1
|
Manik MC, Darai N, Rungrotmongkol T, Duan L, Harada R, Shigeta Y, Hengphasatporn K, Vangnai AS. Rationally designed antimicrobial peptides with high selectivity and efficiency against phytopathogenic Ralstonia solanecearum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 976:179354. [PMID: 40209588 DOI: 10.1016/j.scitotenv.2025.179354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/03/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025]
Abstract
Ralstonia solanacearum, the causative agent of bacterial wilt, poses a global threat to agriculture, necessitating urgent and sustainable solutions as traditional methods lose efficacy. This study developed WRF-13, a synthetic antimicrobial peptide (AMP) designed to mimic natural AMPs, exhibiting potent antibacterial and anti-biofilm activity with high specificity against R. solanacearum. Mechanistic studies, including microscopy and computational analyses, demonstrated that WRF-13 disrupts the bacterial membrane. WRF-13 remained stable across a wide pH (5-8) and temperature (25-50 °C) range, essential for field applications, and showed no detectable toxicity to mammalian or plant cells at elevated concentrations. Greenhouse trials confirmed its efficacy in reducing bacterial wilt severity up to 65 %, highlighting its potential to protect crops from R. solanacearum infection. Overall, this study highlights WRF-13 as a targeted solution for managing bacterial wilt and advancing sustainable agriculture.
Collapse
Affiliation(s)
- Melvalia Cristin Manik
- Biotechnology Program, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nitchakan Darai
- Futuristic Science Research Center, School of Science, Walailak University, Nakhon Si Thammarat 80160, Thailand; Drug and Cosmetics Excellence Center, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand
| | - Thanyada Rungrotmongkol
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Biocatalyst and Sustainable Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Lian Duan
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Ryuhei Harada
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Kowit Hengphasatporn
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.
| | - Alisa S Vangnai
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
2
|
Nguyen LTT, Park AR, Van Le V, Hwang I, Kim JC. Exploration of a multifunctional biocontrol agent Streptomyces sp. JCK-8055 for the management of apple fire blight. Appl Microbiol Biotechnol 2024; 108:49. [PMID: 38183485 DOI: 10.1007/s00253-023-12874-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/17/2023] [Accepted: 11/05/2023] [Indexed: 01/08/2024]
Abstract
Apple fire blight, caused by the bacterium Erwinia amylovora, is a devastating disease of apple and pear trees. Biological control methods have attracted much attention from researchers to manage plant diseases as they are eco-friendly and viable alternatives to synthetic pesticides. Herein, we isolated Streptomyces sp. JCK-8055 from the root of pepper and investigated its mechanisms of action against E. amylovora. Streptomyces sp. JCK-8055 produced aureothricin and thiolutin, which antagonistically affect E. amylovora. JCK-8055 and its two active metabolites have a broad-spectrum in vitro activity against various phytopathogenic bacteria and fungi. They also effectively suppressed tomato bacterial wilt and apple fire blight in in vivo experiments. Interestingly, JCK-8055 colonizes roots as a tomato seed coating and induces apple leaf shedding at the abscission zone, ultimately halting the growth of pathogenic bacteria. Additionally, JCK-8055 can produce the plant growth regulation hormone indole-3-acetic acid (IAA) and hydrolytic enzymes, including protease, gelatinase, and cellulase. JCK-8055 treatment also triggered the expression of salicylate (SA) and jasmonate (JA) signaling pathway marker genes, such as PR1, PR2, and PR3. Overall, our findings demonstrate that Streptomyces sp. JCK-8055 can control a wide range of plant diseases, particularly apple fire blight, through a combination of mechanisms such as antibiosis and induced resistance, highlighting its excellent potential as a biocontrol agent. KEY POINTS: • JCK-8055 produces the systemic antimicrobial metabolites, aureothricin, and thiolutin. • JCK-8055 treatment upregulates PR gene expression in apple plants against E. amylovora. • JCK-8055 controls plant diseases with antibiotics and induced resistance.
Collapse
Affiliation(s)
- Loan Thi Thanh Nguyen
- Department of Agricultural Chemistry, College of Agriculture and Life Sciences, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ae Ran Park
- Department of Agricultural Chemistry, College of Agriculture and Life Sciences, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ve Van Le
- Cell Factory Research Centre, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Inmin Hwang
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - Jin-Cheol Kim
- Department of Agricultural Chemistry, College of Agriculture and Life Sciences, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju, 61186, Republic of Korea.
- JAN153 Biotech Incorporated, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
3
|
Molnar M, Jakovljević Kovač M, Pavić V. A Comprehensive Analysis of Diversity, Structure, Biosynthesis and Extraction of Biologically Active Tannins from Various Plant-Based Materials Using Deep Eutectic Solvents. Molecules 2024; 29:2615. [PMID: 38893491 PMCID: PMC11173854 DOI: 10.3390/molecules29112615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
This paper explores the emerging subject of extracting tannins from various plant sources using deep eutectic solvents (DESs). Tannins are widely used in the food and feed industries as they have outstanding antioxidant qualities and greatly enhance the flavor and nutritional content of a wide range of food products. Organic solvents are frequently used in traditional extraction techniques, which raises questions about their safety for human health and the environment. DESs present a prospective substitute because of their low toxicity, adaptability, and environmental friendliness. The fundamental ideas supporting the application of DESs in the extraction of tannins from a range of plant-based materials frequently used in daily life are all well covered in this paper. Furthermore, this paper covers the impact of extraction parameters on the yield of extracted tannins, as well as possible obstacles and directions for future research in this emerging subject. This includes challenges such as high viscosity, intricated recovery of compounds, thermal degradation, and the occurrence of esterification. An extensive summary of the diversity, structure, biosynthesis, distribution, and roles of tannins in plants is given in this paper. Additionally, this paper thoroughly examines various bioactivities of tannins and their metabolites.
Collapse
Affiliation(s)
- Maja Molnar
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, 31000 Osijek, Croatia; (M.M.); (M.J.K.)
| | - Martina Jakovljević Kovač
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, 31000 Osijek, Croatia; (M.M.); (M.J.K.)
| | - Valentina Pavić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia
| |
Collapse
|
4
|
Heena, Kaushal S, Kaur V, Panwar H, Sharma P, Jangra R. Isolation of quinic acid from dropped Citrus reticulata Blanco fruits: its derivatization, antibacterial potential, docking studies, and ADMET profiling. Front Chem 2024; 12:1372560. [PMID: 38698937 PMCID: PMC11064019 DOI: 10.3389/fchem.2024.1372560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/20/2024] [Indexed: 05/05/2024] Open
Abstract
Citrus reticulata dropped fruits are generally discarded as waste, causing environmental pollution and losses to farmers. In the present study, column chromatography has been used to isolate quinic acid (1,3,4,5-tetrahydroxycyclohexane-1-carboxylic acid) from the ethyl acetate fraction of a methanol extract of citrus fruits dropped in April. Quinic acid is a ubiquitous plant metabolite found in various plants and microorganisms. It is an important precursor in the biosynthesis of aromatic natural compounds. It was further derivatized into 3,4-o-isopropylidenequinic acid 1,5-lactone (QA1), 1,3,4,5-tetraacetoxycyclohexylaceticanhydride (QA2), and cyclohexane-1,2,3,5-tetraone (QA3). These compounds were further tested for their antibacterial potential against the foodborne pathogens Staphylococcus aureus, Bacillus spp., Yersinia enterocolitica, and Escherichia coli. QA1 exhibited maximum antibacterial potential (minimum inhibitory concentration; 80-120 μg/mL). QA1 revealed synergistic behavior with streptomycin against all the tested bacterial strains having a fractional inhibitory concentration index ranging from 0.29 to 0.37. It also caused a significant increase in cell constituent release in all the tested bacteria compared to the control, along with prominent biofilm reduction. The results obtained were further checked with computational studies that revealed the best docking score of QA1 (-6.30 kcal/mol, -5.8 kcal/mol, and -4.70 kcal/mol) against β-lactamase, DNA gyrase, and transpeptidase, respectively. The absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis revealed that the drug-like properties of QA1 had an ideal toxicity profile, making it a suitable candidate for the development of antimicrobial drugs.
Collapse
Affiliation(s)
- Heena
- Department of Chemistry, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Sonia Kaushal
- Department of Chemistry, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Vishaldeep Kaur
- Department of Chemistry, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Harsh Panwar
- Department of Dairy Microbiology, Guru Angad Dev Veterinary University, Ludhiana, Punjab, India
| | - Purshotam Sharma
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, India
| | - Raman Jangra
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, India
| |
Collapse
|
5
|
Zhao HY, He S, Lan Q, Su BJ, Wang HS, Liang D. Glycosides with galloyl groups from Balakata baccata and their antineuroinflammatory activities. Nat Prod Res 2024; 38:947-955. [PMID: 37144415 DOI: 10.1080/14786419.2023.2208356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 04/17/2023] [Indexed: 05/06/2023]
Abstract
Seven new glycosides (1 - 7) with galloyl groups and two known kaempferol glycosides (8 and 9) were obtained from the overground parts of Balakata baccata. The structures of the new compounds were determined by comprehensive spectroscopic analyses. The rarely seen allene moiety in compounds 6 and 7 were described by detailed analysis of 1D and 2D NMR data. The antineuroinflammatory effect of all the isolates was assessed through inhibiting nitric oxide (NO) production in lipopolysaccharide (LPS)-induced BV-2 microglial cells. Compounds 1, 2, 6, and 7 showed potent inhibitory activities with IC50 values of 25.7, 17.2, 15.5 and 24.4 μM, respectively, compared with the positive control minocycline (IC50 = 16.1 μM).
Collapse
Affiliation(s)
- Hai-Yan Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, People's Republic of China
- College of Food and Biochemical Engineering, Guangxi Science & Technology Normal University, Laibin, People's Republic of China
| | - Shuang He
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, People's Republic of China
| | - Qian Lan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, People's Republic of China
| | - Bao-Jun Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, People's Republic of China
| | - Heng-Shan Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, People's Republic of China
| | - Dong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, People's Republic of China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, People's Republic of China
| |
Collapse
|
6
|
Santos MG, Nunes da Silva M, Vasconcelos MW, Carvalho SMP. Scientific and technological advances in the development of sustainable disease management tools: a case study on kiwifruit bacterial canker. FRONTIERS IN PLANT SCIENCE 2024; 14:1306420. [PMID: 38273947 PMCID: PMC10808555 DOI: 10.3389/fpls.2023.1306420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024]
Abstract
Plant disease outbreaks are increasing in a world facing climate change and globalized markets, representing a serious threat to food security. Kiwifruit Bacterial Canker (KBC), caused by the bacterium Pseudomonas syringae pv. actinidiae (Psa), was selected as a case study for being an example of a pandemic disease that severely impacted crop production, leading to huge economic losses, and for the effort that has been made to control this disease. This review provides an in-depth and critical analysis on the scientific progress made for developing alternative tools for sustainable KBC management. Their status in terms of technological maturity is discussed and a set of opportunities and threats are also presented. The gradual replacement of susceptible kiwifruit cultivars, with more tolerant ones, significantly reduced KBC incidence and was a major milestone for Psa containment - which highlights the importance of plant breeding. Nonetheless, this is a very laborious process. Moreover, the potential threat of Psa evolving to more virulent biovars, or resistant lineages to existing control methods, strengthens the need of keep on exploring effective and more environmentally friendly tools for KBC management. Currently, plant elicitors and beneficial fungi and bacteria are already being used in the field with some degree of success. Precision agriculture technologies, for improving early disease detection and preventing pathogen dispersal, are also being developed and optimized. These include hyperspectral technologies and forecast models for Psa risk assessment, with the latter being slightly more advanced in terms of technological maturity. Additionally, plant protection products based on innovative formulations with molecules with antibacterial activity against Psa (e.g., essential oils, phages and antimicrobial peptides) have been validated primarily in laboratory trials and with few compounds already reaching field application. The lessons learned with this pandemic disease, and the acquired scientific and technological knowledge, can be of importance for sustainably managing other plant diseases and handling future pandemic outbreaks.
Collapse
Affiliation(s)
- Miguel G. Santos
- GreenUPorto—Sustainable Agrifood Production Research Centre/Inov4Agro, DGAOT, Faculty of Sciences of the University of Porto, Vairão, Portugal
| | - Marta Nunes da Silva
- GreenUPorto—Sustainable Agrifood Production Research Centre/Inov4Agro, DGAOT, Faculty of Sciences of the University of Porto, Vairão, Portugal
- Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Marta W. Vasconcelos
- Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Susana M. P. Carvalho
- GreenUPorto—Sustainable Agrifood Production Research Centre/Inov4Agro, DGAOT, Faculty of Sciences of the University of Porto, Vairão, Portugal
| |
Collapse
|
7
|
Tang R, Tan H, Dai Y, Li L, Huang Y, Yao H, Cai Y, Yu G. Application of antimicrobial peptides in plant protection: making use of the overlooked merits. FRONTIERS IN PLANT SCIENCE 2023; 14:1139539. [PMID: 37538059 PMCID: PMC10394246 DOI: 10.3389/fpls.2023.1139539] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/07/2023] [Indexed: 08/05/2023]
Abstract
Pathogen infection is one of the major causes of yield loss in the crop field. The rapid increase of antimicrobial resistance in plant pathogens has urged researchers to develop both new pesticides and management strategies for plant protection. The antimicrobial peptides (AMPs) showed potential on eliminating plant pathogenic fungi and bacteria. Here, we first summarize several overlooked advantages and merits of AMPs, which includes the steep dose-response relations, fast killing ability, broad synergism, slow resistance selection. We then discuss the possible application of AMPs for plant protection with above merits, and highlight how AMPs can be incorporated into a more efficient integrated management system that both increases the crop yield and reduce resistance evolution of pathogens.
Collapse
|
8
|
Kostenko V, Akimov O, Gutnik O, Kostenko H, Kostenko V, Romantseva T, Morhun Y, Nazarenko S, Taran O. Modulation of redox-sensitive transcription factors with polyphenols as pathogenetically grounded approach in therapy of systemic inflammatory response. Heliyon 2023; 9:e15551. [PMID: 37180884 PMCID: PMC10171461 DOI: 10.1016/j.heliyon.2023.e15551] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/09/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
One of the adverse outcomes of acute inflammatory response is progressing to the chronic stage or transforming into an aggressive process, which can develop rapidly and result in the multiple organ dysfunction syndrome. The leading role in this process is played by the Systemic Inflammatory Response that is accompanied by the production of pro- and anti-inflammatory cytokines, acute phase proteins, and reactive oxygen and nitrogen species. The purpose of this review that highlights both the recent reports and the results of the authors' own research is to encourage scientists to develop new approaches to the differentiated therapy of various SIR manifestations (low- and high-grade systemic inflammatory response phenotypes) by modulating redox-sensitive transcription factors with polyphenols and to evaluate the saturation of the pharmaceutical market with appropriate dosage forms tailored for targeted delivery of these compounds. Redox-sensitive transcription factors such as NFκB, STAT3, AP1 and Nrf2 have a leading role in mechanisms of the formation of low- and high-grade systemic inflammatory phenotypes as variants of SIR. These phenotypic variants underlie the pathogenesis of the most dangerous diseases of internal organs, endocrine and nervous systems, surgical pathologies, and post-traumatic disorders. The use of individual chemical compounds of the class of polyphenols, or their combinations can be an effective technology in the therapy of SIR. Administering natural polyphenols in oral dosage forms is very beneficial in the therapy and management of the number of diseases accompanied with low-grade systemic inflammatory phenotype. The therapy of diseases associated with high-grade systemic inflammatory phenotype requires medicinal phenol preparations manufactured for parenteral administration.
Collapse
Affiliation(s)
- Vitalii Kostenko
- Poltava State Medical University, Department of Pathophysiology, Ukraine
| | - Oleh Akimov
- Poltava State Medical University, Department of Pathophysiology, Ukraine
- Corresponding author.
| | - Oleksandr Gutnik
- Poltava State Medical University, Department of Pathophysiology, Ukraine
| | - Heorhii Kostenko
- Poltava State Medical University, Department of Pathophysiology, Ukraine
| | - Viktoriia Kostenko
- Poltava State Medical University, Department of Foreign Languages with Latin and Medical Terminology, Ukraine
| | - Tamara Romantseva
- Poltava State Medical University, Department of Pathophysiology, Ukraine
| | - Yevhen Morhun
- Poltava State Medical University, Department of Pathophysiology, Ukraine
| | - Svitlana Nazarenko
- Poltava State Medical University, Department of Pathophysiology, Ukraine
| | - Olena Taran
- Poltava State Medical University, Department of Pathophysiology, Ukraine
| |
Collapse
|
9
|
Villanueva X, Zhen L, Ares JN, Vackier T, Lange H, Crestini C, Steenackers HP. Effect of chemical modifications of tannins on their antimicrobial and antibiofilm effect against Gram-negative and Gram-positive bacteria. Front Microbiol 2023; 13:987164. [PMID: 36687646 PMCID: PMC9853077 DOI: 10.3389/fmicb.2022.987164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/18/2022] [Indexed: 01/08/2023] Open
Abstract
Background Tannins have demonstrated antibacterial and antibiofilm activity, but there are still unknown aspects on how the chemical properties of tannins affect their biological properties. We are interested in understanding how to modulate the antibiofilm activity of tannins and in delineating the relationship between chemical determinants and antibiofilm activity. Materials and methods The effect of five different naturally acquired tannins and their chemical derivatives on biofilm formation and planktonic growth of Salmonella Typhimurium, Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus was determined in the Calgary biofilm device. Results Most of the unmodified tannins exhibited specific antibiofilm activity against the assayed bacteria. The chemical modifications were found to alter the antibiofilm activity level and spectrum of the tannins. A positive charge introduced by derivatization with higher amounts of ammonium groups shifted the anti-biofilm spectrum toward Gram-negative bacteria, and derivatization with lower amounts of ammonium groups and acidifying derivatization shifted the spectrum toward Gram-positive bacteria. Furthermore, the quantity of phenolic OH-groups per molecule was found to have a weak impact on the anti-biofilm activity of the tannins. Conclusion We were able to modulate the antibiofilm activity of several tannins by specific chemical modifications, providing a first approach for fine tuning of their activity and antibacterial spectrum.
Collapse
Affiliation(s)
- Xabier Villanueva
- Faculty of Bioscience Engineering, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Heverlee, Belgium
| | - Lili Zhen
- Department of Chemical Science and Technologies, University of Rome ‘Tor Vergata’, Rome, Italy,CSGI – Center for Colloid and Surface Science, Sesto Fiorentino, Italy
| | - José Nunez Ares
- Division of Mechatronics, Biostatistics and Sensors (MeBioS), Department of Biosystems (BIOSYST), KU Leuven, Heverlee, Belgium
| | - Thijs Vackier
- Faculty of Bioscience Engineering, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Heverlee, Belgium
| | - Heiko Lange
- CSGI – Center for Colloid and Surface Science, Sesto Fiorentino, Italy,Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Claudia Crestini
- CSGI – Center for Colloid and Surface Science, Sesto Fiorentino, Italy,Department of Molecular Science and Nanosystems, Ca’ Foscari University of Venice, Venice, Italy
| | - Hans P. Steenackers
- Faculty of Bioscience Engineering, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Heverlee, Belgium,*Correspondence: Hans P. Steenackers,
| |
Collapse
|
10
|
Nguyen MV, Han JW, Kim H, Choi GJ. Phenyl Ethers from the Marine-Derived Fungus Aspergillus tabacinus and Their Antimicrobial Activity Against Plant Pathogenic Fungi and Bacteria. ACS OMEGA 2022; 7:33273-33279. [PMID: 36157764 PMCID: PMC9494657 DOI: 10.1021/acsomega.2c03859] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/24/2022] [Indexed: 06/06/2023]
Abstract
Marine fungi produce various secondary metabolites with unique chemical structures and diverse biological activities. In the continuing search for new antifungal agents from fungi isolated from marine environments, the culture filtrate of a fungus Aspergillus tabacinus SFC20160407-M11 exhibited the potential to control plant diseases caused by fungi. From the culture filtrate of A. tabacinus SFC20160407-M11, a total of seven compounds were isolated and identified by activity-guided column chromatography and spectroscopic analysis: violaceol I (1), violaceol II (2), diorcinol (3), versinol (4), orcinol (5), orsellinic acid (6), and sydowiol C (7). Based on in vitro bioassays against 17 plant pathogenic fungi and bacteria, violaceols and diorcinol (1-3) showed a broad spectrum of antimicrobial activity with minimum inhibitory concentration values in the range of 6.3-200 μg mL-1. These compounds also effectively reduced the development of rice blast, tomato late blight, and pepper anthracnose caused by plant pathogenic fungi in a dose-dependent manner. Our results suggest that A. tabacinus SFC20160407-M11 and its phenyl ether compounds could be used for developing new antimicrobial agents to protect crops from plant pathogens.
Collapse
Affiliation(s)
- Minh Van Nguyen
- Center
for Eco-friendly New Materials, Korea Research
Institute of Chemical Technology, Daejeon 34114, Korea
- Division
of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113, Korea
| | - Jae Woo Han
- Center
for Eco-friendly New Materials, Korea Research
Institute of Chemical Technology, Daejeon 34114, Korea
| | - Hun Kim
- Center
for Eco-friendly New Materials, Korea Research
Institute of Chemical Technology, Daejeon 34114, Korea
- Division
of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113, Korea
| | - Gyung Ja Choi
- Center
for Eco-friendly New Materials, Korea Research
Institute of Chemical Technology, Daejeon 34114, Korea
- Division
of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113, Korea
| |
Collapse
|
11
|
Development, Synthesis and Characterization of Tannin/Bentonite-Derived Biochar for Water and Wastewater Treatment from Methylene Blue. WATER 2022. [DOI: 10.3390/w14152407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Novel hybrid carbon–mineral materials were synthesized by the mechanochemical activation of a mixture of tannin and bentonite in a ball mill with further pyrolysis in an argon atmosphere at 800 °C. The influence of the initial mixture ingredients content on the structural, textural, and thermal characteristics of biochars has been described using X-ray diffraction, Raman and Fourier-transform infrared spectroscopy, nitrogen adsorption–desorption, and scanning electron microscopy. The influence of bentonite clay on the carbon phase characteristics due to the formation of more heat-resistant and structured nanocarbon particles in biochars has been proven. The adsorption effectiveness of the materials towards methylene blue was studied. The adsorption data were analyzed applying Langmuir and Freundlich isotherms with high determination coefficients (R2) in the range of 0.983–0.999 (Langmuir) and 0.783–0.957 (Freundlich). The maximum adsorption amount of MB was 5.78 mg/g. The adsorption efficiency of biochars with respect to phenol was also examined. It was shown that the hybrid biochars show differentiated selectivity to the adsorption of organic compounds. It was concluded that the physicochemical properties of the surface of biochars play an important role in the adsorption effectiveness, making them a good candidate for water and wastewater remediation processes.
Collapse
|
12
|
Kim B, Park AR, Song CW, Song H, Kim JC. Biological Control Efficacy and Action Mechanism of Klebsiella pneumoniae JCK-2201 Producing Meso-2,3-Butanediol Against Tomato Bacterial Wilt. Front Microbiol 2022; 13:914589. [PMID: 35910601 PMCID: PMC9333516 DOI: 10.3389/fmicb.2022.914589] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial wilt caused by Ralstonia solanacearum is a fatal disease that affects the production of tomatoes and many other crops worldwide. As an effective strategy to manage bacterial wilt, biological control agents using plant growth-promoting rhizobacteria (PGPR) are being developed. In this study, we screened 2,3-butanediol (BDO)-producing PGPR to control tomato bacterial wilt and investigated the action mechanism of the disease control agent. Of the 943 strains isolated from soil, Klebsiella pneumoniae strain JCK-2201 produced the highest concentration of 2,3-BDO. The culture broth of K. pneumoniae JCK-2201 did not show any direct activity on R. solanacearum in vitro, but a 100-fold dilution effectively controlled tomato bacterial wilt with a control value of 77% in vivo. Fermentation utilizing K. pneumoniae JCK-2201 was optimized to produce 48 g/L of meso-2,3-BDO, which is 50% of the sucrose conversion efficiency. In addition, the control efficacy and mechanism of meso-2,3-BDO produced by JCK-2201 in tomato bacterial wilt were determined by comparative analysis with Bacillus licheniformis DSM13 producing meso-2,3-BDO and B. licheniformis DSM13 ΔalsS that did not produce 2,3-BDO, as the step of converting pyruvate to α-acetolactate was omitted. Tomato seedlings treated with the K. pneumoniae JCK-2201 (500-fold dilution) and B. licheniformis DSM13 (100-fold dilution) culture broth produced meso-2,3-BDO that significantly reduced R. solanacearum-induced disease severity with control values of 55% and 63%, respectively. The formulated meso-2,3-BDO 9% soluble concentrate (SL; 1,000-fold dilution) showed 87% control against tomato bacterial wilt in the field condition. Klebsiella pneumoniae JCK-2201 and B. licheniformis DSM13 treatment induced the expression of plant defense marker genes, such as LePR1, LePR2, LePR5, LePR3, and PI-II, in the salicylic acid and jasmonic acid signaling pathways at 4 days after inoculation. These results show that 2,3-BDO-producing bacteria and 2,3-BDO are potential biological control agents that act through induction of resistance for controlling tomato bacterial wilt.
Collapse
Affiliation(s)
- Bora Kim
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University, Gwangju, South Korea
| | - Ae Ran Park
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University, Gwangju, South Korea
| | - Chan Woo Song
- Research and Department Center, GS Caltex Corporation, Daejeon, South Korea
| | - Hyohak Song
- Research and Department Center, GS Caltex Corporation, Daejeon, South Korea
| | - Jin-Cheol Kim
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University, Gwangju, South Korea
- *Correspondence: Jin-Cheol Kim,
| |
Collapse
|
13
|
Early Detection of Bacterial Wilt in Tomato with Portable Hyperspectral Spectrometer. REMOTE SENSING 2022. [DOI: 10.3390/rs14122882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
As a kind of soil-borne epidemic disease, bacterial wilt (BW) is one of the most serious diseases in tomatoes in southern China, which may significantly reduce food quality and the total amount of yield. Hyperspectral remote sensing can detect crop diseases in the early stages and offers potential for BW detection in tomatoes. Tomatoes in southern China are commonly cultivated in greenhouses or bird nets, limiting the application of remote sensing based on natural sunlight. To resolve these issues, we collected the spectrum of tomatoes firstly using the HS-VN1000B Portable Intelligent Spectrometer, which is equipped with a simulated solar light source. We then proposed a tomato BW detection model based on some optimal spectral features. Specifically, these optimal features, including vegetation indexes and principal components (PCs), were extracted by the sequential forward selection (SFS), the simulated annealing (SA), and the genetic algorithm (GA) and were finally fed into the support vector machine (SVM) classifier to detect diseased tomatoes. The results showed that the infected and healthy tomatoes exhibit different spectral characteristics for both leave and stem spectra, especially for near-infrared bands. In addition, the BW detecting model built by the combination of GA and SVM (GA-SVM) achieved the best performance with overall accuracies (OA) of 90.7% for leaves and 92.6% for stems. Compared with the results based on leaves, spectral features of stems provided better accuracy, indicating that the symptom of early infection of BW is more significant in tomato stems than in leaves. Further, the reliability of the GA-SVM tomato stem model was verified in our 2022 experiment with an OA of 88.6% and an F1 score of 0.80. Our study provides an effective means to detect BW disease of tomatoes in the early stages, which could help farmers manage their tomato production and effectively prevent pesticide abuse.
Collapse
|
14
|
Ngo MT, Van Nguyen M, Han JW, Kim B, Kim YK, Park MS, Kim H, Choi GJ. Biocontrol Potential of Aspergillus Species Producing Antimicrobial Metabolites. Front Microbiol 2021; 12:804333. [PMID: 35003037 PMCID: PMC8733401 DOI: 10.3389/fmicb.2021.804333] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/30/2021] [Indexed: 11/29/2022] Open
Abstract
Microbial metabolites have been recognized as an important source for the discovery of new antifungal agents because of their diverse chemical structures with novel modes of action. In the course of our screening for new antifungal agents from microbes, we found that culture filtrates of two fungal species Aspergillus candidus SFC20200425-M11 and Aspergillus montenegroi SFC20200425-M27 have the potentials to reduce the development of fungal plant diseases such as tomato late blight and wheat leaf rust. From these two Aspergillus spp., we isolated a total of seven active compounds, including two new compounds (4 and 6), and identified their chemical structures based on the NMR spectral analyses: sphaeropsidin A (1), (R)-formosusin A (2), (R)-variotin (3), candidusin (4), asperlin (5), montenegrol (6), and protulactone A (7). Based on the results of the in vitro bioassays of 11 plant pathogenic fungi and bacteria, sphaeropsidin A (1), (R)-formosusin A (2), (R)-variotin (3), and asperlin (5) exhibited a wide range of antimicrobial activity. Furthermore, when plants were treated with sphaeropsidin A (1) and (R)-formosusin A (2) at a concentration of 500 μg/ml, sphaeropsidin A (1) exhibited an efficacy disease control value of 96 and 90% compared to non-treated control against tomato late blight and wheat leaf rust, and (R)-formosusin A (2) strongly reduced the development of tomato gray mold by 82%. Asperlin (5) at a concentration of 500 μg/ml effectively controlled the development of tomato late blight and wheat leaf rust with a disease control value of 95%. Given that culture filtrates and active compounds derived from two Aspergillus spp. exhibited disease control efficacies, our results suggest that the Aspergillus-produced antifungal compounds could be useful for the development of new natural fungicides.
Collapse
Affiliation(s)
- Men Thi Ngo
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, South Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon, South Korea
| | - Minh Van Nguyen
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, South Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon, South Korea
| | - Jae Woo Han
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Bomin Kim
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, South Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon, South Korea
| | - Yun Kyung Kim
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, South Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon, South Korea
| | - Myung Soo Park
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Hun Kim
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, South Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon, South Korea
| | - Gyung Ja Choi
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, South Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
15
|
Bioassay-Guided Identification of Bioactive Compounds from Senna alata L. against Methicillin-Resistant Staphylococcus aureus. Appl Microbiol 2021. [DOI: 10.3390/applmicrobiol1030034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Senna alata (Linn) Roxb. plant is widely used to manage various infections in folkloric medicine. Methicillin-resistant Staphylococcus aureus (MRSA) infection continues to be a major global public health problem. This study aims to investigate the bioactive components of S. alata leaves active against MRSA. The leaves of S. alata were sequentially extracted and fractionated using standard methods and screened for activities against MRSA. The diethyl ether active thin layer chromatography (TLC) spot was subjected to infrared (IR) and gas chromatography-mass spectroscopic (GC-MS) studies. The aqueous extract and diethyl ether fraction of S. alata leaves elicited the highest activity against the MRSA. The GC-MS analysis of the fraction produced 15 eluates; only the sub-fraction 13 was effective. The TLC analysis of the sub-fraction 13 revealed three spots; only the second spot produced activity. The GC-MS result of the spot showed six peaks. The spectral results for peak 3 match the data from the IR study, suggestive of 9-octadecenoic acid methyl ester. Senna alata leaves possess bioactive compounds closely related to 9-octadecenoic acid methyl ester with potent antibacterial activity against MRSA.
Collapse
|
16
|
He Q, Zhang L, Li T, Li C, Song H, Fan P. Genus Sapium (Euphorbiaceae): A review on traditional uses, phytochemistry, and pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2021; 277:114206. [PMID: 34000366 DOI: 10.1016/j.jep.2021.114206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/02/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Genus Sapium, belonging to Euphorbiaceae family, has a wide distribution in Asia and in temperate and tropical regions of Africa and America. The various parts of Sapium species have been used in traditional Chinese herbal medicine for the treatment of edema, skin-related diseases, bacterial infections, cancers, diabetes, and other ailments. AIM OF THE STUDY A comprehensive and updated review on the phytochemistry, pharmacology, and traditional medicinal uses of Sapium has been summarized and discussed to facilitate further exploitation of the therapeutic values of Sapium species. MATERIALS AND METHODS The relevant information of Sapium species was collected by scientific search engines including Elsevier, Google Scholar, Scifinder, and CNKI (China national knowledge infrastructure), and Master's dissertations and Summon from Shandong University Library. RESULTS Phytochemical studies revealed that approximately 259 compounds including terpenoids, phenylpropanoids, flavonoids, tannins, steroids, alkaloids, etc. have been isolated and identified from Sapium species, among which terpenoids, phenylpropanoids and tannins are the main constituents. Pharmacological in vitro and in vivo studies revealed that the extracts and pure compounds possessed significant antibacterial, antiinflammatory, antioxidant, antihypertensive effects, cytotoxicity, antidiabetic, molluscicidal effects. Terpenoids, phenylpropanoids, tannins, flavonoids, and alkaloids may be responsible for these activities. CONCLUSIONS The traditional uses, phytochemistry, and pharmacology described in this article demonstrated that the plants of Sapium genus possess many different types of compounds exhibiting wide range of biological activities, and they have high medicinal value and potential in the treatment of a variety of diseases. Detailed phytochemical studies have been conducted on only twelve species in the literature. More wide-ranging studies are still needed to explore this genus. Most of the existing bioactivity-related studies were implemented on crude extracts. More in-depth studies are necessary to reveal the links between the traditional uses and bioactivity in the future.
Collapse
Affiliation(s)
- Qiaobian He
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Li Zhang
- Department of Pharmacy, Jinan Second People's Hospital, No. 148 Jingyi Road, Jinan, 250001, PR China.
| | - Ting Li
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Changhao Li
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Huina Song
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Peihong Fan
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China.
| |
Collapse
|
17
|
Nguyen MV, Han JW, Le Dang Q, Ryu SM, Lee D, Kim H, Choi GJ. Clerodane Diterpenoids Identified from Polyalthia longifolia Showing Antifungal Activity against Plant Pathogens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10527-10535. [PMID: 34469148 DOI: 10.1021/acs.jafc.1c02200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the search for new natural resources showing plant disease control effects, we found that the methanol extract of Polyalthia longifolia suppressed fungal disease development in plants. To identify the bioactive substances, the methanol extract of P. longifolia was extracted by organic solvents, and consequently, four new 2-oxo-clerodane diterpenes (1-4), a new 4(3 → 2)-abeo-clerodane diterpene (5), together with ten known compounds (6-16) were isolated and identified from the extracts. Of the new compounds, compound 2 showed a broad spectrum of antifungal activity with moderated minimum inhibitory concentration (MIC) values in a range of 50-100 μg/mL against tested fungal pathogens. Considering with the known compounds, compound 6 showed the most potent antifungal activity with an MIC value in the range of 6.3-12.5 μg/mL. When compound 6 was evaluated for an in vivo antifungal activity against rice blast, tomato late blight, and pepper anthracnose, compound 6 reduced the plant disease by at least 60% compared to the untreated control at concentrations of 250 and 500 μg/mL. Together, our results suggested that the methanol extract of twigs and leaves of P. longifolia and its major compound 6 could be used as a source for the development of eco-friendly plant protection agents.
Collapse
Affiliation(s)
- Minh Van Nguyen
- Center for Eco-Friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113, Korea
| | - Jae Woo Han
- Center for Eco-Friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Quang Le Dang
- Research and Development Center of Bioactive Compounds, Vietnam Institute of Industrial Chemistry, Hanoi 100000, Vietnam
| | - Seung Mok Ryu
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Korea
| | - Dongho Lee
- Department of Biosystems and Biotechnology, Korea University, Seoul 02841, Korea
| | - Hun Kim
- Center for Eco-Friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113, Korea
| | - Gyung Ja Choi
- Center for Eco-Friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113, Korea
| |
Collapse
|
18
|
Zhao HY, Lan Q, He S, Su BJ, Wang YQ, Liao HB, Wang HS, Liang D. Chebulic acid derivatives from Balakata baccata and their antineuroinflammatory and antioxidant activities. Bioorg Chem 2021; 116:105332. [PMID: 34509045 DOI: 10.1016/j.bioorg.2021.105332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/01/2022]
Abstract
Sixteen chebulic acid derivatives, including nine new (1-9) and seven known (10-16) ones, were isolated from an ethanol extract of the branches and leaves of Balakata baccata. The structures of the new compounds were elucidated by their UV, IR, HRESIMS, NMR, electronic circular dichroism (ECD) and single-crystal X-ray diffraction data. The effects of all the isolates on antineuroinflammatory and antioxidant activities were evaluated. Compared with the positive control minocycline (IC50 = 1.21 ± 0.71 μM), compounds 1-16 with IC50 values being greater than 50 μM, displayed almost no effects on the inhibition of NO production in LPS-induced BV-2 microglial cells, however, the results of antioxidant activity for compounds 1-16 showed significant DPPH-radical scavenging abilities with EC50 value ranging from 3.98 to 14.24 μM, while the EC50 value of positive control vitamin C was 14.31 μM. At last, the results of PCR (qRT-PCR) analysis showed that compound 1 could enhance the expression of antioxidases (HO-1, GCLC, and NQO1) at the mRNA levels.
Collapse
Affiliation(s)
- Hai-Yan Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Qian Lan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Shuang He
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Bao-Jun Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Ya-Qi Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Hai-Bing Liao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Heng-Shan Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Dong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China.
| |
Collapse
|
19
|
Li S, Pi J, Zhu H, Yang L, Zhang X, Ding W. Caffeic Acid in Tobacco Root Exudate Defends Tobacco Plants From Infection by Ralstonia solanacearum. FRONTIERS IN PLANT SCIENCE 2021; 12:690586. [PMID: 34456935 PMCID: PMC8387680 DOI: 10.3389/fpls.2021.690586] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
In rhizospheres, chemical barrier-forming natural compounds play a key role in preventing pathogenic bacteria from infecting plant roots. Here, we sought to identify specific phenolic exudates in tobacco (Nicotiana tobaccum) plants infected by the soil-borne pathogen Ralstonia solanacearum that may exhibit antibacterial activity and promote plant resistance against pathogens. Among detected phenolic acids, only caffeic acid was significantly induced in infected plants by R. solanacearum relative to healthy plants, and the concentration of caffeic acid reached 1.95 μg/mL. In vivo, caffeic acid at 200 μg/mL was highly active against R. solanacearum and obviously damaged the membrane structure of the R. solanacearum cells, resulting in the thinning of the cell membrane and irregular cavities in cells. Moreover, caffeic acid significantly inhibited biofilm formation by repressing the expression of the lecM and epsE genes. In vitro, caffeic acid could effectively activate phenylalanine ammonia-lyase (PAL) and peroxidase (POD) and promote the accumulation of lignin and hydroxyproline. In pot and field experiments, exogenous applications of caffeic acid significantly reduced and delayed the incidence of tobacco bacterial wilt. Taken together, all these results suggest that caffeic acid played a crucial role in defending against R. solanacearum infection and was a potential and effective antibacterial agent for controlling bacterial wilt.
Collapse
Affiliation(s)
- Shili Li
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing, China
| | - Jing Pi
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing, China
| | - Hongjiang Zhu
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing, China
| | - Liang Yang
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing, China
| | - Xingguo Zhang
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Southwest University, Chongqing, China
| | - Wei Ding
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
20
|
Asghar A, Tan YC, Zahoor M, Zainal Abidin SA, Yow YY, Khan E, Lahiri C. A scaffolded approach to unearth potential antibacterial components from epicarp of Malaysian Nephelium lappaceum L. Sci Rep 2021; 11:13859. [PMID: 34226594 PMCID: PMC8257635 DOI: 10.1038/s41598-021-92622-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/10/2021] [Indexed: 11/09/2022] Open
Abstract
The emergence and spread of antimicrobial resistance have been of serious concern to human health and the management of bacterial infectious diseases. Effective treatment of these diseases requires the development of novel therapeutics, preferably free of side effects. In this regard, natural products are frequently conceived to be potential alternative sources for novel antibacterial compounds. Herein, we have evaluated the antibacterial activity of the epicarp extracts of the Malaysian cultivar of yellow rambutan fruit (Nephelium lappaceum L.) against six pathogens namely, Bacillus subtilis, methicillin-resistant Staphylococcus aureus (MRSA), Streptococcus pyogenes, Pseudomonas aeruginosa, Klebsiella pneumoniae and Salmonella enterica. Among a series of solvent extracts, fractions of ethyl acetate and acetone have revealed significant activity towards all tested strains. Chemical profiling of these fractions, via HPLC, LC-MS and GC-MS, has generated a library of potentially bioactive compounds. Downstream virtual screening, pharmacological prediction, and receptor-ligand molecular dynamics simulation have eventually unveiled novel potential antibacterial compounds, which can be extracted for medicinal use. We report compounds like catechin, eplerenone and oritin-4-beta-ol to be computationally inhibiting the ATP-binding domain of the chaperone, DnaK of P. aeruginosa and MRSA. Thus, our work follows the objective to propose new antimicrobials capable of perforating the barrier of resistance posed by both the gram positives and the negatives.
Collapse
Affiliation(s)
- Ali Asghar
- Department of Biological Sciences, Sunway University, Petaling Jaya, Malaysia
| | - Yong Chiang Tan
- Department of Biological Sciences, Sunway University, Petaling Jaya, Malaysia
| | - Mohammad Zahoor
- Department of Biochemistry, University of Malakand, Chakdara, Pakistan
| | | | - Yoon-Yen Yow
- Department of Biological Sciences, Sunway University, Petaling Jaya, Malaysia
| | - Ezzat Khan
- Department of Chemistry, University of Bahrain, Sakhir, Bahrain
| | - Chandrajit Lahiri
- Department of Biological Sciences, Sunway University, Petaling Jaya, Malaysia.
| |
Collapse
|
21
|
Fraga-Corral M, Otero P, Cassani L, Echave J, Garcia-Oliveira P, Carpena M, Chamorro F, Lourenço-Lopes C, Prieto MA, Simal-Gandara J. Traditional Applications of Tannin Rich Extracts Supported by Scientific Data: Chemical Composition, Bioavailability and Bioaccessibility. Foods 2021; 10:251. [PMID: 33530516 PMCID: PMC7912241 DOI: 10.3390/foods10020251] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/16/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Tannins are polyphenolic compounds historically utilized in textile and adhesive industries, but also in traditional human and animal medicines or foodstuffs. Since 20th-century, advances in analytical chemistry have allowed disclosure of the chemical nature of these molecules. The chemical profile of extracts obtained from previously selected species was investigated to try to establish a bridge between traditional background and scientific data. The study of the chemical composition of these extracts has permitted us to correlate the presence of tannins and other related molecules with the effectiveness of their apparent uses. The revision of traditional knowledge paired with scientific evidence may provide a supporting background on their use and the basis for developing innovative pharmacology and food applications based on formulations using natural sources of tannins. This traditional-scientific approach can result useful due to the raising consumers' demand for natural products in markets, to which tannin-rich extracts may pose an attractive alternative. Therefore, it is of interest to back traditional applications with accurate data while meeting consumer's acceptance. In this review, several species known to contain high amounts of tannins have been selected as a starting point to establish a correlation between their alleged traditional use, tannins content and composition and potential bioaccessibility.
Collapse
Affiliation(s)
- Maria Fraga-Corral
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (L.C.); (J.E.); (P.G.-O.); (M.C.); (F.C.); (C.L.-L.)
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolonia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Paz Otero
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (L.C.); (J.E.); (P.G.-O.); (M.C.); (F.C.); (C.L.-L.)
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Veterinary, University of Santiago of Compostela, 27002 Lugo, Spain
| | - Lucia Cassani
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (L.C.); (J.E.); (P.G.-O.); (M.C.); (F.C.); (C.L.-L.)
- Research Group of Food Engineering, Faculty of Engineering, National University of Mar del Plata, Mar del Plata RA7600, Argentina
| | - Javier Echave
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (L.C.); (J.E.); (P.G.-O.); (M.C.); (F.C.); (C.L.-L.)
| | - Paula Garcia-Oliveira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (L.C.); (J.E.); (P.G.-O.); (M.C.); (F.C.); (C.L.-L.)
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolonia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Maria Carpena
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (L.C.); (J.E.); (P.G.-O.); (M.C.); (F.C.); (C.L.-L.)
| | - Franklin Chamorro
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (L.C.); (J.E.); (P.G.-O.); (M.C.); (F.C.); (C.L.-L.)
| | - Catarina Lourenço-Lopes
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (L.C.); (J.E.); (P.G.-O.); (M.C.); (F.C.); (C.L.-L.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (L.C.); (J.E.); (P.G.-O.); (M.C.); (F.C.); (C.L.-L.)
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (L.C.); (J.E.); (P.G.-O.); (M.C.); (F.C.); (C.L.-L.)
| |
Collapse
|
22
|
Yang F, Yaseen A, Chen B, Li F, Wang L, Hu W, Wang M. Chemical constituents from the fruits of Phyllanthus emblica L. BIOCHEM SYST ECOL 2020. [DOI: 10.1016/j.bse.2020.104122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Virtual Screening Identifies Chebulagic Acid as an Inhibitor of the M2(S31N) Viral Ion Channel and Influenza A Virus. Molecules 2020; 25:molecules25122903. [PMID: 32599753 PMCID: PMC7356874 DOI: 10.3390/molecules25122903] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 01/09/2023] Open
Abstract
The increasing prevalence of drug-resistant influenza viruses emphasizes the need for new antiviral countermeasures. The M2 protein of influenza A is a proton-gated, proton-selective ion channel, which is essential for influenza replication and an established antiviral target. However, all currently circulating influenza A virus strains are now resistant to licensed M2-targeting adamantane drugs, primarily due to the widespread prevalence of an M2 variant encoding a serine to asparagine 31 mutation (S31N). To identify new chemical leads that may target M2(S31N), we performed a virtual screen of molecules from two natural product libraries and identified chebulagic acid as a candidate M2(S31N) inhibitor and influenza antiviral. Chebulagic acid selectively restores growth of M2(S31N)-expressing yeast. Molecular modeling also suggests that chebulagic acid hydrolysis fragments preferentially interact with the highly-conserved histidine residue within the pore of M2(S31N) but not adamantane-sensitive M2(S31). In contrast, chebulagic acid inhibits in vitro influenza A replication regardless of M2 sequence, suggesting that it also acts on other influenza targets. Taken together, results implicate chebulagic acid and/or its hydrolysis fragments as new chemical leads for M2(S31N) and influenza-directed antiviral development.
Collapse
|
24
|
Ling L, Han X, Li X, Zhang X, Wang H, Zhang L, Cao P, Wu Y, Wang X, Zhao J, Xiang W. A Streptomyces sp. NEAU-HV9: Isolation, Identification, and Potential as a Biocontrol Agent against Ralstonia Solanacearum of Tomato Plants. Microorganisms 2020; 8:microorganisms8030351. [PMID: 32121616 PMCID: PMC7142955 DOI: 10.3390/microorganisms8030351] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 11/24/2022] Open
Abstract
Ralstonia solanacearum is an important soil-borne bacterial plant pathogen. In this study, an actinomycete strain named NEAU-HV9 that showed strong antibacterial activity against Ralstonia solanacearum was isolated from soil using an in vitro screening technique. Based on physiological and morphological characteristics and 98.90% of 16S rRNA gene sequence similarity with Streptomyces panaciradicis 1MR-8T, the strain was identified as a member of the genus Streptomyces. Tomato seedling and pot culture experiments showed that after pre-inoculation with the strain NEAU-HV9, the disease occurrence of tomato seedlings was effectively prevented for R.solanacearum. Then, a bioactivity-guided approach was employed to isolate and determine the chemical identity of bioactive constituents with antibacterial activity from strain NEAU-HV9. The structure of the antibacterial metabolite was determined as actinomycin D on the basis of extensive spectroscopic analysis. To our knowledge, this is the first report that actinomycin D has strong antibacterial activity against R. solanacearum with a MIC (minimum inhibitory concentration) of 0.6 mg L−1 (0.48 μmol L−1). The in vivo antibacterial activity experiment showed that actinomycin D possessed significant preventive efficacy against R. solanacearum in tomato seedlings. Thus, strain NEAU-HV9 could be used as BCA (biological control agent) against R. solanacearum, and actinomycin D might be a promising candidate for a new antibacterial agent against R. solanacearum.
Collapse
Affiliation(s)
- Ling Ling
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, China; (L.L.); (X.H.); (X.L.); (X.Z.); (H.W.); (L.Z.); (P.C.); (Y.W.); (X.W.)
| | - Xiaoyang Han
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, China; (L.L.); (X.H.); (X.L.); (X.Z.); (H.W.); (L.Z.); (P.C.); (Y.W.); (X.W.)
| | - Xiao Li
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, China; (L.L.); (X.H.); (X.L.); (X.Z.); (H.W.); (L.Z.); (P.C.); (Y.W.); (X.W.)
| | - Xue Zhang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, China; (L.L.); (X.H.); (X.L.); (X.Z.); (H.W.); (L.Z.); (P.C.); (Y.W.); (X.W.)
| | - Han Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, China; (L.L.); (X.H.); (X.L.); (X.Z.); (H.W.); (L.Z.); (P.C.); (Y.W.); (X.W.)
| | - Lida Zhang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, China; (L.L.); (X.H.); (X.L.); (X.Z.); (H.W.); (L.Z.); (P.C.); (Y.W.); (X.W.)
| | - Peng Cao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, China; (L.L.); (X.H.); (X.L.); (X.Z.); (H.W.); (L.Z.); (P.C.); (Y.W.); (X.W.)
| | - Yutong Wu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, China; (L.L.); (X.H.); (X.L.); (X.Z.); (H.W.); (L.Z.); (P.C.); (Y.W.); (X.W.)
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, China; (L.L.); (X.H.); (X.L.); (X.Z.); (H.W.); (L.Z.); (P.C.); (Y.W.); (X.W.)
| | - Junwei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, China; (L.L.); (X.H.); (X.L.); (X.Z.); (H.W.); (L.Z.); (P.C.); (Y.W.); (X.W.)
- Correspondence: (J.Z.); (W.X.)
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, China; (L.L.); (X.H.); (X.L.); (X.Z.); (H.W.); (L.Z.); (P.C.); (Y.W.); (X.W.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (J.Z.); (W.X.)
| |
Collapse
|
25
|
Im SM, Yu NH, Joen HW, Kim SO, Park HW, Park AR, Kim JC. Biological control of tomato bacterial wilt by oxydifficidin and difficidin-producing Bacillus methylotrophicus DR-08. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 163:130-137. [PMID: 31973849 DOI: 10.1016/j.pestbp.2019.11.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 09/25/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
Bacillus methylotrophicus DR-08 exhibited strong antibacterial activity against Ralstonia solanacearum, a causal agent of tomato bacterial wilt. This study aimed to identify the antibacterial metabolites and evaluate the efficacy of the strain as a biocontrol agent for tomato bacterial wilt. A butanol extract of the DR-08 broth culture completely inhibited the growth of 14 phytopathogenic bacteria with minimum inhibitory concentration (MIC) values of 1.95-500 μg/mL. R. solanacearum was highly sensitive to the DR-08 extract, with an MIC value of 12.62 μg/mL. Two antibacterial metabolites were isolated and identified as difficidin and oxydifficidin derivatives through bioassay-guided fractionation and instrumental analyses. Both metabolite derivatives inhibited the growth of most of the phytopathogenic bacteria tested and the oxydifficidin derivatives generally presented a stronger antibacterial activity than the difficidin derivatives. A 30% suspension concentrate of DR-08, at a 500-fold dilution, effectively suppressed the development of tomato bacterial wilt in pot and field experiments. It also effectively reduced the development of bacterial leaf spot symptoms on peach and red pepper. The results of this study suggests that B. methylotrophicus DR-08 can be utilized as a biocontrol agent for various bacterial plant diseases including tomato bacterial wilt.
Collapse
Affiliation(s)
- Seong Mi Im
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Nan Hee Yu
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Hee Won Joen
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Soon Ok Kim
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, 42 Hwangyeong-ro, Seo-gu, Incheon 22689, Republic of Korea
| | - Hae Woong Park
- R&D Division, World Institute of Kimchi, 86 Kimchi-ro, Nam-gu, Gwangju 61755, Republic of Korea
| | - Ae Ran Park
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Jin-Cheol Kim
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea.
| |
Collapse
|
26
|
Le KD, Kim J, Yu NH, Kim B, Lee CW, Kim JC. Biological Control of Tomato Bacterial Wilt, Kimchi Cabbage Soft Rot, and Red Pepper Bacterial Leaf Spot Using Paenibacillus elgii JCK-5075. FRONTIERS IN PLANT SCIENCE 2020; 11:775. [PMID: 32714339 PMCID: PMC7340725 DOI: 10.3389/fpls.2020.00775] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/15/2020] [Indexed: 05/14/2023]
Abstract
The over and repeated use of chemical bactericides to control plant bacterial diseases has resulted in unwanted effects, such as environmental pollution, residual toxicity, and resistance buildup in bacterial pathogens. Many previous studies have aimed to develop biological control agents to replace chemical bactericides. In this study, the antibacterial efficacy of the fermentation broth of Paenibacillus elgii JCK-5075 and its antibacterial compounds were evaluated against plant pathogenic bacteria, using both in vitro and in vivo bioassays. Pelgipeptins (PGPs) A, B, C, and D that were isolated from P. elgii JCK-5075 displayed broad-spectrum antibacterial activity against various plant pathogenic bacteria. The fermentation broth of P. elgii JCK-5075, at 5-fold dilution, effectively suppressed the development of tomato bacterial wilt, Kimchi cabbage soft rot, and red pepper bacterial leaf spot in pot experiments with control values of 81, 84, and 67%, respectively. PGP-A and C, at 200 μg/ml, were also found to markedly reduce the development of Kimchi cabbage bacterial soft rot by 75% and tomato bacterial wilt by 83%, respectively, and their disease control efficacy was comparable to that of oxolinic acid with control values of 81 and 85%, respectively. Additionally, the antibacterial activity of PGP-C was found to be directly correlated with membrane damage mechanisms. These results indicates that P. elgii JCK-5075 producing PGPs could be used as a biocontrol agent for the control of plant bacterial diseases. This is the first report on the in vitro and in vivo antibacterial activity of PGPs against bacterial plant pathogens.
Collapse
Affiliation(s)
- Khanh Duy Le
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Jueun Kim
- Department of Chemistry, Chonnam National University, Gwangju, South Korea
| | - Nan Hee Yu
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Bora Kim
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Chul Won Lee
- Department of Chemistry, Chonnam National University, Gwangju, South Korea
- *Correspondence: Chul Won Lee,
| | - Jin-Cheol Kim
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
- Jin-Cheol Kim,
| |
Collapse
|
27
|
Gallelli G, Cione E, Serra R, Leo A, Citraro R, Matricardi P, Di Meo C, Bisceglia F, Caroleo MC, Basile S, Gallelli L. Nano-hydrogel embedded with quercetin and oleic acid as a new formulation in the treatment of diabetic foot ulcer: A pilot study. Int Wound J 2019; 17:485-490. [PMID: 31876118 DOI: 10.1111/iwj.13299] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/11/2022] Open
Abstract
Wound healing, especially diabetic ones, is a relevant clinical problem, so it is not surprising that surgical procedures are often needed. To overcome invasive procedures, several strategies with drugs or natural compound are used. Recently, in an experimental study, we described an increase in keratinocyte proliferation after their exposition to quercetin plus oleic acid. In the present clinical study, we evaluated both the clinical efficacy and the safety of nano-hydrogel embedded with quercetin and oleic acid in the treatment of lower limb skin wound in patients with diabetes mellitus (DM). Fifty-six DM patients (28 men and 28 women, mean age 61.7 ± 9.2 years) unsuccessfully treated with mechanical compression were enrolled and randomised to receive an add on treatment with hyaluronic acid (0.2%) or nano-hydrogel embedded with quercetin and oleic acid. The treatment with nano-hydrogel embedded with quercetin and oleic acid significantly (P < .01) reduced the wound healing time, in comparison to hyaluronic acid (0.2%) without developing of adverse drug reactions, suggesting that this formulation could be used in the management of wound healing even if other clinical trials must be performed in order to validate this observation.
Collapse
Affiliation(s)
- Giuseppe Gallelli
- Division of Vascular surgery, Department of Sugery, Pugliese Hospital, Catanzaro, Italy
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Raffaele Serra
- Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Antonio Leo
- Department of Health Sciences, University of Catanzaro, Catanzaro, Italy.,Clinical Pharmacology and Pharmacovigilance Unit, Mater Domini Hospital, Catanzaro, Italy
| | - Rita Citraro
- Department of Health Sciences, University of Catanzaro, Catanzaro, Italy.,Clinical Pharmacology and Pharmacovigilance Unit, Mater Domini Hospital, Catanzaro, Italy
| | - Pietro Matricardi
- Department of Drug Chemistry and Technologies, Sapienza University of Roma, Rome, Italy
| | - Chiara Di Meo
- Department of Drug Chemistry and Technologies, Sapienza University of Roma, Rome, Italy
| | - Francesco Bisceglia
- Department of Health Sciences, University of Catanzaro, Catanzaro, Italy.,Clinical Pharmacology and Pharmacovigilance Unit, Mater Domini Hospital, Catanzaro, Italy
| | - Maria C Caroleo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Sonia Basile
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Luca Gallelli
- Department of Health Sciences, University of Catanzaro, Catanzaro, Italy.,Clinical Pharmacology and Pharmacovigilance Unit, Mater Domini Hospital, Catanzaro, Italy
| |
Collapse
|
28
|
Li T, Wang S, Fan P, Lou H. New coumarins and monoterpene galloylglycoside from the stem bark of Sapium baccatum. Fitoterapia 2019; 134:435-442. [DOI: 10.1016/j.fitote.2019.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/16/2019] [Accepted: 03/16/2019] [Indexed: 01/07/2023]
|
29
|
Kim S, Oh S, Noh HB, Ji S, Lee SH, Koo JM, Choi CW, Jhun HP. In Vitro Antioxidant and Anti- Propionibacterium acnes Activities of Cold Water, Hot Water, and Methanol Extracts, and Their Respective Ethyl Acetate Fractions, from Sanguisorba officinalis L . Roots. Molecules 2018; 23:E3001. [PMID: 30453560 PMCID: PMC6278274 DOI: 10.3390/molecules23113001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 11/17/2022] Open
Abstract
Identification of medicinal plants and naturally derived compounds as new natural antioxidant and antibacterial sources for topical acne treatment has long been important. To determine anti-Propionibacterium acnes activity and in vitro antioxidant activities, Sanguisorba officinalis L. root (SOR) was extracted with cold water (CWE), hot water (HWE), and methanol (ME), and each extract was fractionated successively with hexane, ethyl acetate (EA), and butanol to determine whether the activities could be attributed to the total phenolic, flavonoid, terpenoid, and condensed tannin contents. Pearson's correlation coefficients were analyzed between the respective variables. The SOR CWE, HWE, ME, and their respective EA fractions showed anti-P. acnes activity based on the paper disc diffusion method on agar plates, minimum inhibitory concentration (MIC), and minimal bactericidal concentration (MBC). The MIC against P. acnes had a moderate (+) correlation with the total phenolic content, but not with the other measures. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging capacity (SC) had a strong (⁻) correlation with the total phenolic content and a moderate (⁻) correlation with the total flavonoid content. The total antioxidant capacity had a strong (+) correlation with the condensed tannin content. Linoleic acid peroxidation inhibition had a strong (⁻) correlation with the total phenolic content. To elucidate the major active phytochemicals in the CWE-EA, HWE-EA, and ME-EA fractions, high performance liquid chromatography-ultraviolet (HPLC-UV) and ultra high performance liquid chromatography coupled with hybrid triple quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) were performed. The HPLC-UV analysis showed the presence of nine compounds in common (arjunic acid and/or euscaphic acid, gallic acid, kaempferol, caffeic acid, ferulic acid, tannic acid, and coumarin, quercetin). The UHPLC-QTOF-MS analysis showed the presence of nine compounds in common (gallic acid; caffeic acid; umbelliferone; arjunic acid, euscaphic acid, and/or tormentic acid; pomolic acid; rosamultic acid; and benzoic acid). When standards of the identified phytochemicals were tested against the same bacterium, quercetin, coumarin, and euscaphic acid showed antibacterial activity against P. acnes.
Collapse
Affiliation(s)
- Seongdae Kim
- Department of Biology & Medicinal Science, Pai Chai University, Daejeon 35345, Korea.
| | - Sung Oh
- Department of Biology & Medicinal Science, Pai Chai University, Daejeon 35345, Korea.
| | - Han Byul Noh
- Department of Biology & Medicinal Science, Pai Chai University, Daejeon 35345, Korea.
| | - Seongmi Ji
- Department of Biology & Medicinal Science, Pai Chai University, Daejeon 35345, Korea.
| | - Song Hee Lee
- Department of Biology & Medicinal Science, Pai Chai University, Daejeon 35345, Korea.
| | - Jung Mo Koo
- Department of Biology & Medicinal Science, Pai Chai University, Daejeon 35345, Korea.
| | - Chang Won Choi
- Department of Biology & Medicinal Science, Pai Chai University, Daejeon 35345, Korea.
| | | |
Collapse
|
30
|
Antimicrobial aromatic polyketides: a review of their antimicrobial properties and potential use in plant disease control. World J Microbiol Biotechnol 2018; 34:163. [PMID: 30368604 DOI: 10.1007/s11274-018-2546-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/20/2018] [Indexed: 01/20/2023]
Abstract
Aromatic polyketides are secondary metabolites widely found in bacteria, fungi, and plants, which are well-known for their diverse chemical structures and biological functions. The structural diversity of aromatic polyketides arises from a series of enzymatic modifications of the linear poly-β-ketone intermediates during biosynthesis. Their versatile bioactivities are exemplified by reports of their use as antibacterials, antifungals, antivirals, and antiparasitics. Despite many reports on the antimicrobial nature of aromatic polyketides, their potential use as plant disease control agents has still not been systematically explored and discussed. This review highlights examples of the use of aromatic polyketides as plant disease control agents and discusses their function and merits as agrochemicals.
Collapse
|
31
|
Połeć K, Barnaś B, Kowalska M, Dymek M, Rachwalik R, Sikora E, Biela A, Kobiałka M, Wójcik K, Hąc-Wydro K. The influence of the essential oil extracted from hops on monolayers and bilayers imitating plant pathogen bacteria membranes. Colloids Surf B Biointerfaces 2018; 173:672-680. [PMID: 30384263 DOI: 10.1016/j.colsurfb.2018.10.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 01/01/2023]
Abstract
Many plant-derived compounds possess antimicrobial, antioxidant and even anticancer activities. Therefore, they are considered as substances that can be used instead of synthetic compounds in various applications. In this work, the essential oil from hop cones was extracted and analyzed, and then its effects on model bacteria membranes were studied to verify whether the hop essential oils could be used as ecological pesticides. The experiments involved surface pressure-area measurements, penetration studies and Brewster angle microscopy (BAM) imaging of lipid monolayers as well as hydrodynamic diameter, zeta potential, steady-state fluorescence anisotropy and Cryo-Transmission Electron Microscopy (cryo-TEM) measurements of liposomes. Finally the bactericidal tests on plant pathogen bacteria Pseudomonas syringae pv. lachrymans PCM 1410 were performed. The obtained results showed that the components of the essential oils from hop cones incorporate into lipid monolayers and bilayers and alter their fluidity. However, the observed effect is determined by the system composition, its condensation and the oil concentration. Interestingly, at a given dose, the effect of the essential oil on membranes was found to stabilize. Moreover, BAM images proved that hop oil prevents the formation of a large fraction of a condensed phase at the interface. Both the studies on model membranes as well as the in vitro tests allow one to conclude that the hop essential oil could likely be considered as the candidate to be used in agriculture as a natural pesticide.
Collapse
Affiliation(s)
- Karolina Połeć
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Beata Barnaś
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Magdalena Kowalska
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Michał Dymek
- Institute of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, Krakow, Poland
| | - Rafał Rachwalik
- Institute of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, Krakow, Poland
| | - Elżbieta Sikora
- Institute of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, Krakow, Poland
| | - Artur Biela
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland; Bionanoscience and Biochemistry Laboratory, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland
| | - Michał Kobiałka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Kinga Wójcik
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Katarzyna Hąc-Wydro
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland.
| |
Collapse
|
32
|
Li S, Ye T, Liang L, Liang W, Jian P, Zhou K, Zhang L. Anti-cancer activity of an ethyl-acetate extract of the fruits of Terminalia bellerica (Gaertn.) Roxb. through an apoptotic signaling pathway in vitro. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2018. [DOI: 10.1016/j.jtcms.2018.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|