1
|
Luo J, le Cessie S, Willems van Dijk K, Hägg S, Grassmann F, van Heemst D, Noordam R. Mitochondrial DNA abundance and circulating metabolomic profiling: Multivariable-adjusted and Mendelian randomization analyses in UK Biobank. Mitochondrion 2025; 80:101991. [PMID: 39592086 DOI: 10.1016/j.mito.2024.101991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/11/2024] [Accepted: 11/22/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND Low leukocyte mitochondrial DNA (mtDNA) abundance has been associated with a higher risk of atherosclerotic cardiovascular disease, but through unclear mechanisms. We aimed to investigate whether low mtDNA abundance is associated with worse metabolomic profiling, as being potential intermediate phenotypes, using cross-sectional and genetic studies. METHODS Among 61,186 unrelated European participants from UK Biobank, we performed multivariable-adjusted linear regression analyses to examine the associations between mtDNA abundance and 168 NMR-based circulating metabolomic measures and nine metabolomic principal components (PCs) that collectively covered 91.5% of the total variation of individual metabolomic measures. Subsequently, we conducted Mendelian randomization (MR) to approximate the causal effects of mtDNA abundance on the individual metabolomic measures and their metabolomic PCs. RESULTS After correction for multiple testing, low mtDNA abundance was associated with 130 metabolomic measures, predominantly lower concentrations of some amino acids and higher concentrations of lipids, lipoproteins and fatty acids; moreover, mtDNA abundance was associated with seven out of the nine metabolomic PCs. Using MR, genetically-predicted low mtDNA abundance was associated with lower lactate (standardized beta and 95% confidence interval: -0.17; -0.26, -0.08), and higher acetate (0.15; 0.07,0.23), and unsaturation degree (0.14; 0.08,0.20). Similarly, genetically-predicted low mtDNA abundance was associated with lower metabolomic PC2 (related to lower concentrations of lipids and fatty acids), and higher metabolomic PC9 (related to lower concentrations of glycolysis-related metabolites). CONCLUSION Low mtDNA abundance is associated with metabolomic perturbations, particularly reflecting a pro-atherogenic metabolomic profile, which potentially could link low mtDNA abundance to higher atherosclerosis risk.
Collapse
Affiliation(s)
- Jiao Luo
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands; Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Saskia le Cessie
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands; Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Ko Willems van Dijk
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Sara Hägg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Felix Grassmann
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Institute for Clinical Research and Systems Medicine, Health and Medical University, Potsdam, Germany
| | - Diana van Heemst
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
2
|
de Menezes ECS, Malik AN. Absolute Quantification of Cellular and Cell-Free Mitochondrial DNA Copy Number from Human Blood and Urinary Samples Using Real Time Quantitative PCR. Methods Mol Biol 2025; 2878:233-257. [PMID: 39546266 DOI: 10.1007/978-1-0716-4264-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Mitochondrial DNA copy number (mtDNA-CN) in human body fluids is widely used as a biomarker of mitochondrial dysfunction in common metabolic diseases. Here we describe protocols to measure cellular and/or cell free (cf)-mtDNA-CN in human peripheral blood and urine. Cellular mtDNA is located inside the mitochondria where it encodes key subunits of the respiratory complexes in mitochondria and is usually normalized with reference to the nuclear genome as the mitochondrial genome to nuclear genome ratio (Mt/N) in either whole blood, peripheral blood mononuclear cells (PBMCs), or whole urine. Cf -mtDNA is usually found outside of the mitochondria, often released following mitochondrial damage, can trigger inflammatory pathways, and is usually measured as mtDNA-CN per volume of the starting material. Here we describe how to (1) separate whole blood into PBMCs, plasma, and serum fractions and whole urine into urinary supernatant and pellet, (2) prepare DNA from each of these fractions, (3) prepare reference standards for absolute quantification, (4) carry out qPCR for either relative or absolute quantification from test samples, (5) analyze qPCR data, and (6) calculate the sample size to adequately power studies. The protocol presented here is suitable for high throughput use and can be modified to quantify mtDNA from other body fluids, human cells, and tissues.
Collapse
Affiliation(s)
- Eliane Caseiro Soares de Menezes
- Diabetes and Obesity Theme, School of Cardiovascular Medicine and Sciences, Faculty of Life Sciences and Medicine, School of Life Course Science, King's College London, London, UK
| | - Afshan Navid Malik
- Diabetes and Obesity Theme, School of Cardiovascular Medicine and Metabolic Sciences, Faculty of Life Sciences and Medicine , King's College London , London, UK.
| |
Collapse
|
3
|
El Derbaly SA, Mohamed OA, Ghanaym NM, Azmy R, Abdelgayed AM, Abbas MA. Concurrent detection of the mitochondrial DNA copy number and the +35G/C polymorphism in the mitochondrial transcription factor A gene in endometriosis. Arch Biochem Biophys 2024; 761:110152. [PMID: 39265693 DOI: 10.1016/j.abb.2024.110152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/03/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND AND AIM Endometriosis is a chronic gynecological inflammatory disease. The mitochondrial DNA copy number (mtDNA CN) and mitochondrial transcription factor A (TFAM) are known to contribute to human pathologies and cancer. Therefore, this study aims to reveal the association of mtDNA CN and TFAM+35G/C (rs1937) polymorphism with the risk of endometriosis in Egyptian females. MATERIALS AND METHODS This case-control study involved 160 Egyptian females divided into two groups: 80 endometriosis cases and 80 controls. The mtDNA CN was quantified using a real-time quantitative PCR (qPCR), and the TFAM +35G/C SNP (rs1937) was genotyped using the TaqMan allelic discrimination assay technique. RESULTS The mtDNA CN was markedly decreased in endometriosis cases compared to controls (P < 0. 001). TFAM rs1937 genotypes and allele distributions were all in Hardy-Weinberg equilibrium. The GC genotype and the 'C' allele frequency (P = 0.015 and P = 0.017, respectively) were substantially greater in endometriosis cases. CONCLUSION Decreased mtDNA CN and the GC genotype of TFAM +35G/C polymorphism were significantly associated with the risk of endometriosis in Egyptian females.
Collapse
Affiliation(s)
- Sara A El Derbaly
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Egypt.
| | - Ola A Mohamed
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Egypt.
| | - Naglaa M Ghanaym
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Egypt.
| | - Rania Azmy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Egypt.
| | - Alaa M Abdelgayed
- Obstetrics and Gynecology Department, Faculty of Medicine, Menoufia University, Egypt.
| | - Mona A Abbas
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Egypt.
| |
Collapse
|
4
|
Zhang D, Li J, Zhao L, Yang Z, Wu C, Liu Y, Li W, Jin Z, Ma J. Mitochondrial DNA Leakage Promotes Persistent Pancreatic Acinar Cell Injury in Acute Pancreatitis via the cGAS-STING-NF-κB Pathway. Inflammation 2024:10.1007/s10753-024-02132-0. [PMID: 39180578 DOI: 10.1007/s10753-024-02132-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/30/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Previous research has shown that the activation of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway in macrophages can promote severe acute pancreatitis through the release of inflammatory factors. The role of this pathway in pancreatic acinar cells, however, has not been studied, and understanding its mechanism could be crucial. We analysed plasma from 50 acute pancreatitis (AP) patients and 10 healthy donors using digital PCR, which links mitochondrial DNA (mtDNA) levels to the severity of AP. Single-cell sequencing of the pancreas during AP revealed differentially expressed genes and pathways in acinar cells. Experimental studies using mouse and cell models, which included mtDNA staining and quantitative PCR, revealed mtDNA leakage and the activation of STING-related pathways, indicating potential inflammatory mechanisms in AP. In conclusion, our study revealed that the mtDNA-STING-nuclear factor κB(NF-κB) pathway in pancreatic acinar cells could be a novel pathogenic factor in AP.
Collapse
Affiliation(s)
- Deyu Zhang
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital; National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Jiayu Li
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital; National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
- College of Basic Medical Science, Naval Medical University, Shanghai, 200433, China
| | - Linlin Zhao
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital; National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Zhenghui Yang
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital; National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Chang Wu
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital; National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Yue Liu
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital; National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Wanshun Li
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital; National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
- College of Basic Medical Science, Naval Medical University, Shanghai, 200433, China
| | - Zhendong Jin
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital; National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China.
| | - Jiayi Ma
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital; National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
5
|
Wu Y, Li M, Ying H, Gu Y, Zhu Y, Gu Y, Huang L. Mitochondrial quality control alterations and placenta-related disorders. Front Physiol 2024; 15:1344951. [PMID: 38390447 PMCID: PMC10883312 DOI: 10.3389/fphys.2024.1344951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/17/2024] [Indexed: 02/24/2024] Open
Abstract
Mitochondria are ubiquitous in eukaryotic cells. Normal maintenance of function is the premise and basis for various physiological activities. Mitochondrial dysfunction is commonly observed in a wide range of pathological conditions, such as neurodegenerative, metabolic, cardiovascular, and various diseases related to foetal growth and development. The placenta is a highly energy-dependent organ that acts as an intermediary between the mother and foetus and functions to maintain foetal growth and development. Recent studies have demonstrated that mitochondrial dysfunction is associated with placental disorders. Defects in mitochondrial quality control mechanisms may lead to preeclampsia and foetal growth restriction. In this review, we address the quality control mechanisms of mitochondria and the relevant pathologies of mitochondrial dysfunction in placenta-related diseases, such as preeclampsia and foetal growth restriction. This review also investigates the relation between mitochondrial dysfunction and placental disorders.
Collapse
Affiliation(s)
- Yamei Wu
- Wuxi Maternity and Child Healthcare Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, China
- Wuxi Clinical Medical College of Nanjing Medical University, Wuxi, China
| | - Meng Li
- Wuxi Maternity and Child Healthcare Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, China
- Wuxi Clinical Medical College of Nanjing Medical University, Wuxi, China
| | - Hao Ying
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ying Gu
- Wuxi Maternity and Child Healthcare Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, China
- Wuxi Clinical Medical College of Nanjing Medical University, Wuxi, China
| | - Yunlong Zhu
- Wuxi Maternity and Child Healthcare Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, China
- Wuxi Clinical Medical College of Nanjing Medical University, Wuxi, China
| | - Yanfang Gu
- Wuxi Maternity and Child Healthcare Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, China
- Wuxi Clinical Medical College of Nanjing Medical University, Wuxi, China
| | - Lu Huang
- Wuxi Maternity and Child Healthcare Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, China
- Wuxi Clinical Medical College of Nanjing Medical University, Wuxi, China
| |
Collapse
|
6
|
Ding Z, Wei Y, Peng J, Wang S, Chen G, Sun J. The Potential Role of C-Reactive Protein in Metabolic-Dysfunction-Associated Fatty Liver Disease and Aging. Biomedicines 2023; 11:2711. [PMID: 37893085 PMCID: PMC10603830 DOI: 10.3390/biomedicines11102711] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), recently redefined as metabolic-dysfunction-associated fatty liver disease (MASLD), is liver-metabolism-associated steatohepatitis caused by nonalcoholic factors. NAFLD/MASLD is currently the most prevalent liver disease in the world, affecting one-fourth of the global population, and its prevalence increases with age. Current treatments are limited; one important reason hindering drug development is the insufficient understanding of the onset and pathogenesis of NAFLD/MASLD. C-reactive protein (CRP), a marker of inflammation, has been linked to NAFLD and aging in recent studies. As a conserved acute-phase protein, CRP is widely characterized for its host defense functions, but the link between CRP and NAFLD/MASLD remains unclear. Herein, we discuss the currently available evidence for the involvement of CRP in MASLD to identify areas where further research is needed. We hope this review can provide new insights into the development of aging-associated NAFLD biomarkers and suggest that modulation of CRP signaling is a potential therapeutic target.
Collapse
Affiliation(s)
- Zheng Ding
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Yuqiu Wei
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Jing Peng
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Siyu Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Guixi Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Jiazeng Sun
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| |
Collapse
|
7
|
Ramasamy T, Doke M, McLaughlin JP, Samikkannu T. Circadian disruption and psychostimulants dysregulates plasma acute-phase proteins and circulating cell-free mitochondrial DNA. Brain Behav Immun Health 2023; 31:100659. [PMID: 37455861 PMCID: PMC10344797 DOI: 10.1016/j.bbih.2023.100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
Background Previous studies have indicated a close link between the inflammatory response, exacerbated by circadian disruption and psychostimulants such as cocaine and methamphetamine (METH). Indicators of this inflammation include cortisol and acute-phase proteins (APPs) like C-reactive protein (CRP), complement C3 (C3), and serum amyloid A (SAA). The connection between these inflammation markers and circulating mitochondrial DNA (mtDNA) has been gaining attention. However, the specific influence of cocaine and METH on APP, cortisol, and mtDNA levels in mice with disturbed circadian rhythm has yet to be explored, which is the main aim of this research. Methods In our study, we employed 10-12-week-old male C57BL/6J mice, which underwent an imposed 6-h phase advance every six days for a total of eight cycles. This process led to the formation of mice with disrupted circadian rhythm and sleep disorders (CRSD). We administered 11 dosages of cocaine and METH 15 mg/kg and 20 mg/kg, respectively to these CRSD mice over the course of 22 days. Quantitative assessments of CRP, C3, SAA, cortisol, and cell-free circulating mtDNA were conducted using enzyme-linked immunosorbent assay (ELISA), Western Blot, and quantitative real-time polymerase chain reaction (qRT-PCR) techniques. Results The experiment revealed that disruption in circadian rhythm alone or cocaine or METH on their own increased CRP, C3, SAA, and cortisol levels in comparison with the control group. CRSD mice, exposed to cocaine and METH, showed a significant rise in CRP, C3, and SAA, while those without exposure remained stable. We also found a reduction in circulating cell-free mtDNA in all CRSD mice, regardless of cocaine and METH exposure. Conclusions The findings of our study affirm that the levels of CRP, C3, SAA, and cortisol, which reflect inflammation, are enhanced by circadian disruption, cocaine, and METH, and these levels show a strong correlation with the content of circulating cell-free mtDNA. Furthermore, it also shows the potential link between the disruption of the circadian clock and the inflammatory response triggered by cocaine and METH.
Collapse
Affiliation(s)
- Tamizhselvi Ramasamy
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, TX, 77843, USA
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamilnadu, India
| | - Mayur Doke
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, TX, 77843, USA
| | - Jay P. McLaughlin
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| | - Thangavel Samikkannu
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
8
|
Mori KM, McElroy JP, Weng DY, Chung S, Fadda P, Reisinger SA, Ying KL, Brasky TM, Wewers MD, Freudenheim JL, Shields PG, Song MA. Lung mitochondrial DNA copy number, inflammatory biomarkers, gene transcription and gene methylation in vapers and smokers. EBioMedicine 2022; 85:104301. [PMID: 36215783 PMCID: PMC9561685 DOI: 10.1016/j.ebiom.2022.104301] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/31/2022] [Accepted: 09/21/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Mitochondrial DNA copy number (mtCN) maintains cellular function and homeostasis, and is linked to nuclear DNA methylation and gene expression. Increased mtCN in the blood is associated with smoking and respiratory disease, but has received little attention for target organ effects for smoking or electronic cigarette (EC) use. METHODS Bronchoscopy biospecimens from healthy EC users, smokers (SM), and never-smokers (NS) were assessed for associations of mtCN with mtDNA point mutations, immune responses, nuclear DNA methylation and gene expression using linear regression. Ingenuity pathway analysis was used for enriched pathways. GEO and TCGA respiratory disease datasets were used to explore the involvement of mtCN-associated signatures. FINDINGS mtCN was higher in SM than NS, but EC was not statistically different from either. Overall there was a negative association of mtCN with a point mutation in the D-loop but no difference within groups. Positive associations of mtCN with IL-2 and IL-4 were found in EC only. mtCN was significantly associated with 71,487 CpGs and 321 transcripts. 263 CpGs were correlated with nearby transcripts for genes enriched in the immune system. EC-specific mtCN-associated-CpGs and genes were differentially expressed in respiratory diseases compared to controls, including genes involved in cellular movement, inflammation, metabolism, and airway hyperresponsiveness. INTERPRETATION Smoking may elicit a lung toxic effect through mtCN. While the impact of EC is less clear, EC-specific associations of mtCN with nuclear biomarkers suggest exposure may not be harmless. Further research is needed to understand the role of smoking and EC-related mtCN on lung disease risks. FUNDING The National Cancer Institute, the National Heart, Lung, and Blood Institute, the Food and Drug Administration Center for Tobacco Products, the National Center For Advancing Translational Sciences, and Pelotonia Intramural Research Funds.
Collapse
Affiliation(s)
- Kellie M Mori
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, United States
| | - Joseph P McElroy
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, United States
| | - Daniel Y Weng
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, United States
| | - Sangwoon Chung
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Paolo Fadda
- Genomics Shared Resource, The Ohio State University and James Cancer Hospital, Columbus, OH, United States
| | - Sarah A Reisinger
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, United States
| | - Kevin L Ying
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, United States
| | - Theodore M Brasky
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, United States
| | - Mark D Wewers
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Jo L Freudenheim
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
| | - Peter G Shields
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, United States.
| | - Min-Ae Song
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
9
|
Iannarelli NJ, Wade TJ, Dempster KS, Moore J, MacNeil AJ, O'Leary DD. No Mediation Effect of Telomere Length or Mitochondrial DNA Copy Number on the Association Between Adverse Childhood Experiences (ACEs) and Central Arterial Stiffness. J Am Heart Assoc 2022; 11:e026619. [DOI: 10.1161/jaha.122.026619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background
Adverse childhood experiences (ACEs) have been linked to increased cardiovascular disease (CVD) risk. Previous reports have suggested that accelerated biological aging—indexed by telomere length (TL) and mitochondrial DNA copy number (mtDNAcn)—may contribute to associations between ACEs and cardiovascular health outcomes. Here, we examine the potential mediating effects of TL and mtDNAcn on the association between ACEs and central arterial stiffness—an intermediate cardiovascular health outcome—as a novel pathway linking ACEs to CVD risk among young adults.
Methods and Results
One hundred and eighty‐five (n=102 women; mean age, 22.5±1.5 years) individuals provided information on ACEs. TL (kb per diploid cell) and mtDNAcn (copies per diploid cell) were quantified using quantitative polymerase chain reaction techniques. Central arterial stiffness was measured as carotid‐femoral pulse wave velocity (cfPWV; m/s). Multiple linear regression analyses were used to examine the associations between ACEs, TL, mtDNAcn, and cfPWV. ACEs were positively associated with cfPWV (
β
=0.147,
P
=0.035). TL (
β
=−0.170,
P
=0.011) and mtDNAcn (
β
=−0.159,
P
=0.019) were inversely associated with cfPWV. Neither TL (
β
=−0.027,
P
=0.726) nor mtDNAcn (
β
=0.038,
P
=0.620) was associated with ACEs. Neither marker mediated the association between ACEs and cfPWV.
Conclusions
An increasing number of ACEs were associated with a faster cfPWV and thus, a greater degree of central arterial stiffness. ACEs were not associated with either TL or mtDNAcn, suggesting that these markers do not represent a mediating pathway linking ACEs to central arterial stiffness.
Collapse
Affiliation(s)
- Nathaniel J. Iannarelli
- Department of Health Sciences Faculty of Applied Health Sciences Brock University St. Catharines Ontario Canada
- Brock‐Niagara Centre for Health and Well‐Being Brock University St. Catharines Ontario Canada
| | - Terrance J. Wade
- Department of Health Sciences Faculty of Applied Health Sciences Brock University St. Catharines Ontario Canada
- Brock‐Niagara Centre for Health and Well‐Being Brock University St. Catharines Ontario Canada
| | - Kylie S. Dempster
- Department of Health Sciences Faculty of Applied Health Sciences Brock University St. Catharines Ontario Canada
- Brock‐Niagara Centre for Health and Well‐Being Brock University St. Catharines Ontario Canada
| | - Jessy Moore
- Department of Health Sciences Faculty of Applied Health Sciences Brock University St. Catharines Ontario Canada
| | - Adam J. MacNeil
- Department of Health Sciences Faculty of Applied Health Sciences Brock University St. Catharines Ontario Canada
| | - Deborah D. O'Leary
- Department of Health Sciences Faculty of Applied Health Sciences Brock University St. Catharines Ontario Canada
- Brock‐Niagara Centre for Health and Well‐Being Brock University St. Catharines Ontario Canada
| |
Collapse
|
10
|
Preanalytical Variables in the Analysis of Mitochondrial DNA in Whole Blood and Plasma from Pancreatic Cancer Patients. Diagnostics (Basel) 2022; 12:diagnostics12081905. [PMID: 36010255 PMCID: PMC9406772 DOI: 10.3390/diagnostics12081905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 02/07/2023] Open
Abstract
Given the crucial role of mitochondria as the main cellular energy provider and its contribution towards tumor growth, chemoresistance, and cancer cell plasticity, mitochondrial DNA (mtDNA) could serve as a relevant biomarker. Thus, the profiling of mtDNA mutations and copy number variations is receiving increasing attention for its possible role in the early diagnosis and monitoring therapies of human cancers. This applies particularly to highly aggressive pancreatic cancer, which is often diagnosed late and is associated with poor prognosis. As current diagnostic procedures are based on imaging, tissue histology, and protein biomarkers with rather low specificity, tumor-derived mtDNA mutations detected from whole blood represents a potential significant leap forward towards early cancer diagnosis. However, for future routine use in clinical settings it is essential that preanalytics related to the characterization of mtDNA in whole blood are thoroughly standardized, controlled, and subject to proper quality assurance, yet this is largely lacking. Therefore, in this study we carried out a comprehensive preanalytical workup comparing different mtDNA extraction methods and testing important preanalytical steps, such as the use of different blood collection tubes, different storage temperatures, length of storage time, and yields in plasma vs. whole blood. To identify analytical and preanalytical differences, all variables were tested in both healthy subjects and pancreatic carcinoma patients. Our results demonstrated a significant difference between cancer patients and healthy subjects for some preanalytical workflows, while other workflows failed to yield statistically significant differences. This underscores the importance of controlling and standardizing preanalytical procedures in the development of clinical assays based on the measurement of mtDNA.
Collapse
|
11
|
McCastlain K, Howell CR, Welsh CE, Wang Z, Wilson CL, Mulder HL, Easton J, Mertens AC, Zhang J, Yasui Y, Hudson MM, Robison LL, Kundu M, Ness KK. The Association of Mitochondrial Copy Number With Sarcopenia in Adult Survivors of Childhood Cancer. J Natl Cancer Inst 2021; 113:1570-1580. [PMID: 33871611 PMCID: PMC8562958 DOI: 10.1093/jnci/djab084] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Adult childhood cancer survivors are at risk for frailty, including low muscle mass and weakness (sarcopenia). Using peripheral blood mitochondrial DNA copy number (mtDNAcn) as a proxy for functional mitochondria, this study describes cross-sectional associations between mtDNAcn and sarcopenia among survivors. METHODS Among 1762 adult childhood cancer survivors (51.6% male; median age = 29.4 years, interquartile range [IQR] = 23.3-36.8), with a median of 20.6 years from diagnosis (IQR = 15.2-28.2), mtDNAcn estimates were derived from whole-genome sequencing. A subset was validated by quantitative polymerase chain reaction and evaluated cross-sectionally using multivariable logistic regression for their association with sarcopenia, defined by race-, age-, and sex-specific low lean muscle mass or weak grip strength. All statistical tests were 2-sided. RESULTS The prevalence of sarcopenia was 27.0%, higher among female than male survivors (31.5% vs 22.9%; P < .001) and associated with age at diagnosis; 51.7% of survivors with sarcopenia were diagnosed ages 4-13 years (P = .01). Sarcopenia was most prevalent (39.0%) among central nervous system tumor survivors. Cranial radiation (odds ratio [OR] = 1.84, 95% confidence interval [CI] = 1.32 to 2.59) and alkylating agents (OR = 1.34, 95% CI = 1.04 to 1.72) increased, whereas glucocorticoids decreased odds (OR = 0.72, 95% CI = 0.56 to 0.93) of sarcopenia. mtDNAcn decreased with age (β = -0.81, P = .002) and was higher among female survivors (β = 9.23, P = .01) and among survivors with a C allele at mt.204 (β = -17.9, P = .02). In adjusted models, every standard deviation decrease in mtDNAcn increased the odds of sarcopenia 20% (OR = 1.20, 95% CI = 1.07 to 1.34). CONCLUSIONS A growing body of evidence supports peripheral blood mtDNAcn as a biomarker for adverse health outcomes; however, this study is the first to report an association between mtDNAcn and sarcopenia among childhood cancer survivors.
Collapse
Affiliation(s)
- Kelly McCastlain
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Carrie R Howell
- Department of Preventive Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Catherine E Welsh
- Department of Mathematics & Computer Science, Rhodes College, Memphis, TN, USA
| | - Zhaoming Wang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Carmen L Wilson
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Heather L Mulder
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - John Easton
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Ann C Mertens
- Aflac Cancer & Blood Disorders Center at Children’s Healthcare of Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Yutaka Yasui
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Melissa M Hudson
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Leslie L Robison
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Mondira Kundu
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Kirsten K Ness
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
12
|
Abstract
Mitochondrial DNA (mtDNA) is present in multiple copies in human cells. We evaluated cross-sectional associations of whole blood mtDNA copy number (CN) with several cardiometabolic disease traits in 408,361 participants of multiple ancestries in TOPMed and UK Biobank. Age showed a threshold association with mtDNA CN: among younger participants (<65 years of age), each additional 10 years of age was associated with 0.03 standard deviation (s.d.) higher level of mtDNA CN (P = 0.0014) versus a 0.14 s.d. lower level of mtDNA CN (P = 1.82 × 10-13) among older participants (≥65 years). At lower mtDNA CN levels, we found age-independent associations with increased odds of obesity (P = 5.6 × 10-238), hypertension (P = 2.8 × 10-50), diabetes (P = 3.6 × 10-7), and hyperlipidemia (P = 6.3 × 10-5). The observed decline in mtDNA CN after 65 years of age may be a key to understanding age-related diseases.
Collapse
|
13
|
Rosa H, Malik AN. Accurate Measurement of Cellular and Cell-Free Circulating Mitochondrial DNA Content from Human Blood Samples Using Real-Time Quantitative PCR. Methods Mol Biol 2021; 2277:247-268. [PMID: 34080155 DOI: 10.1007/978-1-0716-1270-5_15] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Changes in circulating mitochondrial DNA (mtDNA) are widely used to indicate mitochondrial dysfunction in common non-genetic diseases where mitochondrial dysfunction may play a role. However, the methodology being used is not always specific and reproducible, and most studies use whole blood rather than evaluating cellular and cell-free mtDNA separately. Cellular mtDNA is contained within the mitochondrion and encodes vital subunits of the OXPHOS machinery. Conversely, cell-free mtDNA can have harmful effects, triggering inflammatory responses and potentially contributing to pathogenic processes. In this chapter, we describe a protocol to accurately measure the amount of cellular and cell-free human mtDNA in peripheral blood. Absolute quantification is carried out using real-time quantitative PCR (qPCR) to quantify cellular mtDNA, measured as the mitochondrial genome to nuclear genome ratio (designated the Mt/N ratio) in whole blood and peripheral blood mononuclear cells (PBMCs) and the number of mtDNA copies per μL in plasma and serum. We describe how to (1) separate whole blood into PBMCs, plasma, and serum fractions, (2) prepare DNA from each of these fractions, (3) prepare dilution standards for absolute quantification, (4) carry out qPCR for either relative or absolute quantification from test samples, (5) analyze qPCR data, and (6) calculate the sample size to adequately power studies. The protocol presented here is suitable for high-throughput use and can be modified to quantify mtDNA from other body fluids, human cells, and tissues.
Collapse
Affiliation(s)
- Hannah Rosa
- Department of Diabetes, Faculty of Life Sciences and Medicine, School of Life Course Sciences, King's College London, London, UK
| | - Afshan N Malik
- Department of Diabetes, Faculty of Life Sciences and Medicine, School of Life Course Sciences, King's College London, London, UK.
| |
Collapse
|
14
|
Busnelli A, Navarra A, Levi-Setti PE. Qualitative and Quantitative Ovarian and Peripheral Blood Mitochondrial DNA (mtDNA) Alterations: Mechanisms and Implications for Female Fertility. Antioxidants (Basel) 2021; 10:antiox10010055. [PMID: 33466415 PMCID: PMC7824846 DOI: 10.3390/antiox10010055] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/24/2020] [Accepted: 12/30/2020] [Indexed: 01/03/2023] Open
Abstract
The reduction of female fertility over time is considered as a natural consequence of ovarian aging. The exact mechanism underlying this process is not fully elucidated. However, it is becoming increasingly evident that qualitative and quantitative mitochondrial genome alterations might play a relevant role. The former include mitochondrial DNA (mtDNA) damage caused by oxidative stress, the accumulation of acquired mtDNA mutations, the effects of inherited mtDNA mutations, and alterations in the mitochondrial stress response mechanism. The latter refer to alterations in the oocytes, granuolosa cells, and embryonic cells mtDNA content. The present review aims to investigate the evidence about: (1) the effect of qualitative and quantitative mtDNA alterations on female fertility, paying particular attention to those with a pathophysiology characterized by a relevant role of oxidative stress; (2) the use of oocytes, granulosa cells (GCs), embryonic cells, and peripheral blood cells mtDNA copy number as a female fertility surrogate biomarker; (3) experimental therapies tested to try to subvert the ovarian aging process with particular reference to antioxidant treatments.
Collapse
Affiliation(s)
- Andrea Busnelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
- Humanitas Clinical and Research Center, IRCCS, Department of Gynecology, Division of Gynecology and Reproductive Medicine, Fertility Center, Rozzano, 20089 Milan, Italy; (A.N.); (P.E.L.-S.)
- Correspondence:
| | - Annalisa Navarra
- Humanitas Clinical and Research Center, IRCCS, Department of Gynecology, Division of Gynecology and Reproductive Medicine, Fertility Center, Rozzano, 20089 Milan, Italy; (A.N.); (P.E.L.-S.)
| | - Paolo Emanuele Levi-Setti
- Humanitas Clinical and Research Center, IRCCS, Department of Gynecology, Division of Gynecology and Reproductive Medicine, Fertility Center, Rozzano, 20089 Milan, Italy; (A.N.); (P.E.L.-S.)
| |
Collapse
|
15
|
Prunicki M, Cauwenberghs N, Ataam JA, Movassagh H, Kim JB, Kuznetsova T, Wu JC, Maecker H, Haddad F, Nadeau K. Immune biomarkers link air pollution exposure to blood pressure in adolescents. Environ Health 2020; 19:108. [PMID: 33066786 PMCID: PMC7566149 DOI: 10.1186/s12940-020-00662-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/01/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Childhood exposure to air pollution contributes to cardiovascular disease in adulthood. Immune and oxidative stress disturbances might mediate the effects of air pollution on the cardiovascular system, but the underlying mechanisms are poorly understood in adolescents. Therefore, we aimed to identify immune biomarkers linking air pollution exposure and blood pressure levels in adolescents. METHODS We randomly recruited 100 adolescents (mean age, 16 years) from Fresno, California. Using central-site data, spatial-temporal modeling, and distance weighting exposures to the participant's home, we estimated average pollutant levels [particulate matter (PM), polyaromatic hydrocarbons (PAH), ozone (O3), carbon monoxide (CO) and nitrogen oxides (NOx)]. We collected blood samples and vital signs on health visits. Using proteomic platforms, we quantitated markers of inflammation, oxidative stress, coagulation, and endothelial function. Immune cellular characterization was performed via mass cytometry (CyTOF). We investigated associations between pollutant levels, cytokines, immune cell types, and blood pressure (BP) using partial least squares (PLS) and linear regression, while adjusting for important confounders. RESULTS Using PLS, biomarkers explaining most of the variance in air pollution exposure included markers of oxidative stress (GDF-15 and myeloperoxidase), acute inflammation (C-reactive protein), hemostasis (ADAMTS, D-dimer) and immune cell types such as monocytes. Most of these biomarkers were independently associated with the air pollution levels in fully adjusted regression models. In CyTOF analyses, monocytes were enriched in participants with the highest versus the lowest PM2.5 exposure. In both PLS and linear regression, diastolic BP was independently associated with PM2.5, NO, NO2, CO and PAH456 pollution levels (P ≤ 0.009). Moreover, monocyte levels were independently related to both air pollution and diastolic BP levels (P ≤ 0.010). In in vitro cell assays, plasma of participants with high PM2.5 exposure induced endothelial dysfunction as evaluated by eNOS and ICAM-1 expression and tube formation. CONCLUSIONS For the first time in adolescents, we found that ambient air pollution levels were associated with oxidative stress, acute inflammation, altered hemostasis, endothelial dysfunction, monocyte enrichment and diastolic blood pressure. Our findings provide new insights on pollution-related immunological and cardiovascular disturbances and advocate preventative measures of air pollution exposure.
Collapse
Affiliation(s)
- Mary Prunicki
- Sean N Parker Center for Allergy and Asthma Research, Stanford University, Stanford, USA
| | - Nicholas Cauwenberghs
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Jennifer Arthur Ataam
- Research and Innovation Unit, INSERM U999, DHU TORINO, Paris Sud University, Marie Lannelongue Hospital, Le Plessis Robinson, France
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, USA
| | - Hesam Movassagh
- Sean N Parker Center for Allergy and Asthma Research, Stanford University, Stanford, USA
| | - Juyong Brian Kim
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, USA
| | - Tatiana Kuznetsova
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Joseph C. Wu
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, USA
| | - Holden Maecker
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, USA
| | - Francois Haddad
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, USA
| | - Kari Nadeau
- Sean N Parker Center for Allergy and Asthma Research, Stanford University, Stanford, USA
| |
Collapse
|
16
|
Rosa HS, Ajaz S, Gnudi L, Malik AN. A case for measuring both cellular and cell-free mitochondrial DNA as a disease biomarker in human blood. FASEB J 2020; 34:12278-12288. [PMID: 32729179 DOI: 10.1096/fj.202000959rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022]
Abstract
Circulating mitochondrial DNA (mtDNA), widely studied as a disease biomarker, comprises of mtDNA located within mitochondria, indicative of mitochondrial function, and cell-free (cf) mtDNA linked to inflammation. The purpose of this study was to determine the ranges of, and relationship between, cellular and cf mtDNA in human blood. Whole blood from 23 controls (HC) and 20 patients with diabetes was separated into peripheral blood mononuclear cells (PBMCs), plasma, and serum. Total DNA was isolated and mtDNA copy numbers were determined using absolute quantification. Cellular mtDNA content in PBMCs was higher than in peripheral blood and a surprisingly high level of cf mtDNA was present in serum and plasma of HC, with no direct relationship between cellular and cf mtDNA content within individuals. Diabetes patients had similar levels of cellular mtDNA compared to healthy participants but a significantly higher cf mtDNA content. Furthermore, only in patients with diabetes, we observed a correlation between whole blood and plasma mtDNA levels, indicating that the relationship between cellular and cf mtDNA content is affected by disease status. In conclusion, when evaluating mtDNA in human blood as a biomarker of mitochondrial dysfunction, it is important to measure both cellular and cf mtDNA.
Collapse
Affiliation(s)
- Hannah S Rosa
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Saima Ajaz
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Luigi Gnudi
- School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Afshan N Malik
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.,School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
17
|
Gentiluomo M, Katzke VA, Kaaks R, Tjønneland A, Severi G, Perduca V, Boutron-Ruault MC, Weiderpass E, Ferrari P, Johnson T, Schulze MB, Bergmann M, Trichopoulou A, Karakatsani A, La Vecchia C, Palli D, Grioni S, Panico S, Tumino R, Sacerdote C, Bueno-de-Mesquita B, Vermeulen R, Sandanger TM, Quirós JR, Rodriguez-Barranco M, Amiano P, Colorado-Yohar S, Ardanaz E, Sund M, Khaw KT, Wareham NJ, Schmidt JA, Jakszyn P, Morelli L, Canzian F, Campa D. Mitochondrial DNA Copy-Number Variation and Pancreatic Cancer Risk in the Prospective EPIC Cohort. Cancer Epidemiol Biomarkers Prev 2020; 29:681-686. [PMID: 31932413 PMCID: PMC7611119 DOI: 10.1158/1055-9965.epi-19-0868] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/28/2019] [Accepted: 01/07/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Mitochondrial DNA (mtDNA) copy number in peripheral blood has been found to be associated with risk of developing several cancers. However, data on pancreatic ductal adenocarcinoma (PDAC) are very limited. METHODS To further our knowledge on this topic, we measured relative mtDNA copy number by a quantitative real-time PCR assay in peripheral leukocyte samples of 476 PDAC cases and 357 controls nested within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. RESULTS We observed lower mtDNA copy number with advancing age (P = 6.54 × 10-5) and with a high body mass index (BMI) level (P = 0.004) and no association with sex, smoking behavior, and alcohol consumption. We found an association between increased mtDNA copy number and decreased risk of developing PDAC with an odds ratios (OR) of 0.35 [95% confidence interval (CI), 0.16-0.79; P = 0.01] when comparing the fifth quintile with the first using an unconditional logistic regression and an OR of 0.19 (95% CI, 0.07-0.52; P = 0.001) with a conditional analysis. Analyses stratified by BMI showed an association between high mtDNA copy number and decreased risk in the stratum of normal weight, consistent with the main analyses. CONCLUSIONS Our results suggest a protective effect of a higher number of mitochondria, measured in peripheral blood leukocytes, on PDAC risk. IMPACT Our findings highlight the importance of understanding the mitochondrial biology in pancreatic cancer.
Collapse
Affiliation(s)
- Manuel Gentiluomo
- Department of Biology, University of Pisa, Pisa, Italy
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Verena A Katzke
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gianluca Severi
- CESP, Fac. de médecine - Univ. Paris-Sud, Fac. de médecine - UVSQ, INSERM, Université Paris-Saclay, Villejuif, France
- Gustave Roussy, Villejuif, France
| | - Vittorio Perduca
- CESP, Fac. de médecine - Univ. Paris-Sud, Fac. de médecine - UVSQ, INSERM, Université Paris-Saclay, Villejuif, France
- Gustave Roussy, Villejuif, France
- Laboratoire de Mathématiques Appliquées MAP5 (UMR CNRS 8145), Université Paris Descartes, Paris, France
| | - Marie-Christine Boutron-Ruault
- CESP, Fac. de médecine - Univ. Paris-Sud, Fac. de médecine - UVSQ, INSERM, Université Paris-Saclay, Villejuif, France
- Gustave Roussy, Villejuif, France
| | - Elisabete Weiderpass
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Pietro Ferrari
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Theron Johnson
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Institute of Nutritional Sciences, University of Potsdam, Nuthetal, Germany
| | - Manuela Bergmann
- Human Study Center, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | | | - Anna Karakatsani
- Hellenic Health Foundation, Athens, Greece
- Pulmonary Medicine Department, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Haidari, Greece
| | - Carlo La Vecchia
- Hellenic Health Foundation, Athens, Greece
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milano, Italy
| | - Domenico Palli
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network - ISPRO, Florence, Italy
| | - Sara Grioni
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy
| | - Salvatore Panico
- Dipartimento di medicina clinica e chirurgia, Federico II University, Naples, Italy
| | - Rosario Tumino
- Cancer Registry and Histopathology Department, Azienda Sanitaria Provinciale Ragusa (ASP), Ragusa, Italy
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University Hospital and Center for Cancer Prevention (CPO), Turin, Italy
| | - Bas Bueno-de-Mesquita
- Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, St. Mary's Campus, London, United Kingdom
| | - Roel Vermeulen
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
- Environmental Epidemiology Division, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Torkjel M Sandanger
- Departement of Community Medicine, UiT-the Arctic University of Norway, Troms, Norway
| | | | - Miguel Rodriguez-Barranco
- Andalusian School of Public Health (EASP), Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Universidad de Granada, Granada, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Pilar Amiano
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Public Health Division of Gipuzkoa, Biodonostia Research Institute, Health Department, San Sebastian, Spain
| | - Sandra Colorado-Yohar
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain
- Research Group on Demography and Health, National Faculty of Public Health, University of Antioquia, MedellÌn, Colombia
| | - Eva Ardanaz
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Navarra Public Health Institute, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Malin Sund
- Department of Surgical and Perioperative Sciences/Surgery, Umeå University, Umeå, Sweden
| | - Kay-Tee Khaw
- University of Cambridge, School of Clinical Medicine Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, United Kingdom
| | - Julie A Schmidt
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Paula Jakszyn
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- Facultat Ciències Salut Blanquerna, Universitat Ramon Llull, Barcelona, Spain
| | - Luca Morelli
- General Surgery, Department of Surgery, Translational and New Technologies, University of Pisa, Pisa, Italy
- EndoCAS (Center for Computer Assisted Surgery), University of Pisa, Pisa, Italy
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy.
| |
Collapse
|
18
|
Bordoni L, Fedeli D, Fiorini D, Gabbianelli R. Extra Virgin Olive Oil and Nigella sativa Oil Produced in Central Italy: A Comparison of the Nutrigenomic Effects of Two Mediterranean Oils in a Low-Grade Inflammation Model. Antioxidants (Basel) 2019; 9:E20. [PMID: 31878334 PMCID: PMC7022781 DOI: 10.3390/antiox9010020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/16/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
Extra virgin olive (EVO) oil and Nigella sativa (NG) oil are two well-known Mediterranean foods whose consumption has been associated with beneficial effects on human health. This study investigates the nutrigenomic properties of two high quality EVO and NG oils in an in vitro model of low-grade inflammation of human macrophages (THP-1 cells). The aim was to assess whether these healthy foods could modulate inflammation through antioxidant and epigenetic mechanisms. When THP-1 cells were co-exposed to both lipopolysaccharides (LPS)-induced inflammation and oils, both EVO and NG oils displayed anti-inflammatory activity. Both oils were able to restore normal expression levels of DNMT3A and HDAC1 (but not DNMT3B), which were altered under inflammatory conditions. Moreover, EVO oil was able to prevent the increase in TET2 expression and reduce global DNA methylation that were measured in inflamed cells. Due to its antioxidant properties, EVO oil was particularly efficient in restoring normal levels of membrane fluidity, which, on the contrary, were reduced in the presence of inflammation. In conclusion, these data support the hypothesis that these Mediterranean oils could play a major role in the modulation of low-grade inflammation and metabolic syndrome prevention. However, NS oil seems to be more efficient in the control of proinflammatory cytokines, whereas EVO oil better helps to counteract redox imbalance. Further studies that elucidate the nutrigenomic properties of local produce might help to promote regional the production and consumption of high-quality food, which could also help the population to maintain and promote health.
Collapse
Affiliation(s)
- Laura Bordoni
- School of Pharmacy, Unit of Molecular Biology, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy
| | - Donatella Fedeli
- School of Pharmacy, Unit of Molecular Biology, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy
| | - Dennis Fiorini
- School of Science and Technology, Chemistry Division, University of Camerino, Via Sant'Agostino, 62032 Camerino, MC, Italy
| | - Rosita Gabbianelli
- School of Pharmacy, Unit of Molecular Biology, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy
| |
Collapse
|
19
|
Fazzini F, Lamina C, Fendt L, Schultheiss UT, Kotsis F, Hicks AA, Meiselbach H, Weissensteiner H, Forer L, Krane V, Eckardt KU, Köttgen A, Kronenberg F. Mitochondrial DNA copy number is associated with mortality and infections in a large cohort of patients with chronic kidney disease. Kidney Int 2019; 96:480-488. [PMID: 31248648 DOI: 10.1016/j.kint.2019.04.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/29/2019] [Accepted: 04/05/2019] [Indexed: 12/16/2022]
Abstract
Damage of mitochondrial DNA (mtDNA) with reduction in copy number has been proposed as a biomarker for mitochondrial dysfunction and oxidative stress. Chronic kidney disease (CKD) is associated with increased mortality and risk of cardiovascular disease, but the underlying mechanisms remain incompletely understood. Here we investigated the prognostic role of mtDNA copy number for cause-specific mortality in 4812 patients from the German Chronic Kidney Disease study, an ongoing prospective observational national cohort study of patients with CKD stage G3 and A1-3 or G1-2 with overt proteinuria (A3) at enrollment. MtDNA was quantified in whole blood using a plasmid-normalized PCR-based assay. At baseline, 1235 patients had prevalent cardiovascular disease. These patients had a significantly lower mtDNA copy number than patients without cardiovascular disease (fully-adjusted model: odds ratio 1.03, 95% confidence interval [CI] 1.01-1.05 per 10 mtDNA copies decrease). After four years of follow-up, we observed a significant inverse association between mtDNA copy number and all-cause mortality, adjusted for kidney function and cardiovascular disease risk factors (hazard ratio 1.37, 95% CI 1.09-1.73 for quartile 1 compared to quartiles 2-4). When grouped by causes of death, estimates pointed in the same direction for all causes but in a fully-adjusted model decreased copy numbers were significantly lower only in infection-related death (hazard ratio 1.82, 95% CI 1.08-3.08). A similar association was observed for hospitalizations due to infections in 644 patients (hazard ratio 1.19, 95% CI 1.00-1.42 in the fully-adjusted model). Thus, our data support a role of mitochondrial dysfunction in increased cardiovascular disease and mortality risks as well as susceptibility to infections in patients with CKD.
Collapse
Affiliation(s)
- Federica Fazzini
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Claudia Lamina
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Liane Fendt
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ulla T Schultheiss
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany; Renal Division, Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Fruzsina Kotsis
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Andrew A Hicks
- Institute for Biomedicine, EURAC Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Heike Meiselbach
- Department of Nephrology and Hypertension, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Hansi Weissensteiner
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas Forer
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Vera Krane
- Division of Nephrology, Department of Internal Medicine I, Division of Nephrology and Comprehensive Heart Failure Centre, University Hospital Würzburg, Würzburg, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Hypertension, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Florian Kronenberg
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria.
| | | |
Collapse
|
20
|
Calpain drives pyroptotic vimentin cleavage, intermediate filament loss, and cell rupture that mediates immunostimulation. Proc Natl Acad Sci U S A 2019; 116:5061-5070. [PMID: 30796192 DOI: 10.1073/pnas.1818598116] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Pyroptosis is an inflammatory form of programmed cell death following cellular damage or infection. It is a lytic process driven by gasdermin D-mediated cellular permeabilization and presumed osmotic forces thought to induce swelling and rupture. We found that pyroptotic cells do not spontaneously rupture in culture but lose mechanical resilience. As a result, cells were susceptible to rupture by extrinsic forces, such as shear stress or compression. Cell analyses revealed that all major cytoskeleton components were disrupted during pyroptosis and that sensitivity to rupture was calpain-dependent and linked with cleavage of vimentin and loss of intermediate filaments. Moreover, while release of lactate dehydrogenase (LDH), HMGB1, and IL-1β occurred without rupture, rupture was required for release of large inflammatory stimuli-ASC specks, mitochondria, nuclei, and bacteria. Importantly, supernatants from ruptured cells were more immunostimulatory than those from nonruptured cells. These observations reveal undiscovered cellular events occurring during pyroptosis, define the mechanisms driving pyroptotic rupture, and highlight the immunologic importance of this event.
Collapse
|
21
|
Plasma mtDNA Analysis Aids in Predicting Pancreatic Necrosis in Acute Pancreatitis Patients: A Pilot Study. Dig Dis Sci 2018; 63:2975-2982. [PMID: 30094625 DOI: 10.1007/s10620-018-5227-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/26/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Specific plasma biomarkers in predicting pancreatic necrosis (PNec) are needed in treating acute pancreatitis (AP). AIMS To investigate the prognostic value of plasma mitochondrial DNA fragments (mtDNA) in patient with AP for PNec. METHODS AP patients with symptoms onset within 72 h were prospectively enrolled from June 2015 through June 2017 and were assessed for PNec using contrast-enhanced CT scan. Plasma mtDNA concentration (specific mitochondrial gene ND1) was measured using qRT-PCR. RESULTS Of the 74 AP patients included, significant higher median level of plasma mtDNA was found in severe AP patients than in mild AP patients and healthy controls, but not in moderately severe AP patients. Patients with PNec had higher level of plasma mtDNA than those without PNec (774.2 [IQR 397.6-2205.0] vs. 169.5 [IQR 73.6-683.4] pg/ml, P < 0.05). The area under the receiver operator characteristic curve (ROC-AUC) of mtDNA for predicting PNec was higher than that of CRP (0.813 [95% CI 0.705-0.895] vs. 0.678 [95% CI 0.558-0.783]). Using a cutoff value of 302.5 pg/ml, the sensitivity and specificity for diagnosing PNec were 90.9 and 68.3%, respectively. Finally, plasma mtDNA levels decreased significantly after continuous renal replacement therapy (717.7 [IQR 307.00-1370.00] vs. 237.5 [IQR 117.20-464.80] pg/ml, P < 0.01). CONCLUSIONS Elevated plasma mtDNA content in AP patients may be used as a more accurate early predictor of PNec in contrast to traditional CRP.
Collapse
|
22
|
Kacerovsky M, Vlkova B, Musilova I, Andrys C, Pliskova L, Zemlickova H, Stranik J, Halada P, Jacobsson B, Celec P. Amniotic fluid cell-free DNA in preterm prelabor rupture of membranes. Prenat Diagn 2018; 38:1086-1095. [PMID: 30276834 DOI: 10.1002/pd.5366] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/13/2018] [Accepted: 09/20/2018] [Indexed: 12/19/2022]
Abstract
INTRODUCTION We evaluated the levels of cell-free nuclear DNA (nDNA) and cell-free mitochondrial DNA (mtDNA) in the amniotic fluid supernatant from pregnancies complicated by preterm prelabor rupture of membranes (PPROM) based on evidence of microbial invasion of the amniotic cavity (MIAC) and/or intra-amniotic inflammation (IAI). MATERIAL AND METHODS A total of 155 women with PPROM were included in this study. Amniotic fluid samples were obtained by transabdominal amniocentesis. The levels of cell-free nDNA and mtDNA in the amniotic fluid supernatant were assessed and quantified by real-time polymerase chain reaction. RESULTS The levels of cell-free nDNA and mtDNA were higher in women with MIAC and IAI than in women without these conditions (nDNA: with MIAC: median 3.9 × 104 genome equivalent [GE]/mL vs without MIAC: median 1.2 × 104 GE/mL, with IAI: median: 5.3 × 104 GE/mL vs without IAI: median 1.2 × 104 GE/mL; mtDNA: with MIAC: median 9.2 × 105 GE/mL vs without MIAC: median 2.5 × 105 GE/mL, with IAI: median 1.1 × 106 GE/mL vs without IAI: median 2.5 × 105 ; all P values ≤ 0.01). Women with the microbial-associated IAI showed the highest levels of cell-free nDNA and mtDNA. CONCLUSIONS Cell-free nDNA and mtDNA are constituents of the amniotic fluid supernatant from PPROM pregnancies. Both cell-free nDNA and mtDNA are involved in the intra-amniotic inflammatory response in women with PPROM.
Collapse
Affiliation(s)
- Marian Kacerovsky
- Department of Obstetrics and Gynecology, Charles University, Faculty of Medicine Hradec Kralove, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Barbora Vlkova
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Ivana Musilova
- Department of Obstetrics and Gynecology, Charles University, Faculty of Medicine Hradec Kralove, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ctirad Andrys
- Department of Clinical Immunology and Allergy, Charles University, Faculty of Medicine Hradec Kralove, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Lenka Pliskova
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Helena Zemlickova
- Institute of Clinical Microbiology, Charles University, Faculty of Medicine Hradec Kralove, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jaroslav Stranik
- Department of Obstetrics and Gynecology, Charles University, Faculty of Medicine Hradec Kralove, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Petr Halada
- Department of Obstetrics and Gynecology, Charles University, Faculty of Medicine Hradec Kralove, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden.,Department of Genetics and Bioinformatics, Division of Health Data and Digitalisation, Norwegian Institute of Public Health, Oslo, Norway
| | - Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| |
Collapse
|
23
|
Busnelli A, Lattuada D, Ferrari S, Reschini M, Colciaghi B, Somigliana E, Fedele L, Ferrazzi E. Mitochondrial DNA Copy Number in Peripheral Blood in the First Trimester of Pregnancy and Different Preeclampsia Clinical Phenotypes Development: A Pilot Study. Reprod Sci 2018; 26:1054-1061. [PMID: 30296910 DOI: 10.1177/1933719118804410] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Inflammation and oxidative stress are intrinsically linked to early poor placentation, typical of pregnancies complicated by preeclampsia associated with intrauterine growth restriction (PE-IUGR). Low mitochondrial DNA copy number (mtDNAcn) in peripheral blood constitutes a good peripheral surrogate marker of inflammation and oxidative stress. On these basis, we explored a possible correlation between mtDNAcn in peripheral blood in the first trimester of pregnancy and the PE-IUGR onset. To shed light on this issue, we setup a nested case-control study from a prospective cohort of pregnant women undergoing first-trimester aneuploidies screening. Two groups of patients affected by PE classified according to the clinical phenotype were identified: (1) patients who developed PE-IUGR and (2) patients who developed PE associated with appropriate for gestational age intrauterine fetal growth (PE-AGAf). Controls were women with a physiologic pregnancy matched to cases on the basis of age (±6 months, ratio 2:1). Mitochondrial DNA copy number was quantified using real-time polymerase chain reaction and normalized to nuclear DNA. The median (interquartile range) mtDNAcn in peripheral blood in patients with PE-IUGR (n = 12) and in patients with PE-AGAf (n = 16) was 70 (44-97) and 108 (95-145), respectively (P = .004). Both these values were significantly lower than that detected in the control group (161[133-183], P < .001). The area under the receiver-operator curve for PE-IUGR and PE-AGAf were 0.94 (95% confidence interval [CI]: 0.88-1.00, P < .001) and 0.81 (95%CI: 0.70-0.91, P < .001), respectively. In conclusion, MtDNAcn in peripheral blood resulted significantly lower both in patients affected by PE-IUGR and in those affected by PE-AGAf when compared to controls. The accuracy of this biomarker resulted particularly good in predicting PE-IUGR.
Collapse
Affiliation(s)
- Andrea Busnelli
- 1 Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy.,2 Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Debora Lattuada
- 2 Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Ferrari
- 2 Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Marco Reschini
- 2 Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Barbara Colciaghi
- 2 Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Edgardo Somigliana
- 1 Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy.,2 Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Luigi Fedele
- 1 Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy.,2 Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Enrico Ferrazzi
- 1 Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy.,2 Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
24
|
Mitochondrial DNA copy number is associated with psychosis severity and anti-psychotic treatment. Sci Rep 2018; 8:12743. [PMID: 30143692 PMCID: PMC6109159 DOI: 10.1038/s41598-018-31122-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 08/08/2018] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial pathology has been implicated in the pathogenesis of psychotic disorders. A few studies have proposed reduced leukocyte mitochondrial DNA (mtDNA) copy number in schizophrenia and bipolar disorder type I, compared to healthy controls. However, it is unknown if mtDNA copy number alteration is driven by psychosis, comorbidity or treatment. Whole blood mtDNA copy number was determined in 594 psychosis patients and corrected for platelet to leukocyte count ratio (mtDNAcnres). The dependence of mtDNAcnres on clinical profile, metabolic comorbidity and antipsychotic drug exposure was assessed. mtDNAcnres was reduced with age (β = −0.210, p < 0.001), use of clozapine (β = −0.110,p = 0.012) and risperidone (β = −0.109,p = 0.014), dependent on prescribed dosage (p = 0.006 and p = 0.026, respectively), and the proportion of life on treatment (p = 0.006). Clozapine (p = 0.0005) and risperidone (p = 0.0126) had a reducing effect on the mtDNA copy number also in stem cell-derived human neurons in vitro at therapeutic plasma levels. For patients not on these drugs, psychosis severity had an effect (β = −0.129, p = 0.017), similar to age (β = −0.159, p = 0.003) and LDL (β = −0.119, p = 0.029) on whole blood mtDNAcnres. Further research is required to determine if mtDNAcnres reflects any psychosis-intrinsic mitochondrial changes.
Collapse
|
25
|
Busnelli A, Lattuada D, Rossetti R, Paffoni A, Persani L, Fedele L, Somigliana E. Mitochondrial DNA copy number in peripheral blood: a potential non-invasive biomarker for female subfertility. J Assist Reprod Genet 2018; 35:1987-1994. [PMID: 30120634 DOI: 10.1007/s10815-018-1291-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/09/2018] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Low mitochondrial DNA (mtDNA) content in oocytes and in cumulus cells is an indicator of poor oocyte quality. Moreover, initial evidence showed a correlation between mtDNA content in cumulus cells and mtDNA copy number in peripheral blood cells. On these bases, we deemed of interest investigating the correlation between mtDNA copy number in peripheral blood and natural fecundity. METHODS This is a nested case-control study drawn from a prospective cohort of pregnant women referred for routine first trimester screening for aneuploidies (from 11 + 0 to 12 + 6 weeks of gestation) between January 2012 and March 2013 at the "Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico" of Milan, Italy. Cases were subfertile women who attempted to become pregnant for 12-24 months. Controls were the two subsequently age-matched women who became pregnant in less than 1 year. MtDNA was quantified using real-time PCR and normalized to nuclear DNA. RESULTS One hundred and four subfertile women and 208 controls were selected. The median (IQR) mtDNA copy number was 95 (73-124) and 145 (106-198), respectively (p < 0.001). The area under the ROC curve was 0.73 (95% CI 0.67-0.79) (p < 0.001). The Youden index was 105 mtDNA copy number. The crude OR for subfertility in women with mtDNA copy number below this threshold was 5.72 (95% CI 3.43-9.55). The accuracy of mtDNA copy number assessment in peripheral blood progressively decreased with increasing female age. CONCLUSIONS Low mtDNA copy number in peripheral blood is associated with an increased risk of subfertility and may represent a biomarker of natural fecundity.
Collapse
Affiliation(s)
- Andrea Busnelli
- Infertility Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via M. Fanti, 6, 20122, Milan, Italy. .,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
| | - Debora Lattuada
- Department of Obstetrics and Gynaecology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Raffaella Rossetti
- Division of Endocrine and Metabolic Diseases, San Luca Hospital, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Alessio Paffoni
- Infertility Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via M. Fanti, 6, 20122, Milan, Italy
| | - Luca Persani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Division of Endocrine and Metabolic Diseases, San Luca Hospital, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Luigi Fedele
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Department of Obstetrics and Gynaecology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Edgardo Somigliana
- Infertility Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via M. Fanti, 6, 20122, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
26
|
Lv J, Bhatia M, Wang X. Roles of Mitochondrial DNA in Energy Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1038:71-83. [PMID: 29178070 DOI: 10.1007/978-981-10-6674-0_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Mitochondria are independent double-membrane organelles responsible for energy production, specifically by completing oxidative phosphorylation. Mitochondria are essential to regulate energy metabolism, signaling pathways, and cell death. Mitochondrial DNA (mtDNA) can be altered by metabolic disorders, oxidative stress, or inflammation in the progression and development of various diseases. In this chapter, we overview the role of mtDNA in energy metabolism and the diseases that are associated with mtDNA abnormality, with a special focus on the major factors which regulate the mechanism of mtDNA in metabolism.
Collapse
Affiliation(s)
- Jiapei Lv
- Zhongshan Hospital Institute of Fudan University, Shanghai Medical School, Shanghai, China
| | - Madhav Bhatia
- Department of Pathology, University of Otago, Wellington, New Zealand
| | - Xiangdong Wang
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Medical College, Shanghai, China.
| |
Collapse
|
27
|
Prestes PR, Charchar FJ. Is there a link between mitochondrial DNA and blood pressure? J Hum Hypertens 2017; 31:761-762. [DOI: 10.1038/jhh.2017.73] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|