PRV-1 infection in juvenile salmon and highlight the importance of continued monitoring and management to prevent and mitigate the PRV-1 infection in freshwater facilities.
Collapse
Affiliation(s)
| | - HyeongJin Roh
- Institute of Marine Research, Nordnes, P.O. Box 1870, N-5817, Bergen, Norway
| | | | - Øystein Wessel
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1433, Ås, Norway
| | - Stig Mæhle
- Institute of Marine Research, Nordnes, P.O. Box 1870, N-5817, Bergen, Norway
| | | | - Joachim Nordbø
- Institute of Marine Research, Nordnes, P.O. Box 1870, N-5817, Bergen, Norway
| | - Bjørn Olav Kvamme
- Institute of Marine Research, Nordnes, P.O. Box 1870, N-5817, Bergen, Norway
| | - H Craig Morton
- Institute of Marine Research, Nordnes, P.O. Box 1870, N-5817, Bergen, Norway
| | - Søren Grove
- Institute of Marine Research, Nordnes, P.O. Box 1870, N-5817, Bergen, Norway
| |
Collapse
|
9
|
Sørensen J, Cuenca A, Olsen AB, Skovgaard K, Iburg TM, Olesen NJ, Vendramin N. Decreased water temperature enhance Piscine orthoreovirus genotype 3 replication and severe heart pathology in experimentally infected rainbow trout. Front Vet Sci 2023; 10:1112466. [PMID: 36846252 PMCID: PMC9950551 DOI: 10.3389/fvets.2023.1112466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/25/2023] [Indexed: 02/12/2023] Open
Abstract
Piscine orthoreovirus genotype 3 (PRV-3) was first discovered in Denmark in 2017 in relation to disease outbreaks in rainbow trout (Oncorhynchus mykiss). While the virus appears to be widespread in farmed rainbow trout, disease outbreaks associated with detection of PRV-3 have only occurred in recirculating aquaculture systems, and has predominantly been observed during the winter months. To explore the possible effects of water temperature on PRV-3 infection in rainbow trout, an in vivo cohabitation trial was conducted at 5, 12, and 18°C. For each water temperature, a control tank containing mock-injected shedder fish and a tank with PRV-3 exposed fish were included. Samples were collected from all experimental groups every 2nd week post challenge (WPC) up until trial termination at 12 WPC. PRV-3 RNA load measured in heart tissue of cohabitants peaked at 6 WPC for animals maintained at 12 and 18°C, while it reached its peak at 12 WPC in fish maintained at 5°C. In addition to the time shift, significantly more virus was detected at the peak in fish maintained at 5°C compared to 12 and 18°C. In shedders, fish at 12 and 18°C cleared the infection considerably faster than the fish at 5°C: while shedders at 18 and 12°C had cleared most of the virus at 4 and 6 WPC, respectively, high virus load persisted in the shedders at 5°C until 12 WPC. Furthermore, a significant reduction in the hematocrit levels was observed in the cohabitants at 12°C in correlation with the peak in viremia at 6 WPC; no changes in hematocrit was observed at 18°C, while a non-significant reduction (due to large individual variation) trend was observed at cohabitants held at 5°C. Importantly, isg15 expression was positively correlated with PRV-3 virus load in all PRV-3 exposed groups. Immune gene expression analysis showed a distinct gene profile in PRV-3 exposed fish maintained at 5°C compared to 12 and 18°C. The immune markers mostly differentially expressed in the group at 5°C were important antiviral genes including rigi, ifit5 and rsad2 (viperin). In conclusion, these data show that low water temperature allow for significantly higher PRV-3 replication in rainbow trout, and a tendency for more severe heart pathology development in PRV-3 injected fish. Increased viral replication was mirrored by increased expression of important antiviral genes. Despite no mortality being observed in the experimental trial, the data comply with field observations of clinical disease outbreaks during winter and cold months.
Collapse
Affiliation(s)
- Juliane Sørensen
- Section for Fish and Shellfish Diseases, National Institute for Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Argelia Cuenca
- Section for Fish and Shellfish Diseases, National Institute for Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Anne Berit Olsen
- Section of Aquatic Biosecurity Research, Norwegian Veterinary Institute, Bergen, Norway
| | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Tine Moesgaard Iburg
- Section for Fish and Shellfish Diseases, National Institute for Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Niels Jørgen Olesen
- Section for Fish and Shellfish Diseases, National Institute for Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Niccolò Vendramin
- Section for Fish and Shellfish Diseases, National Institute for Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark,*Correspondence: Niccolò Vendramin ✉
| |
Collapse
|
10
|
Vallejos-Vidal E, Reyes-López FE, Sandino AM, Imarai M. Sleeping With the Enemy? The Current Knowledge of Piscine Orthoreovirus (PRV) Immune Response Elicited to Counteract Infection. Front Immunol 2022; 13:768621. [PMID: 35464421 PMCID: PMC9019227 DOI: 10.3389/fimmu.2022.768621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Piscine orthoreovirus (PRV) is a virus in the genus Orthoreovirus of the Reoviridae family, first described in 2010 associated with Heart and Skeletal Muscle Inflammation (HSMI) in Atlantic salmon (Salmo salar). Three phases of PRV infection have been described, the early entry and dissemination, the acute dissemination phase, and the persistence phase. Depending on the PRV genotype and the host, infection can last for life. Mechanisms of immune response to PRV infection have been just beginning to be studied and the knowledge in this matter is here revised. PRV induces a classical antiviral immune response in experimental infection of salmonid erythrocytes, including transcriptional upregulation of ifn-α, rig-i, mx, and pkr. In addition, transcript upregulation of tcra, tcrb, cd2, il-2, cd4-1, ifn-γ, il-12, and il-18 has been observed in Atlantic salmon infected with PRV, indicating that PRV elicited a Th1 type response probably as a host defense strategy. The high expression levels of cd8a, cd8b, and granzyme-A in PRV-infected fish suggest a positive modulatory effect on the CTL-mediated immune response. This is consistent with PRV-dependent upregulation of the genes involved in antigen presentation, including MHC class I, transporters, and proteasome components. We also review the potential immune mechanisms associated with the persistence phenotype of PRV-infected fish and its consequence for the development of a secondary infection. In this scenario, the application of a vaccination strategy is an urgent and challenging task due to the emergence of this viral infection that threatens salmon farming.
Collapse
Affiliation(s)
- Eva Vallejos-Vidal
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Felipe E Reyes-López
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Department of Cell Biology, Physiology, and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana María Sandino
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Mónica Imarai
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
11
|
Zhao J, Vendramin N, Cuenca A, Polinski M, Hawley LM, Garver KA. Pan-Piscine Orthoreovirus (PRV) Detection Using Reverse Transcription Quantitative PCR. Pathogens 2021; 10:pathogens10121548. [PMID: 34959503 PMCID: PMC8707331 DOI: 10.3390/pathogens10121548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
Piscine orthoreovirus (PRV) infects farmed and wild salmon and trout species in North America, South America, Europe, and East Asia. PRV groups into three distinct genotypes (PRV-1, PRV-2, and PRV-3) that can vary in distribution, host specificity, and/or disease potential. Detection of the virus is currently restricted to genotype specific assays such that surveillance programs require the use of three assays to ensure universal detection of PRV. Consequently, herein, we developed, optimized, and validated a real-time reverse transcription quantitative PCR assay (RT-qPCR) that can detect all known PRV genotypes with high sensitivity and specificity. Targeting a conserved region at the 5′ terminus of the M2 segment, the pan-PRV assay reliably detected all PRV genotypes with as few as five copies of RNA. The assay exclusively amplifies PRV and does not cross-react with other salmonid viruses or salmonid host genomes and can be performed as either a one- or two-step RT-qPCR. The assay is highly reproducible and robust, showing 100% agreement in test results from an inter-laboratory comparison between two laboratories in two countries. Overall, as the assay provides a single test to achieve highly sensitive pan-specific PRV detection, it is suitable for research, diagnostic, and surveillance purposes.
Collapse
Affiliation(s)
- Julie Zhao
- Pacific Biological Station, Department of Fisheries and Oceans, Nanaimo, BC V9T 6N7, Canada; (J.Z.); (M.P.); (L.M.H.)
| | - Niccolò Vendramin
- Unit for Fish and Shellfish Diseases, National Institute of Aquatic Resources, Technical University of Denmark, 2800 Lyngby-Taarbæk, Denmark; (N.V.); (A.C.)
| | - Argelia Cuenca
- Unit for Fish and Shellfish Diseases, National Institute of Aquatic Resources, Technical University of Denmark, 2800 Lyngby-Taarbæk, Denmark; (N.V.); (A.C.)
| | - Mark Polinski
- Pacific Biological Station, Department of Fisheries and Oceans, Nanaimo, BC V9T 6N7, Canada; (J.Z.); (M.P.); (L.M.H.)
| | - Laura M. Hawley
- Pacific Biological Station, Department of Fisheries and Oceans, Nanaimo, BC V9T 6N7, Canada; (J.Z.); (M.P.); (L.M.H.)
| | - Kyle A. Garver
- Pacific Biological Station, Department of Fisheries and Oceans, Nanaimo, BC V9T 6N7, Canada; (J.Z.); (M.P.); (L.M.H.)
- Correspondence:
| |
Collapse
|
12
|
Jiang X, Hu Y, Qu XP, Xu DW, Jiang H, Li CM, Jiang H, Wang DL, Li G, Zhu XG, Liu B. Prediction of in-hospital recurrence and false-negative results in patients with COVID-19 by red blood cell values on admission. Exp Ther Med 2021; 22:1250. [PMID: 34539846 PMCID: PMC8438694 DOI: 10.3892/etm.2021.10685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 04/26/2021] [Indexed: 01/08/2023] Open
Abstract
The clinical characteristics and risk factors of patients with coronavirus disease 2019 (COVID-19) with re-positive or false-negative test results have so far remained to be determined. The present study provides a cross-sectional observational study on 134 hospitalized patients selected from Huoshenshan Hospital (Wuhan, China) using cluster sampling. A total of 68 patients had reduced red blood cell (RBC) counts, 55 a decrease in the hemoglobin concentration (HBC) and 73 a decline in hematocrit (HCT). The false-negative rate of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) RNA detection in pharyngeal swab specimens was 18.7%. The absolute lymphocyte count (ALC), RBC, HBC and HCT levels in false-negative patients were significantly higher than those in patients who tested positive for viral nucleic acids. Multivariate logistic regression analysis indicated that RBC [odds ratio (OR)=0.43, 95% CI: 0.18-0.99], HBC (OR=0.97, 95% CI: 0.94-0.99) and ALC (OR=0.43, 95% CI: 0.20-0.91) were the factors influencing the negative testing results for viral nucleic acid. The rate of re-positive patients was 16.4%. The white blood cell, RBC, HBC and HCT values in re-positive patients were lower than those in non-re-positive patients. The median (interquartile range) values for RBC, HBC and HCT of male re-positive patients were 3.95 (3.37, 4.2) x1012/l, 123 (103, 133) g/l and 36.6 (31.1, 39.2)%, respectively, while the RBC, HBC and HCT of female re-positive patients were 3.54 (3.13, 3.74) x1012/l, 115 (102, 118) g/l and 34.2 (28.5, 34.9)%, respectively. It was determined that RBC, HBC and HCT values had moderate accuracy in predicting SARS-CoV-2 recurrence in patients with COVID-19 using receiver operating curve analysis. The present study suggested that RBC may have an important role in the pathogenesis of COVID-19.
Collapse
Affiliation(s)
- Xue Jiang
- Third Department of Infectious Diseases, Huoshenshan Hospital, Joint Logistics Support Force of The Chinese People's Liberation Army, Wuhan, Hubei 430101, P.R. China.,Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shanxi 710038, P.R. China
| | - Yan Hu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shanxi 710038, P.R. China.,Department of Neurosurgery, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Xiao-Peng Qu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shanxi 710038, P.R. China
| | - Dong-Wei Xu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shanxi 710038, P.R. China
| | - Hong Jiang
- Third Department of Infectious Diseases, Huoshenshan Hospital, Joint Logistics Support Force of The Chinese People's Liberation Army, Wuhan, Hubei 430101, P.R. China.,Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shanxi 710038, P.R. China
| | - Chun-Mei Li
- Third Department of Infectious Diseases, Huoshenshan Hospital, Joint Logistics Support Force of The Chinese People's Liberation Army, Wuhan, Hubei 430101, P.R. China.,Department of Respiratory Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shanxi 710038, P.R. China
| | - Hua Jiang
- Third Department of Infectious Diseases, Huoshenshan Hospital, Joint Logistics Support Force of The Chinese People's Liberation Army, Wuhan, Hubei 430101, P.R. China.,Department of Respiratory Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shanxi 710038, P.R. China
| | - Da-Li Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shanxi 710038, P.R. China
| | - Gang Li
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shanxi 710038, P.R. China
| | - Xin-Gen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Bei Liu
- Third Department of Infectious Diseases, Huoshenshan Hospital, Joint Logistics Support Force of The Chinese People's Liberation Army, Wuhan, Hubei 430101, P.R. China.,Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shanxi 710038, P.R. China
| |
Collapse
|
13
|
Piscine Orthoreovirus (PRV)-3, but Not PRV-2, Cross-Protects against PRV-1 and Heart and Skeletal Muscle Inflammation in Atlantic Salmon. Vaccines (Basel) 2021; 9:vaccines9030230. [PMID: 33800725 PMCID: PMC8001985 DOI: 10.3390/vaccines9030230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Heart and skeletal muscle inflammation (HSMI), caused by infection with Piscine orthoreovirus-1 (PRV-1), is a common disease in farmed Atlantic salmon (Salmo salar). Both an inactivated whole virus vaccine and a DNA vaccine have previously been tested experimentally against HSMI and demonstrated to give partial but not full protection. To understand the mechanisms involved in protection against HSMI and evaluate the potential of live attenuated vaccine strategies, we set up a cross-protection experiment using PRV genotypes not associated with disease development in Atlantic salmon. The three known genotypes of PRV differ in their preference of salmonid host species. The main target species for PRV-1 is Atlantic salmon. Coho salmon (Oncorhynchus kisutch) is the target species for PRV-2, where the infection may induce erythrocytic inclusion body syndrome (EIBS). PRV-3 is associated with heart pathology and anemia in rainbow trout, but brown trout (S. trutta) is the likely natural main host species. Here, we tested if primary infection with PRV-2 or PRV-3 in Atlantic salmon could induce protection against secondary PRV-1 infection, in comparison with an adjuvanted, inactivated PRV-1 vaccine. Viral kinetics, production of cross-reactive antibodies, and protection against HSMI were studied. PRV-3, and to a low extent PRV-2, induced antibodies cross-reacting with the PRV-1 σ1 protein, whereas no specific antibodies were detected after vaccination with inactivated PRV-1. Ten weeks after immunization, the fish were challenged through cohabitation with PRV-1-infected shedder fish. A primary PRV-3 infection completely blocked PRV-1 infection, while PRV-2 only reduced PRV-1 infection levels and the severity of HSMI pathology in a few individuals. This study indicates that infection with non-pathogenic, replicating PRV could be a future strategy to protect farmed salmon from HSMI.
Collapse
|
14
|
Bateman AW, Schulze AD, Kaukinen KH, Tabata A, Mordecai G, Flynn K, Bass A, Di Cicco E, Miller KM. Descriptive multi-agent epidemiology via molecular screening on Atlantic salmon farms in the northeast Pacific Ocean. Sci Rep 2021; 11:3466. [PMID: 33568681 PMCID: PMC7876018 DOI: 10.1038/s41598-020-78978-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
Rapid expansion of salmon aquaculture has resulted in high-density populations that host diverse infectious agents, for which surveillance and monitoring are critical to disease management. Screening can reveal infection diversity from which disease arises, differential patterns of infection in live and dead fish that are difficult to collect in wild populations, and potential risks associated with agent transmission between wild and farmed hosts. We report results from a multi-year infectious-agent screening program of farmed salmon in British Columbia, Canada, using quantitative PCR to assess presence and load of 58 infective agents (viruses, bacteria, and eukaryotes) in 2931 Atlantic salmon (Salmo salar). Our analysis reveals temporal trends, agent correlations within hosts, and agent-associated mortality signatures. Multiple agents, most notably Tenacibaculum maritimum, were elevated in dead and dying salmon. We also report detections of agents only recently shown to infect farmed salmon in BC (Atlantic salmon calicivirus, Cutthroat trout virus-2), detection in freshwater hatcheries of two marine agents (Kudoa thyrsites and Tenacibaculum maritimum), and detection in the ocean of a freshwater agent (Flavobacterium psychrophilum). Our results provide information for farm managers, regulators, and conservationists, and enable further work to explore patterns of multi-agent infection and farm/wild transmission risk.
Collapse
Affiliation(s)
- Andrew W Bateman
- Pacific Salmon Foundation, Vancouver, Canada. .,Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada.
| | - Angela D Schulze
- Molecular Genetics, Fisheries and Oceans Canada, Nanaimo, Canada
| | - Karia H Kaukinen
- Molecular Genetics, Fisheries and Oceans Canada, Nanaimo, Canada
| | - Amy Tabata
- Molecular Genetics, Fisheries and Oceans Canada, Nanaimo, Canada
| | - Gideon Mordecai
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Kelsey Flynn
- Molecular Genetics, Fisheries and Oceans Canada, Nanaimo, Canada
| | - Arthur Bass
- Pacific Salmon Foundation, Vancouver, Canada.,Forest and Conservation Sciences, University of British Columbia, Vancouver, Canada
| | | | - Kristina M Miller
- Molecular Genetics, Fisheries and Oceans Canada, Nanaimo, Canada.,Forest and Conservation Sciences, University of British Columbia, Vancouver, Canada
| |
Collapse
|
15
|
Polinski MP, Vendramin N, Cuenca A, Garver KA. Piscine orthoreovirus: Biology and distribution in farmed and wild fish. JOURNAL OF FISH DISEASES 2020; 43:1331-1352. [PMID: 32935367 DOI: 10.1111/jfd.13228] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Piscine orthoreovirus (PRV) is a common and widely distributed virus of salmonids. Since its discovery in 2010, the virus has been detected in wild and farmed stocks from North America, South America, Europe and East Asia in both fresh and salt water environments. Phylogenetic analysis suggests three distinct genogroups of PRV with generally discrete host tropisms and/or regional patterns. PRV-1 is found mainly in Atlantic (Salmo salar), Chinook (Oncorhynchus tshawytscha) and Coho (Oncorhynchus kisutch) Salmon of Europe and the Americas; PRV-2 has only been detected in Coho Salmon of Japan; and PRV-3 has been reported primarily in Rainbow Trout (Oncorhynchus mykiss) in Europe. All three genotypes can establish high-load systemic infections by targeting red blood cells for principal replication. Each genotype has also demonstrated potential to cause circulatory disease. At the same time, high-load PRV infections occur in non-diseased salmon and trout, indicating a complexity for defining PRV's role in disease aetiology. Here, we summarize the current body of knowledge regarding PRV following 10 years of study.
Collapse
Affiliation(s)
- Mark P Polinski
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| | - Niccoló Vendramin
- National Institute of Aquatic Resources, Technical University of Denmark, Lyngby, Denmark
| | - Argelia Cuenca
- National Institute of Aquatic Resources, Technical University of Denmark, Lyngby, Denmark
| | - Kyle A Garver
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| |
Collapse
|
16
|
Emergence and Spread of Piscine orthoreovirus Genotype 3. Pathogens 2020; 9:pathogens9100823. [PMID: 33036449 PMCID: PMC7601675 DOI: 10.3390/pathogens9100823] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023] Open
Abstract
Piscine orthoreovirus (PRV) is a relevant pathogen for salmonid aquaculture worldwide. In 2015, a new genotype of PRV (genotype 3, PRV-3) was discovered in Norway, and in 2017 PRV-3 was detected for first time in Denmark in association with complex disease cases in rainbow trout in recirculating aquaculture systems (RAS). To explore the epidemiology of PRV-3 in Denmark, a surveillance study was conducted in 2017 to 2019. Fifty-three farms, including both flow through and RAS, were screened for PRV-3. Of the farms examined, PRV-3 was detected in thirty-eight (71.7%), with the highest prevalence in grow-out farms. Notably, in Denmark disease outbreaks were only observed in RAS. Additionally, wild Atlantic salmon and brown trout populations were included in the screening, and PRV-3 was not detected in the three years where samples were obtained (2016, 2018, and 2019). Historical samples in the form of archived material at the Danish National Reference Laboratory for Fish Diseases were also tested for the presence of PRV-3, allowing us to establish that the virus has been present in Denmark at least since 1995. Sequence analyses of segment S1 and M2, as well as full genome analyses of selected isolates, did not reveal clear association between genetic makeup in these two segments and virulence in the form of disease outbreaks in the field.
Collapse
|
17
|
Wessel Ø, Hansen EF, Løvoll M, Inami M, Husby A, Kruse G, Dahle MK, Rimstad E. Inactivation of Piscine orthoreovirus. JOURNAL OF FISH DISEASES 2020; 43:1039-1048. [PMID: 32632958 DOI: 10.1111/jfd.13214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Piscine orthoreovirus infects various salmonid fish species, and the infection is associated with diseases such as heart and skeletal muscle inflammation (HSMI) in farmed Atlantic salmon (Salmo salar). There are no vaccines available or genetically selected resistant hosts that can efficiently control piscine orthoreovirus (PRV) infection. Currently, the only prophylactic measure against PRV is general biosecurity measures aiming to break the transmission cycle. Methods to eradicate infectious virus from contaminated facilities are desirable, but the knowledge on how to inactivate PRV is lacking. A major bottleneck for inactivation studies is the lack of ability to propagate PRV in cell culture. Therefore, in this study we developed an in vivo model for detection of infectious PRV particles after treatment of the virus with inactivation tools such as heat, pH, iodine, UV and commercially available disinfectants. The results show that standard iodine treatment is efficient in inactivation of the virus, and similarly are high and low pH extremes and treatment with Virocid, a commercially available disinfectant. A UV dose of at least 50 mJ/cm2 is required for inactivation, and the virus has high resistance against heat treatment.
Collapse
Affiliation(s)
- Øystein Wessel
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Elisabeth F Hansen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | | | | | | | | | | | - Espen Rimstad
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
18
|
Siah A, Knutsen E, Richmond Z, Mills M, Frisch K, Powell JFF, Brevik Ø, Duesund H. Real-time RT-qPCR assay to detect sequences in the Piscine orthoreovirus-1 genome segment S1 associated with heart and skeletal muscle inflammation in Atlantic salmon. JOURNAL OF FISH DISEASES 2020; 43:955-962. [PMID: 32608050 DOI: 10.1111/jfd.13205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
During the last decade, Piscine orthoreovirus was identified as the main causative agent of heart and skeletal muscle inflammation (HSMI) in Atlantic Salmon, Norway. A recent study showed that PRV-1 sequences from salmonid collected in North Atlantic Pacific Coast (NAPC) grouped separately from the Norwegian sequences found in Atlantic Salmon diagnosed with HSMI. Currently, the routine assay used to screen for PRV-1 in NAPC water and worldwide cannot differentiate between the two groups of PRV-1. Therefore, this study aimed at developing a real-time polymerase chain reaction (RT-qPCR) assay to target the PRV-1 genome segments specific for variants associated with HSMI. The assay was optimized and tested against 71 tissue samples collected from different regions including Norway, Chile and both coast of Canada and different hosts farmed Atlantic Salmon, wild Coho Salmon and escaped Atlantic Salmon collected in British Columbia, West Coast of Canada. This assay has the potential to be used for screening salmonids and non-salmonids that may carry PRV-1 potentially causing HSMI.
Collapse
Affiliation(s)
- Ahmed Siah
- British Columbia Centre for Aquatic Health Sciences, Campbell River, BC, Canada
| | | | - Zina Richmond
- British Columbia Centre for Aquatic Health Sciences, Campbell River, BC, Canada
| | | | | | - James F F Powell
- British Columbia Centre for Aquatic Health Sciences, Campbell River, BC, Canada
| | | | | |
Collapse
|
19
|
Purcell MK, Powers RL, Taksdal T, McKenney D, Conway CM, Elliott DG, Polinski M, Garver K, Winton J. Consequences of Piscine orthoreovirus genotype 1 (PRV-1) infections in Chinook salmon (Oncorhynchus tshawytscha), coho salmon (O. kisutch) and rainbow trout (O. mykiss). JOURNAL OF FISH DISEASES 2020; 43:719-728. [PMID: 32476167 PMCID: PMC7384080 DOI: 10.1111/jfd.13182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 05/02/2023]
Abstract
Piscine orthoreovirus genotype 1 (PRV-1) is the causative agent of heart and skeletal muscle inflammation (HSMI) in farmed Atlantic salmon (Salmo salar L.). The virus has also been found in Pacific salmonids in western North America, raising concerns about the risk to native salmon and trout. Here, we report the results of laboratory challenges using juvenile Chinook salmon, coho salmon and rainbow trout injected with tissue homogenates from Atlantic salmon testing positive for PRV-1 or with control material. Fish were sampled at intervals to assess viral RNA transcript levels, haematocrit, erythrocytic inclusions and histopathology. While PRV-1 replicated in all species, there was negligible mortality in any group. We observed a few erythrocytic inclusion bodies in fish from the PRV-1-infected groups. At a few time points, haematocrits were significantly lower in the PRV-1-infected groups relative to controls, but in no case was anaemia noted. The most common histopathological finding was mild, focal myocarditis in both the non-infected controls and PRV-1-infected fish. All cardiac lesions were judged mild, and none were consistent with those of HSMI. Together, these results suggest all three species are susceptible to PRV-1 infection, but in no case did infection cause notable disease in these experiments.
Collapse
Affiliation(s)
| | - Rachel L. Powers
- U.S. Geological SurveyWestern Fisheries Research CenterSeattleWAUSA
| | | | - Doug McKenney
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWAUSA
| | - Carla M. Conway
- U.S. Geological SurveyWestern Fisheries Research CenterSeattleWAUSA
| | - Diane G. Elliott
- U.S. Geological SurveyWestern Fisheries Research CenterSeattleWAUSA
| | - Mark Polinski
- Pacific Biological Station, Fisheries and Oceans CanadaNanaimoBCCanada
| | - Kyle Garver
- Pacific Biological Station, Fisheries and Oceans CanadaNanaimoBCCanada
| | - James Winton
- U.S. Geological SurveyWestern Fisheries Research CenterSeattleWAUSA
| |
Collapse
|
20
|
Dissemination of Piscine orthoreovirus-1 (PRV-1) in Atlantic Salmon ( Salmo salar) during the Early and Regenerating Phases of Infection. Pathogens 2020; 9:pathogens9020143. [PMID: 32093243 PMCID: PMC7169402 DOI: 10.3390/pathogens9020143] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
Piscine orthoreovirus-1 (PRV-1) can cause heart and skeletal muscle inflammation (HSMI) in farmed Atlantic salmon (Salmo salar), but the line of events from infection, pathologic change, and regeneration has not been thoroughly described. In this study, the cellular localization and variation of PRV-1 RNA and protein levels were analyzed at different times post-exposure in experimentally infected Atlantic salmon. Immunohistochemistry, flow cytometry, and Western blot were used for assessment of the presence of the PRV-1 σ1 protein, while RT-qPCR and in situ hybridization were performed for viral RNA. Histopathologic evaluation demonstrated that PRV-1 infection induced heart lesions typical of HSMI, such as severe epicarditis and myocarditis with degeneration of cardiomyocytes, necrosis, and diffuse cellular infiltration. PRV-1 infection of erythrocytes and the peak viral plasma level preceded virus presence in cardiomyocytes and hepatocytes. Arginase-2-positive, macrophage-like cells observed in the heart indicated possible polarization to M2 macrophages and the onset of regenerative processes, which may contribute to the recovery from HSMI. The virus was cleared from regenerating heart tissue and from hepatocytes, but persisted in erythrocytes.
Collapse
|
21
|
Alkie TN, de Jong J, Jenik K, Klinger KM, DeWitte-Orr SJ. Enhancing innate antiviral immune responses in rainbow trout by double stranded RNA delivered with cationic phytoglycogen nanoparticles. Sci Rep 2019; 9:13619. [PMID: 31541160 PMCID: PMC6754369 DOI: 10.1038/s41598-019-49931-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/28/2019] [Indexed: 12/20/2022] Open
Abstract
Innate immunity is induced when pathogen-associated molecular patterns (PAMPs) bind host pattern recognition receptors (PRRs). Polyinosinic:polycytidylic acid [poly(I:C)] is a synthetic analogue of viral dsRNA that acts as a PAMP, inducing type I interferons (IFNs) in vertebrates. In the present study, the immunostimulatory effects of high molecular weight (HMW) poly(I:C) in rainbow trout cells were measured when bound to a cationic phytoglycogen nanoparticle (Nano-HMW). The physical characteristics of the nanoparticle itself, when bound to different lengths of dsRNA and when cell associated was evaluated. Optimal concentration and timing for innate immune stimulation was measured using the RTG-P1 reporter cell line. The immunostimulatory effects of HMW poly (I:C) was compared to Nano-HMW in vitro using the RTgutGC cell line cultured in a conventional monolayer or a transwell culture system. The ability of an activated intestinal epithelium to transmit an antiviral signal to macrophages was evaluated using a co-culture of RTgutGC cells and RTSll (a monocyte/macrophage cell). In all culture conditions, Nano-HMW was a more effective inducer of IFN-related antiviral immune responses compared to HMW poly (I:C) alone. This study introduces the use of cationic phytoglycogen nanoparticles as a novel delivery system for immunomodulatory molecules to enhance immune responses in aquatic vertebrates.
Collapse
Affiliation(s)
- Tamiru N Alkie
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Jondavid de Jong
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada.,Glysantis Inc., Guelph, ON, Canada
| | - Kristof Jenik
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
| | | | | |
Collapse
|
22
|
Teige LH, Kumar S, Johansen GM, Wessel Ø, Vendramin N, Lund M, Rimstad E, Boysen P, Dahle MK. Detection of Salmonid IgM Specific to the Piscine Orthoreovirus Outer Capsid Spike Protein Sigma 1 Using Lipid-Modified Antigens in a Bead-Based Antibody Detection Assay. Front Immunol 2019; 10:2119. [PMID: 31552049 PMCID: PMC6743345 DOI: 10.3389/fimmu.2019.02119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/22/2019] [Indexed: 11/13/2022] Open
Abstract
Bead-based multiplex immunoassays are promising tools for determination of the specific humoral immune response. In this study, we developed a multiplexed bead-based immunoassay for the detection of Atlantic salmon (Salmo salar) antibodies against Piscine orthoreovirus (PRV). Three different genotypes of PRV (PRV-1, PRV-2, and PRV-3) cause disease in farmed salmonids. The PRV outer capsid spike protein σ1 is predicted to be a host receptor binding protein and a target for neutralizing and protective antibodies. While recombinant σ1 performed poorly as an antigen to detect specific antibodies, N-terminal lipid modification of recombinant PRV-1 σ1 enabled sensitive detection of specific IgM in the bead-based assay. The specificity of anti-PRV-1 σ1 antibodies was confirmed by western blotting and pre-adsorption of plasma. Binding of non-specific IgM to beads coated with control antigens also increased after PRV infection, indicating a release of polyreactive antibodies. This non-specific binding was reduced by heat treatment of plasma. The same immunoassay also detected anti-PRV-3 σ1 antibodies from infected rainbow trout. In summary, a refined bead based immunoassay created by N-terminal lipid-modification of the PRV-1 σ1 antigen allowed sensitive detection of anti-PRV-1 and anti-PRV-3 antibodies from salmonids.
Collapse
Affiliation(s)
- Lena Hammerlund Teige
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| | - Subramani Kumar
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway.,Stem Cell and Cancer Biology Lab, Centre for Biotechnology, Anna University, Chennai, India
| | - Grethe M Johansen
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| | - Øystein Wessel
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| | - Niccolò Vendramin
- National Institute of Aquatic Resources, Technical University of Denmark, Lyngby, Denmark
| | - Morten Lund
- Department of Fish Health, Norwegian Veterinary Institute, Oslo, Norway.,PatoGen, Alesund, Norway
| | - Espen Rimstad
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| | - Preben Boysen
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| | - Maria K Dahle
- Department of Fish Health, Norwegian Veterinary Institute, Oslo, Norway
| |
Collapse
|
23
|
Malik MS, Bjørgen H, Dhamotharan K, Wessel Ø, Koppang EO, Di Cicco E, Hansen EF, Dahle MK, Rimstad E. Erythroid Progenitor Cells in Atlantic Salmon ( Salmo salar) May Be Persistently and Productively Infected with Piscine Orthoreovirus (PRV). Viruses 2019; 11:E824. [PMID: 31491892 PMCID: PMC6784031 DOI: 10.3390/v11090824] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/13/2022] Open
Abstract
Piscine orthoreovirus (PRV-1) can cause heart and skeletal muscle inflammation (HSMI) in farmed Atlantic salmon (Salmo salar). The virus targets erythrocytes in the acute peak phase, followed by cardiomyocytes, before the infection subsides into persistence. The persistent phase is characterized by high level of viral RNA, but low level of viral protein. The origin and nature of persistent PRV-1 are not clear. Here, we analyzed for viral persistence and activity in various tissues and cell types in experimentally infected Atlantic salmon. Plasma contained PRV-1 genomic dsRNA throughout an 18-week long infection trial, indicating that viral particles are continuously produced and released. The highest level of PRV-1 RNA in the persistent phase was found in kidney. The level of PRV-1 ssRNA transcripts in kidney was significantly higher than that of blood cells in the persistent phase. In-situ hybridization assays confirmed that PRV-1 RNA was present in erythroid progenitor cells, erythrocytes, macrophages, melano-macrophages and in some additional un-characterized cells in kidney. These results show that PRV-1 establishes a productive, persistent infection in Atlantic salmon and that erythrocyte progenitor cells are PRV target cells.
Collapse
Affiliation(s)
- Muhammad Salman Malik
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway.
| | - Håvard Bjørgen
- Department of Basic Science and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway.
| | - Kannimuthu Dhamotharan
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway.
| | - Øystein Wessel
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway.
| | - Erling Olaf Koppang
- Department of Basic Science and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway.
| | - Emiliano Di Cicco
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC V9T 6N7, Canada.
| | - Elisabeth F Hansen
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway.
| | - Maria K Dahle
- Department of Fish Health, Norwegian Veterinary Institute, 0454 Oslo, Norway
| | - Espen Rimstad
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway.
| |
Collapse
|
24
|
Vendramin N, Cuenca A, Sørensen J, Alencar ALF, Christiansen DH, Jacobsen JA, Axen C, Lieffrig F, Ruane NM, Martin P, Sheehan T, Iburg TM, Rimstad E, Olesen NJ. Presence and genetic variability of Piscine orthoreovirus genotype 1 (PRV-1) in wild salmonids in Northern Europe and North Atlantic Ocean. JOURNAL OF FISH DISEASES 2019; 42:1107-1118. [PMID: 31140193 DOI: 10.1111/jfd.13025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/11/2019] [Accepted: 04/14/2019] [Indexed: 06/09/2023]
Abstract
Piscine orthoreovirus genotype 1 (PRV-1) is widespread in farmed Atlantic salmon (Salmo salar L.) populations in northern Europe, Canada and Chile. PRV-1 occurs in wild fish in Norway and Canada; however, little information of its geographical distribution in wild populations is currently available, and the effect of PRV-1 infection in wild populations is currently unknown. In this study, we present the findings of a survey conducted on 1,130 wild salmonids sampled in Denmark, Sweden, Ireland, Faroe Islands, France, Belgium and Greenland between 2008 and 2017. PRV-1 is reported for the first time in wild salmonids in Denmark, Sweden, Faroe Island and Ireland. The annual PRV-1 prevalence ranged from 0% in France, Belgium and Greenland to 43% in Faroe Islands. In total, 66 samples tested positive for PRV-1, including Atlantic salmon broodfish returning to spawn and Atlantic salmon collected at the feeding ground north of Faroe Islands. The phylogenetic analysis of S1 sequences of the PRV-1 isolates obtained in this survey did not show systematic geographical distribution. This study sheds light on the spread and genetic diversity of the virus identified in populations of free-living fish and provides rationale for screening wild broodfish used in restocking programmes.
Collapse
Affiliation(s)
- Niccoló Vendramin
- National Institute of Aquatic Resources, Technical University of Denmark, Lyngby, Denmark
| | - Argelia Cuenca
- National Institute of Aquatic Resources, Technical University of Denmark, Lyngby, Denmark
| | - Juliane Sørensen
- National Institute of Aquatic Resources, Technical University of Denmark, Lyngby, Denmark
| | - Anna L F Alencar
- National Institute of Aquatic Resources, Technical University of Denmark, Lyngby, Denmark
| | - Debes H Christiansen
- National Reference Laboratory for fish diseases, Faroese Food and Veterinary Authority (FFVA), Torshavn, Faroe Islands
| | - Jan A Jacobsen
- Havstovan Faroe Marine Research Institute (FAMRI), Torshavn, Faroe Islands
| | - Charlotte Axen
- Swedish National Veterinary Institute (SVA), Uppsala, Sweden
| | | | - Neil M Ruane
- Fish Health Unit, Marine Institute, Galway, Ireland
| | | | - Timothy Sheehan
- Northeast Fisheries Science Center, National Marine Fisheries Service, Woods Hole, Massachusetts
| | - Tine M Iburg
- National Institute of Aquatic Resources, Technical University of Denmark, Lyngby, Denmark
| | | | - Niels J Olesen
- National Institute of Aquatic Resources, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
25
|
Evolution of the Piscine orthoreovirus Genome Linked to Emergence of Heart and Skeletal Muscle Inflammation in Farmed Atlantic Salmon ( Salmo salar). Viruses 2019; 11:v11050465. [PMID: 31121920 PMCID: PMC6563308 DOI: 10.3390/v11050465] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 01/09/2023] Open
Abstract
Heart and skeletal muscle inflammation (HSMI) in farmed Atlantic salmon (Salmo salar) was first diagnosed in Norway in 1999. The disease is caused by Piscine orthoreovirus-1 (PRV-1). The virus is prevalent in farmed Atlantic salmon, but not always associated with disease. Phylogeny and sequence analyses of 31 PRV-1 genomes collected over a 30-year period from fish with or without HSMI, grouped the viral sequences into two main monophylogenetic clusters, one associated with HSMI and the other with low virulent PRV-1 isolates. A PRV-1 strain from Norway sampled in 1988, a decade before the emergence of HSMI, grouped with the low virulent HSMI cluster. The two distinct monophylogenetic clusters were particularly evident for segments S1 and M2. Only a limited number of amino acids were unique to the association with HSMI, and they all located to S1 and M2 encoded proteins. The observed co-evolution of the S1-M2 pair coincided in time with the emergence of HSMI in Norway, and may have evolved through accumulation of mutations and/or segment reassortment. Sequences of S1-M2 suggest selection of the HSMI associated pair, and that this segment pair has remained almost unchanged in Norwegian salmon aquaculture since 1997. PRV-1 strains from the North American Pacific Coast and Faroe Islands have not undergone this evolution, and are more closely related to the PRV-1 precursor strains not associated with clinical HSMI.
Collapse
|
26
|
Kibenge MJT, Wang Y, Gayeski N, Morton A, Beardslee K, McMillan B, Kibenge FSB. Piscine orthoreovirus sequences in escaped farmed Atlantic salmon in Washington and British Columbia. Virol J 2019; 16:41. [PMID: 30940162 PMCID: PMC6444584 DOI: 10.1186/s12985-019-1148-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/19/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Piscine orthoreovirus (PRV) is an emergent virus in salmon aquaculture belonging to the family Reoviridae. PRV is associated with a growing list of pathological conditions including heart and skeletal inflammation (HSMI) of farmed Atlantic salmon. Despite widespread PRV infection in commercially farmed Atlantic salmon, information on PRV prevalence and on the genetic sequence variation of PRV in Atlantic salmon on the north Pacific Coast is limited. METHODS Feral Atlantic salmon caught in Washington State and British Columbia following a large containment failure at a farm in northern Puget Sound were sampled. Fish tissues were tested for PRV by RT-qPCR assay for segment L1 and conventional RT-PCR for PRV segment S1. The PCR products were sequenced and their relationship to PRV strains in GenBank was determined using phylogenetic analysis and nucleotide and amino acid homology comparisons. RESULTS Following the escape of 253,000 Atlantic salmon from a salmon farm in Washington State, USA, 72/73 tissue samples from 27 Atlantic salmon captured shortly after the escape tested PRV-positive. We estimate PRV-prevalence in the source farm population at 95% or greater. The PRV found in the fish was identified as PRV sub-genotype Ia and very similar to PRV from farmed Atlantic salmon in Iceland. This correlates with the source of the fish in the farm. Eggs of infected fish were positive for PRV indicating the possibility of vertical transfer and spread with fish egg transports. CONCLUSIONS PRV prevalence was close to 100% in farmed Atlantic salmon that were caught in Washington State and British Columbia following a large containment failure at a farm in northern Puget Sound. The PRV strains present in the escaped Atlantic salmon were very similar to the PRV strain reported in farmed Atlantic salmon from the source hatchery in Iceland that was used to stock commercial aquaculture sites in Washington State. This study emphasizes the need to screen Atlantic salmon broodstock for PRV, particularly where used to supply eggs to the global Atlantic salmon farming industry thereby improving our understanding of PRV epidemiology.
Collapse
Affiliation(s)
- Molly J. T. Kibenge
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave, Charlottetown, P.E.I C1A 4P3 Canada
| | - Yingwei Wang
- School of Mathematical and Computational Sciences, University of Prince Edward Island, 550 University Ave, Charlottetown, P.E.I C1A 4P3 Canada
| | - Nick Gayeski
- Wild Fish Conservancy, PO Box 402, 15629 Main St. NE, Duvall, WA 98019 USA
| | - Alexandra Morton
- Raincoast Research Society, Box 399, Sointula, BC V0N 3E0 Canada
| | - Kurt Beardslee
- Wild Fish Conservancy, PO Box 402, 15629 Main St. NE, Duvall, WA 98019 USA
| | - Bill McMillan
- Wild Fish Conservancy, PO Box 402, 15629 Main St. NE, Duvall, WA 98019 USA
| | - Frederick S. B. Kibenge
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave, Charlottetown, P.E.I C1A 4P3 Canada
| |
Collapse
|
27
|
Dahle MK, Jørgensen JB. Antiviral defense in salmonids - Mission made possible? FISH & SHELLFISH IMMUNOLOGY 2019; 87:421-437. [PMID: 30708056 DOI: 10.1016/j.fsi.2019.01.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/24/2019] [Accepted: 01/27/2019] [Indexed: 06/09/2023]
Abstract
Viral diseases represent one of the major threats for salmonid aquaculture. Survival from viral infections are highly dependent on host innate antiviral immune defense, where interferons are of crucial importance. Neutralizing antibodies and T cell effector mechanisms mediate long-term antiviral protection. Despite an immune cell repertoire comparable to higher vertebrates, farmed fish often fail to mount optimal antiviral protection. In the quest to multiply and spread, viruses utilize a variety of strategies to evade or escape the host immune system. Understanding the specific interplay between viruses and host immunity at depth is crucial for developing successful vaccination and treatment strategies in mammals. However, this knowledge base is still limited for pathogenic fish viruses. Here, we have focused on five RNA viruses with major impact on salmonid aquaculture: Salmonid alphavirus, Infectious salmon anemia virus, Infectious pancreatic necrosis virus, Piscine orthoreovirus and Piscine myocarditis virus. This review explore the protective immune responses that salmonids mount to these viruses and the existing knowledge on how the viruses counteract and/or bypass the immune response, including their IFN antagonizing effects and their mechanisms to establish persisting infections.
Collapse
Affiliation(s)
- Maria K Dahle
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø, The Arctic University of Norway, Norway; Department of Fish Health, Norwegian Veterinary Institute, Oslo, Norway
| | - Jorunn B Jørgensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø, The Arctic University of Norway, Norway.
| |
Collapse
|
28
|
Garseth ÅH, Moldal T, Gåsnes SK, Hjortaas MJ, Sollien VP, Gjevre A. Piscine orthoreovirus-3 is prevalent in wild seatrout (Salmo trutta L.) in Norway. JOURNAL OF FISH DISEASES 2019; 42:391-396. [PMID: 30659618 PMCID: PMC6850415 DOI: 10.1111/jfd.12943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
In 2017, a PCR-based survey for Piscine orthoreovirus-3 (PRV-3) was conducted in wild anadromous and non-anadromous salmonids in Norway. In seatrout (anadromous Salmo trutta L.), the virus was present in 16.6% of the fish and in 15 of 21 investigated rivers. Four of 221 (1.8%) Atlantic salmon (Salmo salar L.) from three of 15 rivers were also PCR-positive, with Ct-values indicating low amounts of viral RNA. All anadromous Arctic char (Salvelinus alpinus L.) were PCR-negative. Neither non-anadromous trout (brown trout) nor landlocked salmon were PRV-3 positive. Altogether, these findings suggest that in Norway PRV-3 is more prevalent in the marine environment. In contrast, PRV-3 is present in areas with intensive inland farming in continental Europe. PRV-3 genome sequences from Norwegian seatrout grouped together with sequences from rainbow trout (Oncorhynchus mykiss Walbaum) in Norway and Coho salmon (Oncorhynchus kisutch Walbaum) in Chile. At present, the origin of the virus remains unknown. Nevertheless, the study highlights the value of safeguarding native fish by upholding natural and artificial barriers that hinder introduction and spread, on a local or national scale, of alien fish species and their pathogens. Accordingly, further investigations of freshwater reservoirs and interactions with farmed salmonids are warranted.
Collapse
Affiliation(s)
| | | | | | | | | | - Anne‐Gerd Gjevre
- Norwegian Veterinary InstituteOsloNorway
- Norwegian Food Safety AuthorityOsloNorway
| |
Collapse
|
29
|
Vendramin N, Kannimuthu D, Olsen AB, Cuenca A, Teige LH, Wessel Ø, Iburg TM, Dahle MK, Rimstad E, Olesen NJ. Piscine orthoreovirus subtype 3 (PRV-3) causes heart inflammation in rainbow trout (Oncorhynchus mykiss). Vet Res 2019; 50:14. [PMID: 30777130 PMCID: PMC6380033 DOI: 10.1186/s13567-019-0632-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/03/2019] [Indexed: 12/31/2022] Open
Abstract
Piscine orthoreovirus (PRV) mediated diseases have emerged throughout salmonid aquaculture. Three PRV subtypes are currently reported as causative agents of or in association with diseases in different salmonid species. PRV-1 causes heart and skeletal muscle inflammation (HSMI) in Atlantic salmon (Salmo salar) and is associated with jaundice syndrome in farmed chinook salmon (Oncorhynchus tshawytscha). PRV-2 causes erythrocytic inclusion body syndrome (EIBS) in coho salmon in Japan. PRV-3 has recently been associated with a disease in rainbow trout (Oncorhynchus mykiss) characterized by anaemia, heart and red muscle pathology; to jaundice syndrome in coho salmon (Oncorhynchus kisutch). In this study, we conducted a 10-week long experimental infection trial in rainbow trout with purified PRV-3 particles to assess the causal relationship between the virus and development of heart inflammation. The monitoring the PRV-3 load in heart and spleen by RT-qPCR shows a progressive increase of viral RNA to a peak, followed by clearance without a measurable change in haematocrit. The development of characteristic cardiac histopathological findings occurred in the late phase of the trial and was associated with increased expression of CD8+, indicating cytotoxic T cell proliferation. The findings indicate that, under these experimental conditions, PRV-3 infection in rainbow trout act similarly to PRV-1 infection in Atlantic salmon with regards to immunological responses and development of heart pathology, but not in the ability to establish a persistent infection.
Collapse
Affiliation(s)
- Niccoló Vendramin
- National Institute of Aquatic Resources, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Dhamotharan Kannimuthu
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| | | | - Argelia Cuenca
- National Institute of Aquatic Resources, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lena Hammerlund Teige
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| | - Øystein Wessel
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| | - Tine Moesgaard Iburg
- National Institute of Aquatic Resources, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Espen Rimstad
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| | - Niels Jørgen Olesen
- National Institute of Aquatic Resources, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
30
|
Kibenge FS. Emerging viruses in aquaculture. Curr Opin Virol 2019; 34:97-103. [PMID: 30711892 DOI: 10.1016/j.coviro.2018.12.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/23/2018] [Accepted: 12/28/2018] [Indexed: 11/25/2022]
Abstract
Aquaculture remains the world's fastest-growing sector producing food of animal origin. Unlike in terrestrial animal agriculture, in aquaculture both farmed and wild aquatic animals in the same water column experience the same virus challenges. Additionally, the burgeoning international aquaculture expansion and expanding global trade in live aquatic animals and their products have been accompanied by long distance geographical redistribution of aquatic animal species and their viruses. The outcome is a continuous emergence of viral diseases in aquaculture, which may be driven by virus factors, animal host factors, environmental factors, and/or anthropogenic factors. Examples of emerging viruses in aquaculture include viral haemorrhagic septicaemia virus, infectious haematopoietic necrosis virus, infectious salmon anaemia virus, piscine orthoreovirus, Tilapia lake virus, Covert mortality nodavirus, Shrimp hemocyte iridescent virus, and Abalone herpesvirus.
Collapse
Affiliation(s)
- Frederick Sb Kibenge
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave., Charlottetown, P E I C1A 4P3, Canada.
| |
Collapse
|
31
|
Piscine Orthoreovirus 3 Is Not the Causative Pathogen of Proliferative Darkening Syndrome (PDS) of Brown Trout ( Salmo trutta fario). Viruses 2019; 11:v11020112. [PMID: 30696111 PMCID: PMC6410266 DOI: 10.3390/v11020112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 01/18/2019] [Accepted: 01/25/2019] [Indexed: 12/17/2022] Open
Abstract
The proliferative darkening syndrome (PDS) is a lethal disease of brown trout (Salmo trutta fario) which occurs in several alpine Bavarian limestone rivers. Because mortality can reach 100%, PDS is a serious threat for affected fish populations. Recently, Kuehn and colleagues reported that a high throughput RNA sequencing approach identified a piscine orthoreovirus (PRV) as a causative agent of PDS. We investigated samples from PDS-affected fish obtained from two exposure experiments performed at the river Iller in 2008 and 2009. Using a RT-qPCR and a well-established next-generation RNA sequencing pipeline for pathogen detection, PRV-specific RNA was not detectable in PDS fish from 2009. In contrast, PRV RNA was readily detectable in several organs from diseased fish in 2008. However, similar virus loads were detectable in the control fish which were not exposed to Iller water and did not show any signs of the disease. Therefore, we conclude that PRV is not the causative agent of PDS of brown trout in the rhithral region of alpine Bavarian limestone rivers. The abovementioned study by Kuehn used only samples from the exposure experiment from 2008 and detected a subclinical PRV bystander infection. Work is ongoing to identify the causative agent of PDS.
Collapse
|
32
|
Wessel Ø, Krasnov A, Timmerhaus G, Rimstad E, Dahle MK. Antiviral Responses and Biological Concequences of Piscine orthoreovirus Infection in Salmonid Erythrocytes. Front Immunol 2019; 9:3182. [PMID: 30700987 PMCID: PMC6343427 DOI: 10.3389/fimmu.2018.03182] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 12/27/2018] [Indexed: 11/13/2022] Open
Abstract
Salmonid red blood cells are the main target cells for Piscine orthoreovirus (PRV). Three genotypes of PRV (PRV-1,2,3) infect Atlantic salmon (Salmo salar), Chinook salmon (Onchorhynchus tshawytscha), Coho salmon (Oncorhynchus kisutch), rainbow trout (Onchorhynchus mykiss) and brown trout (Salmo trutta), and can cause diseases like heart and skeletal muscle inflammation (HSMI), jaundice syndrome, erythrocyte inclusion body syndrome (EIBS) and proliferative darkening syndrome (PDS). Purified PRV administrated to fish has proven the causality for HSMI and EIBS. During the early peak phase of infection, salmonid erythrocytes are the main virus-replicating cells. In this initial phase, cytoplasmic inclusions called "virus factories" can be observed in the erythrocytes, and are the primary sites for the formation of new virus particles. The PRV-infected erythrocytes in Atlantic salmon mount a strong long-lasting innate antiviral response lasting for many weeks after the onset of infection. The antiviral response of Atlantic salmon erythrocytes involves upregulation of potential inhibitors of translation. In accordance with this, PRV-1 protein production in erythrocytes halts while virus RNA can persist for months. Furthermore, PRV infection in Coho salmon and rainbow trout are associated with anemia, and in Atlantic salmon lower hemoglobin levels are observed. Here we summarize and discuss the recently published findings on PRV infection, replication and effects on salmonid erythrocytes, and discuss how PRV can be a useful tool for the study of innate immune responses in erythrocytes, and help reveal novel immune functions of the red blood cells in fish.
Collapse
Affiliation(s)
- Øystein Wessel
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Aleksei Krasnov
- Division of Aquaculture, Norwegian Institute of Fisheries and Aquaculture (Nofima), Tromsø, Norway
| | - Gerrit Timmerhaus
- Division of Aquaculture, Norwegian Institute of Fisheries and Aquaculture (Nofima), Tromsø, Norway
| | - Espen Rimstad
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Maria K Dahle
- Department of Fish Health, Norwegian Veterinary Institute, Oslo, Norway.,The Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
33
|
Adamek M, Hellmann J, Flamm A, Teitge F, Vendramin N, Fey D, Riße K, Blakey F, Rimstad E, Steinhagen D. Detection of piscine orthoreoviruses (PRV-1 and PRV-3) in Atlantic salmon and rainbow trout farmed in Germany. Transbound Emerg Dis 2018; 66:14-21. [PMID: 30230250 DOI: 10.1111/tbed.13018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 08/06/2018] [Accepted: 09/06/2018] [Indexed: 01/10/2023]
Abstract
Piscine orthoreoviruses (PRVs) are emerging pathogens causing circulatory disorders in salmonids. PRV-1 is the etiological cause of heart and skeletal muscle inflammation (HSMI) in farmed Atlantic salmon (Salmo salar), characterized by epicarditis, inflammation and necrosis of the myocardium, myositis and necrosis of red skeletal muscle. In 2017, two German breeding farms for Atlantic salmon and rainbow trout (Oncorhynchus mykiss) experienced disease outbreaks with mortalities of 10% and 20% respectively. The main clinical signs were exhaustion and lethargic behaviour. During examinations, PRV-1 in salmon and PRV-3 in trout were detected for the first time in Germany. Further analyses also indicated the presence of Aeromonas salmonicida in internal tissues of both species. While PRV-1 could be putatively linked with the disease in Atlantic salmon, most of the rainbow trout suffered from an infection with A. salmonicida and not with PRV-3. Interestingly, the sequence analysis suggests that the German PRV-3 isolate is more similar to a Chilean PRV-3 isolate from Coho salmon (Oncorhynchus kisutch) than to PRV-3 from rainbow trout from Norway. This indicates a wide geographic distribution of this virus or dispersal by global trade. These findings indicate that infections with PRVs should be considered when investigating disease outbreaks in salmonids.
Collapse
Affiliation(s)
- Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine, Hannover, Germany
| | - John Hellmann
- Department Fisheries Ecology, North Rhine Westphalian State Agency for Nature, Environment and Consumer Protection, Albaum, Germany
| | - Agnes Flamm
- Hesse State Laboratory, Control of Fish Diseases, Giessen, Germany
| | - Felix Teitge
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine, Hannover, Germany
| | - Niccolò Vendramin
- Fish Diseases, Division for Diagnostics & Scientific Advice, National Veterinary Institute, Technical University of Denmark, Lyngby, Denmark
| | - Daniel Fey
- Department Fisheries Ecology, North Rhine Westphalian State Agency for Nature, Environment and Consumer Protection, Albaum, Germany
| | - Karin Riße
- Hesse State Laboratory, Control of Fish Diseases, Giessen, Germany
| | - Franziska Blakey
- Hesse State Laboratory, Control of Fish Diseases, Giessen, Germany
| | - Espen Rimstad
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| | - Dieter Steinhagen
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
34
|
Di Cicco E, Ferguson HW, Kaukinen KH, Schulze AD, Li S, Tabata A, Günther OP, Mordecai G, Suttle CA, Miller KM. The same strain of Piscine orthoreovirus (PRV-1) is involved in the development of different, but related, diseases in Atlantic and Pacific Salmon in British Columbia. Facets (Ott) 2018. [DOI: 10.1139/facets-2018-0008] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Piscine orthoreovirus Strain PRV-1 is the causative agent of heart and skeletal muscle inflammation (HSMI) in Atlantic salmon ( Salmo salar Linnaeus, 1758). Given its high prevalence in net pen salmon, debate has arisen on whether PRV poses a risk to migratory salmon, especially in British Columbia (BC) where commercially important wild Pacific salmon are in decline. Various strains of PRV have been associated with diseases in Pacific salmon, including erythrocytic inclusion body syndrome (EIBS), HSMI-like disease, and jaundice/anemia in Japan, Norway, Chile and Canada. We examined the developmental pathway of HSMI and jaundice/anemia associated with PRV-1 in farmed Atlantic and chinook ( Oncorhynchus tshawytscha (Walbaum, 1792)) salmon in BC, respectively. In situ hybridization localized PRV-1 within developing lesions in both diseases. The two diseases showed dissimilar pathological pathways, with inflammatory lesions in heart and skeletal muscle in Atlantic salmon and degenerative-necrotic lesions in kidney and liver in chinook salmon, plausibly explained by differences in PRV load tolerance in red blood cells. Viral genome sequencing revealed no consistent differences in PRV-1 variants intimately involved in the development of both diseases suggesting that migratory chinook salmon may be at more than a minimal risk of disease from exposure to the high levels of PRV occurring in salmon farms.
Collapse
Affiliation(s)
- Emiliano Di Cicco
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC V9T 6N7, Canada
- Pacific Salmon Foundation, Vancouver, BC V6J 4S6, Canada
| | - Hugh W. Ferguson
- School of Veterinary Medicine, St. George’s University, True Blue, Grenada, West Indies
| | - Karia H. Kaukinen
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC V9T 6N7, Canada
| | - Angela D. Schulze
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC V9T 6N7, Canada
| | - Shaorong Li
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC V9T 6N7, Canada
| | - Amy Tabata
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC V9T 6N7, Canada
| | | | - Gideon Mordecai
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Curtis A. Suttle
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Microbiology and Immunology, Department of Botany, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Kristina M. Miller
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC V9T 6N7, Canada
| |
Collapse
|
35
|
Yu Z, Fan Y, Zhao W, Ding L, Li J, Liu J. Novel Angiotensin-Converting Enzyme Inhibitory Peptides Derived from Oncorhynchus mykiss Nebulin: Virtual Screening and In Silico Molecular Docking Study. J Food Sci 2018; 83:2375-2383. [PMID: 30101981 DOI: 10.1111/1750-3841.14299] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 06/08/2018] [Accepted: 06/24/2018] [Indexed: 12/17/2022]
Abstract
Excessive concentrations of angiotensin-converting enzyme (ACE) can give rise to high blood pressure, and is harmful to the body. ACE inhibitory peptides from food proteins are considered good sources of function food. However, the preparation of ACE inhibitory peptides by classical method faces many challenges. Three novel ACE inhibitory peptides were identified by in silico methods, and showed potent activity against ACE in vitro. The simulation hydrolysis of nebulin was performed with ExPASy PeptideCutter program. Potential activity, solubility, and absorption, distribution, metabolism, excretion, and toxicity properties of generated peptides were predicted using program online. Molecular docking displayed that EGF, HGR, and VDF were docked into the S1 and S2 pockets of ACE. Meanwhile, Phe and Arg at the C-terminal enhance ACE affinity. The IC50 values of EGF, HGR, and VDF were 474.65 ± 0.08, 106.21 ± 0.52, and 439.27 ± 0.09 μM, respectively. Three peptides EGF, HGR, and VDF from Oncorhynchus mykiss nebulin were identified, and the molecular mechanism between ACE and peptides was clarified using in silico methods. The results suggested that Oncorhynchus mykiss nebulin would be an attractive raw material of antihypertensive nutraceutical ingredients. PRACTICAL APPLICATION This study has shown the potential of Oncorhynchus mykiss nebulin as good sources for producing ACE inhibitory peptides. According to this finding, in silico approach is the feasible way for prediction and identification of food-derived ACE inhibitory peptides in emerging nutraceutical field.
Collapse
Affiliation(s)
- Zhipeng Yu
- College of Food Science and Engineering, Bohai Univ., Jinzhou, 121013, P.R. China
| | - Yue Fan
- College of Food Science and Engineering, Bohai Univ., Jinzhou, 121013, P.R. China
| | - Wenzhu Zhao
- College of Food Science and Engineering, Bohai Univ., Jinzhou, 121013, P.R. China
| | - Long Ding
- Lab of Nutrition and Functional Food, Jilin Univ., Changchun, 130062, P.R. China
| | - Jianrong Li
- College of Food Science and Engineering, Bohai Univ., Jinzhou, 121013, P.R. China
| | - Jingbo Liu
- Lab of Nutrition and Functional Food, Jilin Univ., Changchun, 130062, P.R. China
| |
Collapse
|
36
|
Madhun AS, Isachsen CH, Omdal LM, Einen ACB, Maehle S, Wennevik V, Niemelä E, Svåsand T, Karlsbakk E. Prevalence of piscine orthoreovirus and salmonid alphavirus in sea-caught returning adult Atlantic salmon (Salmo salar L.) in northern Norway. JOURNAL OF FISH DISEASES 2018; 41:797-803. [PMID: 29388217 DOI: 10.1111/jfd.12785] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/29/2017] [Accepted: 12/29/2017] [Indexed: 06/07/2023]
Abstract
Heart and skeletal muscle inflammation (HSMI) caused by piscine orthoreovirus (PRV) and pancreas disease (PD) caused by salmonid alphavirus (SAV) are among the most prevalent viral diseases of Atlantic salmon farmed in Norway. There are limited data about the impact of disease in farmed salmon on wild salmon populations. Therefore, the prevalence of PRV and SAV in returning salmon caught in six sea sites was determined using real-time RT-PCR analyses. Of 419 salmon tested, 15.8% tested positive for PRV, while none were positive for SAV. However, scale reading revealed that 10% of the salmon had escaped from farms. The prevalence of PRV in wild salmon (8%) was significantly lower than in farm escapees (86%), and increased with fish length (proxy for age). Sequencing of the S1 gene of PRV from 39 infected fish revealed a mix of genotypes. The observed increase in PRV prevalence with fish age and the lack of phylogeographic structure of the virus could be explained by virus transmission in the feeding areas. Our results highlight the need for studies about the prevalence of PRV and other pathogens in Atlantic salmon in its oceanic phase.
Collapse
Affiliation(s)
- A S Madhun
- Institute of Marine Research, Bergen, Norway
| | | | - L M Omdal
- Institute of Marine Research, Bergen, Norway
| | - A C B Einen
- Institute of Marine Research, Bergen, Norway
| | - S Maehle
- Institute of Marine Research, Bergen, Norway
| | - V Wennevik
- Institute of Marine Research, Bergen, Norway
| | - E Niemelä
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - T Svåsand
- Institute of Marine Research, Bergen, Norway
| | - E Karlsbakk
- Institute of Marine Research, Bergen, Norway
- Department of Biology, University of Bergen, Bergen, Norway
| |
Collapse
|
37
|
Molecular and Antigenic Characterization of Piscine orthoreovirus (PRV) from Rainbow Trout (Oncorhynchus mykiss). Viruses 2018; 10:v10040170. [PMID: 29614838 PMCID: PMC5923464 DOI: 10.3390/v10040170] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/23/2018] [Accepted: 03/28/2018] [Indexed: 01/01/2023] Open
Abstract
Piscine orthoreovirus (PRV-1) causes heart and skeletal muscle inflammation (HSMI) in farmed Atlantic salmon (Salmo salar). Recently, a novel PRV (formerly PRV-Om, here called PRV-3), was found in rainbow trout (Oncorhynchus mykiss) with HSMI-like disease. PRV is considered to be an emerging pathogen in farmed salmonids. In this study, molecular and antigenic characterization of PRV-3 was performed. Erythrocytes are the main target cells for PRV, and blood samples that were collected from experimentally challenged fish were used as source of virus. Virus particles were purified by gradient ultracentrifugation and the complete coding sequences of PRV-3 were obtained by Illumina sequencing. When compared to PRV-1, the nucleotide identity of the coding regions was 80.1%, and the amino acid identities of the predicted PRV-3 proteins varied from 96.7% (λ1) to 79.1% (σ3). Phylogenetic analysis showed that PRV-3 belongs to a separate cluster. The region encoding σ3 were sequenced from PRV-3 isolates collected from rainbow trout in Europe. These sequences clustered together, but were distant from PRV-3 that was isolated from rainbow trout in Norway. Bioinformatic analyses of PRV-3 proteins revealed that predicted secondary structures and functional domains were conserved between PRV-3 and PRV-1. Rabbit antisera raised against purified virus or various recombinant virus proteins from PRV-1 all cross-reacted with PRV-3. Our findings indicate that despite different species preferences of the PRV subtypes, several genetic, antigenic, and structural properties are conserved between PRV-1 and-3.
Collapse
|
38
|
Vendramin N, Alencar ALF, Iburg TM, Dahle MK, Wessel Ø, Olsen AB, Rimstad E, Olesen NJ. Piscine orthoreovirus infection in Atlantic salmon (Salmo salar) protects against subsequent challenge with infectious hematopoietic necrosis virus (IHNV). Vet Res 2018. [PMID: 29534748 PMCID: PMC5850924 DOI: 10.1186/s13567-018-0524-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Infectious hematopoietic necrosis virus (IHNV) is endemic in farmed rainbow trout in continental Europe and in various salmonid fish species at the Pacific coast of North America. IHN has never occurred in European Atlantic salmon (Salmo salar) farms, but is considered as a major threat for the European salmon industry. Another virus, Piscine orthoreovirus (PRV), is widespread in the sea phase of Atlantic salmon, and is identified as the causative agent of heart and skeletal muscle inflammation. The aim of this study was to investigate the interactions between a primary PRV infection and a secondary IHNV infection under experimental conditions. A PRV cohabitation challenge was performed with Atlantic salmon. At peak of PRV viremia the fish were challenged by immersion with an IHNV genogroup E isolate. Clinical signs and morbidity were monitored. Target organs were sampled at selected time points to assess viral loads of both pathogens. Antiviral immune response and presence of histopathological findings were also investigated. Whereas the PRV-negative/IHNV positive group suffered significant decrease in survival caused by IHNV, the PRV infected groups did not suffer any morbidity and showed negligible levels of IHNV infection. Antiviral response genes were induced, as measured in spleen samples, from PRV infected fish prior to IHNV challenge. In conclusion, PRV-infection protects Atlantic salmon against IHNV infection and morbidity, most likely by inducing a protective innate antiviral response.
Collapse
Affiliation(s)
- Niccoló Vendramin
- National Veterinary Institute, Technical University of Denmark, Copenhagen, Denmark.
| | | | - Tine Moesgaard Iburg
- National Veterinary Institute, Technical University of Denmark, Copenhagen, Denmark
| | | | - Øystein Wessel
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| | | | - Espen Rimstad
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| | - Niels Jørgen Olesen
- National Veterinary Institute, Technical University of Denmark, Copenhagen, Denmark
| |
Collapse
|
39
|
Morton A, Routledge R, Hrushowy S, Kibenge M, Kibenge F. The effect of exposure to farmed salmon on piscine orthoreovirus infection and fitness in wild Pacific salmon in British Columbia, Canada. PLoS One 2017; 12:e0188793. [PMID: 29236731 PMCID: PMC5728458 DOI: 10.1371/journal.pone.0188793] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/13/2017] [Indexed: 12/29/2022] Open
Abstract
The disease Heart and Skeletal Muscle Inflammation (HSMI) is causing substantial economic losses to the Norwegian salmon farming industry where the causative agent, piscine orthoreovirus (PRV), is reportedly spreading from farmed to wild Atlantic salmon (Salmo salar) with as yet undetermined impacts. To assess if PRV infection is epidemiologically linked between wild and farmed salmon in the eastern Pacific, wild Pacific salmon (Oncorhynchus sp.) from regions designated as high or low exposure to salmon farms and farmed Atlantic salmon reared in British Columbia (BC) were tested for PRV. The proportion of PRV infection in wild fish was related to exposure to salmon farms (p = 0.0097). PRV was detected in: 95% of farmed Atlantic salmon, 37-45% of wild salmon from regions highly exposed to salmon farms and 5% of wild salmon from the regions furthest from salmon farms. The proportion of PRV infection was also significantly lower (p = 0.0008) where wild salmon had been challenged by an arduous return migration into high-elevation spawning habitat. Inter-annual PRV infection declined in both wild and farmed salmon from 2012-2013 (p ≤ 0.002). These results suggest that PRV transfer is occurring from farmed Atlantic salmon to wild Pacific salmon, that infection in farmed salmon may be influencing infection rates in wild salmon, and that this may pose a risk of reduced fitness in wild salmon impacting their survival and reproduction.
Collapse
Affiliation(s)
- Alexandra Morton
- Raincoast Research Society, Sointula, British Columbia, Canada
- * E-mail:
| | - Richard Routledge
- Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Stacey Hrushowy
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Molly Kibenge
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Frederick Kibenge
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| |
Collapse
|