1
|
Singh A, Singh K, Sharma A, Sharma S, Batra K, Joshi K, Singh B, Kaur K, Chadha R, Bedi PMS. Mechanistic insight and structure activity relationship of isatin-based derivatives in development of anti-breast cancer agents. Mol Cell Biochem 2024; 479:1165-1198. [PMID: 37329491 DOI: 10.1007/s11010-023-04786-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023]
Abstract
Breast cancer is most common in women and most difficult to manage that causes highest mortality and morbidity among all diseases and posing significant threat to mankind as well as burden on healthcare system. In 2020, 2.3 million women were diagnosed with breast cancer and it was responsible for 685,000 deaths globally, suggesting the severity of this disease. Apart from that, relapsing of cases and resistance among available anticancer drugs along with associated side effects making the situation even worse. Therefore, it is a global emergency to develop potent and safer antibreast cancer agents. Isatin is most versatile and flying one nucleus which is an integral competent and various anticancer agent in clinical practice and widely used by various research groups around the globe for development of novel, potent, and safer antibreast cancer agents. This review will shed light on the structural insights and antiproliferative potential of various isatin-based derivatives developed for targeting breast cancer in last three decades that will help researchers in design and development of novel, potent, and safer isatin-based antibreast cancer agents.
Collapse
Affiliation(s)
- Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| | - Karanvir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Aman Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Sambhav Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Kevin Batra
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Kaustubh Joshi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Brahmjeet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Kirandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Renu Chadha
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Preet Mohinder Singh Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
- Drug and Pollution Testing Laboratory, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
2
|
Al-Warhi T, Rashad NM, Almahli H, Abdel-Aziz MM, Elsayed ZM, Shahin MI, Eldehna WM. Design and synthesis of benzo[b]thiophene-based hybrids as novel antitubercular agents against MDR/XDR Mycobacterium tuberculosis. Arch Pharm (Weinheim) 2024; 357:e2300529. [PMID: 37946574 DOI: 10.1002/ardp.202300529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
In an effort to support the global fight against tuberculosis (TB), which is widely recognized as the most lethal infectious disease worldwide, we present the design and synthesis of new benzo[b]thiophene-based hybrids as promising candidates for the management of multidrug-resistant (MDR)/extensively drug-resistant (XDR) Mycobacterium tuberculosis. The isatin motif was incorporated into the target hybrids as it represents a privileged scaffold in antitubercular drug discovery. Since lipophilicity plays a pivotal role in the anti-TB agents' activity, the lipophilicity of the target hybrids was manipulated via the development of two series of N-1 methyl and N-1 benzyl substituted isatins (6a-h and 9a-h, respectively). Screening of the target hybrids was first performed against drug-sensitive M. tuberculosis (ATCC 25177). The structure-activity relationship outputs highlighted that incorporation of 3-unsubstituted benzo[b]thiophene and 5-methoxy isatin moieties was favorable for the antimycobacterial activity. Thereafter, the most potent molecules (6b-h, 9c-e, and 9h) were evaluated against the resistant strains MDR-TB (ATCC 35822) as well as against XDR-TB (RCMB 2674) where they displayed promising activity. To evaluate the safety of the target hybrids, an sulforhodamine B assay was conducted to determine their possible cytotoxic effects on VERO cells.
Collapse
Affiliation(s)
- Tarfah Al-Warhi
- Department of Chemistry, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nermeen M Rashad
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Hadia Almahli
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Marwa M Abdel-Aziz
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo, Egypt
| | - Zainab M Elsayed
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mai I Shahin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
3
|
Taghour MS, Elkady H, Eldehna WM, El-Deeb NM, Kenawy AM, Elkaeed EB, Alsfouk AA, Alesawy MS, Metwaly AM, Eissa IH. Design and synthesis of thiazolidine-2,4-diones hybrids with 1,2-dihydroquinolones and 2-oxindoles as potential VEGFR-2 inhibitors: in-vitro anticancer evaluation and in-silico studies. J Enzyme Inhib Med Chem 2022; 37:1903-1917. [PMID: 35801403 PMCID: PMC9272924 DOI: 10.1080/14756366.2022.2085693] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A thiazolidine-2,4-dione nucleus was molecularly hybridised with the effective antitumor moieties; 2-oxo-1,2-dihydroquinoline and 2-oxoindoline to obtain new hybrids with potential activity against VEGFR-2. The cytotoxic effects of the synthesised derivatives against Caco-2, HepG-2, and MDA-MB-231 cell lines were investigated. Compound 12a was found to be the most potent candidate against the investigated cell lines with IC50 values of 2, 10, and 40 µM, respectively. Furthermore, the synthesised derivatives were tested in vitro for their VEGFR-2 inhibitory activity showing strong inhibition. Moreover, an in vitro viability study against Vero non-cancerous cell line was investigated and the results reflected a high safety profile of all tested compounds. Compound 12a was further investigated for its apoptotic behaviour by assessing the gene expression of four genes (Bcl2, Bcl-xl, TGF, and Survivin). Molecular dynamic simulations authenticated the high affinity, accurate binding, and perfect dynamics of compound 12a against VEGFR-2.
Collapse
Affiliation(s)
- Mohammed S Taghour
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt.,School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Nehal M El-Deeb
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Ahmed M Kenawy
- Nucleic Acids Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Aisha A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohamed S Alesawy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed M Metwaly
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt.,Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
4
|
Elsayed ZM, Eldehna WM, Abdel-Aziz MM, El Hassab MA, Elkaeed EB, Al-Warhi T, Abdel-Aziz HA, Abou-Seri SM, Mohammed ER. Development of novel isatin-nicotinohydrazide hybrids with potent activity against susceptible/resistant Mycobacterium tuberculosis and bronchitis causing-bacteria. J Enzyme Inhib Med Chem 2021; 36:384-393. [PMID: 33406941 PMCID: PMC7801109 DOI: 10.1080/14756366.2020.1868450] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 01/19/2023] Open
Abstract
Joining the global fight against Tuberculosis, the world's most deadly infectious disease, herein we present the design and synthesis of novel isatin-nicotinohydrazide hybrids (5a-m and 9a-c) as promising anti-tubercular and antibacterial agents. The anti-tubercular activity of the target hybrids was evaluated against drug-susceptible M. tuberculosis strain (ATCC 27294) where hybrids 5d, 5g and 5h were found to be as potent as INH with MIC = 0.24 µg/mL, also the activity was evaluated against Isoniazid/Streptomycin resistant M. tuberculosis (ATCC 35823) where compounds 5g and 5h showed excellent activity (MIC = 3.9 µg/mL). Moreover, the target hybrids were examined against six bronchitis causing-bacteria. Most derivatives exhibited excellent antibacterial activity. K. pneumonia emerged as the most sensitive strain with MIC range: 0.49-7.81 µg/mL. Furthermore, a molecular docking study has proposed DprE1 as a probable enzymatic target for herein reported isatin-nicotinohydrazide hybrids, and explored the binding interactions within the vicinity of DprE1 active site.
Collapse
Affiliation(s)
- Zainab M. Elsayed
- Faculty of Pharmacy, Scientific Research and Innovation Support Unit, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Wagdy M. Eldehna
- Faculty of Pharmacy, Scientific Research and Innovation Support Unit, Kafrelsheikh University, Kafrelsheikh, Egypt
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Marwa M. Abdel-Aziz
- The Regional Center for Mycology & Biotechnology, Al-Azhar University, Cairo, Egypt
| | - Mahmoud A. El Hassab
- Department of Pharmaceutical Chemistry, School of Pharmacy, Badr University in Cairo, Badr City, Egypt
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah, Saudi Arabia
- Faculty of Pharmacy (Boys), Department of Pharmaceutical Organic Chemistry, Al-Azhar University, Cairo, Egypt
| | - Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Hatem A. Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Giza, Egypt
| | - Sahar M. Abou-Seri
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Cairo University, Cairo, Egypt
| | - Eman R. Mohammed
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Cairo University, Cairo, Egypt
| |
Collapse
|
5
|
Eldehna WM, Al-Rashood ST, Al-Warhi T, Eskandrani RO, Alharbi A, El Kerdawy AM. Novel oxindole/benzofuran hybrids as potential dual CDK2/GSK-3β inhibitors targeting breast cancer: design, synthesis, biological evaluation, and in silico studies. J Enzyme Inhib Med Chem 2021; 36:270-285. [PMID: 33327806 PMCID: PMC7751407 DOI: 10.1080/14756366.2020.1862101] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 02/08/2023] Open
Abstract
The serine/threonine protein kinases CDK2 and GSK-3β are key oncotargets in breast cancer cell lines, therefore, in the present study three series of oxindole-benzofuran hybrids were designed and synthesised as dual CDK2/GSK-3β inhibitors targeting breast cancer (5a-g, 7a-h, and 13a-b). The N1 -unsubstituted oxindole derivatives, series 5, showed moderate to potent activity on both MCF-7 and T-47D breast cancer cell lines. Compounds 5d-f showed the most potent cytotoxic activity with IC50 of 3.41, 3.45 and 2.27 μM, respectively, on MCF-7 and of 3.82, 4.53 and 7.80 μM, respectively, on T-47D cell lines, in comparison to the used reference standard (staurosporine) IC50 of 4.81 and 4.34 μM, respectively. On the other hand, the N1 -substituted oxindole derivatives, series 7 and 13, showed moderate to weak cytotoxic activity on both breast cancer cell lines. CDK2 and GSK-3β enzyme inhibition assay of series 5 revealed that compounds 5d and 5f are showing potent dual CDK2/GSK-3β inhibitory activity with IC50 of 37.77 and 52.75 nM, respectively, on CDK2 and 32.09 and 40.13 nM, respectively, on GSK-3β. The most potent compounds 5d-f caused cell cycle arrest in the G2/M phase in MCF-7 cells inducing cell apoptosis because of the CDK2/GSK-3β inhibition. Molecular docking studies showed that the newly synthesised N1 -unsubstituted oxindole hybrids have comparable binding patterns in both CDK2 and GSK-3β. The oxindole ring is accommodated in the hinge region interacting through hydrogen bonding with the backbone CO and NH of the key amino acids Glu81 and Leu83, respectively, in CDK2 and Asp133 and Val135, respectively, in GSK-3β. Whereas, in series 7 and 13, the N1 -substitutions on the oxindole nucleus hinder the compounds from achieving these key interactions with hinge region amino acids what rationalises their moderate to low anti-proliferative activity.
Collapse
Affiliation(s)
- Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Sara T. Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Razan O. Eskandrani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Amal Alharbi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed M. El Kerdawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, New Giza University, Cairo, Egypt
| |
Collapse
|
6
|
Eldehna WM, Abo-Ashour MF, Al-Warhi T, Al-Rashood ST, Alharbi A, Ayyad RR, Al-Khayal K, Abdulla M, Abdel-Aziz HA, Ahmad R, El-Haggar R. Development of 2-oindolin-3-ylidene-indole-3-carbohydrazide derivatives as novel apoptotic and anti-proliferative agents towards colorectal cancer cells. J Enzyme Inhib Med Chem 2021; 36:319-328. [PMID: 33345633 PMCID: PMC7751403 DOI: 10.1080/14756366.2020.1862100] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mitochondrial anti-apoptotic Bcl2 and BclxL proteins, are overexpressed in multiple tumour types, and has been involved in the progression and survival of malignant cells. Therefore, inhibition of such proteins has become a validated and attractive target for anticancer drug discovery. In this manner, the present studies developed a series of novel isatin-indole conjugates (7a-j and 9a-e) as potential anticancer Bcl2 and BclxL inhibitors. The progression of the two examined colorectal cancer cell lines was significantly inhibited by all of the prepared compounds with IC50 ranges132-611 nM compared to IC50 = 4.6 µM for 5FU, against HT-29 and IC50 ranges 37-468 nM compared to IC50 = 1.5 µM for 5FU, against SW-620. Thereafter, compounds 7c and 7g were selected for further investigations. Interestingly, both compounds exhibited selective cytotoxicity against both cell lines with high safety to normal fibroblast (HFF-1). In addition, both compounds 7c and 7g induced apoptosis and inhibited Bcl2 and BclxL expression in a dose-dependent manner. Collectively, the high potency and selective cytotoxicity suggested that conjugates 7c and 7g could be a starting point for further optimisation to develop novel pro-apoptotic and antitumor agents towards colon cancer.
Collapse
Affiliation(s)
- Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mahmoud F Abo-Ashour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Egypt
| | - Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Sara T Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Amal Alharbi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Rezk R Ayyad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Khayal Al-Khayal
- Colorectal Research Chair, Department of Surgery, King Khalid University Hospital, King Saud University College of Medicine, Riyadh, Saudi Arabia
| | - Maha Abdulla
- Colorectal Research Chair, Department of Surgery, King Khalid University Hospital, King Saud University College of Medicine, Riyadh, Saudi Arabia
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Giza, Egypt
| | - Rehan Ahmad
- Colorectal Research Chair, Department of Surgery, King Khalid University Hospital, King Saud University College of Medicine, Riyadh, Saudi Arabia
| | - Radwan El-Haggar
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
7
|
Danışman-Kalındemirtaş F, Erdem-Kuruca S, Akgün-Dar K, Karakaş Z, Soylu Ö, Karali N. Selective Cytotoxic Effects of 5-Trifluoromethoxy-1H-indole-2,3-dione 3-Thiosemicarbazone Derivatives on Lymphoid-originated Cells. Anticancer Agents Med Chem 2021; 22:349-355. [PMID: 33653255 DOI: 10.2174/1871520621666210302084230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/28/2021] [Accepted: 02/08/2021] [Indexed: 12/24/2022]
Abstract
AIM The present study aims to identify the anticancer effect of novel 1H-indole-2,3-dione 3-thiosemicarbazone derivatives. These compounds could be promissing anticancer agents in leukemia treatment. BACKGROUND Conventional chemotherapeutic agents accumulate in both normal and tumor cells due to non-specificity. For effective cancer treatment, new drugs need to be developed to make chemotherapeutics selective for cancer cells. The ultimate goal of cancer treatment is to reduce systemic toxicity and improve the quality of life. METHOD In this study, the anticancer effects of 5-trifluoromethoxy-1H-indole-2,3-dione 3-thiosemicarbazone derivatives (A-L) were investigated in chronic myelogenous leukemia K562, Burkitt's lymphoma P3HR1, acute promyelocytic leukemia HL60 cells and vincristine-resistant sublines of K562 and P3HR1 cells. Additionally, the compounds were tested on lymphoid derived cells from ALL patients. In order to investigate the particular mechanism of death caused by the cytotoxic effects of the compounds, immunohistochemical caspase 3 staining was performed in P3HR1 cells, and resulting apoptotic activities were demonstrated. RESULT All compounds tested have been found to have cytotoxic effects against lymphoma cells at submicromolar concentrations (IC50= 0.89-1.80 µM). Most compounds show significant selectivity for the P3HR1 and P3HR1 Vin resistant. The most effective and selective compound is 4-bromophenyl substituted compound I (IC50=0.96 and 0.89 µM). Cyclohexyl and benzyl substituted compounds D and E have also been found to have cytotoxic effects against K562 cell lines (IC50=2.38 µM), while the allyl substituted compound C is effective on all cell lines (IC50=1.13-2.21 µM). 4-Fluorophenyl substituted F compound has been observed to be effective on all cells (IC50=1.00-2.41 µM) except K562 cell. Compound C is the only compound that shows inhibition of HL-60 cells (IC50= 1.13 µM). Additionally, all compounds exhibited cytotoxic effects on lymphoid-derived cells at 1µM concentration. These results are in accordance with the results obtained in lymphoma cells. CONCLUSION All compounds tested have submicromolar concentrations of cytotoxic effects on cells. These compounds hold promise for the future treatment of leukemia cancer.
Collapse
Affiliation(s)
| | - Serap Erdem-Kuruca
- Istanbul University, Istanbul Faculty of Medicine, Department of Physiology, 34104 Capa, Istanbul. Turkey
| | - Kadriye Akgün-Dar
- Istanbul University, Faculty of Science, Department of Biology, 34116 Beyazıt, Istanbul. Turkey
| | - Zeynep Karakaş
- Istanbul University, Istanbul Faculty of Medicine, Department of Pediatrics Hematology, 34104 Capa, Istanbul. Turkey
| | - Özge Soylu
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 34116 Beyazıt, Istanbul. Turkey
| | - Nilgün Karali
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 34116 Beyazıt, Istanbul. Turkey
| |
Collapse
|
8
|
Eldehna WM, El Hassab MA, Abo-Ashour MF, Al-Warhi T, Elaasser MM, Safwat NA, Suliman H, Ahmed MF, Al-Rashood ST, Abdel-Aziz HA, El-Haggar R. Development of isatin-thiazolo[3,2-a]benzimidazole hybrids as novel CDK2 inhibitors with potent in vitro apoptotic anti-proliferative activity: Synthesis, biological and molecular dynamics investigations. Bioorg Chem 2021; 110:104748. [PMID: 33684714 DOI: 10.1016/j.bioorg.2021.104748] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/09/2020] [Accepted: 02/13/2021] [Indexed: 12/14/2022]
Abstract
In the current medical era, human health is experiencing numerous challenges, particularly the human malignancies. Therefore, the therapeutic arsenal for these malignancies is to be inexorably enhanced with new treatments that target tumor cells in a selective manner. In this regard, the present work aims at developing a new set of small molecules featuring the privileged isatin scaffold conjugated with a thiazolo[3,2-a]benzimidazole (TBI) motif through a cleavable hydrazide linker (7a-e and 10a-i) as potential anticancer CDK2 inhibitors. The large tricyclic TBI motif is anticipated to achieve a plethora of hydrophobic interactions within the CDK2 binding site. The growth of the two examined cell lines was significantly inhibited by most the prepared hybrids with IC50 ranges; (2.60 ± 1.47-20.90 ± 1.17 µM, against MDA-MB-231) and (1.27 ± 0.06-16.83 ± 0.95 µM, against MCF-7). In particular, hybrids 7a, 7d and 10a displayed potent dual activity against the examined cell lines, and thus selected for further investigations. They exerted a significance alteration in the cell cycle progression, in addition to an apoptosis induction within both MDA-MB-231 and MCF-7 cells. Furthermore, 7a, 7d and 10a displayed potent CDK2 inhibitory action (IC50 = 96.46 ± 5.3, 26.24 ± 1.4 and 42.95 ± 2.3 nM, respectively). The docking simulations unveiled, as expected, the ability of the TBI ring to well-accommodate and establish several hydrophobic interactions within a hydrophobic pocket in the CDK2 binding site. Also, the docking simulations highlighted the significance of incorporation of the hydrazide linker and isatin unsubstituted (NH) functionality in the H-bonding interactions. Interestingly, the most potent CDK2 inhibitor 7d achieved the best binding score (-11.2 Kcal/mole) and formed the most stable complex with CDK2 enzyme (RMSD = 1.24 Å) in a 100 ns MD simulation. In addition, the MM-PBSA calculations ascribed the lowest binding free energy to the 7d-CDK2 complex (-323.69 ± 15.17 kJ/mol). This could be attributed to an incorporation of the 5-OCH3 group that was engaged in an extra hydrogen bonding with key THR14 amino acid residue. Finally, these results suggested hybrid 7d as a good candidate for further optimization as promising breast cancer antitumor agent and CDK2 inhibitor.
Collapse
Affiliation(s)
- Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh P.O. Box 33516, Egypt.
| | - Mahmoud A El Hassab
- Department of Pharmaceutical Chemistry, School of Pharmacy, Badr University in Cairo, Badr City 11829, Cairo, Egypt
| | - Mahmoud F Abo-Ashour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, Egypt
| | - Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mahmoud M Elaasser
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo, Egypt
| | - Nesreen A Safwat
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo, Egypt
| | - Howayda Suliman
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Marwa F Ahmed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, 11795 Cairo, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Taif University, Taif 21974, Saudi Arabia
| | - Sara T Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Giza P.O. Box 12622, Egypt
| | - Radwan El-Haggar
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, 11795 Cairo, Egypt
| |
Collapse
|
9
|
Al-Warhi T, Abo-Ashour MF, Almahli H, Alotaibi OJ, Al-Sanea MM, Al-Ansary GH, Ahmed HY, Elaasser MM, Eldehna WM, Abdel-Aziz HA. Novel [( N-alkyl-3-indolylmethylene)hydrazono]oxindoles arrest cell cycle and induce cell apoptosis by inhibiting CDK2 and Bcl-2: synthesis, biological evaluation and in silico studies. J Enzyme Inhib Med Chem 2020; 35:1300-1309. [PMID: 32522063 PMCID: PMC7717600 DOI: 10.1080/14756366.2020.1773814] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/03/2020] [Accepted: 05/17/2020] [Indexed: 12/21/2022] Open
Abstract
As a continuation for our previous work, a novel set of N-alkylindole-isatin conjugates (7, 8a-c, 9 and 10a-e) is here designed and synthesised with the prime aim to develop more efficient isatin-based antitumor candidates. Utilising the SAR outputs from the previous study, our design here is based on appending four alkyl groups with different length (ethyl and n-propyl), bulkiness (iso-propyl) and unsaturation (allyl) on N-1 of indole motif, with subsequent conjugation with different N-unsubstituted isatin moieties to furnish the target conjugates. As planned, the adopted strategy achieved a substantial improvement in the growth inhibitory profile for the target conjugates in comparison to the reported lead VI. The best results were obtained with N-propylindole -5-methylisatin hybrid 8a which displayed broad spectrum anti-proliferative action with efficient sub-panel GI50 (MG-MID) range from 1.33 to 4.23 µM, and promising full-panel GI50 (MG-MID) equals 3.10 µM, at the NCI five-dose assay. Also, hybrid 8a was able to provoke cell cycle disturbance and apoptosis in breast T-47D cells as evidenced by the DNA flow cytometry and Annexin V-FITC/PI assays. Furthermore, hybrid 8a exhibited good inhibitory action against cell cycle regulator CDK2 protein kinase and the anti-apoptotic Bcl-2 protein (IC50= 0.85 ± 0.03 and 0.46 ± 0.02 µM, respectively). Interestingly, molecular docking for hybrid 8a in CDK2 and Bcl-2 active sites unveiled that N-propyl group is involved in significant hydrophobic interactions. Taken together, the results suggested conjugate 8a as a promising lead for further development and optimisation as an efficient antitumor drug.
Collapse
Affiliation(s)
- Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mahmoud F. Abo-Ashour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, Egypt
| | - Hadia Almahli
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Ohoud J. Alotaibi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohammad M. Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia
| | - Ghada H. Al-Ansary
- Department of Pharmaceutical Chemistry, Pharmacy Program, Batterejee Medical College, Jeddah, Saudi Arabia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Hanaa Y. Ahmed
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo, Egypt
| | - Mahmoud M. Elaasser
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo, Egypt
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Hatem A. Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Giza, Egypt
| |
Collapse
|
10
|
Almutairi MS, Kadi AA, Al-Wabli RI, Attwa MW, Attia MI. Fragmentation pattern of certain isatin–indole antiproliferative conjugates with application to identify their in vitro metabolic profiles in rat liver microsomes by liquid chromatography tandem mass spectrometry. OPEN CHEM 2020. [DOI: 10.1515/chem-2020-0095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractThe fragmentation pattern of certain isatin-based compounds was carried out using collision-induced dissociation inside the triple quadrupole mass analyzer. These data were used as a clue for the identification of metabolites of the recently reported isatin-based antiproliferative agent, namely, N′-[5-bromo-1-methyl-2-oxo-1,2-dihydro-3H-indol-3-ylidene]-5-methoxy-1H-indole-2-carbohydrazide (1) in rat liver microsomes (RLMs) using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Prediction of the vulnerable sites for metabolic pathways in compound 1 was performed by WhichP450 module of StarDrop software. In vitro metabolites for compound 1 were identified with the aid of rat liver microsomes. The in silico data were utilized as a guide for the practical work. Compound 1 was metabolized into three (hydroxylated, reduced and O-demethylated) metabolites in RLMs in the presence of NADPH. The chemical structures of those metabolites were elucidated, and the metabolic pathways were proposed by comparing the fragmentation pattern of the isatin–indole conjugates 1–7. The data presented in this paper provided useful information on the effect of different substituents on the ionization/fragmentation processes and can be used in the characterization of isatin derivatives. In silico toxicity assessments for the title compounds 1–7 and for the metabolites of compound 1 were conducted utilizing the deductive estimation of risk from existing knowledge (DEREK) module of StarDrop software.
Collapse
Affiliation(s)
- Maha S. Almutairi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Adnan A. Kadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Reem I. Al-Wabli
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Mohamed W. Attwa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
- Students’ University Hospital, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed I. Attia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Giza, 12622, Egypt
| |
Collapse
|
11
|
Synthesis, Biological Evaluation and In Silico Studies of Certain Oxindole-Indole Conjugates as Anticancer CDK Inhibitors. Molecules 2020; 25:molecules25092031. [PMID: 32349307 PMCID: PMC7248897 DOI: 10.3390/molecules25092031] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 12/24/2022] Open
Abstract
On account of their overexpression in a wide range of human malignancies, cyclin-dependent kinases (CDKs) are among the most validated cancer targets, and their inhibition has been featured as a valuable strategy for anticancer drug discovery. In this study, a hybrid pharmacophore approach was adopted to develop two series of oxindole-indole conjugates (6a-i and 9a-f) and carbocycle-indole conjugates (11a,b) as efficient antitumor agents with potential inhibitory action toward CDK4. All oxindole-indole conjugates, except 6i, 9b, and 9c efficiently affected the growth of the human breast cancer MCF-7 (IC50: 0.39 ± 0.05-21.40 ± 1.58 μM) and/or MDA-MB-231 (IC50: 1.03 ± 0.04-22.54 ± 1.67 μM) cell lines, whereas bioisosteric replacement of the oxindole nucleus with indane or tetralin rings (compounds 11a,b) diminished the anti-proliferative activity. In addition, hybrids 6e and 6f displayed effective cell cycle disturbance and proapoptotic capabilities in MCF-7 cells. Furthermore, the efficient anti-proliferative agents towards MCF-7 and/or MDA-MB-231 cell lines (6a-h, 9a, and 9e) were investigated for their potential inhibitory action toward CDK4. Hybrids 6a and 6e displayed good CDK4 inhibitory activity with IC50s equal 1.82 and 1.26 µM, respectively. The molecular docking study revealed that oxindole moiety is implicated in two H-bonding interactions via both (NH) and (C=O) groups with the key amino acids Glu94 and Val96, respectively, whereas the indole framework is stably accommodated in a hydrophobic sub-pocket establishing hydrophobic interactions with the amino acid residues of Ile12, Val20, and Gln98 lining this sub-pocket. Collectively, these results highlighted hybrids 6a and 6e as good leads for further optimization as promising antitumor drugs toward breast malignancy and CDK inhibitors.
Collapse
|
12
|
Al-Wabli RI, Almomen AA, Almutairi MS, Keeton AB, Piazza GA, Attia MI. New Isatin-Indole Conjugates: Synthesis, Characterization, and a Plausible Mechanism of Their in vitro Antiproliferative Activity. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:483-495. [PMID: 32099332 PMCID: PMC7006853 DOI: 10.2147/dddt.s227862] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/09/2020] [Indexed: 01/24/2023]
Abstract
Background Cancer remains the leading cause of human morbidity universally. Hence, we sought to assess the in vitro antiproliferative activity of new isatin-based conjugates (5a–s) against three human cancer cell lines. Methods The antiproliferative activities of compounds 5a–s were evaluated in vitro and their ADME (absorption, distribution, metabolism and excretion) was carried out using standard protocols. Subsequently, Western blot analysis was conducted to elucidate the potential antiproliferative mechanism of compounds 5a–s. Results The in vitro antiproliferative activities of compounds 5a–s against the tested cancer cell lines ranged from 20.3 to 95.9%. Compound 5m had an IC50 value of 1.17 µM; thus, its antiproliferative potency was approximately seven-fold greater than that of sunitinib (IC50 = 8.11 µM). In-depth pharmacological testing was conducted with compound 5m to gain insight into the potential antiproliferative mechanism of this class of compounds. Compound 5m caused an increase in the number of cells in the G1 phase, with a concomitant reduction of those in the G2/M and S phases. Additionally, compound 5m significantly and dose-dependently reduced the amount of phosphorylated retinoblastoma protein detected. Compound 5m enhanced expression of B cell translocation gene 1, cell cycle-associated proteins (cyclin B1, cyclin D1, and phosphorylated cyclin-dependent kinase 1), and a pro-apoptotic protein (Bcl-2-associated X protein gene), and activated caspase-3. ADME predictions exposed the oral liability of compounds 5a-s. Conclusion Herein, we revealed the antiproliferative activity and ADME predictions of the newly-synthesized compounds 5a–s and provided a detailed insight into the pharmacological profile of compound 5m. Thus, compounds 5a–s can potentially be exploited as new antiproliferative lead compounds for cancer chemotherapeutic.
Collapse
Affiliation(s)
- Reem I Al-Wabli
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Aliyah A Almomen
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Maha S Almutairi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Adam B Keeton
- Department of Oncologic Sciences and Pharmacology, Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604-1405, USA
| | - Gary A Piazza
- Department of Oncologic Sciences and Pharmacology, Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604-1405, USA
| | - Mohamed I Attia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.,Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (ID: 60014618), Giza 12622, Egypt
| |
Collapse
|
13
|
Zhang Y, Du H, Liu H, He Q, Xu Z. Isatin dimers and their biological activities. Arch Pharm (Weinheim) 2020; 353:e1900299. [DOI: 10.1002/ardp.201900299] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/20/2019] [Accepted: 12/28/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Ya‐Zhou Zhang
- Teaching and Research Office of Analytical Chemistry, School of Pharmaceutical SciencesGuizhou University of Traditional Chinese Medicine Guizhou China
| | - Hong‐Zhi Du
- Teaching and Research Office of Analytical Chemistry, School of Pharmaceutical SciencesGuizhou University of Traditional Chinese Medicine Guizhou China
| | - Hai‐Lin Liu
- Teaching and Research Office of Analytical Chemistry, School of Pharmaceutical SciencesGuizhou University of Traditional Chinese Medicine Guizhou China
| | - Qian‐Song He
- Teaching and Research Office of Analytical Chemistry, School of Pharmaceutical SciencesGuizhou University of Traditional Chinese Medicine Guizhou China
| | - Zhi Xu
- Teaching and Research Office of Analytical Chemistry, School of Pharmaceutical SciencesGuizhou University of Traditional Chinese Medicine Guizhou China
| |
Collapse
|
14
|
Eldehna WM, Hassan GS, Al-Rashood ST, Al-Warhi T, Altyar AE, Alkahtani HM, Almehizia AA, Abdel-Aziz HA. Synthesis and in vitro anticancer activity of certain novel 1-(2-methyl-6-arylpyridin-3-yl)-3-phenylureas as apoptosis-inducing agents. J Enzyme Inhib Med Chem 2019; 34:322-332. [PMID: 30722708 PMCID: PMC6366416 DOI: 10.1080/14756366.2018.1547286] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022] Open
Abstract
In connection with our research program on the development of novel anticancer candidates, herein we report the design and synthesis of novel series of 1-(2-methyl-6-arylpyridin-3-yl)-3-phenylureas 5a-l. The target pyridins were evaluated for their in vitro anticancer activity against two cancer cell lines: non-small cell lung cancer A549 cell line and colon cancer HCT-116 cell line. Compound 5l emerged as the most active congener towards both A549 and HCT-116 cell lines with IC50 values equal to 3.22 ± 0.2 and 2.71 ± 0.16 µM, respectively, which are comparable to those of Doxorubicin; 2.93 ± 0.28 and 3.10 ± 0.22, respectively. Furthermore, compound 5l stood out as the most potent pyridine derivative (mean % GI = 40), at US-NCI Developmental Therapeutic Program anticancer assay, with broad-spectrum antitumor activity against the most tested cancer cell lines from all subpanels. Compound 5l was able to provoke apoptosis in HCT-116 cells as evidenced by the decreased expression of the anti-apoptotic Bcl-2 protein, and the enhanced expression of the pro-apoptotic proteins levels; Bax, cytochrome C, p53, caspase-3 and caspase-9. Moreover, 5l disrupted the HCT-116 cell cycle via alteration of the Sub-G1 phase and arresting the G2-M stage. Also, 5l showed a significant increase in the percent of annexinV-FITC positive apoptotic cells from 1.99 to 15.76%.
Collapse
Affiliation(s)
- Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Ghada S. Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Sara T. Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahmed E. Altyar
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hamad M. Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman A. Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hatem A. Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Cairo, Egypt
| |
Collapse
|
15
|
Almutairi MS, Hassan ES, Keeton AB, Piazza GA, Abdelhameed AS, Attia MI. Antiproliferative activity and possible mechanism of action of certain 5-methoxyindole tethered C-5 functionalized isatins. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:3069-3078. [PMID: 31695325 PMCID: PMC6718129 DOI: 10.2147/dddt.s208241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 08/19/2019] [Indexed: 01/09/2023]
Abstract
Background Cancer is one of the most dreaded human diseases, that has become an ever-increasing health problem and is a prime cause of death globally. The potential antiproliferative activity of certain indole-isatin molecular hybrids 5a-w was evaluated in vitro against three human cancer cell lines. Methods Standard protocols were adopted to examine the antiproliferative potential and mechanisms of compounds 5a-w. Western blot analysis was carried out on compound 5o. Results Compounds 5a-w demonstrated in vitro antiproliferative activity in the range of 22.6-97.8%, with compounds 5o and 5w being the most active antiproliferative compounds with IC50 values of 1.69 and 1.91 µM, which is fivefold and fourfold more potent than sunitinib (IC50=8.11 µM), respectively. Compound 5o was selected for in-depth pharmacological testing to understand its possible mechanism of antiproliferative activity. It caused a lengthening of the G1 phase and a reduction in the S and G2/M phases of the cell cycle and had an IC50 value of 10.4 μM with the resistant NCI-H69AR cancer cell line. Moreover, compound 5o significantly decreased the amount of phosphorylated Rb protein in a dose-dependent fashion, which was confirmed via Western blot analysis. Conclusion The current investigation highlighted the potential antiproliferative activity of compounds 5a-w as well as the antiproliferative profile of compound 5o. These compounds can be harnessed as new lead antiproliferatives in the preclinical studies of cancer chemotherapy.
Collapse
Affiliation(s)
- Maha S Almutairi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Eman S Hassan
- Department of Medical Laboratory Sciences, Al-Ghad International Medical Sciences College, Female Section, Riyadh 13315, Saudi Arabia
| | - Adam B Keeton
- Department of Oncologic Sciences and Pharmacology, Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604-1405, USA
| | - Gary A Piazza
- Department of Oncologic Sciences and Pharmacology, Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604-1405, USA
| | - Ali S Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed I Attia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.,Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (ID: 60014618), Giza 12622, Egypt
| |
Collapse
|
16
|
Sabt A, Abdelhafez OM, El-Haggar RS, Madkour HMF, Eldehna WM, El-Khrisy EEDAM, Abdel-Rahman MA, Rashed LA. Novel coumarin-6-sulfonamides as apoptotic anti-proliferative agents: synthesis, in vitro biological evaluation, and QSAR studies. J Enzyme Inhib Med Chem 2018; 33:1095-1107. [PMID: 29944015 PMCID: PMC6022226 DOI: 10.1080/14756366.2018.1477137] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 11/07/2022] Open
Abstract
Herein, we report the synthesis of different novel sets of coumarin-6-sulfonamide derivatives bearing different functionalities (4a, b, 8a-d, 11a-d, 13a, b, and 15a-c), and in vitro evaluation of their growth inhibitory activity towards the proliferation of three cancer cell lines; HepG2 (hepatocellular carcinoma), MCF-7 (breast cancer), and Caco-2 (colon cancer). HepG2 cells were the most sensitive cells to the influence of the target coumarins. Compounds 13a and 15a emerged as the most active members against HepG2 cells (IC50 = 3.48 ± 0.28 and 5.03 ± 0.39 µM, respectively). Compounds 13a and 15a were able to induce apoptosis in HepG2 cells, as assured by the upregulation of the Bax and downregulation of the Bcl-2, besides boosting caspase-3 levels. Besides, compound 13a induced a significant increase in the percentage of cells at Pre-G1 by 6.4-folds, with concurrent significant arrest in the G2-M phase by 5.4-folds compared to control. Also, 13a displayed significant increase in the percentage of annexin V-FITC positive apoptotic cells from 1.75-13.76%. Moreover, QSAR models were established to explore the structural requirements controlling the anti-proliferative activities.
Collapse
Affiliation(s)
- Ahmed Sabt
- Chemistry of Natural Compounds Department, National Research Centre, Dokki, Egypt
| | - Omaima M. Abdelhafez
- Chemistry of Natural Compounds Department, National Research Centre, Dokki, Egypt
| | - Radwan S. El-Haggar
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | | | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | | | - Mohamed A. Abdel-Rahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, Egypt
| | - Laila. A. Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
17
|
Eldehna WM, Nocentini A, Al-Rashood ST, Hassan GS, Alkahtani HM, Almehizia AA, Reda AM, Abdel-Aziz HA, Supuran CT. Tumor-associated carbonic anhydrase isoform IX and XII inhibitory properties of certain isatin-bearing sulfonamides endowed with in vitro antitumor activity towards colon cancer. Bioorg Chem 2018; 81:425-432. [DOI: 10.1016/j.bioorg.2018.09.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 09/07/2018] [Indexed: 10/28/2022]
|
18
|
Type IIA - Type IIB protein tyrosine kinase inhibitors hybridization as an efficient approach for potent multikinase inhibitor development: Design, synthesis, anti-proliferative activity, multikinase inhibitory activity and molecular modeling of novel indolinone-based ureides and amides. Eur J Med Chem 2018; 163:37-53. [PMID: 30503942 DOI: 10.1016/j.ejmech.2018.11.061] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 11/05/2018] [Accepted: 11/23/2018] [Indexed: 11/21/2022]
Abstract
Pursuing on our efforts regarding development of novel multikinase inhibitors, herein we report the design and synthesis of novel 2-indolinone-based ureides 6a-u and amides 10a-j. In this work we adopt a hybridization strategy between type IIA PTK inhibitor (sorafenib) and type IIB PTK inhibitors (sunitinib and nintedanib). This was implemented via linking the indolinone core, in both sunitinib and nintedanib, which is well-fitted in the hinge region in the kinase domain front cleft and the biaryl urea extension, in sorafenib, which is accommodated in the gate area and the hydrophobic back pocket. Molecular docking of the designed hybrid compounds in VEGFR-2 and FGFR-1 active sites revealed, as planned, their ability to establish the binding interactions achieved by both original type IIA and type IIB inhibitors. The designed compounds were evaluated for their multikinase inhibitory activity towards VEGFR-2, PDGFR-b and FGFR-1 and anti-proliferative activity towards HepG2, MCF-7, A549 and A498 cancer cell lines. The ureido analogue 6u emerged as the most potent multikinase inhibitor in the ureido series with VEGFR-2, FGFR-1 and PDGFR-b IC50 of 0.18, 0.23 and 0.10 μM, respectively. Whereas, the amido congener 10j emerged as the most potent multikinase inhibitor in the amide series with VEGFR-2, FGFR-1 and PDGFR-b IC50 of 0.28, 0.46 and 0.09 μM, respectively. While, indolinone 6u was the most potent derivative towards HepG2 cells (IC50 = 2.67 ± 0.14 μM), 6r stood out as the most potent indolinone against A498 cells (IC50 = 0.78 ± 0.02 μM). Additionally, the target indolinones displayed non-significant cytotoxic impact towards human normal melanocyte (HFB4). ADME prediction study of the designed compounds showed that they are not only with promising multikinase inhibitory activity but also with favorable pharmacokinetic and drug-likeness properties. Compounds 6r and 10j are revealed to be the best compounds in terms of multikinase activity and pharmacokinetics.
Collapse
|
19
|
Eldehna WM, Abo-Ashour MF, Nocentini A, El-Haggar RS, Bua S, Bonardi A, Al-Rashood ST, Hassan GS, Gratteri P, Abdel-Aziz HA, Supuran CT. Enhancement of the tail hydrophobic interactions within the carbonic anhydrase IX active site via structural extension: Design and synthesis of novel N-substituted isatins-SLC-0111 hybrids as carbonic anhydrase inhibitors and antitumor agents. Eur J Med Chem 2018; 162:147-160. [PMID: 30445264 DOI: 10.1016/j.ejmech.2018.10.068] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/11/2018] [Accepted: 10/31/2018] [Indexed: 01/19/2023]
Abstract
Herein we report the design and synthesis of novel N-substituted isatins-SLC-0111 hybrids (6a-f and 9a-l). A structural extension approach was adopted via N-alkylation and N-benzylation of isatin moiety to enhance the tail hydrophobic interactions within the carbonic anhydrase (CA) IX active site. Thereafter, a hybrid pharmacophore approach was utilized via merging the pharmacophoric elements of isatin and SLC-0111 in a single chemical framework. As planned, a substantial improvement of inhibitory profile of the target hybrids (KIs: 4.7-86.1 nM) towards hCA IX in comparison to N-unsubstituted leads IVa-c (KIs: 192-239 nM), was achieved. Molecular docking of the designed hybrids in CA IX active site unveiled, as planned, the ability of N-alkylated and N-benzylated isatin moieties to accommodate in a wide hydrophobic pocket formed by T73, P75, P76, L91, L123 and A128, establishing strong van der Waals interactions. Hybrid 6c displayed good anti-proliferative activity under hypoxic conditions towards breast cancer MDA-MB-231 and MCF-7 cell lines (IC50 = 7.43 ± 0.28 and 12.90 ± 0.34 μM, respectively). Also, 6c disrupted the MDA-MB-231 cell cycle via alteration of the Sub-G1 phase and arrest of G2-M stage. Additionally, 6c displayed significant increase in the percent of annexinV-FITC positive apoptotic cells from 1.03 to 18.54%. Furthermore, 6c displayed potent VEGFR-2 inhibitory activity (IC50 = 260.64 nM). Collectively, these data suggest 6c as a promising lead molecule for the development of effective anticancer agents.
Collapse
Affiliation(s)
- Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt.
| | - Mahmoud F Abo-Ashour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy; Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Radwan S El-Haggar
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Silvia Bua
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Alessandro Bonardi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy; Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Sara T Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ghada S Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Paola Gratteri
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Giza, P.O. Box 12622, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|
20
|
Abo-Ashour MF, Eldehna WM, Nocentini A, Ibrahim HS, Bua S, Abou-Seri SM, Supuran CT. Novel hydrazido benzenesulfonamides-isatin conjugates: Synthesis, carbonic anhydrase inhibitory activity and molecular modeling studies. Eur J Med Chem 2018; 157:28-36. [PMID: 30071407 DOI: 10.1016/j.ejmech.2018.07.054] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/16/2018] [Accepted: 07/22/2018] [Indexed: 12/15/2022]
Abstract
As a part of our ongoing efforts towards developing novel carbonic anhydrase inhibitors based on the isatin moiety, herein we report the synthesis and biological evaluation of novel sulfonamides (5a-h, 10a-g and 11a-c) incorporating substituted 2-indolinone moiety (as tail) linked to benzenesulfonamide (as zinc anchoring moiety) through a hydrazide linker. The synthesized sulfonamides were evaluated in vitro for their inhibitory activity against the following human (h) carbonic anhydrase (hCA, EC 4.2.1.1) isoforms, hCA I, II, IX and XII. All these isoforms were inhibited by the sulfonamides reported here in variable degrees. hCA I was inhibited with KIs in the range of 671.8: 3549.5 nM, hCA II in the range of 36.8: 892.4 nM; hCA IX in the range of 8.9: 264.5 nM, whereas hCA XII in the range of 9.0: 78.1 nM. In particular, compound 10b emerged as a single-digit nanomolar hCA IX and XII inhibitor (8.9 and 9.2 nM, respectively). Molecular docking studies carried out for compound 10b within the hCA II, IX and XII active sites allowed us to rationalize the obtained inhibition results.
Collapse
Affiliation(s)
- Mahmoud F Abo-Ashour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt.
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Hany S Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt
| | - Silvia Bua
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Sahar M Abou-Seri
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, El-kasr Elaini Street, Cairo, Egypt.
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|
21
|
El-Naggar M, Eldehna WM, Almahli H, Elgez A, Fares M, Elaasser MM, Abdel-Aziz HA. Novel Thiazolidinone/Thiazolo[3,2- a]Benzimidazolone-Isatin Conjugates as Apoptotic Anti-proliferative Agents Towards Breast Cancer: One-Pot Synthesis and In Vitro Biological Evaluation. Molecules 2018; 23:E1420. [PMID: 29895744 PMCID: PMC6099623 DOI: 10.3390/molecules23061420] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 11/21/2022] Open
Abstract
In connection with our research program on the development of new isatin-based anticancer candidates, herein we report the synthesis of two novel series of thiazolidinone-isatin conjugates (4a⁻n) and thiazolo[3,2-a]benzimidazolone-isatin conjugates (7a⁻d), and in vitro evaluation of their antiproliferative activity towards two breast cancer cell lines; triple negative MDA-MB-231, and MCF-7. Compounds 4m and 7b emerged as the most active congeners against MDA-MB-231 cells (IC50 = 7.6 ± 0.5 and 13.2 ± 1.1 µM, respectively). Compounds 4m and 7b were able to provoke apoptosis in MDA-MB-231 cells, evidenced by the up-regulation of Bax and down-regulation of Bcl-2, besides boosting caspase-3 levels. Hybrid 4m induced a fourfold increase in the percentage of cells at Sub-G₁, with concurrent arrest in G₂-M phase by 2.5-folds. Furthermore, hybrid 4m resulted in a sixfold increase in the percentage of annexin V-FITC positive apoptotic MDA-MB-231 cells as compared with the control. Moreover, the cytotoxic activities of the active conjugates were assessed towards two nontumorigenic cell lines (breast MCF-10A and lung WI-38) where both conjugates 4m and 7b displayed mean tumor selectivity index: 9.6 and 13.9, respectively. Finally, several ADME descriptors were predicted for the active conjugates via a theoretical kinetic study.
Collapse
Affiliation(s)
- Mohamed El-Naggar
- Chemistry Department, Faculty of Sciences, University of Sharjah, Sharjah 27272, UAE.
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| | - Hadia Almahli
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, UK.
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt.
| | - Amr Elgez
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt.
| | - Mohamed Fares
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt.
- School of Chemistry, University of Wollongong, Wollongong 2522, New South Wales, Australia.
| | - Mahmoud M Elaasser
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo 11759, Egypt.
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Cairo 12622, Egypt.
| |
Collapse
|
22
|
Eldehna WM, Al-Wabli RI, Almutairi MS, Keeton AB, Piazza GA, Abdel-Aziz HA, Attia MI. Synthesis and biological evaluation of certain hydrazonoindolin-2-one derivatives as new potent anti-proliferative agents. J Enzyme Inhib Med Chem 2018; 33:867-878. [PMID: 29707975 PMCID: PMC7011955 DOI: 10.1080/14756366.2018.1462802] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In connection with our research program on the development of novel indolin-2-one-based anticancer candidates, herein we report the design and synthesis of different series of hydrazonoindolin-2-ones 3a-e, 5a-e, 7a-c, and 10a-l. The synthesised derivatives were in vitro evaluated for their anti-proliferative activity towards lung A-549, colon HT-29, and breast ZR-75 human cancer cell lines. Compounds 5b, 5c, 7b, and 10e emerged as the most potent derivatives with average IC50 values of 4.37, 2.53, 2.14, and 4.66 µM, respectively, which are superior to Sunitinib (average IC50 = 8.11 µM). Furthermore, compounds 7b and 10e were evaluated for their effects on cell cycle progression and levels of phosphorylated retinoblastoma (Rb) protein in the A-549 cancer cell line. Moreover, 7b and 10e inhibited the cell growth of the multidrug-resistant lung cancer NCI-H69AR cell line with IC50 = 16 µM. In addition, the cytotoxic activities of 7b and 10e were assessed towards three non-tumorigenic cell lines (Intestine IEC-6, Breast MCF-10A, and Fibroblast Swiss-3t3) where both compounds displayed mean tumor selectivity index (1.6 and 1.8) higher than that of Sunitinib (1.4).
Collapse
Affiliation(s)
- Wagdy M Eldehna
- a Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Kafrelsheikh University , Kafrelsheikh , Egypt
| | - Reem I Al-Wabli
- b Department of Pharmaceutical Chemistry, College of Pharmacy , King Saud University , Riyadh , Saudi Arabia
| | - Maha S Almutairi
- b Department of Pharmaceutical Chemistry, College of Pharmacy , King Saud University , Riyadh , Saudi Arabia
| | - Adam B Keeton
- c Department of Oncologic Sciences and Pharmacology , Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama , Mobile , AL , USA
| | - Gary A Piazza
- c Department of Oncologic Sciences and Pharmacology , Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama , Mobile , AL , USA
| | - Hatem A Abdel-Aziz
- d Department of Applied Organic Chemistry , National Research Centre , Giza , Egypt
| | - Mohamed I Attia
- b Department of Pharmaceutical Chemistry, College of Pharmacy , King Saud University , Riyadh , Saudi Arabia.,e Medicinal and Pharmaceutical Chemistry Department , Pharmaceutical and Drug Industries Research Division, National Research Centre (ID: 60014618) , Giza , Egypt
| |
Collapse
|
23
|
Eldehna WM, Abo-Ashour MF, Ibrahim HS, Al-Ansary GH, Ghabbour HA, Elaasser MM, Ahmed HYA, Safwat NA. Novel [(3-indolylmethylene)hydrazono]indolin-2-ones as apoptotic anti-proliferative agents: design, synthesis and in vitro biological evaluation. J Enzyme Inhib Med Chem 2018; 33:686-700. [PMID: 29560733 PMCID: PMC6010103 DOI: 10.1080/14756366.2017.1421181] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
On account of their significance as apoptosis inducing agents, merging indole and 3-hydrazinoindolin-2-one scaffolds is a logic tactic for designing pro-apoptotic agents. Consequently, 27 hybrids (6a–r, 9a–f and 11a–c) were synthesised and evaluated for their cytotoxicity against MCF-7, HepG-2 and HCT-116 cancer cell lines. SAR studies unravelled that N-propylindole derivatives were the most active compounds such as 6n (MCF-7; IC50=1.04 µM), which displayed a significant decrease of cell population in the G2/M phase and significant increase in the early and late apoptosis by 19-folds in Annexin-V-FTIC assay. Also, 6n increased the expression of caspase-3, caspase-9, cytochrome C and Bax and decreased the expression of Bcl-2. Moreover, compounds 6i, 6j, 6n and 6q generated ROS by significant increase in the level of SOD and depletion of the levels of CAT and GSH-Px in MCF-7.
Collapse
Affiliation(s)
- Wagdy M Eldehna
- a Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Kafrelsheikh University , Kafrelsheikh , Egypt
| | - Mahmoud F Abo-Ashour
- b Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Egyptian Russian University , Badr City , Egypt
| | - Hany S Ibrahim
- b Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Egyptian Russian University , Badr City , Egypt
| | - Ghada H Al-Ansary
- c Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Ain Shams University , Cairo , Egypt
| | - Hazem A Ghabbour
- d Department of Pharmaceutical Chemistry, College of Pharmacy , King Saud University , Riyadh , Saudi Arabia.,e Department of Medicinal Chemistry, Faculty of Pharmacy , Mansoura University , Mansoura , Egypt
| | - Mahmoud M Elaasser
- f The Regional Center for Mycology and Biotechnology , Al-Azhar University , Cairo , Egypt
| | - Hanaa Y A Ahmed
- f The Regional Center for Mycology and Biotechnology , Al-Azhar University , Cairo , Egypt
| | - Nesreen A Safwat
- f The Regional Center for Mycology and Biotechnology , Al-Azhar University , Cairo , Egypt
| |
Collapse
|
24
|
Almahli H, Hadchity E, Jaballah MY, Daher R, Ghabbour HA, Kabil MM, Al-Shakliah NS, Eldehna WM. Development of novel synthesized phthalazinone-based PARP-1 inhibitors with apoptosis inducing mechanism in lung cancer. Bioorg Chem 2018; 77:443-456. [PMID: 29453076 DOI: 10.1016/j.bioorg.2018.01.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/19/2018] [Accepted: 01/27/2018] [Indexed: 11/30/2022]
Abstract
Herein we report the synthesis of two series of 4-phenylphthalazin-1-ones 11a-i and 4- benzylphthalazin-1-ones 16a-h as anti-lung adenocarcinoma agents with potential inhibitory activity against PARP-1. All the newly synthesized phthalazinones were evaluated for their anti-proliferative activity against A549 lung carcinoma cell line. Phthalazinones 11c-i and 16b, c showed significant cytotoxic activity against A549 cells at different concentrations (0.1, 1 and 10 μM) for two time intervals (24 h and 48 h). These nine phthalazinones were further examined for their inhibitory activity towards PARP-1. Compound 11c emerged as the most potent PARP-1 inhibitor with IC50 value of 97 nM, compared to that of Olaparib (IC50 = 139 nM). Furthermore, all these nine phthalazinones passed the filters of Lipinski and Veber rules, and predicted to have good pharmacokinetics properties in a theoretical kinetic study. On the other hand, western blotting in A549 cells revealed the enhanced expression of the cleaved PARP-1, alongside, with the reduced expression of pro-caspase-3 and phosphorylated AKT. In addition, ELISA assay confirmed the up-regulation of active caspase-3 and caspase-9 levels compared to the control, suggesting the activation of the apoptotic machinery in the A549 cells. Finally, molecular docking of 11c into PARP-1 active site (PDB: 5WRZ) was performed to explore the probable binding mode.
Collapse
Affiliation(s)
- Hadia Almahli
- University of Oxford, Department of Chemistry, Chemistry Research Laboratory, 12 Mansfield Road, OX1 3TA, Oxford, UK; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, P.O. Box 11829, Badr City, Cairo, Egypt
| | - Elie Hadchity
- Anti-Tumor Therapeutic Targeting Laboratory, Faculty of Sciences, Lebanese University, Hadat, Lebanon
| | - Maiy Y Jaballah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Abbassia, Egypt
| | - Racha Daher
- Anti-Tumor Therapeutic Targeting Laboratory, Faculty of Sciences, Lebanese University, Hadat, Lebanon
| | - Hazem A Ghabbour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Maha M Kabil
- Department of Infection Control, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Nasser S Al-Shakliah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
25
|
Eldehna WM, El-Naggar DH, Hamed AR, Ibrahim HS, Ghabbour HA, Abdel-Aziz HA. One-pot three-component synthesis of novel spirooxindoles with potential cytotoxic activity against triple-negative breast cancer MDA-MB-231 cells. J Enzyme Inhib Med Chem 2018; 33:309-318. [PMID: 29281924 PMCID: PMC6009943 DOI: 10.1080/14756366.2017.1417276] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive malignancy with limited treatment options due to its heterogeneity and the lack of well-defined molecular targets. In our endeavour towards the development of novel anti-TNBC agents, herein we report a one-pot three-component synthesis of novel spirooxindoles 6a–p, and evaluation of their potential anti-proliferative activity towards TNBC MDA-MB-231 cells. Spirooxindoles 6a, 6e and 6i emerged as the most potent analogues with IC50 = 6.70, 6.40 and 6.70 µM, respectively. Compounds 6a and 6e induced apoptosis in MDA-MB-231 cells, as evidenced by the up-regulation of the Bax and down-regulation of the Bcl-2, besides boosting caspase-3 levels. Additionally, 6e displayed significant increase in the percent of annexin V-FITC positive apoptotic cells from 1.34 to 44%. Furthermore, spirooxindoles 6e and 6i displayed good inhibitory activity against EGFR (IC50 = 120 and 150 nM, respectively). Collectively, these data demonstrated that 6e might be a potential lead compound for the development of effective anti-TNBC agents.
Collapse
Affiliation(s)
- Wagdy M Eldehna
- a Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Kafrelsheikh University , Kafr El-Sheikh , Egypt
| | - Dina H El-Naggar
- b Department of Applied Organic Chemistry , National Research Center , Giza , Egypt
| | - Ahmed R Hamed
- c Department of Phytochemistry , National Research Center , Giza , Egypt.,d Biology Unit, Central Laboratory of the Pharmaceutical & Drug Industries Research Division , National Research Center , Giza , Egypt
| | - Hany S Ibrahim
- e Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Egyptian Russian University , Badr City, Cairo , Egypt
| | - Hazem A Ghabbour
- f Department of Medicinal Chemistry, Faculty of Pharmacy , Mansoura University , Mansoura , Egypt.,g Department of Pharmaceutical Chemistry, College of Pharmacy , King Saud University , Riyadh , Saudi Arabia
| | - Hatem A Abdel-Aziz
- b Department of Applied Organic Chemistry , National Research Center , Giza , Egypt
| |
Collapse
|
26
|
Solvent-Free Ring Cleavage Hydrazinolysis of Certain Biginelli Pyrimidines. J CHEM-NY 2018. [DOI: 10.1155/2018/6354742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Certain Biginelli pyrimidines with ester substitution in C5 were subjected to unexpected ring opening upon solvent-free reaction with hydrazine hydrate to give three products: pyrazole, arylidenehydrazines, and urea/thiourea, respectively. The nonisolable carbohydrazide intermediates are formed firstly followed by the intermolecular nucleophilic attack of terminal amino group of hydrazide function on sp2 C6 rather than the sp3 C4 to give the ring adduct which was produced as a final product.
Collapse
|