1
|
Jeon BC, Kim YJ, Park AK, Song MR, Na KM, Lee J, An D, Park Y, Hwang H, Kim TD, Lim J, Park SK. Dynamic O-GlcNAcylation governs long-range chromatin interactions in V(D)J recombination during early B-cell development. Cell Mol Immunol 2025; 22:68-82. [PMID: 39627609 PMCID: PMC11686140 DOI: 10.1038/s41423-024-01236-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/04/2024] [Accepted: 11/03/2024] [Indexed: 01/01/2025] Open
Abstract
V(D)J recombination secures the production of functional immunoglobulin (Ig) genes and antibody diversity during the early stages of B-cell development through long-distance interactions mediated by cis-regulatory elements and trans-acting factors. O-GlcNAcylation is a dynamic and reversible posttranslational modification of nuclear and cytoplasmic proteins that regulates various protein functions, including DNA-binding affinity and protein-protein interactions. However, the effects of O-GlcNAcylation on proteins involved in V(D)J recombination remain largely unknown. To elucidate this relationship, we downregulated O-GlcNAcylation in a mouse model by administering an O-GlcNAc inhibitor or restricting the consumption of a regular diet. Interestingly, the inhibition of O-GlcNAcylation in mice severely impaired Ig heavy-chain (IgH) gene rearrangement. We identified several factors crucial for V(D)J recombination, including YY1, CTCF, SMC1, and SMC3, as direct targets of O-GlcNAc modification. Importantly, O-GlcNAcylation regulates the physical interaction between SMC1 and SMC3 and the DNA-binding patterns of YY1 at the IgH gene locus. Moreover, O-GlcNAc inhibition downregulated DDX5 protein expression, affecting the functional association of CTCF with its DNA-binding sites at the IgH locus. Our results showed that locus contraction and long-range interactions throughout the IgH locus are disrupted in a manner dependent on the cellular O-GlcNAc level. In this study, we established that V(D)J recombination relies on the O-GlcNAc status of stage-specific proteins during early B-cell development and identified O-GlcNAc-dependent mechanisms as new regulatory components for the development of a diverse antibody repertoire.
Collapse
Affiliation(s)
- Bong Chan Jeon
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Yu-Ji Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Ae Kyung Park
- Department of Pharmacy, School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju, Republic of Korea
| | - Mi-Ran Song
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Ki Myeong Na
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Juwon Lee
- Department of Pharmacy, School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju, Republic of Korea
| | - Dasom An
- Digital OMICs Research Center, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Yeseul Park
- Digital OMICs Research Center, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Heeyoun Hwang
- Digital OMICs Research Center, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Tae-Don Kim
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Junghyun Lim
- Department of Pharmacy, School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju, Republic of Korea.
| | - Sung-Kyun Park
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea.
| |
Collapse
|
2
|
Xu L, Liu B, Ma H, Qi E, Ma J, Chang T, Zhang J, Zhang W, Chen W, Cao X, Xiong X. O-GlcNAc transferase promotes vascular smooth muscle calcification through modulating Wnt/β-catenin signaling. FASEB J 2024; 38:e70271. [PMID: 39704274 DOI: 10.1096/fj.202401649rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/21/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
Vascular calcification (VC), associated with high cardiovascular mortality in patients with chronic kidney disease (CKD), involves osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs). O-GlcNAcylation, a dynamic post-translational modification, is closely linked to cardiovascular diseases, including VC. However, the exact role and molecular mechanism of O-GlcNAc signaling in abnormal mineral metabolism-induced VC remain unclear. In the current study, we found that the levels of O-GlcNAc transferase (OGT) and global protein O-GlcNAcylation were significantly upregulated in the artery tissues of mouse calcification models and CKD patients with VC. To further delineate the in vivo role of OGT in VC, we generated Ogt smooth muscle cell-specific knockout mice and challenged them with 5/6 nephrectomy (5/6 Nx) or high-dose vitamin D3 to induce VC. Deletion of Ogt in VSMCs led to alleviated VC in response to 5/6 Nx or VD3. Moreover, elevated O-GlcNAcylation, induced by Thiamet-G, facilitated osteogenic transdifferentiation in VSMCs in response to phosphate, whereas OSMI-1, which reduces O-GlcNAcylation, exhibited an opposite phenotypic effect. Mechanistically, O-GlcNAc signaling enhanced the osteogenic conversion of VSMCs through regulation of canonical Wnt/β-catenin pathway. Indeed, β-catenin was O-GlcNAcylated by OGT and further increased its transcriptional activity in VSMCs. Furthermore, pharmacological activation of Wnt/β-catenin signaling largely reversed the diminished aortic calcification caused by Ogt ablation. Our findings demonstrate that smooth muscle O-GlcNAc signaling plays an important role in regulating hyperphosphatemia-induced VC and reveal that O-GlcNAcylation of β-catenin protein modulates its content and activity in VSMCs.
Collapse
MESH Headings
- Animals
- N-Acetylglucosaminyltransferases/metabolism
- N-Acetylglucosaminyltransferases/genetics
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Wnt Signaling Pathway
- Mice
- Mice, Knockout
- Humans
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Male
- Mice, Inbred C57BL
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- beta Catenin/metabolism
- Cells, Cultured
- Osteogenesis
Collapse
Affiliation(s)
- Lin Xu
- Xinxiang Key Laboratory of Metabolism and Integrative Physiology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
- School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Boao Liu
- Xinxiang Key Laboratory of Metabolism and Integrative Physiology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Honghui Ma
- Xinxiang Key Laboratory of Metabolism and Integrative Physiology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Enbo Qi
- Xinxiang Key Laboratory of Metabolism and Integrative Physiology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jie Ma
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Tingmin Chang
- Henan Health Commission Key Laboratory of Gastrointestinal Cancer Prevention and Treatment, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Jinghong Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Wencheng Zhang
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Weiqian Chen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Xuan Cao
- Department of Basic Medicine, School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| | - Xiwen Xiong
- Xinxiang Key Laboratory of Metabolism and Integrative Physiology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Health Commission Key Laboratory of Gastrointestinal Cancer Prevention and Treatment, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
3
|
Goekeri C, Linke KAK, Hoffmann K, Lopez-Rodriguez E, Gluhovic V, Voß A, Kunder S, Zappe A, Timm S, Nettesheim A, Schickinger SMK, Zobel CM, Pagel K, Gruber AD, Ochs M, Witzenrath M, Nouailles G. Enzymatic Modulation of the Pulmonary Glycocalyx Enhances Susceptibility to Streptococcus pneumoniae. Am J Respir Cell Mol Biol 2024; 71:646-658. [PMID: 39042016 PMCID: PMC11622634 DOI: 10.1165/rcmb.2024-0003oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/23/2024] [Indexed: 07/24/2024] Open
Abstract
The pulmonary epithelial glycocalyx is rich in glycosaminoglycans such as hyaluronan and heparan sulfate. Despite their presence, the importance of these glycosaminoglycans in bacterial lung infections remains elusive. To address this, we intranasally inoculated mice with Streptococcus pneumoniae in the presence or absence of enzymes targeting pulmonary hyaluronan and heparan sulfate, followed by characterization of subsequent disease pathology, pulmonary inflammation, and lung barrier dysfunction. Enzymatic degradation of hyaluronan and heparan sulfate exacerbated pneumonia in mice, as evidenced by increased disease scores and alveolar neutrophil recruitment. However, targeting epithelial hyaluronan in combination with S. pneumoniae infection further exacerbated systemic disease, indicated by elevated splenic bacterial load and plasma concentrations of proinflammatory cytokines. In contrast, enzymatic cleavage of heparan sulfate resulted in increased bronchoalveolar bacterial burden, lung damage, and pulmonary inflammation in mice infected with S. pneumoniae. Accordingly, heparinase-treated mice also exhibited disrupted lung barrier integrity as evidenced by higher alveolar edema scores and vascular protein leakage into the airways. This finding was corroborated in a human alveolus-on-a-chip platform, confirming that heparinase treatment also disrupts the human lung barrier during S. pneumoniae infection. Notably, enzymatic pretreatment with either hyaluronidase or heparinase also rendered human epithelial cells more sensitive to pneumococci-induced barrier disruption, as determined by transepithelial electrical resistance measurements, consistent with our findings in murine pneumonia. Taken together, these findings demonstrate the importance of intact hyaluronan and heparan sulfate in limiting pneumococci-induced damage, pulmonary inflammation, and epithelial barrier function and integrity.
Collapse
Affiliation(s)
- Cengiz Goekeri
- Department of Infectious Diseases, Respiratory Medicine and Critical Care
- Faculty of Medicine, Cyprus International University, Nicosia, Cyprus
| | | | - Karen Hoffmann
- Department of Infectious Diseases, Respiratory Medicine and Critical Care
| | | | | | - Anne Voß
- Institute of Veterinary Pathology and
| | | | - Andreas Zappe
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Sara Timm
- Core Facility Electron Microscopy, Charité – Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alina Nettesheim
- Department of Infectious Diseases, Respiratory Medicine and Critical Care
| | | | - Christian M. Zobel
- Department of Internal Medicine, Bundeswehrkrankenhaus Berlin, Berlin, Germany; and
| | - Kevin Pagel
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | | | - Matthias Ochs
- Institute of Functional Anatomy, and
- German Center for Lung Research, Berlin, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases, Respiratory Medicine and Critical Care
- German Center for Lung Research, Berlin, Germany
| | | |
Collapse
|
4
|
Bulangalire N, Claeyssen C, Agbulut O, Cieniewski-Bernard C. Impact of MG132 induced-proteotoxic stress on αB-crystallin and desmin phosphorylation and O-GlcNAcylation and their partition towards cytoskeleton. Biochimie 2024; 226:121-135. [PMID: 38636798 DOI: 10.1016/j.biochi.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/19/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Small Heat Shock Proteins are considered as the first line of defense when proteostasis fails. Among them, αB-crystallin is expressed in striated muscles in which it interacts with desmin intermediate filaments to stabilize them, maintaining cytoskeleton's integrity and muscular functionalities. Desmin is a key actor for muscle health; its targeting by αB-crystallin is thus crucial, especially in stress conditions. αB-crystallin is phosphorylated and O-GlcNAcylated. Its phosphorylation increases consecutively to various stresses, correlated with its recruitment for cytoskeleton's safeguarding. However, phosphorylation as unique signal for cytoskeleton translocation remains controversial; indeed, O-GlcNAcylation was also proposed to be involved. Thus, there are still some gaps for a deeper comprehension of how αB-crystallin functions are finely regulated by post-translational modifications. Furthermore, desmin also bears both post-translational modifications; while desmin phosphorylation is closely linked to desmin intermediates filaments turnover, it is unclear whereas its O-GlcNAcylation could impact its proper function. In the herein paper, we aim at identifying whether phosphorylation and/or O-GlcNAcylation are involved in αB-crystallin targeting towards cytoskeleton in proteotoxic stress induced by proteasome inhibition in C2C12 myotubes. We demonstrated that proteotoxicity led to αB-crystallin's phosphorylation and O-GlcNAcylation patterns changes, both presenting a dynamic interplay depending on protein subfraction. Importantly, both post-translational modifications showed a spatio-temporal variation correlated with αB-crystallin translocation towards cytoskeleton. In contrast, we did not detect any change of desmin phosphorylation and O-GlcNAcylation. All together, these data strongly support that αB-crystallin phosphorylation/O-GlcNAcylation interplay rather than changes on desmin is a key regulator for its cytoskeleton translocation, preserving it towards stress.
Collapse
Affiliation(s)
- Nathan Bulangalire
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000, Lille, France; CHU Lille, Université de Lille, F-59000, Lille, France; Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 75005, Paris, France
| | - Charlotte Claeyssen
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000, Lille, France
| | - Onnik Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 75005, Paris, France
| | - Caroline Cieniewski-Bernard
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000, Lille, France.
| |
Collapse
|
5
|
Onigbinde S, Gutierrez Reyes CD, Sandilya V, Chukwubueze F, Oluokun O, Sahioun S, Oluokun A, Mechref Y. Optimization of glycopeptide enrichment techniques for the identification of clinical biomarkers. Expert Rev Proteomics 2024; 21:431-462. [PMID: 39439029 PMCID: PMC11877277 DOI: 10.1080/14789450.2024.2418491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/28/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION The identification and characterization of glycopeptides through LC-MS/MS and advanced enrichment techniques are crucial for advancing clinical glycoproteomics, significantly impacting the discovery of disease biomarkers and therapeutic targets. Despite progress in enrichment methods like Lectin Affinity Chromatography (LAC), Hydrophilic Interaction Liquid Chromatography (HILIC), and Electrostatic Repulsion Hydrophilic Interaction Chromatography (ERLIC), issues with specificity, efficiency, and scalability remain, impeding thorough analysis of complex glycosylation patterns crucial for disease understanding. AREAS COVERED This review explores the current challenges and innovative solutions in glycopeptide enrichment and mass spectrometry analysis, highlighting the importance of novel materials and computational advances for improving sensitivity and specificity. It outlines the potential future directions of these technologies in clinical glycoproteomics, emphasizing their transformative impact on medical diagnostics and therapeutic strategies. EXPERT OPINION The application of innovative materials such as Metal-Organic Frameworks (MOFs), Covalent Organic Frameworks (COFs), functional nanomaterials, and online enrichment shows promise in addressing challenges associated with glycoproteomics analysis by providing more selective and robust enrichment platforms. Moreover, the integration of artificial intelligence and machine learning is revolutionizing glycoproteomics by enhancing the processing and interpretation of extensive data from LC-MS/MS, boosting biomarker discovery, and improving predictive accuracy, thus supporting personalized medicine.
Collapse
Affiliation(s)
- Sherifdeen Onigbinde
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | | | - Vishal Sandilya
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Favour Chukwubueze
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Odunayo Oluokun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Sarah Sahioun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Ayobami Oluokun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
6
|
Bulangalire N, Claeyssen C, Douffi S, Agbulut O, Cieniewski-Bernard C. A novel 2D-electrophoresis method for the simultaneous visualization of phosphorylated and O-GlcNAcylated proteoforms of a protein. Electrophoresis 2024; 45:1618-1629. [PMID: 38700120 DOI: 10.1002/elps.202400043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 04/16/2024] [Indexed: 05/05/2024]
Abstract
Post-translational modifications (PTMs), such as phosphorylation and O-N-acetyl-β-d-glucosaminylation (O-GlcNAcylation), are involved in the fine spatiotemporal regulation of protein functions, and their dynamic interplay is at the heart of protein language. The coexistence of phosphorylation and O-GlcNAcylation on a protein leads to the diversification of proteoforms. It is therefore essential to decipher the phosphorylation/O-GlcNAcylation interplay on protein species that orchestrates cellular processes in a specific physiological or pathophysiological context. However, simultaneous visualization of phosphorylation and O-GlcNAcylation patterns on a protein of interest remains a challenge. To map the proteoforms of a protein, we have developed an easy-to-use two-dimensional electrophoresis method with a single sample processing permitting simultaneous visualization of the phosphorylated and the O-GlcNAcylated forms of the protein of interest. This method, we termed 2D-WGA-Phos-tag-PAGE relies on proteoforms retardation by affinity gel electrophoresis. With this novel approach, we established the cartography of phospho- and glycoforms of αB-crystallin and desmin in the whole extract and the cytoskeleton protein subfraction in skeletal muscle cells. Interestingly, we have shown that the pattern of phosphorylation and O-GlcNAcylation depends of the subcellular subfraction. Moreover, we have also shown that proteotoxic stress condition increased the complexity of the pattern of PTMs on αB-crystallin.
Collapse
Affiliation(s)
- Nathan Bulangalire
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000, Lille, France
- CHU Lille, Université de Lille, F-59000, Lille, France
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 75005, Paris, France
| | - Charlotte Claeyssen
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000, Lille, France
| | - Sana Douffi
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000, Lille, France
| | - Onnik Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 75005, Paris, France
| | - Caroline Cieniewski-Bernard
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000, Lille, France
| |
Collapse
|
7
|
Liu X, Yang Z, Liu C, Xu B, Wang X, Li Y, Xia J, Li D, Zhang C, Sun H, Yang Q. Identification of a type II LacNAc specific binding lectin CMRBL from Cordyceps militaris. Int J Biol Macromol 2023; 230:123207. [PMID: 36632960 DOI: 10.1016/j.ijbiomac.2023.123207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/10/2023]
Abstract
The Cordyceps militaris gene CCM_03832 encodes a ricin-B like lectin. The gene was cloned and expressed in Escherichia coli, and its protein product, named CMRBL (C. militaris ricin-B like lectin), was purified by galactose affinity chromatography. Of nine different sources of erythrocytes, CMRBL showed only specific hemagglutinating activity against rat and rabbit erythrocytes with titers of 22 and 28, respectively. Glycan array analyses by the Consortium for Functional Glycomics showed that CMRBL possesses very high specific binding activity of glycans terminated with type II LacNAc (non-reducing Galβ1-4GlcNAc). Compared with other well-known Gal-terminated binding lectins such as Erythrina cristagalli agglutinin, Ricinus communis agglutinin, and Jacalin, CMRBL showed better binding specificity to type II LacNAc compared the other lectins. CMRBL showed lowest binding activity to ZR-75-30 and MDA-MB-468 cell lines among five tested cell lines (H22, THP-1, MDA-MB-231, ZR-75-30, and MDA-MB-468 cells). Transfection of type II LacNAc main galactosyltransferase B4GALT3 to ZR-75-30 significantly improved CMRBL binding activity compared with control. CMRBL was also applied for testing the type II LacNAc modification of Etanercept successfully. Our data suggest that CMRBL would be a useful tool to recognize type II LacNAc, especially distinguish type II from other galactose-terminated glycans in glycan biology research.
Collapse
Affiliation(s)
- Xiaomei Liu
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zelan Yang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Chenglong Liu
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Bo Xu
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xueqing Wang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yang Li
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jing Xia
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Danni Li
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Can Zhang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hui Sun
- College of Life Sciences, Wuhan University, Wuhan 430072, China; Hubei Province key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430071, China; Wuhan Huayang Animal Pharmaceutical Co., Ltd, China.
| | - Qing Yang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
8
|
Cheng H, Liu J, Zhou M, Cheng Y. Lectin affinity-based glycoproteome analysis of the developing xylem in poplar. FORESTRY RESEARCH 2022; 2:13. [PMID: 39525422 PMCID: PMC11524310 DOI: 10.48130/fr-2022-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2024]
Abstract
Glycosylation is a significant post-translational modification of proteins, and some glycoproteins serve as players in plant cell wall synthesis and modification. Wood is a highly developed cell wall organization, and protein glycosylation as a regulatory mechanism may be involved in wood formation. Here, a lectin affinity-based glycoproteome was performed in stem developing xylem of poplar. After enrichment, trypsin digestion, LC-MS/MS analysis and peptide identification, we identified 154 glycoproteins from poplar developing xylem, which were classified into nine functional groups mainly including protein acting on carbohydrates, oxido-reductase, proteases, and protein kinases. Further, N- and/or O-glycosylation sites of the identified proteins were analyzed using bioinformatic tools, and deglycosylation experiments in the selected PtSOD and PtHAD proteins verified the reliability of the identified glycoproteins. Analysis of protein subcellular localization showed that a total of 63% of the identified glycoproteins were extracellular proteins or located in the plasma membrane. Poplar eFP and RT-qPCR data showed that a number of the genes encoding these glycoproteins such as laccase, peroxidase and cysteine protease, have highly preferential expression profiles in the developing xylem. Together with previously published research, most identified glycoproteins could be involved in wood cell wall synthesis and modification in poplar. Thus, our study provides some potential wood formation-related glycoproteins to be determined during tree stem development.
Collapse
Affiliation(s)
- Hao Cheng
- Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jinwen Liu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Meiqi Zhou
- Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Yuxiang Cheng
- Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
9
|
Huang Y, Li L, Rong YS. JiangShi(僵尸): a widely distributed Mucin-like protein essential for Drosophila development. G3 GENES|GENOMES|GENETICS 2022; 12:6589892. [PMID: 35595239 PMCID: PMC9339309 DOI: 10.1093/g3journal/jkac126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022]
Abstract
Epithelia exposed to elements of the environment are protected by a mucus barrier in mammals. This barrier also serves to lubricate during organ movements and to mediate substance exchanges between the environmental milieu and internal organs. A major component of the mucus barrier is a class of glycosylated proteins called Mucin. Mucin and mucin-related proteins are widely present in the animal kingdom. Mucin mis-regulation has been reported in many diseases such as cancers and ones involving the digestive and respiratory tracts. Although the biophysical properties of isolated Mucins have been extensively studied, in vivo models remain scarce for the study of their functions and regulations. Here, we characterize the Mucin-like JiangShi protein and its mutations in the fruit fly Drosophila. JiangShi is an extracellular glycoprotein with domain features reminiscent of mammalian nonmembranous Mucins, and one of the most widely distributed Mucin-like proteins studied in Drosophila. Both loss and over-production of JiangShi lead to terminal defects in adult structures and organismal death. Although the physiological function of JiangShi remains poorly defined, we present a genetically tractable model system for the in vivo studies of Mucin-like molecules.
Collapse
Affiliation(s)
- Yueping Huang
- School of Life Sciences, Sun Yat-sen University , Guangzhou 510275, China
- Hengyang College of Medicine, University of South China , Hengyang 421009, China
| | - LingLing Li
- School of Life Sciences, Sun Yat-sen University , Guangzhou 510275, China
| | - Yikang S Rong
- Hengyang College of Medicine, University of South China , Hengyang 421009, China
| |
Collapse
|
10
|
Disaccharide-tag for highly sensitive identification of O-GlcNAc-modified proteins in mammalian cells. PLoS One 2022; 17:e0267804. [PMID: 35604954 PMCID: PMC9126400 DOI: 10.1371/journal.pone.0267804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/14/2022] [Indexed: 11/19/2022] Open
Abstract
O-GlcNAcylation is the only sugar modification for proteins present in the cytoplasm and nucleus and is thought to be involved in the regulation of protein function and localization. Currently, several methods are known for detecting O-GlcNAcylated proteins using monoclonal antibodies or wheat germ agglutinin, but these methods have some limitations in their sensitivity and quantitative comparison. We developed a new disaccharide-tag method to overcome these problems. This is a method in which a soluble GalNAc transferase is expressed intracellularly, extended to a disaccharide of GalNAc-GlcNAc, and detected using a Wisteria japonica agglutinin specific to this disaccharide. We verified the method using human c-Rel protein and also highly sensitively compared the difference in O-GlcNAc modification of intracellular proteins associated with differentiation from embryonic stem cell (ESC) to epiblast-like cells (EpiLC). As one example of such a modification, a novel O-GlcNAc modification was found in the transcription factor Sox2 at residue Ser263, and the modification site could be identified by nano liquid chromatography-mass spectrometry.
Collapse
|
11
|
Kim EJ. Advances in Strategies and Tools Available for Interrogation of Protein O-GlcNAcylation. Chembiochem 2021; 22:3010-3026. [PMID: 34101962 DOI: 10.1002/cbic.202100219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/08/2021] [Indexed: 11/08/2022]
Abstract
The attachment of a single O-linked β-N-acetylglucosamine (O-GlcNAc) to serine and threonine residues of numerous proteins in the nucleus, cytoplasm, and mitochondria is a reversible post-translational modification (PTM) and plays an important role as a regulator of various cellular processes in both healthy and disease states. Advances in strategies and tools that allow for the detection of dynamic O-GlcNAcylation on cellular proteins have helped to enhance our initial and ongoing understanding of its dynamic effects on cellular stimuli and given insights into its link to the pathogenesis of several chronic diseases. Furthermore, chemical genetic strategies and related tools have been successfully applied to a myriad of biological systems with a new level of spatiotemporal and molecular precision. These strategies have started to be used in studying and controlling O-GlcNAcylation both in vivo and in vitro. In this minireview, overviews of recent advances in molecular tools being applied to the detection and identification of O-GlcNAcylation on cellular proteins as well as on individual proteins are provided. In addition, chemical genetic strategies that have already been applied or are potentially usable in O-GlcNAc functional are also discussed.
Collapse
Affiliation(s)
- Eun Ju Kim
- Daegu University, Gyeongsan-Si, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
12
|
Riley NM, Bertozzi CR, Pitteri SJ. A Pragmatic Guide to Enrichment Strategies for Mass Spectrometry-Based Glycoproteomics. Mol Cell Proteomics 2020; 20:100029. [PMID: 33583771 PMCID: PMC8724846 DOI: 10.1074/mcp.r120.002277] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022] Open
Abstract
Glycosylation is a prevalent, yet heterogeneous modification with a broad range of implications in molecular biology. This heterogeneity precludes enrichment strategies that can be universally beneficial for all glycan classes. Thus, choice of enrichment strategy has profound implications on experimental outcomes. Here we review common enrichment strategies used in modern mass spectrometry-based glycoproteomic experiments, including lectins and other affinity chromatographies, hydrophilic interaction chromatography and its derivatives, porous graphitic carbon, reversible and irreversible chemical coupling strategies, and chemical biology tools that often leverage bioorthogonal handles. Interest in glycoproteomics continues to surge as mass spectrometry instrumentation and software improve, so this review aims to help equip researchers with the necessary information to choose appropriate enrichment strategies that best complement these efforts.
Collapse
Affiliation(s)
- Nicholas M Riley
- Department of Chemistry, Stanford University, Stanford, California, USA.
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, California, USA; Howard Hughes Medical Institute, Stanford, California, USA
| | - Sharon J Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, California, USA.
| |
Collapse
|
13
|
Sá SR, Silva Junior AG, Lima-Neto RG, Andrade CA, Oliveira MD. Lectin-based impedimetric biosensor for differentiation of pathogenic candida species. Talanta 2020; 220:121375. [DOI: 10.1016/j.talanta.2020.121375] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 01/06/2023]
|
14
|
Abstract
O-GlcNAcylation is an abundant and dynamic protein posttranslational modification (PTM), with crucial roles in metazoans. Studies of this modification are hampered by the lack of convenient methods for detecting native O-GlcNAcylation. Here, we describe a novel gel-based approach, Separation of O-GlcNAcylated Proteins by Polyacrylamide Gel Electrophoresis (SOPAGE), which enables detection of O-GlcNAc levels and dynamics.
Collapse
Affiliation(s)
- Chuan Fu
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dundee, UK.
| | | |
Collapse
|
15
|
Lectin nanoparticle assays for detecting breast cancer-associated glycovariants of cancer antigen 15-3 (CA15-3) in human plasma. PLoS One 2019; 14:e0219480. [PMID: 31344060 PMCID: PMC6658058 DOI: 10.1371/journal.pone.0219480] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/25/2019] [Indexed: 01/29/2023] Open
Abstract
Cancer antigen 15–3 (CA15-3) is widely utilized for monitoring metastatic breast cancer (BC). However, its utility for early detection of breast cancer is severely limited due to poor clinical sensitivity and specificity. The glycosylation of CA15-3 is known to be affected by BC, and therefore it might offer a way to construct CA15-3 glycovariant assays with improved cancer specificity. To this end, we performed lectin-based glycoprofiling of BC-associated CA15-3. CA15-3 expressed by a BC cell line was immobilized on microtitration wells using an anti-CA15-3 antibody. The glycosylation of the immobilized CA15-3 was then detected by using lectins coated onto europium (III)-doped nanoparticles (Eu+3-NPs) and measuring the time-resolved fluorescence of Eu. Out of multiple lectin-Eu+3-NP preparations, wheat germ agglutinin (WGA) and macrophage galactose-type lectin (MGL) -Eu3+-NPs bound to the BC cell line-dericed CA15-3 glycovariants (CA15-3Lectin). To evaluate the clinical performance of these two lectin-based assays, plasma samples from metastatic BC patients (n = 53) and healthy age-matched women (n = 20).Plasma CA15-3Lectin measurements better distinguished metastatic BC patients from healthy controls than the conventional CA15-3 immunoassay. At 90% specificity, the clinical sensitivity of the assays was 66.0, 67.9 and 81.1% for the conventional CA15-3, CA15-3MGL and CA15-3WGA assays, respectively. Baseline CA15-3MGL and CA15-3WGA were correlated to conventional baseline CA15-3 levels (r = 0.68, p<0.001, r = 0.90, p>0.001, respectively). However, very low baseline CA15-3MGL levels ≤ 5 U/mL were common in this metastatic breast cancer patient population.In conclusion, the new CA15-3Lectin concept could considerably improve the clinical sensitivity of BC detection compared to the conventional CA15-3 immunoassays and should be validated further on a larger series of subjects with different cancer subtypes and stages.
Collapse
|
16
|
Naja annulifera Snake: New insights into the venom components and pathogenesis of envenomation. PLoS Negl Trop Dis 2019; 13:e0007017. [PMID: 30657756 PMCID: PMC6338361 DOI: 10.1371/journal.pntd.0007017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/23/2018] [Indexed: 11/19/2022] Open
Abstract
Background Naja annulifera is a medically important venomous snake occurring in some of the countries in Sub-Saharan Africa. Accidental bites result in severe coagulation disturbances, systemic inflammation and heart damage, as reported in dogs, and death, by respiratory arrest, in humans. Despite the medical importance of N. annulifera, little is known about its venom composition and the pathogenesis of envenomation. In this paper, the toxic, inflammatory and immunogenic properties of N. annulifera venom were analyzed. Methodology/Principal findings Venom proteomic analysis identified 79 different proteins, including Three Finger Toxins, Cysteine Rich Secretory Proteins, Metalloproteinases, Phospholipases A2 (PLA2), Hyaluronidase, L-amino-acid oxidase, Cobra Venom Factor and Serine Proteinase. The presence of PLA2, hyaluronidase, fibrinogenolytic and anticoagulant activities was detected using functional assays. The venom was cytotoxic to human keratinocytes. In an experimental murine model of envenomation, it was found that the venom induced local changes, such as swelling, which was controlled by anti-inflammatory drugs. Moreover, the venom caused death, which was preceded by systemic inflammation and pulmonary hemorrhage. The venom was shown to be immunogenic, inducing a strong humoral immune response, with the production of antibodies able to recognize venom components with high molecular weight and to neutralize its lethal activity. Conclusions/Significance The results obtained in this study demonstrate that N. annulifera venom contains toxins able to induce local and systemic inflammation, which can contribute to lung damage and death. Moreover, the venom is immunogenic, an important feature that must be considered during the production of a therapeutic anti-N. annulifera antivenom. N. annulifera is a dangerous snake that belongs to the Elapidae family. It is found in some of the countries in Sub-Saharan Africa and has caused accidents in humans and dogs. In this study, we characterized some of the biochemical, toxic and immunogenic properties of N. annulifera venom. We showed that the venom is composed of several proteins, some of which display enzymatic activities, such as phospholipase A2, hyaluronidase, metalloproteinases and serine proteinases. The venom promoted disturbances in the human coagulation system and was cytotoxic to human epidermal cells. Using a mouse model, we showed that the venom promotes local reactions that were reduced with anti-inflammatory drugs. The venom caused systemic inflammation, lung hemorrhage and death. Further, the venom stimulated production of high antibody titers when injected into mice and the antiserum produced was able to inhibit venom-induced death. This study demonstrated that N. annulifera venom contains toxins that trigger inflammatory process, which may contribute to the envenomation pathology. Moreover, the venom is immunogenic, an important aspect for the production of an efficient N. annulifera antivenom.
Collapse
|
17
|
Fujioka K, Kubota Y, Takekawa M. Wheat Germ Agglutinin (WGA)-SDS-PAGE: A Novel Method for the Detection of O-GlcNAc-modified Proteins by Lectin Affinity Gel Electrophoresis. Bio Protoc 2018; 8:e3098. [PMID: 34532545 DOI: 10.21769/bioprotoc.3098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 11/02/2022] Open
Abstract
Diverse cytoplasmic and nuclear proteins dynamically change their molecular functions by O-linked β-N-acetylglucosamine (O-GlcNAc) modification on serine and/or threonine residues. Evaluation of the O-GlcNAcylation level of a specific protein, however, needs multiple and time-consuming steps if using conventional methods (e.g., immune-purification, mass spectrometric analysis). To overcome this drawback, we developed the following easy and rapid method for detection of O-GlcNAcylated proteins of interest. An O-GlcNAc affinity gel layer containing wheat germ agglutinin (WGA), a GlcNAc-specific lectin, selectively induces retardation of the mobility of O-GlcNAcylated proteins during electrophoresis. This WGA-layer thereby separates O-GlcNAcylated and non-modified forms of proteins, allowing the detection and quantification of the O-GlcNAcylation level of these proteins. This new method therefore provides qualitative and quantitative analysis of O-GlcNAcylated proteins in a relatively shorter time compared to conventional methods.
Collapse
Affiliation(s)
- Ko Fujioka
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yuji Kubota
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Mutsuhiro Takekawa
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
18
|
Mercier T, Bouvet M, Dubois-Deruy E, Dechaumes A, Beseme O, Richard V, Mulder P, Pinet F. Interplay Between Phosphorylation and O-GlcNAcylation of Sarcomeric Proteins in Ischemic Heart Failure. Front Endocrinol (Lausanne) 2018; 9:598. [PMID: 30344511 PMCID: PMC6182077 DOI: 10.3389/fendo.2018.00598] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/19/2018] [Indexed: 11/13/2022] Open
Abstract
Post-translational modifications (PTMs) of sarcomeric proteins could participate to left ventricular (LV) remodeling and contractile dysfunction leading in advanced heart failure (HF) with altered ejection fraction. Using an experimental rat model of HF (ligation of left coronary artery) and phosphoproteomic analysis, we identified an increase of desmin phosphorylation and a decrease of desmin O-N-acetylglucosaminylation (O-GlcNAcylation). We aim to characterize interplay between phosphorylation and O-GlcNAcylation for desmin in primary cultures of cardiomyocyte by specific O-GlcNAcase (OGA) inhibition with thiamet G and silencing O-GlcNAc transferase (OGT) and, in perfused heart perfused with thiamet G in sham- and HF-rats. In each model, we found an efficiency of O-GlcNAcylation modulation characterized by the levels of O-GlcNAcylated proteins and OGT expression (for silencing experiments in cells). In perfused heart, we found an improvement of cardiac function under OGA inhibition. But none of the treatments either in in vitro or ex vivo cardiac models, induced a modulation of desmin, phosphorylated and O-GlcNAcylated desmin expression, despite the presence of O-GlcNAc moities in cardiac desmin. Our data suggests no interplay between phosphorylation and O-GlcNAcylation of desmin in HF post-myocardial infarction. The future requires finding the targets in heart involved in cardiac improvement under thiamet G treatment.
Collapse
Affiliation(s)
- Thomas Mercier
- INSERM U1167 Unité d'Epidémiologie et de Santé Publique, Lille, France
| | - Marion Bouvet
- INSERM U1167 Unité d'Epidémiologie et de Santé Publique, Lille, France
| | | | - Arthur Dechaumes
- INSERM U1167 Unité d'Epidémiologie et de Santé Publique, Lille, France
| | - Olivia Beseme
- INSERM U1167 Unité d'Epidémiologie et de Santé Publique, Lille, France
| | - Vincent Richard
- INSERM UMR1096, Endothélium, Valvulopathies et Insuffisance Cardiaque, Rouen, France
| | - Paul Mulder
- INSERM UMR1096, Endothélium, Valvulopathies et Insuffisance Cardiaque, Rouen, France
| | - Florence Pinet
- INSERM U1167 Unité d'Epidémiologie et de Santé Publique, Lille, France
- *Correspondence: Florence Pinet
| |
Collapse
|