1
|
Herndon DR, Grossman PC, Hwang JK, Piel LMW. Upper respiratory tract detection of Mycoplasma ovipneumoniae employing nasopharyngeal swabs. BMC Vet Res 2024; 20:502. [PMID: 39487415 PMCID: PMC11529185 DOI: 10.1186/s12917-024-04342-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Flock-level prevalence and characterization of Mycoplasma ovipneumoniae is determined almost exclusively using nasal swabbing followed by molecular detection with either quantitative PCR or multi-locus sequence typing. However, the diagnostic performance and efficiency of swabbing the nasal passage compared to other anatomical locations has not been determined within sheep populations. The goal of this research was to assess the diagnostic capability of nasopharyngeal swabs in comparison to nasal swabs for the detection of Mycoplasma ovipneumoniae. RESULTS Nasal and nasopharyngeal swabs were collected during a controlled exposure study of domestic sheep with Mycoplasma ovipneumoniae. Both swab types were then analyzed via conventional and quantitative PCR. This dataset showed that the use of nasopharyngeal swabs in lieu of nasal swabs resulted in higher sensitivity, reduced inhibition during quantitative PCR, and higher bacterial copy numbers per swab. Moreover, it was demonstrated that diagnostic sensitivity could be further increased during quantitative PCR via ten-fold dilution of the extracted DNA. To confirm these observations in naturally infected animals, we conducted a field study employing a production flock of domestic sheep using both nasal and nasopharyngeal swabbing techniques. Extracted DNA was assessed using the same molecular techniques, where detection of Mycoplasma ovipneumoniae was confirmed by sequencing of either the rpoB or 16S rRNA gene. Similar improvements were observed for nasopharyngeal swabs and template treatment methods within the naturally infected flock. CONCLUSIONS Results demonstrate increased diagnostic sensitivity and specificity when sampling with nasopharyngeal swabs as compared to nasal swabs. Therefore, alternate field-testing strategies employing nasopharyngeal swabs should be considered for diagnosis of the presence of M. ovipneumoniae. Importantly, sample treatment following acquisition was found to affect the sensitivity of quantitative PCR, where dilution of eluted DNA template doubled the calculated sensitivity. This demonstrates that, in addition to anatomical location, the presence of inhibitory components in swab extracts also strongly influences diagnostic performance.
Collapse
Affiliation(s)
- David R Herndon
- USDA-ARS Animal Disease Research Unit, Pullman, WA, 99164, USA
| | | | | | - Lindsay M W Piel
- USDA-ARS Animal Disease Research Unit, Pullman, WA, 99164, USA.
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
2
|
Smiley RA, Wagler BL, Edwards WH, Jennings-Gaines J, Luukkonen K, Robbins K, Johnson M, Courtemanch AB, Mong TW, Lutz D, McWhirter D, Malmberg JL, Lowrey B, Monteith KL. Infection-nutrition feedbacks: fat supports pathogen clearance but pathogens reduce fat in a wild mammal. Proc Biol Sci 2024; 291:20240636. [PMID: 39013423 PMCID: PMC11251775 DOI: 10.1098/rspb.2024.0636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/20/2024] [Accepted: 06/06/2024] [Indexed: 07/18/2024] Open
Abstract
Though far less obvious than direct effects (clinical disease or mortality), the indirect influences of pathogens are difficult to estimate but may hold fitness consequences. Here, we disentangle the directional relationships between infection and energetic reserves, evaluating the hypotheses that energetic reserves influence infection status of the host and that infection elicits costs to energetic reserves. Using repeated measures of fat reserves and infection status in individual bighorn sheep (Ovis canadensis) in the Greater Yellowstone Ecosystem, we documented that fat influenced ability to clear pathogens (Mycoplasma ovipneumoniae) and infection with respiratory pathogens was costly to fat reserves. Costs of infection approached, and in some instances exceeded, costs of rearing offspring to independence in terms of reductions to fat reserves. Fat influenced probability of clearing pathogens, pregnancy and over-winter survival; from an energetic perspective, an animal could survive for up to 23 days on the amount of fat that was lost to high levels of infection. Cost of pathogens may amplify trade-offs between reproduction and survival. In the absence of an active outbreak, the influence of resident pathogens often is overlooked. Nevertheless, the energetic burden of pathogens likely has consequences for fitness and population dynamics, especially when food resources are insufficient.
Collapse
Affiliation(s)
- Rachel A. Smiley
- Haub School of the Environment and Natural Resources, 804 E Fremont Street, Laramie, WY82071, USA
- Department of Zoology and Physiology, Cooperative Fish and Wildlife Research Unit, University of Wyoming, 1000 University Avenue, Laramie, WY82071, USA
| | - Brittany L. Wagler
- Haub School of the Environment and Natural Resources, 804 E Fremont Street, Laramie, WY82071, USA
| | - William H. Edwards
- Department of Wyoming Game and Fish, Wildlife Health Laboratory,1174 Snowy Range Road, Laramie, WY82072, USA
| | - Jessica Jennings-Gaines
- Department of Wyoming Game and Fish, Wildlife Health Laboratory,1174 Snowy Range Road, Laramie, WY82072, USA
| | - Katie Luukkonen
- Department of Wyoming Game and Fish, Wildlife Health Laboratory,1174 Snowy Range Road, Laramie, WY82072, USA
| | - Kara Robbins
- Department of Wyoming Game and Fish, Wildlife Health Laboratory,1174 Snowy Range Road, Laramie, WY82072, USA
| | - Marguerite Johnson
- Department of Wyoming Game and Fish, Wildlife Health Laboratory,1174 Snowy Range Road, Laramie, WY82072, USA
| | | | - Tony W. Mong
- Department of Wyoming Game and Fish, 2820 WY-120, Cody, WY82414, USA
| | - Daryl Lutz
- Department of Wyoming Game and Fish, 260 Buena Vista Drive, Lander, WY82520, USA
| | - Doug McWhirter
- Department of Wyoming Game and Fish, 420 N Cache Street, Jackson, WY83001, USA
| | - Jennifer L. Malmberg
- Department of Veterinary Sciences, University of Wyoming, 1174 Snowy Range Road, Laramie, WY82070, USA
| | - Blake Lowrey
- US Geological Survey, Northern Rocky Mountain Science Center, 2327 University Way, Bozeman, MT59715, USA
| | - Kevin L. Monteith
- Haub School of the Environment and Natural Resources, 804 E Fremont Street, Laramie, WY82071, USA
- Department of Zoology and Physiology, Cooperative Fish and Wildlife Research Unit, University of Wyoming, 1000 University Avenue, Laramie, WY82071, USA
| |
Collapse
|
3
|
Malmberg JL, Allen SE, Jennings-Gaines JE, Johnson M, Luukkonen KL, Robbins KM, Cornish TE, Smiley RA, Wagler BL, Gregory Z, Lutz D, Hnilicka P, Monteith KL, Edwards WH. Pathology of Chronic Mycoplasma ovipneumoniae Carriers in a Declining Bighorn Sheep (Ovis canadensis) Population. J Wildl Dis 2024; 60:448-460. [PMID: 38329742 DOI: 10.7589/jwd-d-23-00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/02/2024] [Indexed: 02/09/2024]
Abstract
Bighorn sheep (Ovis canadensis) across North America commonly experience population-limiting epizootics of respiratory disease. Although many cases of bighorn sheep pneumonia are polymicrobial, Mycoplasma ovipneumoniae is most frequently associated with all-age mortality events followed by years of low recruitment. Chronic carriage of M. ovipneumoniae by adult females serves as a source of exposure of naïve juveniles; relatively few ewes may be responsible for maintenance of infection within a herd. Test-and-remove strategies focused on removal of adult females with evidence of persistent or intermittent shedding (hereafter chronic carriers) may reduce prevalence and mitigate mortality. Postmortem confirmation of pneumonia in chronic carriers has been inadequately reported and the pathology has not been thoroughly characterized, limiting our understanding of important processes shaping the epidemiology of pneumonia in bighorn sheep. Here we document postmortem findings and characterize the lesions of seven ewes removed from a declining bighorn sheep population in Wyoming, USA, following at least two antemortem detections of M. ovipneumoniae within a 14-mo period. We confirmed that 6/7 (85.7%) had variable degrees of chronic pneumonia. Mycoplasma ovipneumoniae was detected in the lung of 4/7 (57.1%) animals postmortem. Four (57.1%) had paranasal sinus masses, all of which were classified as inflammatory, hyperplastic lesions. Pasteurella multocida was detected in all seven (100%) animals, while Trueperella pyogenes was detected in 5/7 (71.4%). Our findings indicate that not all chronic carriers have pneumonia, nor do all have detectable M. ovipneumoniae in the lung. Further, paranasal sinus masses are a common but inconsistent finding, and whether sinus lesions predispose to persistence or result from chronic carriage remains unclear. Our findings indicate that disease is variable in chronic M. ovipneumoniae carriers, underscoring the need for further efforts to characterize pathologic processes and underlying mechanisms in this system to inform management.
Collapse
Affiliation(s)
- Jennifer L Malmberg
- Department of Veterinary Sciences, University of Wyoming, 1174 Snowy Range Road, Laramie, Wyoming 82070, USA
- Wyoming State Veterinary Laboratory, 1174 Snowy Range Road, Laramie, Wyoming 82070
- Current affiliation and address: National Wildlife Research Center, Wildlife Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, 4101 LaPorte Avenue, Fort Collins, Colorado 80521, USA
| | - Samantha E Allen
- Wyoming Game and Fish Department, Veterinary Services, 1212 South Adams Street, Laramie, Wyoming 82070, USA
| | - Jessica E Jennings-Gaines
- Wyoming Game and Fish Department, Veterinary Services, Wildlife Health Laboratory, 1174 Snowy Range Road, Laramie, Wyoming 82070, USA
| | - Marguerite Johnson
- Wyoming Game and Fish Department, Veterinary Services, Wildlife Health Laboratory, 1174 Snowy Range Road, Laramie, Wyoming 82070, USA
| | - Katie L Luukkonen
- Wyoming Game and Fish Department, Veterinary Services, Wildlife Health Laboratory, 1174 Snowy Range Road, Laramie, Wyoming 82070, USA
| | - Kara M Robbins
- Wyoming Game and Fish Department, Veterinary Services, Wildlife Health Laboratory, 1174 Snowy Range Road, Laramie, Wyoming 82070, USA
| | - Todd E Cornish
- California Animal Health and Food Safety Lab, University of California-Davis, 18760 Road 112, Tulare, California 93274, USA
| | - Rachel A Smiley
- University of Wyoming, Haub School of the Environment and Natural Resources, Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology, 804 East Fremont Street, Laramie, Wyoming 82071, USA
| | - Brittany L Wagler
- University of Wyoming, Haub School of the Environment and Natural Resources, Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology, 804 East Fremont Street, Laramie, Wyoming 82071, USA
| | - Zach Gregory
- Wyoming Game and Fish Department, 260 Buena Vista Drive, Lander, Wyoming 82520, USA
| | - Daryl Lutz
- Wyoming Game and Fish Department, 260 Buena Vista Drive, Lander, Wyoming 82520, USA
| | - Pat Hnilicka
- US Fish and Wildlife Service, 170 North First Street, Lander, Wyoming 82520, USA
| | - Kevin L Monteith
- University of Wyoming, Haub School of the Environment and Natural Resources, Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology, 804 East Fremont Street, Laramie, Wyoming 82071, USA
| | - William H Edwards
- Wyoming Game and Fish Department, Veterinary Services, Wildlife Health Laboratory, 1174 Snowy Range Road, Laramie, Wyoming 82070, USA
| |
Collapse
|
4
|
Wood ME, Edwards WH, Jennings-Gaines JE, Gaston M, Van Wick P, Amundson S, Allen SE, Wolfe LL. Clearance of Mycoplasma ovipneumoniae in Captive Bighorn Sheep (Ovis canadensis) Following Extended Oral Doxycycline Treatment. J Wildl Dis 2023; 59:753-758. [PMID: 37578752 DOI: 10.7589/jwd-d-22-00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 05/18/2023] [Indexed: 08/15/2023]
Abstract
Respiratory disease is a significant barrier for bighorn sheep (Ovis canadensis) conservation, and a need remains for management options in both captive and free-ranging populations. We treated Mycoplasma ovipneumoniae infection in six bighorn lambs and five bighorn yearlings at two captive research facilities with twice daily oral doxycycline for 8 wk or longer. Doses of 5 mg/kg twice daily mixed in formula for lambs and 10 mg/kg twice daily mixed in moistened pellets for older lambs and yearlings were tolerated well with minimal side effects. All animals in this case report remain Mycoplasma ovipneumoniae free over 2 yr later. Further evaluation is warranted to confirm efficacy of this therapeutic approach.
Collapse
Affiliation(s)
- Mary E Wood
- Colorado Parks and Wildlife, Wildlife Health Program, 4330 Laporte Ave., Fort Collins, Colorado 80521, USA
- Wyoming Game and Fish Department, Veterinary Services, 1212 S. Adams St., Laramie, Wyoming 82070, USA
| | - William H Edwards
- Wyoming Game and Fish Department, Veterinary Services, Wildlife Health Laboratory, 1174 Snowy Range Rd., Laramie, Wyoming 82070, USA
| | - Jessica E Jennings-Gaines
- Wyoming Game and Fish Department, Veterinary Services, Wildlife Health Laboratory, 1174 Snowy Range Rd., Laramie, Wyoming 82070, USA
| | - Mariah Gaston
- Wyoming Game and Fish Department, Veterinary Services, Thorne-Williams Wildlife Research Center, 2362 WY-34, Wheatland, Wyoming 82201, USA
| | - Peach Van Wick
- Wyoming Game and Fish Department, Veterinary Services, Thorne-Williams Wildlife Research Center, 2362 WY-34, Wheatland, Wyoming 82201, USA
| | - Sierra Amundson
- Colorado Parks and Wildlife, Wildlife Health Program, 4330 Laporte Ave., Fort Collins, Colorado 80521, USA
| | - Samantha E Allen
- Wyoming Game and Fish Department, Veterinary Services, 1212 S. Adams St., Laramie, Wyoming 82070, USA
| | - Lisa L Wolfe
- Colorado Parks and Wildlife, Wildlife Health Program, 4330 Laporte Ave., Fort Collins, Colorado 80521, USA
| |
Collapse
|
5
|
Gude JA, DeCesare NJ, Proffitt KM, Sells SN, Garrott RA, Rangwala I, Biel M, Coltrane J, Cunningham J, Fletcher T, Loveless K, Mowry R, O'Reilly M, Rauscher R, Thompson M. Demographic uncertainty and disease risk influence climate‐informed management of an alpine species. J Wildl Manage 2022. [DOI: 10.1002/jwmg.22300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Justin A. Gude
- Montana Fish, Wildlife & Parks 1420 East 6th Avenue Helena MT 59620 USA
| | | | - Kelly M. Proffitt
- Montana Fish, Wildlife & Parks 1400 South 19th Street Bozeman MT 59718 USA
| | - Sarah N. Sells
- Montana Cooperative Wildlife Research Unit, Wildlife Biology Program, 205 Natural Sciences Building, University of Montana Missoula MT 59812 USA
| | - Robert A. Garrott
- Department of Ecology Fish and Wildlife Ecology and Management Program, Montana State University, 310 Lewis Hall Bozeman MT 59718 USA
| | - Imtiaz Rangwala
- North Central Climate Adaptation Science Center & Cooperative Institute for Research in Environmental Sciences, University of Colorado‐Boulder 4001 Discovery Drive, Suite S340 Boulder CO 80303 USA
| | - Mark Biel
- Glacier National Park P.O. Box 128 West Glacier MT 59936 USA
| | - Jessica Coltrane
- Montana Fish, Wildlife & Parks 490 North Meridian Road Kalispell MT 59920 USA
| | - Julie Cunningham
- Montana Fish, Wildlife & Parks 1400 South 19th Street Bozeman MT 59718 USA
| | - Tammy Fletcher
- U.S. Forest Service, Northern Region Missoula MT 59804 USA
| | - Karen Loveless
- Montana Fish, Wildlife & Parks 538 Orea Creek Livingston MT 59047 USA
| | - Rebecca Mowry
- Montana Fish, Wildlife & Parks 3201 Spurgin Road Missoula MT 59804 USA
| | - Megan O'Reilly
- Montana Fish, Wildlife & Parks 2300 Lake Elmo Drive Billings MT 59105 USA
| | - Ryan Rauscher
- Montana Fish, Wildlife & Parks 514 South Front Street, Suite C Conrad MT 59425 USA
| | - Michael Thompson
- Montana Fish, Wildlife & Parks 3201 Spurgin Road Missoula MT 59804 USA
| |
Collapse
|
6
|
Johnson BM, Stroud-Settles J, Roug A, Manlove K. Disease Ecology of a Low-Virulence Mycoplasma ovipneumoniae Strain in a Free-Ranging Desert Bighorn Sheep Population. Animals (Basel) 2022; 12:ani12081029. [PMID: 35454275 PMCID: PMC9028599 DOI: 10.3390/ani12081029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Like many wildlife diseases, bighorn sheep pneumonia can vary in burden. Here, we report on a bighorn sheep pneumonia event that showed much lower symptom and mortality burdens than have been documented previously. We provide detailed descriptions of symptoms, diagnostic testing results, and mixing patterns throughout the population, and end by discussing mechanisms that could have generated the distinct disease ecology associated with this event. Abstract Infectious pneumonia associated with the bacterial pathogen Mycoplasma ovipneumoniae is an impediment to bighorn sheep (Ovis canadensis) population recovery throughout western North America, yet the full range of M. ovipneumoniae virulence in bighorn sheep is not well-understood. Here, we present data from an M. ovipneumoniae introduction event in the Zion desert bighorn sheep (Ovis canadensis nelsoni) population in southern Utah. The ensuing disease event exhibited epidemiology distinct from what has been reported elsewhere, with virtually no mortality (0 adult mortalities among 70 animals tracked over 118 animal-years; 1 lamb mortality among 40 lambs tracked through weaning in the two summers following introduction; and lamb:ewe ratios of 34.9:100 in the year immediately after introduction and 49.4:100 in the second year after introduction). Individual-level immune responses were lower than expected, and M. ovipneumoniae appeared to fade out approximately 1.5 to 2 years after introduction. Several mechanisms could explain the limited burden of this M. ovipneumoniae event. First, most work on M. ovipneumoniae has centered on Rocky Mountain bighorn sheep (O. c. candensis), but the Zion bighorns are members of the desert subspecies (O. c. nelsoni). Second, the particular M. ovipneumoniae strain involved comes from a clade of strains associated with weaker demographic responses in other settings. Third, the substructuring of the Zion population may have made this population more resilient to disease invasion and persistence. The limited burden of the disease event on the Zion bighorn population underscores a broader point in wildlife disease ecology: that one size may not fit all events.
Collapse
Affiliation(s)
- Brianna M. Johnson
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, UT 84321, USA;
| | | | - Annette Roug
- Utah Division of Wildlife Resources, 1594 W North Temple Avenue, Salt Lake City, UT 84116, USA;
- Centre for Veterinary Wildlife Research, Faculty of Veterinary Science, University of Pretoria, Soutpan Road, Onderstepoort 0110, South Africa
| | - Kezia Manlove
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, UT 84321, USA;
- Correspondence:
| |
Collapse
|
7
|
Wagler BL, Smiley RA, Courtemanch AB, Anderson G, Lutz D, McWhirter D, Brimeyer D, Hnilicka P, Massing CP, German DW, Stephenson TR, Monteith KL. Effects of helicopter net‐gunning on survival of bighorn sheep. J Wildl Manage 2022. [DOI: 10.1002/jwmg.22181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Brittany L. Wagler
- Haub School of the Environment and Natural Resources, Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology University of Wyoming 804 E Fremont Street Laramie WY 82071 USA
| | - Rachel A. Smiley
- Haub School of the Environment and Natural Resources, Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology University of Wyoming 804 E Fremont Street Laramie WY 82071 USA
| | | | - Gregory Anderson
- Wyoming Game and Fish Department 260 Buena Vista Drive Lander WY 82520 USA
| | - Daryl Lutz
- Wyoming Game and Fish Department 260 Buena Vista Drive Lander WY 82520 USA
| | - Doug McWhirter
- Wyoming Game and Fish Department 420 N Cache Street Jackson WY 83001 USA
| | - Doug Brimeyer
- Wyoming Game and Fish Department 5400 Bishop Boulevard Cheyenne WY 82006 USA
| | - Patrick Hnilicka
- US Fish and Wildlife Service 170 N First Street Lander WY 82520 USA
| | - Cody P. Massing
- Sierra Nevada Bighorn Sheep Recovery Program California Department of Fish and Wildlife, 787 N Main Street, Suite 220, Bishop CA 93514 USA
| | - David W. German
- Sierra Nevada Bighorn Sheep Recovery Program California Department of Fish and Wildlife, 787 N Main Street, Suite 220, Bishop CA 93514 USA
| | - Thomas R. Stephenson
- Sierra Nevada Bighorn Sheep Recovery Program California Department of Fish and Wildlife, 787 N Main Street, Suite 220, Bishop CA 93514 USA
| | - Kevin L. Monteith
- Haub School of the Environment and Natural Resources, Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology University of Wyoming 804 E Fremont Street Laramie WY 82071 USA
| |
Collapse
|
8
|
Flesch E, Graves T, Thomson J, Proffitt K, Garrott R. Average kinship within bighorn sheep populations is associated with connectivity, augmentation, and bottlenecks. Ecosphere 2022. [DOI: 10.1002/ecs2.3972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Elizabeth Flesch
- Fish and Wildlife Ecology and Management Program, Ecology Department Montana State University Bozeman Montana USA
| | - Tabitha Graves
- Glacier Field Station U.S. Geological Survey West Glacier Montana USA
| | - Jennifer Thomson
- Animal and Range Sciences Department Montana State University Bozeman Montana USA
| | | | - Robert Garrott
- Fish and Wildlife Ecology and Management Program, Ecology Department Montana State University Bozeman Montana USA
| |
Collapse
|
9
|
Proffitt KM, Courtemanch AB, Dewey SR, Lowrey B, McWhirter DE, Monteith K, Paterson JT, Rotella J, White PJ, Garrott RA. Regional variability in pregnancy and survival rates of Rocky Mountain bighorn sheep. Ecosphere 2021. [DOI: 10.1002/ecs2.3410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Kelly M. Proffitt
- Montana Department of Fish Wildlife, and Parks 1400 South 19th Avenue Bozeman Montana59718USA
| | | | - Sarah R. Dewey
- Grand Teton National Park P.O. Box 170 Moose Wyoming83012USA
| | - Blake Lowrey
- Fish and Wildlife Ecology and Management Program Department of Ecology Montana State University 310 Lewis Hall Bozeman Montana59717USA
| | | | - Kevin.L. Monteith
- Haub School of Environment and Natural Resources Wyoming Cooperative Fish and Wildlife Research Unit Department of Zoology and Physiology University of Wyoming 804 East Fremont Street Laramie Wyoming82072USA
| | - J. Terrill Paterson
- Fish and Wildlife Ecology and Management Program Department of Ecology Montana State University 310 Lewis Hall Bozeman Montana59717USA
| | - Jay Rotella
- Fish and Wildlife Ecology and Management Program Department of Ecology Montana State University 310 Lewis Hall Bozeman Montana59717USA
| | - Patrick J. White
- Yellowstone Center for Resources Yellowstone National Park National Park Service Mammoth Wyoming82190USA
| | - Robert A. Garrott
- Fish and Wildlife Ecology and Management Program Department of Ecology Montana State University 310 Lewis Hall Bozeman Montana59717USA
| |
Collapse
|
10
|
Paterson JT, Butler C, Garrott R, Proffitt K. How sure are you? A web-based application to confront imperfect detection of respiratory pathogens in bighorn sheep. PLoS One 2020; 15:e0237309. [PMID: 32898140 PMCID: PMC7478830 DOI: 10.1371/journal.pone.0237309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 07/26/2020] [Indexed: 11/18/2022] Open
Abstract
The relationships between host-pathogen population dynamics in wildlife are poorly understood. An impediment to progress in understanding these relationships is imperfect detection of diagnostic tests used to detect pathogens. If ignored, imperfect detection precludes accurate assessment of pathogen presence and prevalence, foundational parameters for deciphering host-pathogen dynamics and disease etiology. Respiratory disease in bighorn sheep (Ovis canadensis) is a significant impediment to their conservation and restoration, and effective management requires a better understanding of the structure of the pathogen communities. Our primary objective was to develop an easy-to-use and accessible web-based Shiny application that estimates the probability (with associated uncertainty) that a respiratory pathogen is present in a herd and its prevalence given imperfect detection. Our application combines the best-available information on the probabilities of detection for various respiratory pathogen diagnostic protocols with a hierarchical Bayesian model of pathogen prevalence. We demonstrated this application using four examples of diagnostic tests from three herds of bighorn sheep in Montana. For instance, one population with no detections of Mycoplasma ovipneumoniae (PCR assay) still had an 6% probability of the pathogen being present in the herd. Similarly, the apparent prevalence (0.32) of M. ovipneumoniae in another herd was a substantial underestimate of estimated true prevalence (0.46: 95% CI = [0.25, 0.71]). The negative bias of naïve prevalence increased as the probability of detection of testing protocols worsened such that the apparent prevalence of Mannheimia haemolytica (culture assay) in a herd (0.24) was less than one third that of estimated true prevalence (0.78: 95% CI = [0.43, 0.99]). We found a small difference in the estimates of the probability that Mannheimia spp. (culture assay) was present in one herd between the binomial sampling approach (0.24) and the hypergeometric approach (0.22). Ignoring the implications of imperfect detection and sampling variation for assessing pathogen communities in bighorn sheep can result in spurious inference on pathogen presence and prevalence, and potentially poorly informed management decisions. Our Shiny application makes the rigorous assessment of pathogen presence, prevalence and uncertainty straightforward, and we suggest it should be incorporated into a new paradigm of disease monitoring.
Collapse
Affiliation(s)
- J. Terrill Paterson
- Department of Ecology, Montana State University, Bozeman, MT, United States of America
- * E-mail:
| | - Carson Butler
- Fish and Wildlife Branch, Grand Teton National Park, Moose, WY, United States of America
| | - Robert Garrott
- Department of Ecology, Montana State University, Bozeman, MT, United States of America
| | - Kelly Proffitt
- Montana Fish Wildlife and Parks, Bozeman, MT, United States of America
| |
Collapse
|
11
|
Devoe JD, Lowrey B, Proffitt KM, Garrott RA. Restoration Potential of Bighorn Sheep in a Prairie Region. J Wildl Manage 2020. [DOI: 10.1002/jwmg.21922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jesse D. Devoe
- Fish and Wildlife Ecology and Management Program, Department of EcologyMontana State University Bozeman MT 59718 USA
| | - Blake Lowrey
- Fish and Wildlife Ecology and Management Program, Department of EcologyMontana State University Bozeman MT 59718 USA
| | - Kelly M. Proffitt
- Montana Department of FishWildlife and Parks 1400 South 19th Street Bozeman MT 59718 USA
| | - Robert A. Garrott
- Fish and Wildlife Ecology and Management Program, Department of EcologyMontana State University Bozeman MT 59718 USA
| |
Collapse
|
12
|
Dekelaita DJ, Epps CW, Stewart KM, Sedinger JS, Powers JG, Gonzales BJ, Abella‐Vu RK, Darby NW, Hughson DL. Survival of Adult Female Bighorn Sheep Following a Pneumonia Epizootic. J Wildl Manage 2020. [DOI: 10.1002/jwmg.21914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Daniella J. Dekelaita
- Department of Fisheries and Wildlife Oregon State University Corvallis OR 97331‐3803 USA
| | - Clinton W. Epps
- Department of Fisheries and Wildlife Oregon State University Corvallis OR 97331‐3803 USA
| | - Kelley M. Stewart
- Department of Natural Resources and Environmental Science University of Nevada, Reno Reno NV 89557‐0186 USA
| | - James S. Sedinger
- Department of Natural Resources and Environmental Science University of Nevada, Reno Reno NV 89557‐0186 USA
| | - Jenny G. Powers
- Biological Resources Division National Park Service 1201 Oakridge Drive Fort Collins CO 80525 USA
| | - Ben J. Gonzales
- Wildlife Investigations Laboratory, California Department of Fish and Wildlife 1701 Nimbus Road Rancho Cordova CA 95670‐4503 USA
| | - Regina K. Abella‐Vu
- Wildlife Branch, California Department of Fish and Wildlife 1812 Ninth Street Sacramento CA 95811 USA
| | - Neal W. Darby
- Mojave National Preserve, National Park Service 2701 Barstow Road Barstow CA 92311 USA
| | - Debra L. Hughson
- Mojave National Preserve, National Park Service 2701 Barstow Road Barstow CA 92311 USA
| |
Collapse
|
13
|
Garwood TJ, Lehman CP, Walsh DP, Cassirer EF, Besser TE, Jenks JA. Removal of chronic Mycoplasma ovipneumoniae carrier ewes eliminates pneumonia in a bighorn sheep population. Ecol Evol 2020; 10:3491-3502. [PMID: 32274004 PMCID: PMC7141075 DOI: 10.1002/ece3.6146] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 01/21/2023] Open
Abstract
Chronic pathogen carriage is one mechanism that allows diseases to persist in populations. We hypothesized that persistent or recurrent pneumonia in bighorn sheep (Ovis canadensis) populations may be caused by chronic carriers of Mycoplasma ovipneumoniae (Mo). Our experimental approach allowed us to address a conservation need while investigating the role of chronic carriage in disease persistence.We tested our hypothesis in two bighorn sheep populations in South Dakota, USA. We identified and removed Mo chronic carriers from the Custer State Park (treatment) population. Simultaneously, we identified carriers but did not remove them from the Rapid City population (control). We predicted removal would result in decreased pneumonia, mortality, and Mo prevalence. Both population ranges had similar habitat and predator communities but were sufficiently isolated to preclude intermixing.We classified chronic carriers as adults that consistently tested positive for Mo carriage over a 20-month sampling period (n = 2 in the treatment population; n = 2 in control population).We failed to detect Mo or pneumonia in the treatment population after chronic carrier removal, while both remained in the control. Mortality hazard for lambs was reduced by 72% in the treatment population relative to the control (CI = 36%, 91%). There was also a 41% reduction in adult mortality hazard attributable to the treatment, although this was not statistically significant (CI = 82% reduction, 34% increase). Synthesis and Applications: These results support the hypothesis that Mo is a primary causative agent of persistent or recurrent respiratory disease in bighorn sheep populations and can be maintained by a few chronic carriers. Our findings provide direction for future research and management actions aimed at controlling pneumonia in wild sheep and may apply to other diseases.
Collapse
Affiliation(s)
- Tyler J. Garwood
- Department of Natural Resource ManagementSouth Dakota State UniversityBrookingsSDUSA
| | | | - Daniel P. Walsh
- U.S. Geological SurveyNational Wildlife Health CenterMadisonWIUSA
| | | | - Thomas E. Besser
- Department of Veterinary Microbiology and PathologyWashington State UniversityPullmanWAUSA
| | - Jonathan A. Jenks
- Department of Natural Resource ManagementSouth Dakota State UniversityBrookingsSDUSA
| |
Collapse
|
14
|
Lula ES, Lowrey B, Proffitt KM, Litt AR, Cunningham JA, Butler CJ, Garrott RA. Is Habitat Constraining Bighorn Sheep Restoration? A Case Study. J Wildl Manage 2020. [DOI: 10.1002/jwmg.21823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ethan S. Lula
- Fish and Wildlife Ecology and Management ProgramMontana State University 310 Lewis Hall Bozeman MT 59717 USA
| | - Blake Lowrey
- Fish and Wildlife Ecology and Management ProgramMontana State University 310 Lewis Hall Bozeman MT 59717 USA
| | - Kelly M. Proffitt
- Montana FishWildlife and Parks 1400 S 19th Avenue Bozeman MT 59718 USA
| | - Andrea R. Litt
- Fish and Wildlife Ecology and Management ProgramMontana State University 310 Lewis Hall Bozeman MT 59717 USA
| | | | | | - Robert A. Garrott
- Fish and Wildlife Ecology and Management ProgramMontana State University 310 Lewis Hall Bozeman MT 59717 USA
| |
Collapse
|
15
|
Lowrey B, Proffitt KM, McWhirter DE, White PJ, Courtemanch AB, Dewey SR, Miyasaki HM, Monteith KL, Mao JS, Grigg JL, Butler CJ, Lula ES, Garrott RA. Characterizing population and individual migration patterns among native and restored bighorn sheep ( Ovis canadensis). Ecol Evol 2019; 9:8829-8839. [PMID: 31410283 PMCID: PMC6686647 DOI: 10.1002/ece3.5435] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/19/2019] [Accepted: 06/08/2019] [Indexed: 01/20/2023] Open
Abstract
Migration evolved as a behavior to enhance fitness through exploiting spatially and temporally variable resources and avoiding predation or other threats. Globally, landscape alterations have resulted in declines to migratory populations across taxa. Given the long time periods over which migrations evolved in native systems, it is unlikely that restored populations embody the same migratory complexity that existed before population reductions or regional extirpation.We used GPS location data collected from 209 female bighorn sheep (Ovis canadensis) to characterize population and individual migration patterns along elevation and geographic continuums for 18 populations of bighorn sheep with different management histories (i.e., restored, augmented, and native) across the western United States.Individuals with resident behaviors were present in all management histories. Elevational migrations were the most common population-level migratory behavior. There were notable differences in the degree of individual variation within a population across the three management histories. Relative to native populations, restored and augmented populations had less variation among individuals with respect to elevation and geographic migration distances. Differences in migratory behavior were most pronounced for geographic distances, where the majority of native populations had a range of variation that was 2-4 times greater than restored or augmented populations. Synthesis and applications. Migrations within native populations include a variety of patterns that translocation efforts have not been able to fully recreate within restored and augmented populations. Theoretical and empirical research has highlighted the benefits of migratory diversity in promoting resilience and population stability. Limited migratory diversity may serve as an additional factor limiting demographic performance and range expansion. We suggest preserving native systems with intact migratory portfolios and a more nuanced approach to restoration and augmentation in which source populations are identified based on a suite of criteria that includes matching migratory patterns of source populations with local landscape attributes.
Collapse
Affiliation(s)
- Blake Lowrey
- Fish and Wildlife Ecology and Management Program, Department of EcologyMontana State UniversityBozemanMTUSA
| | | | | | - Patrick J. White
- Yellowstone Center for Resources, Yellowstone National ParkNational Park ServiceMammothWYUSA
| | | | | | | | - Kevin L. Monteith
- Haub School of Environment and Natural Resources, Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and PhysiologyUniversity of WyomingLaramieWYUSA
| | - Julie S. Mao
- Colorado Parks and WildlifeGlenwood SpringsCOUSA
| | | | | | - Ethan S. Lula
- Fish and Wildlife Ecology and Management Program, Department of EcologyMontana State UniversityBozemanMTUSA
| | - Robert A. Garrott
- Fish and Wildlife Ecology and Management Program, Department of EcologyMontana State UniversityBozemanMTUSA
| |
Collapse
|
16
|
Loop-mediated isothermal amplification-lateral-flow dipstick (LAMP-LFD) to detect Mycoplasma ovipneumoniae. World J Microbiol Biotechnol 2019; 35:31. [PMID: 30701329 PMCID: PMC6353813 DOI: 10.1007/s11274-019-2601-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/18/2019] [Indexed: 11/17/2022]
Abstract
In order to establish a rapid detection method for Mycoplasma ovipneumoniae, this study used the loop-mediated isothermal amplification (LAMP) technique to carry out nucleic acid amplification and chromatographic visualization via a lateral flow dipstick (LFD) assay. The M. ovipneumoniae elongation factor TU gene (EF-TU) was detected using a set of specific primers designed for the EF-TU gene, and the EF-TU FIP was detected by biotin labeling, which was used in the LAMP amplification reaction. The digoxin-labeled probe specifically hybridized with LAMP products, which were visually detected by LFD. Here, we established the M. ovipneumoniae LAMP-LFD rapid detection method and tested the specificity, sensitivity, and clinical application of this method. Results showed that the optimized LAMP performed at 60 °C for 60 min, and LFD can specifically and visually detect M. ovipneumoniae with a minimum detectable concentration at 1.0 × 102 CFU/mL. The sensitivity of LAMP-LFD was 1000 times that of the conventional PCR detection methods, and the clinical lung tissue detection rate was 86% of 50 suspected sheep infected with M. ovipneumoniae. In conclusion, LAMP-LFD was established in this study to detect M. ovipneumoniae, a method that was highly specific, sensitive, and easy to operate, and provides a new method for the prevention and diagnosis of M. ovipneumoniae infection.
Collapse
|
17
|
Respiratory pathogens and their association with population performance in Montana and Wyoming bighorn sheep populations. PLoS One 2018; 13:e0207780. [PMID: 30475861 PMCID: PMC6257920 DOI: 10.1371/journal.pone.0207780] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 11/06/2018] [Indexed: 11/19/2022] Open
Abstract
Respiratory disease caused by Mycoplasma ovipneumoniae and Pasteurellaceae poses a formidable challenge for bighorn sheep (Ovis canadensis) conservation. All-age epizootics can cause 10–90% mortality and are typically followed by multiple years of enzootic disease in lambs that hinders post-epizootic recovery of populations. The relative frequencies at which these epizootics are caused by the introduction of novel pathogens or expression of historic pathogens that have become resident in the populations is unknown. Our primary objectives were to determine how commonly the pathogens associated with respiratory disease are hosted by bighorn sheep populations and assess demographic characteristics of populations with respect to the presence of different pathogens. We sampled 22 bighorn sheep populations across Montana and Wyoming, USA for Mycoplasma ovipneumoniae and Pasteurellaceae and used data from management agencies to characterize the disease history and demographics of these populations. We tested for associations between lamb:ewe ratios and the presence of different respiratory pathogen species. All study populations hosted Pasteurellaceae and 17 (77%) hosted Mycoplasma ovipneumoniae. Average lamb:ewe ratios for individual populations where both Mycoplasma ovipneumoniae and Pasteurellaceae were detected ranged from 0.14 to 0.40. However, average lamb:ewe ratios were higher in populations where Mycoplasma ovipneumoniae was not detected (0.37, 95% CI: 0.27–0.51) than in populations where it was detected (0.25, 95% CI: 0.21–0.30). These findings suggest that respiratory pathogens are commonly hosted by bighorn sheep populations and often reduce recruitment rates; however ecological factors may interact with the pathogens to determine population-level effects. Elucidation of such factors could provide insights for management approaches that alleviate the effects of respiratory pathogens in bighorn sheep. Nevertheless, minimizing the introduction of novel pathogens from domestic sheep and goats remains imperative to bighorn sheep conservation.
Collapse
|
18
|
Detection of Mycoplasma ovipneumoniae in Pneumonic Mountain Goat ( Oreamnos americanus) Kids. J Wildl Dis 2018; 55:206-212. [PMID: 30161017 DOI: 10.7589/2018-02-052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We documented bronchopneumonia in seven mountain goat ( Oreamnos americanus) kid mortalities between 2011 and 2015 following a pneumonia epizootic in bighorn sheep ( Ovis canadensis) and sympatric mountain goats in the adjacent East Humboldt Range and Ruby Mountains in Elko County, Nevada, US. Gross and histologic lesions resembled those described in bighorn lambs following all-age epizootics, and Mycoplasma ovipneumoniae was detected with real-time PCR in the lower and upper respiratory tracts of all kids. Mannheimia haemolytica, with one isolate being leukotoxigenic, was cultured from the upper respiratory tract of five kids, and in one kid, a leukotoxigenic strain of Mannheimia glucosida was isolated from both upper and lower respiratory tracts. During this same period, 75 mountain goats within the two populations were marked and sampled for respiratory pathogens, and M. ovipneumoniae, leukotoxigenic Bibersteinia trehalosi, and Mannheimia haemolytica were identified. The M. ovipneumoniae recovered from the kid mortalities shared the same DNA sequence-based strain type detected in the adult goats and sympatric bighorn sheep during and after the 2009-10 pneumonia outbreak. Clinical signs in affected kids, as well as decreased annual kid recruitment, also resembled reports in bighorn lambs from some herds following all-age pneumonia-associated die-offs. Mycoplasma ovipneumoniae, Pasteurellaceae spp., and other respiratory bacterial pathogens should be considered as a cause of pneumonia with potential population-limiting effects in mountain goats.
Collapse
|
19
|
Lowrey B, Garrott RA, McWhirter DE, White PJ, DeCesare NJ, Stewart ST. Niche similarities among introduced and native mountain ungulates. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2018; 28:1131-1142. [PMID: 29573503 DOI: 10.1002/eap.1719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/31/2018] [Accepted: 02/21/2018] [Indexed: 06/08/2023]
Abstract
The niche concept provides a strong foundation for theoretical and applied research among a broad range of disciplines. When two ecologically similar species are sympatric, theory predicts they will occupy distinct ecological niches to reduce competition. Capitalizing on the increasing availability of spatial data, we built from single species habitat suitability models to a multispecies evaluation of the niche partitioning hypothesis with sympatric mountain ungulates: native bighorn sheep (BHS; Ovis canadensis) and introduced mountain goats (MTG; Oreamnos americanus) in the northeast Greater Yellowstone Area. We characterized seasonal niches using two-stage resource selection functions with a used-available design and descriptive summaries of the niche attributes associated with used GPS locations. We evaluated seasonal similarity in niche space according to confidence interval overlap of model coefficients and similarity in geographic space by comparing model predicted values with Schoener's D metric. Our sample contained 37,962 summer locations from 53 individuals (BHS = 31, MTG = 22), and 79,984 winter locations from 57 individuals (BHS = 35, MTG = 22). Slope was the most influential niche component for both species and seasons, and showed the strongest evidence of niche partitioning. Bighorn sheep occurred on steeper slopes than mountain goats in summer and mountain goats occurred on steeper slopes in winter. The pattern of differential selection among species was less prevalent for the remaining covariates, indicating similarity in niche space. Model predictions in geographic space showed broad seasonal similarity (summer D = 0.88, winter D = 0.87), as did niche characterizations from used GPS locations. The striking similarities in seasonal niches suggest that introduced mountain goats will continue to increase their spatial overlap with native bighorn. Our results suggest that reducing densities of mountain goats in hunted areas where they are sympatric with bighorn sheep and impeding their expansion may reduce the possibility of competition and disease transfer. Additional studies that specifically investigate partitioning at finer scales and along dietary or temporal niche axes will help to inform an adaptive management approach.
Collapse
Affiliation(s)
- B Lowrey
- Department of Ecology, Montana State University, Bozeman, Montana, 59717, USA
| | - R A Garrott
- Department of Ecology, Montana State University, Bozeman, Montana, 59717, USA
| | - D E McWhirter
- Wyoming Game and Fish Department, Cody, Wyoming, 82414, USA
| | - P J White
- Yellowstone Center for Resources, Yellowstone National Park, National Park Service, Mammoth, Wyoming, 82190, USA
| | - N J DeCesare
- Montana Department of Fish, Wildlife, and Parks, Missoula, Montana, 59804, USA
| | - S T Stewart
- Montana Department of Fish, Wildlife, and Parks, Red Lodge, Montana, 59068, USA
| |
Collapse
|
20
|
A Survey of Bacterial Respiratory Pathogens in Native and Introduced Mountain Goats ( Oreamnos americanus). J Wildl Dis 2018; 54:852-858. [PMID: 29902131 DOI: 10.7589/2018-02-025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In contrast to broad range expansion through translocations, many mountain goat ( Oreamnos americanus) populations have shown signs of decline. Recent documentation of pneumonia in mountain goats highlights their susceptibility to bacterial pathogens typically associated with bighorn sheep ( Ovis canadensis) epizootics. Respiratory pathogen communities of mountain goats are poorly characterized yet have important implications for management and conservation of both species. We characterized resident pathogen communities across a range of mountain goat populations as an initial step to inform management efforts. Between 2010 and 2017, we sampled 98 individuals within three regions of the Greater Yellowstone Area (GYA), with a smaller sampling effort in southeast Alaska, US. Within the GYA, we detected Mycoplasma ovipneumoniae in two regions and we found at least two Pasteurellaceae species in animals from all regions. Mannheimia haemolytica was the only pathogen that we detected in southeast Alaska. Given the difficult sampling conditions, limited sample size, and imperfect detection, our failure to detect specific pathogens should be interpreted with caution. Nonetheless, respiratory pathogens within the GYA may be an important, yet underappreciated, cause of mountain goat mortality. Moreover, because of the strong niche overlap of bighorn sheep and mountain goats, interspecific transmission is an important concern for managers restoring or introducing mountain ungulates within sympatric ranges.
Collapse
|
21
|
Lachish S, Murray KA. The Certainty of Uncertainty: Potential Sources of Bias and Imprecision in Disease Ecology Studies. Front Vet Sci 2018; 5:90. [PMID: 29872662 PMCID: PMC5972326 DOI: 10.3389/fvets.2018.00090] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/12/2018] [Indexed: 12/16/2022] Open
Abstract
Wildlife diseases have important implications for wildlife and human health, the preservation of biodiversity and the resilience of ecosystems. However, understanding disease dynamics and the impacts of pathogens in wild populations is challenging because these complex systems can rarely, if ever, be observed without error. Uncertainty in disease ecology studies is commonly defined in terms of either heterogeneity in detectability (due to variation in the probability of encountering, capturing, or detecting individuals in their natural habitat) or uncertainty in disease state assignment (due to misclassification errors or incomplete information). In reality, however, uncertainty in disease ecology studies extends beyond these components of observation error and can arise from multiple varied processes, each of which can lead to bias and a lack of precision in parameter estimates. Here, we present an inventory of the sources of potential uncertainty in studies that attempt to quantify disease-relevant parameters from wild populations (e.g., prevalence, incidence, transmission rates, force of infection, risk of infection, persistence times, and disease-induced impacts). We show that uncertainty can arise via processes pertaining to aspects of the disease system, the study design, the methods used to study the system, and the state of knowledge of the system, and that uncertainties generated via one process can propagate through to others because of interactions between the numerous biological, methodological and environmental factors at play. We show that many of these sources of uncertainty may not be immediately apparent to researchers (for example, unidentified crypticity among vectors, hosts or pathogens, a mismatch between the temporal scale of sampling and disease dynamics, demographic or social misclassification), and thus have received comparatively little consideration in the literature to date. Finally, we discuss the type of bias or imprecision introduced by these varied sources of uncertainty and briefly present appropriate sampling and analytical methods to account for, or minimise, their influence on estimates of disease-relevant parameters. This review should assist researchers and practitioners to navigate the pitfalls of uncertainty in wildlife disease ecology studies.
Collapse
Affiliation(s)
- Shelly Lachish
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Kris A. Murray
- Department of Infectious Disease Epidemiology and Grantham Institute – Climate Change and the Environment, Imperial College London, London, United Kingdom
| |
Collapse
|
22
|
Bacterial, PCR and clinico-pathological diagnosis of naturally occurring pneumonic pasturellosis (mannheimiosis) during subtropical climate in sheep. Microb Pathog 2017; 112:176-181. [DOI: 10.1016/j.micpath.2017.09.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 10/18/2022]
|