1
|
Mohammadzadeh N, Chomont N, Estaquier J, Cohen EA, Power C. Is the Central Nervous System Reservoir a Hurdle for an HIV Cure? Viruses 2023; 15:2385. [PMID: 38140626 PMCID: PMC10747469 DOI: 10.3390/v15122385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
There is currently no cure for HIV infection although adherence to effective antiretroviral therapy (ART) suppresses replication of the virus in blood, increases CD4+ T-cell counts, reverses immunodeficiency, and increases life expectancy. Despite these substantial advances, ART is a lifelong treatment for people with HIV (PWH) and upon cessation or interruption, the virus quickly rebounds in plasma and anatomic sites, including the central nervous system (CNS), resulting in disease progression. With recent advances in quantifying viral burden, detection of genetically intact viral genomes, and isolation of replication-competent virus from brain tissues of PWH receiving ART, it has become apparent that the CNS viral reservoir (largely comprised of macrophage type cells) poses a substantial challenge for HIV cure strategies. Other obstacles impacting the curing of HIV include ageing populations, substance use, comorbidities, limited antiretroviral drug efficacy in CNS cells, and ART-associated neurotoxicity. Herein, we review recent findings, including studies of the proviral integration sites, reservoir decay rates, and new treatment/prevention strategies in the context of the CNS, together with highlighting the next steps for investigations of the CNS as a viral reservoir.
Collapse
Affiliation(s)
- Nazanin Mohammadzadeh
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Nicolas Chomont
- Department of Immunopathology, Research Centre of the Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada;
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada;
| | - Jerome Estaquier
- Department of Microbiology and Immunology, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada;
| | - Eric A. Cohen
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada;
- Institut de Recherches Cliniques de Montreal, Montreal, QC H2W 1R7, Canada
| | - Christopher Power
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| |
Collapse
|
2
|
Trunfio M, Mighetto L, Napoli L, Atzori C, Nigra M, Guastamacchia G, Bonora S, Di Perri G, Calcagno A. Cerebrospinal Fluid CXCL13 as Candidate Biomarker of Intrathecal Immune Activation, IgG Synthesis and Neurocognitive Impairment in People with HIV. J Neuroimmune Pharmacol 2023; 18:169-182. [PMID: 37166552 DOI: 10.1007/s11481-023-10066-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 04/17/2023] [Indexed: 05/12/2023]
Abstract
Plasma C-X-C-motif chemokine ligand-13 (CXCL13) has been linked to disease progression and mortality in people living with HIV (PLWH) and is a candidate target for immune-based strategies for HIV cure. Its role in central nervous system (CNS) of PLWH has not been detailed. We described CSF CXCL13 levels and its potential associations with neurological outcomes. Cross-sectional study enrolling PLWH without confounding for CXCL13 production. Subjects were divided according to CSF HIV-RNA in undetectable (< 20 cp/mL) and viremics. CSF CXCL13, and biomarkers of blood-brain barrier (BBB) impairment, intrathecal synthesis, and immune activation were measured by commercial immunoturbidimetric and ELISA assays. All subjects underwent neurocognitive assessment. Sensitivity analyses were conducted in subjects with intact BBB only. 175 participants were included. Detectable CSF CXCL13 was more common in the viremic (31.4%) compared to the undetectable group (13.5%; OR 2.9 [1.4-6.3], p = 0.006), but median levels did not change (15.8 [8.2-91.0] vs 10.0 [8.1-14.2] pg/mL). In viremics (n = 86), CXCL13 associated with higher CSF HIV-RNA, proteins, neopterin, intrathecal synthesis and BBB permeability. In undetectable participants (n = 89), CXCL13 associated with higher CD4+T-cells count, CD4/CD8 ratio, CSF proteins, neopterin, and intrathecal synthesis. The presence of CXCL13 in the CSF of undetectable participants was associated with increased odds of HIV-associated neurocognitive disorders (58.3% vs 28.6%, p = 0.041). Sensitivity analyses confirmed all these findings. CXCL13 is detectable in the CSF of PLWH that show increased intrathecal IgG synthesis and immune activation. In PLWH with CSF viral suppression, CXCL13 was also associated with neurocognitive impairment.
Collapse
Affiliation(s)
- Mattia Trunfio
- Infectious Diseases Unit, Department of Medical Sciences, Amedeo di Savoia Hospital, University of Torino, Torino, 10149, Italy.
- HIV Neurobehavioral Research Center (HNRC), Department of Psychiatry, University of California San Diego, San Diego, CA, 92093, USA.
| | - Lorenzo Mighetto
- Diagnostic Laboratory Unit, Maria Vittoria Hospital, ASL Città di Torino, Torino, 10144, Italy
| | - Laura Napoli
- Infectious Diseases Unit, Department of Medical Sciences, Amedeo di Savoia Hospital, University of Torino, Torino, 10149, Italy
| | - Cristiana Atzori
- Unit of Neurology, Maria Vittoria Hospital, ASL Città di Torino, Torino, 10144, Italy
| | - Marco Nigra
- Diagnostic Laboratory Unit, Maria Vittoria Hospital, ASL Città di Torino, Torino, 10144, Italy
| | - Giulia Guastamacchia
- Unit of Neurology, Maria Vittoria Hospital, ASL Città di Torino, Torino, 10144, Italy
| | - Stefano Bonora
- Infectious Diseases Unit, Department of Medical Sciences, Amedeo di Savoia Hospital, University of Torino, Torino, 10149, Italy
| | - Giovanni Di Perri
- Infectious Diseases Unit, Department of Medical Sciences, Amedeo di Savoia Hospital, University of Torino, Torino, 10149, Italy
| | - Andrea Calcagno
- Infectious Diseases Unit, Department of Medical Sciences, Amedeo di Savoia Hospital, University of Torino, Torino, 10149, Italy
| |
Collapse
|
3
|
Jeewanraj N, Mandizvo T, Mulaudzi T, Gumede N, Ndhlovu Z, Ndung'u T, Gounder K, Mann J. Partial compartmentalisation of HIV-1 subtype C between lymph nodes, peripheral blood mononuclear cells and plasma. Virology 2023; 582:62-70. [PMID: 37030154 PMCID: PMC10132742 DOI: 10.1016/j.virol.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/10/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023]
Abstract
HIV-1 compartmentalisation is likely to have important implications for a preventative vaccine as well as eradication strategies. We genetically characterised HIV-1 subtype C variants in lymph nodes, peripheral blood mononuclear cells and plasma of six antiretroviral (ART) naïve individuals and four individuals on ART. Full-length env (n = 171) and gag (n = 250) sequences were generated from participants using single genome amplification. Phylogenetic relatedness of sequences was assessed, and compartmentalisation was determined using both distance and tree-based methods implemented in HyPhy. Additionally, potential associations between compartmentalisation and immune escape mutations were assessed. Partial viral compartmentalisation was present in nine of the ten participants. Broadly neutralising antibody (bnAb) escape was found to be associated with partial env compartmentalisation in some individuals, while cytotoxic T lymphocyte escape mutations in Gag were limited and did not differ between compartments. Viral compartmentalisation may be an important consideration for bnAb use in viral eradication.
Collapse
Affiliation(s)
- Neschika Jeewanraj
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Tawanda Mandizvo
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa; Africa Health Research Institute, Durban, South Africa
| | - Takalani Mulaudzi
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Nombali Gumede
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Zaza Ndhlovu
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa; Africa Health Research Institute, Durban, South Africa; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa; Africa Health Research Institute, Durban, South Africa; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA; Division of Infection and Immunity, University College London, London, United Kingdom
| | - Kamini Gounder
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa; Africa Health Research Institute, Durban, South Africa
| | - Jaclyn Mann
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
4
|
Ramirez-Mata AS, Ostrov D, Salemi M, Marini S, Magalis BR. Machine Learning Prediction and Phyloanatomic Modeling of Viral Neuroadaptive Signatures in the Macaque Model of HIV-Mediated Neuropathology. Microbiol Spectr 2023; 11:e0308622. [PMID: 36847516 PMCID: PMC10100676 DOI: 10.1128/spectrum.03086-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/06/2023] [Indexed: 03/01/2023] Open
Abstract
In human immunodeficiency virus (HIV) infection, virus replication in and adaptation to the central nervous system (CNS) can result in neurocognitive deficits in approximately 25% of patients with unsuppressed viremia. While no single viral mutation can be agreed upon as distinguishing the neuroadapted population, earlier studies have demonstrated that a machine learning (ML) approach could be applied to identify a collection of mutational signatures within the virus envelope glycoprotein (Gp120) predictive of disease. The S[imian]IV-infected macaque is a widely used animal model of HIV neuropathology, allowing in-depth tissue sampling infeasible for human patients. Yet, translational impact of the ML approach within the context of the macaque model has not been tested, much less the capacity for early prediction in other, noninvasive tissues. We applied the previously described ML approach to prediction of SIV-mediated encephalitis (SIVE) using gp120 sequences obtained from the CNS of animals with and without SIVE with 97% accuracy. The presence of SIVE signatures at earlier time points of infection in non-CNS tissues indicated these signatures cannot be used in a clinical setting; however, combined with protein structural mapping and statistical phylogenetic inference, results revealed common denominators associated with these signatures, including 2-acetamido-2-deoxy-beta-d-glucopyranose structural interactions and high rate of alveolar macrophage (AM) infection. AMs were also determined to be the phyloanatomic source of cranial virus in SIVE animals, but not in animals that did not develop SIVE, implicating a role for these cells in the evolution of the signatures identified as predictive of both HIV and SIV neuropathology. IMPORTANCE HIV-associated neurocognitive disorders remain prevalent among persons living with HIV (PLWH) owing to our limited understanding of the contributing viral mechanisms and ability to predict disease onset. We have expanded on a machine learning method previously used on HIV genetic sequence data to predict neurocognitive impairment in PLWH to the more extensively sampled SIV-infected macaque model in order to (i) determine the translatability of the animal model and (ii) more accurately characterize the predictive capacity of the method. We identified eight amino acid and/or biochemical signatures in the SIV envelope glycoprotein, the most predominant of which demonstrated the potential for aminoglycan interaction characteristic of previously identified HIV signatures. These signatures were not isolated to specific points in time or to the central nervous system, limiting their use as an accurate clinical predictor of neuropathogenesis; however, statistical phylogenetic and signature pattern analyses implicate the lungs as a key player in the emergence of neuroadapted viruses.
Collapse
Affiliation(s)
- Andrea S. Ramirez-Mata
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - David Ostrov
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Marco Salemi
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Simone Marini
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
- Department of Epidemiology, University of Florida, Gainesville, Florida, USA
| | - Brittany Rife Magalis
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
5
|
Wang C, Schlub TE, Yu WH, Tan CS, Stefic K, Gianella S, Smith DM, Lauffenburger DA, Chaillon A, Julg B. Landscape of Human Immunodeficiency Virus Neutralization Susceptibilities Across Tissue Reservoirs. Clin Infect Dis 2022; 75:1342-1350. [PMID: 35234862 PMCID: PMC9555844 DOI: 10.1093/cid/ciac164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Human immunodeficiency virus type 1 (HIV-1) sequence diversity and the presence of archived epitope muta-tions in antibody binding sites are a major obstacle for the clinical application of broadly neutralizing antibodies (bNAbs) against HIV-1. Specifically, it is unclear to what degree the viral reservoir is compartmentalized and if virus susceptibility to antibody neutralization differs across tissues. METHODS The Last Gift cohort enrolled 7 people with HIV diagnosed with a terminal illness and collected antemortem blood and postmortem tissues across 33 anatomical compartments for near full-length env HIV genome sequencing. Using these data, we applied a Bayesian machine-learning model (Markov chain Monte Carlo-support vector machine) that uses HIV-1 envelope sequences and approximated glycan-occupancy information to quantitatively predict the half-maximal inhib-itory concentrations (IC50) of bNAbs, allowing us to map neutralization resistance pattern across tissue reservoirs. RESULTS Predicted mean susceptibilities across tissues within participants were relatively homogenous, and the susceptibility pattern observed in blood often matched what was predicted for tissues. However, selected tissues, such as the brain, showed ev-idence of compartmentalized viral populations with distinct neutralization susceptibilities in some participants. Additionally, we found substantial heterogeneity in the range of neutralization susceptibilities across tissues within and between indi-viduals, and between bNAbs within individuals (standard deviation of log2(IC50) >3.4). CONCLUSIONS Blood-based screening methods to determine viral susceptibility to bNAbs might underestimate the presence of resistant viral variants in tissues. The extent to which these resistant viruses are clinically relevant, that is, lead to bNAb therapeutic failure, needs to be further explored.
Collapse
Affiliation(s)
- Chuangqi Wang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Timothy E Schlub
- University of Sydney, Faculty of Medicine and Health, Sydney School of Public Health, Sydney, New South Wales, Australia
| | - Wen Han Yu
- Bill & Melinda Gates Medical Research Institute, Cambridge, Massachusetts, USA
| | - C Sabrina Tan
- Division of Infectious Diseases, Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Karl Stefic
- Department of Virology, Tours University Hospital, Tours, France
| | - Sara Gianella
- Division of Infectious Diseases and Global Public Health, University of California–San Diego, San Diego, California, USA
| | - Davey M Smith
- Division of Infectious Diseases and Global Public Health, University of California–San Diego, San Diego, California, USA
- VA San Diego Healthcare System, San Diego, California, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Antoine Chaillon
- Division of Infectious Diseases and Global Public Health, University of California–San Diego, San Diego, California, USA
| | - Boris Julg
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
6
|
Chan P, Spudich S. HIV Compartmentalization in the CNS and Its Impact in Treatment Outcomes and Cure Strategies. Curr HIV/AIDS Rep 2022; 19:207-216. [PMID: 35536438 PMCID: PMC10590959 DOI: 10.1007/s11904-022-00605-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW This review focuses on the cerebrospinal fluid (CSF) findings in connection to the central nervous system (CNS) reservoir in treatment-naïve and virally suppressed PLWH, followed by the findings in CSF HIV-1 escape and analytical treatment interruption studies. RECENT FINDINGS Compared to chronic infection, initiating antiretroviral therapy (ART) during acute HIV-1 infection results in more homogeneous longitudinal benefits in the CNS. Viral variants in CSF HIV-1 escape are independently linked to infected cells from the systemic reservoir and in the CNS, highlighting the phenomenon as a consequence of different mechanisms. HIV-infected cells persist in CSF in nearly half of the individuals on stable ART and are associated with worse neurocognitive performance. Future studies should probe into the origin of the HIV-infected cells in the CSF. Examining the capacity for viral replication would provide new insight into the CNS reservoir and identify strategies to eradicate it or compensate for the insufficiency of ART.
Collapse
Affiliation(s)
- Phillip Chan
- SEARCH, Institute of HIV Research and Innovation, Bangkok, Thailand
| | - Serena Spudich
- Department of Neurology and Center for Neuroepidemiology and Clinical Neurological Research, Yale University, New Haven, CT, USA.
| |
Collapse
|
7
|
Tipoe T, Fidler S, Frater J. An exploration of how broadly neutralizing antibodies might induce HIV remission: the 'vaccinal' effect. Curr Opin HIV AIDS 2022; 17:162-170. [PMID: 35439790 DOI: 10.1097/coh.0000000000000731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Broadly neutralizing antibodies (bNAbs) are a potential new therapeutic strategy to treat HIV infection. This review explores possible mechanisms of action of bNAbs and summarizes the current evidence supporting their immunomodulatory properties, which might lead to sustained virological remission - the 'vaccinal effect'. RECENT FINDINGS Antiretroviral therapy (ART) is required to confer lasting HIV suppression; stopping ART almost invariably leads to HIV recrudescence from a persistent pool of virally infected cells - the HIV reservoir. HIV-specific broadly neutralizing antibodies (bNAbs) may confer viral control after ART cessation predominantly through blockade of viral entry into uninfected target cells. In some human and animal studies, HIV bNAbs also conferred lasting viral suppression after therapeutic bNAb plasma levels had declined. Immune-modulatory mechanisms have been postulated to underlie this observation - the 'vaccinal effect'. Hypothesized mechanisms include the formation of immune complexes between bNAbs and HIV envelope protein, thereby enhancing antigen presentation and uptake by immune cells, with boosted adaptive immune responses subsequently controlling the HIV reservoir. SUMMARY There is emerging evidence for potent antiviral efficacy of bNAb therapy. Whether bNAbs can induce sustained viral suppression after dropping below therapeutic levels remains controversial. Mechanistic data from on-going and future clinical trials will help answer these questions.
Collapse
Affiliation(s)
- Timothy Tipoe
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford
| | - Sarah Fidler
- Department of Infectious Disease, Faculty of Medicine, Imperial College London
- Department of GU and HIV Medicine, St Mary's Hospital, Imperial College Healthcare NHS Trust, London
- NIHR Imperial College Biomedical Research, UK
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford
- NIHR Oxford Biomedical Research Centre, Oxford
| |
Collapse
|
8
|
Wang L, Liang S, Huang J, Ding Y, He L, Hao Y, Ren L, Zhu M, Feng Y, Rashid A, Liu Y, Jiang S, Hong K, Ma L. Neutralization Sensitivity of HIV-1 CRF07_BC From an Untreated Patient With a Focus on Evolution Over Time. Front Cell Infect Microbiol 2022; 12:862754. [PMID: 35372102 PMCID: PMC8968086 DOI: 10.3389/fcimb.2022.862754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/18/2022] [Indexed: 11/26/2022] Open
Abstract
The diversity of HIV-1 envelope (Env) glycoproteins affects the potency and breadth of broadly neutralizing antibodies (bNAbs), a promising alternative to antiretroviral drugs for the prevention and treatment of HIV-1 infection. To facilitate immunogen design and development of therapeutic neutralizing antibodies, we characterized viral evolution and monitored the changes in neutralizing activity/sensitivity of a long-term non-progressor patient with HIV-1 CRF07_BC infection. Fifty-nine full-length Env gene fragments were derived from four plasma samples sequentially harvested from the patient between 2016 and 2020. Sequencing of patient-derived Env genes revealed that potential N-linked glycosylation sites (PNGS) in V1 and V5 significantly increased over time. Further, 24 functional Env-pseudotyped viruses were generated based on Env gene sequences. While all 24 Env-pseudotyped viruses remained sensitive to concurrent and subsequent autologous plasma, as well as bNAbs, including 10E8, VRC01, and 12A21, Env-pseudotyped viruses corresponding to later sampling time were increasingly more resistant to autologous plasma and bNAbs. All 24 Env-pseudotyped viruses were resistant to bNAbs 2G12, PGT121, and PGT135. The neutralization breadth of plasma from all four sequential samples was 100% against the global HIV-1 reference panel. Immune escape mutants resulted in increased resistance to bNAb targeting of different epitopes. Our study identified known mutations F277W in gp41 and previously uncharacterized mutation S465T in V5 which may be associated with increased viral resistance to bNAbs.
Collapse
Affiliation(s)
- Lijie Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shujia Liang
- Guangxi Key Laboratory of AIDS Prevention and Control and Achievement Transformation, Guangxi Center for Disease Prevention and Control, Nanning, China
| | - Jianhua Huang
- Hengzhou Center for Disease Prevention and Control, Hengzhou, China
| | - Yibo Ding
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lin He
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanling Hao
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Li Ren
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Meiling Zhu
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yi Feng
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Abdur Rashid
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yue Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of Ministry of Education/ National Health Council/Chinese Academy of Medical Sciences, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Kunxue Hong
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
- *Correspondence: Liying Ma, ; Kunxue Hong,
| | - Liying Ma
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
- *Correspondence: Liying Ma, ; Kunxue Hong,
| |
Collapse
|
9
|
Rossignol E, Alter G, Julg B. Antibodies for Human Immunodeficiency Virus-1 Cure Strategies. J Infect Dis 2021; 223:22-31. [PMID: 33586772 DOI: 10.1093/infdis/jiaa165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human immunodeficiency virus (HIV) infection leads to the establishment of a long-lived latent cellular reservoir. One strategy to eliminate quiescent reservoir cells is to reactivate virus replication to induce HIV envelope glycoprotein (Env) expression on the cell surface exposing them to subsequent antibody targeting. Via the interactions between the antibody Fc domain and Fc-γ receptors (FcγRs) that are expressed on innate effector cells, such as natural killer cells, monocytes, and neutrophils, antibodies can mediate the elimination of infected cells. Over the last decade, a multitude of human monoclonal antibodies that are broadly neutralizing across many HIV-1 subtypes have been identified and are currently being explored for HIV eradication strategies. Antibody development also includes novel Fc engineering approaches to increase engagement of effector cells and optimize antireservoir efficacy. In this review, we discuss the usefulness of antibodies for HIV eradication approaches specifically focusing on antibody-mediated strategies to target latently infected cells and options to increase antibody efficacy.
Collapse
Affiliation(s)
- Evan Rossignol
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Boris Julg
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA.,Massachusetts General Hospital, Infectious Disease Unit, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Julg B, Barouch D. Broadly neutralizing antibodies for HIV-1 prevention and therapy. Semin Immunol 2021; 51:101475. [PMID: 33858765 DOI: 10.1016/j.smim.2021.101475] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 12/21/2022]
Abstract
Despite immense progress in our ability to prevent and treat HIV-1 infection, HIV-1 remains an incurable disease and a highly efficacious HIV-1 vaccine is not yet available. Additional tools to prevent and treat HIV-1 are therefore necessary. The identification of potent and broadly neutralizing antibodies (bNAbs) against HIV-1 has revolutionized the field and may prove clinically useful. Significant advances have been made in identifying broader and more potent antibodies, characterizing antibodies in preclinical animal models, engineering antibodies to extend half-life and expand breadth and functionality, and evaluating the efficacy of single bNAbs and bNAb combinations in people with and without HIV-1. Here, we review recent progress in developing bNAbs for the prevention and treatment of HIV-1.
Collapse
Affiliation(s)
- Boris Julg
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA; Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA.
| | - Dan Barouch
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA; Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA.
| |
Collapse
|
11
|
Wilson A, Lynch RM. Embracing diversity: how can broadly neutralizing antibodies effectively target a diverse HIV-1 reservoir? Curr Opin Pharmacol 2020; 54:173-178. [PMID: 33189993 DOI: 10.1016/j.coph.2020.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022]
Abstract
Genetic diversity in the latent proviral reservoir of HIV-1 infected individuals poses a challenge to cure strategies. It has become increasingly evident that diversity increases proportionally with length of active infection, and that functional and/or sterilizing cure strategies will need to overcome this obstacle in individuals who initiated antiretroviral therapy (ART) during chronic infection. Analyzing the results of analytic treatment interruption (ATI) has allowed for the evaluation of such therapeutic strategies in HIV+ individuals. Strategies to overcome the genetic diversity of the HIV-1 reservoir include antibody combinations, pre-screening individuals for bNAb sensitivity, focusing on low-diversity individuals as well as targeting host proteins.
Collapse
Affiliation(s)
- Andrew Wilson
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University School of Medicine & Health Sciences, Washington DC, USA
| | - Rebecca M Lynch
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University School of Medicine & Health Sciences, Washington DC, USA.
| |
Collapse
|
12
|
Abstract
HIV-1 can cross the blood-brain barrier (BBB) to penetrate the brain and infect target cells, causing neurocognitive disorders as a result of neuroinflammation and brain damage. The HIV-1 envelope spike gp160 is partially required for viral transcytosis across the BBB endothelium. But do antibodies developing in infected individuals and targeting the HIV-1 gp160 glycoproteins block HIV-1 transcytosis through the BBB? We addressed this issue and discovered that anti-gp160 antibodies do not block HIV-1 transport; instead, free viruses and those in complex with antibodies can transit across BBB endothelial cells. Importantly, we found that only neutralizing antibodies could inhibit posttranscytosis viral infectivity, highlighting their ability to protect susceptible brain cells from HIV-1 infection. HIV-1 can cross the blood-brain barrier (BBB) to penetrate the brain and infect target cells, causing neurocognitive disorders as a result of neuroinflammation and brain damage. Here, we examined whether antibodies targeting the HIV-1 envelope glycoproteins interfere with the transcytosis of virions across the human BBB endothelium. We found that although the viral envelope spike gp160 is required for optimal endothelial cell endocytosis, no anti-gp160 antibodies blocked the BBB transcytosis of HIV-1 in vitro. Instead, both free viruses and those in complex with antibodies transited across endothelial cells in the BBB model, as observed by confocal microscopy. HIV-1 infectious capacity was considerably altered by the transcytosis process but still detectable, even in the presence of nonneutralizing antibodies. Only virions bound by neutralizing antibodies lacked posttranscytosis infectivity. Overall, our data support the role of neutralizing antibodies in protecting susceptible brain cells from HIV-1 infection despite their inability to inhibit viral BBB endocytic transport.
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW In the absence of a protective vaccine against HIV-1, passive immunization using novel broadly neutralizing antibodies (bNAbs) is an attractive concept for HIV-1 prevention. Here, we summarize the results of preclinical and clinical studies of bNAbs, discuss strategies for optimizing bNAb efficacy and lay out current pathways for the development of bNAbs as prophylaxis. RECENT FINDINGS Passive transfer of second-generation bNAbs results inpotent protection against infection in preclinical animal models. Furthermore, multiple bNAbs targeting different epitopes on the HIV-1 envelope trimer are in clinical evaluation and have demonstrated favorable safety profiles and robust antiviral activity in chronically infected individuals. The confirmation that passive immunization with bNAb(s) will prevent HIV-1 acquisition in humans is pending and the focus of ongoing investigations. Given the global diversity of HIV-1, bNAb combinations or multispecific antibodies will most likely be required to produce the necessary breadth for effective protection. SUMMARY Encouraging results from preclinical and clinical studies support the development of bNAbs for prevention and a number of antibodies with exceptional breadth and potency are available for clinical evaluation. Further optimization of viral coverage and antibody half-life will accelerate the clinical implementation of bNAbs as a critical tool for HIV-1 prevention strategies.
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Studies of HIV-1 genetic diversity can provide clues on the effect of antiretroviral therapy (ART) on viral replication, the mechanisms for viral persistence, and the efficacy of new interventions. This article reviews methods for interrogating intrahost HIV-1 diversity, addresses the ongoing debate regarding HIV-1 compartmentalization and replication during ART, and summarizes recent findings on the effects of curative strategies on HIV-1 populations. RECENT FINDINGS HIV-1 replication in the blood is virtually halted upon the initiation of ART. However, proliferation of cells infected prior to ART provides a self-renewing reservoir for infection during ART. Current evidence supports that proliferation of infected cells is a mechanism for HIV-1 persistence in both the blood and the tissues. However, more studies are required to determine if tissue sanctuaries exist that may also allow viral replication during ART. Recent studies investigating potential curative interventions show little effect on the genetic landscape of HIV-1 infection and highlight the need to develop strategies targeting the proliferation of infected cells. SUMMARY Using phylogeny to characterize HIV-1 genetic diversity and evolution during ART has demonstrated a lack of viral replication, the proliferation of infected cells, and provides one metric to measure the effect of new interventions aimed at achieving a functional cure for HIV-1.
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW In addition to preventive protocols and antiretroviral therapy, HIV-1 eradication has been considered as an additional strategy to help fight the AIDS epidemic. With the support of multiple funding agencies, research groups worldwide have been developing protocols to achieve either a sterilizing or a functional cure for HIV-infection. RECENT FINDINGS Most of the studies focus on the elimination or suppression of circulating CD4+ T cells, the best characterized HIV-1 latent reservoir. The role of the central nervous system (CNS) as a latent reservoir is still controversial. Although brain macrophages and astrocytes are susceptible to HIV-1 infection, it has not been ascertained whether the CNS carries latent HIV-1 during cART and, if so, whether the virus can be reactivated and spread to other compartments after ART interruption. Here, we examine the implications of HIV-1 eradication strategies on the CNS, regardless of whether it is a true latent reservoir and, if so, whether it is present in all patients.
Collapse
|
16
|
Evidence for both Intermittent and Persistent Compartmentalization of HIV-1 in the Female Genital Tract. J Virol 2019; 93:JVI.00311-19. [PMID: 30842323 DOI: 10.1128/jvi.00311-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 02/27/2019] [Indexed: 12/26/2022] Open
Abstract
HIV-1 has been shown to evolve independently in different anatomical compartments, but studies in the female genital tract have been inconclusive. Here, we examined evidence of compartmentalization using HIV-1 subtype C envelope (Env) glycoprotein genes (gp160) obtained from matched cervicovaginal lavage (CVL) and plasma samples over 2 to 3 years of infection. HIV-1 gp160 amplification from CVL was achieved for only 4 of 18 acutely infected women, and this was associated with the presence of proinflammatory cytokines and/or measurable viremia in the CVL. Maximum likelihood trees and divergence analyses showed that all four individuals had monophyletic compartment-specific clusters of CVL- and/or plasma-derived gp160 sequences at all or some time points. However, two participants (CAP177 and CAP217) had CVL gp160 diversity patterns that differed from those in plasma and showed restricted viral flow from the CVL. Statistical tests of compartmentalization revealed evidence of persistent compartment-specific gp160 evolution in CAP177, while in CAP217 this was intermittent. Lastly, we identified several Env sites that distinguished viruses in these two compartments; for CAP177, amino acid differences arose largely through positive selection, while insertions/deletions were more common in CAP217. In both cases these differences contributed to substantial charge changes spread across the Env. Our data indicate that, in some women, HIV-1 populations within the genital tract can have Env genetic features that differ from those of viruses in plasma, which could impact the sensitivity of viruses in the genital tract to vaginal microbicides and vaccine-elicited antibodies.IMPORTANCE Most HIV-1 infections in sub-Saharan Africa are acquired heterosexually through the genital mucosa. Understanding the properties of viruses replicating in the female genital tract, and whether these properties differ from those of more commonly studied viruses replicating in the blood, is therefore important. Using longitudinal CVL and plasma-derived sequences from four HIV-1 subtype C-infected women, we found fewer viral migrations from the genital tract to plasma than in the opposite direction, suggesting a mucosal sieve effect from the genital tract to the blood compartment. Evidence for both persistent and intermittent compartmentalization between the genital tract and plasma viruses during chronic infection was detected in two of four individuals, perhaps explaining previously conflicting findings. In cases where compartmentalization occurred, comparison of CVL- and plasma-derived HIV sequences indicated that distinct features of viral populations in the CVL may affect the efficacy of microbicides and vaccines designed to provide mucosal immunity.
Collapse
|
17
|
Sensitivity to Broadly Neutralizing Antibodies of Recently Transmitted HIV-1 Clade CRF02_AG Viruses with a Focus on Evolution over Time. J Virol 2019; 93:JVI.01492-18. [PMID: 30404804 DOI: 10.1128/jvi.01492-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/17/2018] [Indexed: 12/19/2022] Open
Abstract
Broadly neutralizing antibodies (bnAbs) are promising agents for prevention and/or treatment of HIV-1 infection. However, the diversity among HIV-1 envelope (Env) glycoproteins impacts bnAb potency and breadth. Neutralization data on the CRF02_AG clade are scarce although it is highly prevalent in West Africa and Europe. We assessed the sensitivity to bnAbs of a panel of 33 early transmitted CRF02_AG viruses over a 15-year period of the French epidemic (1997 to 2012). Env pseudotyped CRF02_AG viruses were best neutralized by the CD4 binding site (CD4bs)-directed bnAbs (VRC01, 3BNC117, NIH45-46G54W, and N6) and the gp41 membrane-proximal external region (MPER)-directed bnAb 10E8 in terms of both potency and breadth. We observed a higher resistance to bnAbs targeting the V1V2-glycan region (PG9 and PGT145) and the V3-glycan region (PGT121 and 10-1074). Combinations were required to achieve full coverage across this subtype. We observed increased resistance to bnAbs targeting the CD4bs linked to the diversification of CRF02_AG Env over the course of the epidemic, a phenomenon which was previously described for subtypes B and C. These data on the sensitivity to bnAbs of CRF02_AG viruses, including only recently transmitted viruses, will inform future passive immunization studies. Considering the drift of the HIV-1 species toward higher resistance to neutralizing antibodies, it appears necessary to keep updating existing panels for evaluation of future vaccine and passive immunization studies.IMPORTANCE Major progress occurred during the last decade leading to the isolation of human monoclonal antibodies, termed broadly neutralizing antibodies (bnAbs) due to their capacity to neutralize various strains of HIV-1. Several clinical trials are under way in order to evaluate their efficacy in preventive or therapeutic strategies. However, no single bnAb is active against 100% of strains. It is important to gather data on the sensitivity to neutralizing antibodies of all genotypes, especially those more widespread in regions where the prevalence of HIV-1 infection is high. Here, we assembled a large panel of clade CRF02_AG viruses, the most frequent genotype circulating in West Africa and the second most frequent found in several European countries. We evaluated their sensitivities to bnAbs, including those most advanced in clinical trials, and looked for the best combinations. In addition, we observed a trend toward increased resistance to bnAbs over the course of the epidemic.
Collapse
|
18
|
van Zyl G, Bale MJ, Kearney MF. HIV evolution and diversity in ART-treated patients. Retrovirology 2018; 15:14. [PMID: 29378595 PMCID: PMC5789667 DOI: 10.1186/s12977-018-0395-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/18/2018] [Indexed: 12/21/2022] Open
Abstract
Characterizing HIV genetic diversity and evolution during antiretroviral therapy (ART) provides insights into the mechanisms that maintain the viral reservoir during ART. This review describes common methods used to obtain and analyze intra-patient HIV sequence data, the accumulation of diversity prior to ART and how it is affected by suppressive ART, the debate on viral replication and evolution in the presence of ART, HIV compartmentalization across various tissues, and mechanisms for the emergence of drug resistance. It also describes how CD4+ T cells that were likely infected with latent proviruses prior to initiating treatment can proliferate before and during ART, providing a renewable source of infected cells despite therapy. Some expanded cell clones carry intact and replication-competent proviruses with a small fraction of the clonal siblings being transcriptionally active and a source for residual viremia on ART. Such cells may also be the source for viral rebound after interrupting ART. The identical viral sequences observed for many years in both the plasma and infected cells of patients on long-term ART are likely due to the proliferation of infected cells both prior to and during treatment. Studies on HIV diversity may reveal targets that can be exploited in efforts to eradicate or control the infection without ART.
Collapse
Affiliation(s)
- Gert van Zyl
- Division of Medical Virology, Stellenbosch University and NHLS Tygerberg, Cape Town, South Africa
| | - Michael J Bale
- HIV Dynamic and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, 1050 Boyles Street, Building 535, Room 109, Frederick, MD, 21702-1201, USA
| | - Mary F Kearney
- HIV Dynamic and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, 1050 Boyles Street, Building 535, Room 109, Frederick, MD, 21702-1201, USA.
| |
Collapse
|