1
|
Nie XH, Li TZ, Peng CM. ATP ion channel-type P2X purinergic receptors as a key regulatory molecule in breast cancer progression. Pathol Res Pract 2025; 267:155844. [PMID: 39965402 DOI: 10.1016/j.prp.2025.155844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/31/2025] [Accepted: 02/13/2025] [Indexed: 02/20/2025]
Abstract
Studies have confirmed that ATP ion channel P2X purinergic receptors play a key role in tumor growth and metastasis. Similarly, P2X purinergic receptors can be used as a favorable regulatory molecule of breast cancer cells to participate in the progression of breast cancer. There are abundant ATP and its cleavage products in breast cancer microenvironment, which can be used as natural activators of P2X purinergic receptors. P2X purinergic receptors play a role in regulating the growth and metastasis of breast cancer cells by mediating signal transduction, growth regulation and immune cell activity in microenvironment. However, the application of P2X purinergic receptors antagonist has the pharmacological characteristics of inhibiting the progression of breast cancer cells. Among P2X purinergic receptors, there is a close relationship between P2X7 receptor and breast cancer patients. P2X purinergic receptors can be used as a biological marker for breast cancer patients. In this paper, we discuss the functional role and regulatory molecular mechanism of P2X purinergic receptors in the progression of breast cancer. The pharmacological effects of P2X purinergic receptors selective antagonist on the growth, metastasis and invasion of breast cancer cells were further discussed. Therefore, P2X purinergic receptors can be used as a key regulatory molecule of breast cancer and a pharmacological target for potential therapy.
Collapse
Affiliation(s)
- Xin-Hua Nie
- Department of Gastroenterology, The second affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Teng-Zheng Li
- Department of Gastroenterology, The second affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Cheng-Ming Peng
- Department of Gastroenterology, The second affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China.
| |
Collapse
|
2
|
Gómez-Pinedo U, Torre-Fuentes L, Matías-Guiu JA, Pytel V, Ojeda-Hernández DD, Selma-Calvo B, Montero-Escribano P, Vidorreta-Ballesteros L, Matías-Guiu J. Exonic variants of the P2RX7 gene in familial multiple sclerosis. Neurologia 2025; 40:150-160. [PMID: 36470550 DOI: 10.1016/j.nrleng.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/09/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Several studies have analysed the presence of P2RX7 variants in patients with MS, reporting diverging results. METHODS Our study analyses P2RX7 variants detected through whole-exome sequencing (WES). RESULTS We analysed P2RX7, P2RX4, and CAMKK2 gene variants detected by whole-exome sequencing in all living members (n = 127) of 21 families including at least 2 individuals with multiple sclerosis. P2RX7 gene polymorphisms previously associated with autoimmune disease. Although no differences were observed between individuals with and without multiple sclerosis, we found greater polymorphism of gain-of-function variants of P2RX7 in families with individuals with multiple sclerosis than in the general population. Copresence of gain-of-function and loss-of-function variants was not observed to reduce the risk of presenting the disease. Three families displayed heterozygous gain-of-function SNPs in patients with multiple sclerosis but not in healthy individuals. We were unable to determine the impact of copresence of P2RX4 and CAMKK2 variants with P2RX7 variants, or the potential effect of the different haplotypes described in the gene. No clinical correlations with other autoimmune diseases were observed in our cohort. CONCLUSIONS Our results support the hypothesis that the disease is polygenic and point to a previously unknown mechanism of genetic predisposition to familial forms of multiple sclerosis. P2RX7 gene activity can be modified, which suggests the possibility of preventive pharmacological treatments for families including patients with familial multiple sclerosis.
Collapse
Affiliation(s)
- U Gómez-Pinedo
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain.
| | - L Torre-Fuentes
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - J A Matías-Guiu
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - V Pytel
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain; Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - D D Ojeda-Hernández
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - B Selma-Calvo
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - P Montero-Escribano
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - L Vidorreta-Ballesteros
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - J Matías-Guiu
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain; Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
3
|
Shani S, Gana-Weisz M, Bar-Shira A, Thaler A, Gurevich T, Mirelman A, Giladi N, Alcalay RN, Orr-Urtreger A, Goldstein O. P2RX7, an adaptive immune response gene, is associated with Parkinson's disease risk and age at onset. JOURNAL OF PARKINSON'S DISEASE 2024; 14:1575-1583. [PMID: 39957192 DOI: 10.1177/1877718x241296015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
BACKGROUND The adaptive immune response has a role in Parkinson's disease (PD). Patients with LRRK2 or GBA1 mutations often exhibit distinct clinical characteristics. OBJECTIVE To evaluate the involvement of adaptive immune response genes in three PD groups: GBA1-PD, LRRK2-PD, and non-carrier (NC)-PD. METHODS Differentially expressed genes (DEGs) associated with PD were identified using four datasets. Of them, adaptive immune response genes were evaluated using whole-genome-sequencing of 201 unrelated Ashkenazi-Jewish (AJ) PD patients. Potential pathogenic variants were identified, and P2RX7 variants were assessed in 1200 AJ-PD patients. Burden analysis of rare variants (allele frequencies (AF) < 0.01) on disease risk, and association analyses of common variants (AF ≥ 0.01) with disease risk and age-at-onset (AAO) were conducted. AFs were compared to AJ-non-neuro cases reported in gnomAD. Variants associated with PD were further examined in an independent AJ cohort from AMP-PD. RESULTS Of the four adaptive immune DEGs identified, CD8B2, P2RX7, IL27RA, and ZC3H12A, three common variants in P2RX7 were statistically significant: Tyr155His was associated with NC-PD (allelic OR = 1.15, p = 0.015) ; Arg276His was associated with LRRK2-PD (allelic OR = 2.10, p = 0.037), while Glu496Ala was associated with earlier AAO in LRRK2-PD (p = 0.014). Burden analysis showed no significant effect on PD-risk. In the AMP-PD cohort, odds ratios of the two risk variants were similar to the primary cohort, but did not reach significance, probably due to small control sample size (n = 263). CONCLUSIONS Common variants within P2RX7 are likely associated with PD-risk and earlier AAO. These findings further suggest P2RX7's involvement in PD and its potential interplay with LRRK2.
Collapse
Affiliation(s)
- Shachar Shani
- Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- The Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Mali Gana-Weisz
- The Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Anat Bar-Shira
- The Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Avner Thaler
- Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Movement Disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Tanya Gurevich
- Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Movement Disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Anat Mirelman
- Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Movement Disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Nir Giladi
- Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Roy N Alcalay
- Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- The Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Movement Disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Avi Orr-Urtreger
- Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- The Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Orly Goldstein
- The Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
4
|
Zhao X, Long Z, Zhong H, Lu R, Wei J, Li F, Sun Z. Anti-inflammatory Properties of Tongfeng Li'an Granules in an Acute Gouty Arthritis Rat Model. ACS OMEGA 2024; 9:34303-34313. [PMID: 39157086 PMCID: PMC11325525 DOI: 10.1021/acsomega.4c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024]
Abstract
OBJECTIVES To examine the anti-inflammatory properties and underlying mechanisms of Tongfeng Li'an Granules (TFLA), a traditional medicine, in acute gouty arthritis using a rat model. MATERIALS AND METHODS We identified 55 major compounds in TFLA via ultrahigh-performance liquid chromatography connected to quadrupole time-of-flight mass spectrometry (UPLC-TQF-MS/MS). Databases were employed for the prediction of potential targets, followed by PPI network construction as well as GO and KEGG analyses. After network-pharmacology-based analysis, a rat gouty arthritis model was used to validate the anti-inflammatory mechanism of TFLA. RESULTS UPLC-TQF-MS/MS and network pharmacology analyses revealed 55 active ingredients and 160 targets of TFLA associated with gouty arthritis, forming an ingredient-target-disease network. The PPI network identified 20 core targets, including TLR2, TLR4, IL6, NFκB, etc. Functional enrichment analyses highlighted the Toll-like receptor signaling pathway as significantly enriched by multiple targets, validated in in vivo experiments. Animal experiments demonstrated that TFLA improved pathological changes in gouty joint synovium, with decreased ankle joint circumference, serum IL6, IL10, and TNFα levels, as well as reduced protein and mRNA expression of NLRP3, TLR2, and TLR4 in ankle joint synovial tissue observed in the middle- and high-dose TFLA and positive control groups compared to the model group (p < 0.05). CONCLUSION This research elucidated the pharmacological mechanisms of TFLA against gouty arthritis, implicating various ingredients, targets, and signaling pathways. Animal experiments confirmed TFLA's efficacy in alleviating inflammation in acute gouty arthritis by modulating Toll-like receptor signaling and NLRP3 expression.
Collapse
Affiliation(s)
- Xiangpei Zhao
- International Zhuang Medicine
Hospital Affiliated to Guangxi University of Chinese Medicine, No. 8 Qiuyue Road, Wuxiang New District, Nanning 530201, Guangxi, China
| | - Zhaoyang Long
- International Zhuang Medicine
Hospital Affiliated to Guangxi University of Chinese Medicine, No. 8 Qiuyue Road, Wuxiang New District, Nanning 530201, Guangxi, China
| | - Hua Zhong
- International Zhuang Medicine
Hospital Affiliated to Guangxi University of Chinese Medicine, No. 8 Qiuyue Road, Wuxiang New District, Nanning 530201, Guangxi, China
| | - Rongping Lu
- International Zhuang Medicine
Hospital Affiliated to Guangxi University of Chinese Medicine, No. 8 Qiuyue Road, Wuxiang New District, Nanning 530201, Guangxi, China
| | - Juan Wei
- International Zhuang Medicine
Hospital Affiliated to Guangxi University of Chinese Medicine, No. 8 Qiuyue Road, Wuxiang New District, Nanning 530201, Guangxi, China
| | | | | |
Collapse
|
5
|
Du Y, Cao Y, Song W, Wang X, Yu Q, Peng X, Zhao R. Role of the P2X7 receptor in breast cancer progression. Purinergic Signal 2024:10.1007/s11302-024-10039-6. [PMID: 39039304 DOI: 10.1007/s11302-024-10039-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024] Open
Abstract
Breast cancer is a common malignant tumor, whose incidence is increasing year by year, and it has become the malignant tumor with the highest incidence rate in women. Purine ligand-gated ion channel 7 receptor (P2X7R) is a cation channel receptor with Adenosine triphosphate ( ATP) as a ligand, which is widely distributed in cells and tissues, and is closely related to tumorigenesis and progression. P2X7R plays an important role in cancer by interacting with ATP. Studies have shown that P2X7R is up-regulated in breast cancer and can promote tumor invasion and metastasis by activating the protein kinase B (AKT) signaling pathway, promoting epithelial-mesenchymal transition (EMT), controlling the generation of extracellular vesicle (EV), and regulating the expression of the inflammatory protein cyclooxygenase 2 (COX-2). Furthermore, P2X7R was proven to play an essential role in the proliferation and apoptosis of breast cancer cells. Recently, inhibitors targeting P2X7R have been found to inhibit the progression of breast cancer. Natural P2X7R antagonists, such as rhodopsin, and the isoquinoline alkaloid berberine, have also been shown to be effective in inhibiting breast cancer progression. In this article, we review the research progress of P2X7R and breast cancer intending to provide new targets and directions for breast cancer treatment.
Collapse
Affiliation(s)
- Yanan Du
- School of Medical Laboratory, Shandong Second Medical University, Shandong, 261053, China
| | - Yahui Cao
- School of Medical Laboratory, Shandong Second Medical University, Shandong, 261053, China
| | - Wei Song
- School of Medical Laboratory, Shandong Second Medical University, Shandong, 261053, China
| | - Xin Wang
- School of Medical Laboratory, Shandong Second Medical University, Shandong, 261053, China
| | - Qingqing Yu
- School of Medical Laboratory, Shandong Second Medical University, Shandong, 261053, China
| | - Xiaoxiang Peng
- School of Medical Laboratory, Shandong Second Medical University, Shandong, 261053, China.
| | - Ronglan Zhao
- School of Medical Laboratory, Shandong Second Medical University, Shandong, 261053, China.
| |
Collapse
|
6
|
Guggemos J, Fuller SJ, Skarratt KK, Mayer B, Schneider EM. Loss-of-function/gain-of-function polymorphisms of the ATP sensitive P2X7R influence sepsis, septic shock, pneumonia, and survival outcomes. Front Immunol 2024; 15:1352789. [PMID: 38966639 PMCID: PMC11222724 DOI: 10.3389/fimmu.2024.1352789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/07/2024] [Indexed: 07/06/2024] Open
Abstract
Introduction Extracellular ATP (eATP) released from damaged cells activates the P2X7 receptor (P2X7R) ion channel on the surface of surrounding cells, resulting in calcium influx, potassium efflux and inflammasome activation. Inherited changes in the P2X7R gene (P2RX7) influence eATP induced responses. Single nucleotide polymorphisms (SNPs) of P2RX7 influence both function and signaling of the receptor, that in addition to ion flux includes pathogen control and immunity. Methods Subjects (n = 105) were admitted to the ICU at the University Hospital Ulm, Germany between June 2018 and August 2019. Of these, subjects with a diagnosis of sepsis (n = 75), were also diagnosed with septic shock (n = 24), and/or pneumonia (n = 42). Subjects with pneumonia (n = 43) included those without sepsis (n = 1), sepsis without shock (n = 29) and pneumonia with septic shock (n = 13). Out of the 75 sepsis/septic shock patients, 33 patients were not diagnosed with pneumonia. Controls (n = 30) were recruited to the study from trauma patients and surgical patients without sepsis, septic shock, or pneumonia. SNP frequencies were determined for 16 P2RX7 SNPs known to affect P2X7R function, and association studies were performed between frequencies of these SNPs in sepsis, septic shock, and pneumonia compared to controls. Results The loss-of-function (LOF) SNP rs17525809 (T253C) was found more frequently in patients with septic shock, and non-septic trauma patients when compared to sepsis. The LOF SNP rs2230911 (C1096G) was found to be more frequent in patients with sepsis and septic shock than in non-septic trauma patients. The frequencies of these SNPs were even higher in sepsis and septic patients with pneumonia. The current study also confirmed a previous study by our group that showed a five SNP combination that included the GOF SNPs rs208294 (C489T) and rs2230912 (Q460R) that was designated #21211 was associated with increased odds of survival in severe sepsis. Discussion The results found an association between expression of LOF P2RX7 SNPs and presentation to the ICU with sepsis, and septic shock compared to control ICU patients. Furthermore, frequencies of LOF SNPs were found to be higher in sepsis patients with pneumonia compared to those without pneumonia. In addition, a five SNP GOF combination was associated with increased odds of survival in severe sepsis. These results suggest that P2RX7 is required to control infection in pneumonia and that inheritance of LOF variants increases the risk of sepsis when associated with pneumonia. This study confirms that P2RX7 genotyping in pneumonia may identify patients at risk of developing sepsis. The study also identifies P2X7R as a target in sepsis associated with an excessive immune response in subjects with GOF SNP combinations.
Collapse
Affiliation(s)
- Johanna Guggemos
- Clinic for Anesthesiology and Intensive Care Medicine, Ulm University Hospital, Ulm, Germany
| | - Stephen J. Fuller
- Nepean Clinical School, Faculty of Medicine and Health, The University of Sydney, Kingswood, NSW, Australia
- Department of Haematology, Nepean Hospital, Penrith, NSW, Australia
| | - Kristen K. Skarratt
- Nepean Clinical School, Faculty of Medicine and Health, The University of Sydney, Kingswood, NSW, Australia
- Department of Haematology, Nepean Hospital, Penrith, NSW, Australia
| | - Benjamin Mayer
- Institute for Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - E. Marion Schneider
- Clinic for Anesthesiology and Intensive Care Medicine, Ulm University Hospital, Ulm, Germany
| |
Collapse
|
7
|
Magni L, Yu H, Christensen NM, Poulsen MH, Frueh A, Deshar G, Johansen AZ, Johansen JS, Pless SA, Jørgensen NR, Novak I. Human P2X7 receptor variants Gly150Arg and Arg276His polymorphisms have differential effects on risk association and cellular functions in pancreatic cancer. Cancer Cell Int 2024; 24:148. [PMID: 38664691 PMCID: PMC11044319 DOI: 10.1186/s12935-024-03339-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND The purinergic P2X7 receptor (P2X7R) plays an important role in the crosstalk between pancreatic stellate cells (PSCs) and cancer cells, thus promoting progression of pancreatic ductal adenocarcinoma (PDAC). Single nucleotide polymorphisms (SNPs) in the P2X7R have been reported for several cancers, but have not been explored in PDAC. MATERIALS AND METHODS Blood samples from PDAC patients and controls were genotyped for 11 non-synonymous SNPs in P2X7R and a risk analysis was performed. Relevant P2X7R-SNP GFP variants were expressed in PSCs and cancer cells and their function was assayed in the following tests. Responses in Ca2+ were studied with Fura-2 and dye uptake with YO-PRO-1. Cell migration was monitored by fluorescence microscopy. Released cytokines were measured with MSD assay. RESULTS Risk analysis showed that two SNPs 474G>A and 853G>A (rs28360447, rs7958316), that lead to the Gly150Arg and Arg276His variants, had a significant but opposite risk association with PDAC development, protecting against and predisposing to the disease, respectively. In vitro experiments performed on cancer cells and PSCs expressing the Gly150Arg variant showed reduced intracellular Ca2+ response, fluorescent dye uptake, and cell migration, while the Arg276His variant reduced dye uptake but displayed WT-like Ca2+ responses. As predicted, P2X7R was involved in cytokine release (IL-6, IL-1β, IL-8, TNF-α), but the P2X7R inhibitors displayed varied effects. CONCLUSION In conclusion, we provide evidence for the P2X7R SNPs association with PDAC and propose that they could be considered as potential biomarkers.
Collapse
Affiliation(s)
- Lara Magni
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen Ø, Denmark
| | - Haoran Yu
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen Ø, Denmark
| | - Nynne M Christensen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen Ø, Denmark
| | - Mette H Poulsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Alexander Frueh
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen Ø, Denmark
| | - Ganga Deshar
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen Ø, Denmark
| | - Astrid Z Johansen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte Hospital, Herlev, Denmark
| | - Julia S Johansen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte Hospital, Herlev, Denmark
- Department of Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Stephan A Pless
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Niklas R Jørgensen
- Department of Clinical Biochemistry, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ivana Novak
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen Ø, Denmark.
| |
Collapse
|
8
|
Xiao N, Xie Z, He Z, Xu Y, Zhen S, Wei Y, Zhang X, Shen J, Wang J, Tian Y, Zuo J, Peng J, Li Z. Pathogenesis of gout: Exploring more therapeutic target. Int J Rheum Dis 2024; 27:e15147. [PMID: 38644732 DOI: 10.1111/1756-185x.15147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/23/2024]
Abstract
Gout is a chronic metabolic and immune disease, and its specific pathogenesis is still unclear. When the serum uric acid exceeds its saturation in the blood or tissue fluid, it is converted to monosodium urate crystals, which lead to acute arthritis of varying degrees, urinary stones, or irreversible peripheral joint damage, and in severe cases, impairment of vital organ function. Gout flare is a clinically significant state of acute inflammation in gout. The current treatment is mostly anti-inflammatory analgesics, which have numerous side effects with limited treatment methods. Gout pathogenesis involves many aspects. Therefore, exploring gout pathogenesis from multiple perspectives is conducive to identifying more therapeutic targets and providing safer and more effective alternative treatment options for patients with gout flare. Thus, this article is of great significance for further exploring the pathogenesis of gout. The author summarizes the pathogenesis of gout from four aspects: signaling pathways, inflammatory factors, intestinal flora, and programmed cell death, focusing on exploring more new therapeutic targets.
Collapse
Affiliation(s)
- Niqin Xiao
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhaohu Xie
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhiyan He
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Yundong Xu
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Shuyu Zhen
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanyuan Wei
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiaoyu Zhang
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Jiayan Shen
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Jian Wang
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Yadan Tian
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Jinlian Zuo
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Jiangyun Peng
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Zhaofu Li
- Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
9
|
Charras A, Hofmann SR, Cox A, Schulze F, Russ S, Northey S, Liu X, Fang Y, Haldenby S, Hartmann H, Bassuk AG, Carvalho A, Sposito F, Grinstein L, Rösen-Wolff A, Meyer-Bahlburg A, Beresford MW, Lainka E, Foell D, Wittkowski H, Girschick HJ, Morbach H, Uebe S, Hüffmeier U, Ferguson PJ, Hedrich CM. P2RX7 gene variants associate with altered inflammasome assembly and reduced pyroptosis in chronic nonbacterial osteomyelitis (CNO). J Autoimmun 2024; 144:103183. [PMID: 38401466 DOI: 10.1016/j.jaut.2024.103183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 02/26/2024]
Abstract
Chronic nonbacterial osteomyelitis (CNO), an autoinflammatory bone disease primarily affecting children, can cause pain, hyperostosis and fractures, affecting quality-of-life and psychomotor development. This study investigated CNO-associated variants in P2RX7, encoding for the ATP-dependent trans-membrane K+ channel P2X7, and their effects on NLRP3 inflammasome assembly. Whole exome sequencing in two related transgenerational CNO patients, and target sequencing of P2RX7 in a large CNO cohort (N = 190) were conducted. Results were compared with publicly available datasets and regional controls (N = 1873). Findings were integrated with demographic and clinical data. Patient-derived monocytes and genetically modified THP-1 cells were used to investigate potassium flux, inflammasome assembly, pyroptosis, and cytokine release. Rare presumably damaging P2RX7 variants were identified in two related CNO patients. Targeted P2RX7 sequencing identified 62 CNO patients with rare variants (32.4%), 11 of which (5.8%) carried presumably damaging variants (MAF <1%, SIFT "deleterious", Polyphen "probably damaging", CADD >20). This compared to 83 of 1873 controls (4.4%), 36 with rare and presumably damaging variants (1.9%). Across the CNO cohort, rare variants unique to one (Median: 42 versus 3.7) or more (≤11 patients) participants were over-represented when compared to 190 randomly selected controls. Patients with rare damaging variants more frequently experienced gastrointestinal symptoms and lymphadenopathy while having less spinal, joint and skin involvement (psoriasis). Monocyte-derived macrophages from patients, and genetically modified THP-1-derived macrophages reconstituted with CNO-associated P2RX7 variants exhibited altered potassium flux, inflammasome assembly, IL-1β and IL-18 release, and pyroptosis. Damaging P2RX7 variants occur in a small subset of CNO patients, and rare P2RX7 variants may represent a CNO risk factor. Observations argue for inflammasome inhibition and/or cytokine blockade and may allow future patient stratification and individualized care.
Collapse
Affiliation(s)
- Amandine Charras
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, UK
| | - Sigrun R Hofmann
- Department of Pediatrics, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Allison Cox
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, USA
| | - Felix Schulze
- Department of Pediatrics, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Susanne Russ
- Department of Pediatrics, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Sarah Northey
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, UK
| | - Xuan Liu
- Centre of Genome Research, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, UK
| | - Yongxiang Fang
- Centre of Genome Research, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, UK
| | - Sam Haldenby
- Centre of Genome Research, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, UK
| | - Hella Hartmann
- Light Microscopy Facility, Centre for Regenerative Therapies, Technische Universität Dresden, Germany
| | - Alexander G Bassuk
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, USA
| | - Ana Carvalho
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, UK
| | - Francesca Sposito
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, UK
| | - Lev Grinstein
- Department of Pediatrics, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Angela Rösen-Wolff
- Department of Pediatrics, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Almut Meyer-Bahlburg
- Pediatric Rheumatology and Immunology, Department of Pediatrics, University Medicine Greifswald, Greifswald, Germany
| | - Michael W Beresford
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, UK; Department of Rheumatology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Elke Lainka
- Department of Pediatrics II, University Hospital Essen, University of Duisburg-Essen, Essen, Germany on behalf of the German Autoinflammatory Disease Network (AID Net), Germany
| | - Dirk Foell
- Department for Pediatric Rheumatology & Immunology, University Hospital Münster, Germany on behalf of the German Autoinflammatory Disease Network (AID Net), Germany
| | - Helmut Wittkowski
- Department for Pediatric Rheumatology & Immunology, University Hospital Münster, Germany on behalf of the German Autoinflammatory Disease Network (AID Net), Germany
| | | | - Henner Morbach
- Department of Pediatrics, University Hospital Würzburg, Germany
| | - Steffen Uebe
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ulrike Hüffmeier
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Polly J Ferguson
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, USA
| | - Christian M Hedrich
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, UK; Department of Rheumatology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK.
| |
Collapse
|
10
|
Luo C, Liu X, Liu Y, Shao H, Gao J, Tao J. Upregulation of CD39 During Gout Attacks Promotes Spontaneous Remission of Acute Gouty Inflammation. Inflammation 2024; 47:664-677. [PMID: 38055119 DOI: 10.1007/s10753-023-01936-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023]
Abstract
Gout is a self-limiting form of inflammatory arthropathy caused by the formation of urate crystals due to hyperuricemia. The resolution of gout involves the transition of proinflammatory M1-type macrophages to anti-inflammatory M2-type macrophages, as well as neutrophil-mediated extracellular trap (NET) formation. However, the underlying mechanisms of these changes are not clear. Studies have confirmed that high expression of CD39 on macrophages and neutrophils can trigger the polarization of macrophages from a proinflammatory state to an anti-inflammatory state. Recent studies have shown that the pathogenesis of gout involves extracellular ATP (eATP), and the synergistic effect of MSU and extracellular ATP can cause gout. CD39 is a kind of ATP hydrolysis enzyme that can degrade eATP, suggesting that CD39 may inhibit the aggravation of inflammation in gout and participate in the remission mechanism of gout. To confirm this hypothesis, using data mining and flow cytometry, we first found that CD39 expression was significantly upregulated on CD14 + monocytes and neutrophils in gout patients during the acute phase. Inhibition of CD39 by lentivirus or a CD39 inhibitor in acute gout models aggravated gouty arthritis and delayed gout remission. Apyrase, a functional analog of CD39, can significantly reduce the inflammatory response and promote gout remission in acute gout model mice. Our findings confirm that the upregulation of CD39 during gout flare-ups promotes spontaneous remission of acute gouty inflammation.
Collapse
Affiliation(s)
- Chengyu Luo
- Department of Rheumatology and Immunology, Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China (USTC), University of Science and Technology of China, Hefei, 230001, People's Republic of China
| | - Xingyue Liu
- Department of Rheumatology and Immunology, Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China (USTC), University of Science and Technology of China, Hefei, 230001, People's Republic of China
| | - Yiming Liu
- Department of Rheumatology and Immunology, Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China (USTC), University of Science and Technology of China, Hefei, 230001, People's Republic of China
| | - Huijun Shao
- Department of Rheumatology and Immunology, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, People's Republic of China
| | - Jie Gao
- Department of Rheumatology and Immunology, Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China (USTC), University of Science and Technology of China, Hefei, 230001, People's Republic of China
| | - Jinhui Tao
- Department of Rheumatology and Immunology, Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China (USTC), University of Science and Technology of China, Hefei, 230001, People's Republic of China.
- Department of Rheumatology and Immunology, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, People's Republic of China.
| |
Collapse
|
11
|
Ling M, Gan J, Hu M, Pan F, Liu M. IL1A regulates the inflammation in gout through the Toll-like receptors pathway. Int J Med Sci 2024; 21:188-199. [PMID: 38164346 PMCID: PMC10750337 DOI: 10.7150/ijms.88447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/21/2023] [Indexed: 01/03/2024] Open
Abstract
Objective: Gout is a dangerous metabolic condition related to monosodium urate (MSU). Our aim is to study the molecular mechanisms underlying gout and to identify potential clinical biomarkers by bioinformatics analysis and experimental validation. Methods: In this study, we retrieved the overlapping genes between GSE199950-Differential Expressed Genes (DEGs) dataset and key module in Weighted Gene Co-Expression Network Analysis (WGCNA) on GSE199950. These genes were then analyzed by protein-protein interaction (PPI) network, expression and Gene Set Enrichment Analysis to identify the hub gene related to gout. Then, the gene was investigated by peripheral blood mononuclear cells (PBMCs), immunoassay and cell experiments like western blotting to uncover its underlying mechanism in gout cells. Results: From the turquoise module and 83 DEGs, we identified 62 overlapping genes, only 11 genes had mutual interactions in PPI network and these genes were highly expressed in MSU-treated samples. Then, it was found that the IL1A (interleukin 1 alpha) was the only one gene related to Toll-like receptor signaling pathway that was associated with the occurrence of gout. Thus, IL1A was determined as the hub gene in this study. In immunoassay, IL1A was significantly positively correlated with B cells and negatively correlated with macrophages. Moreover, IL1A is highly expressed in gout patients,it has a good clinical diagnostic value. Finally, the results of in vitro experiments showed that after knocking down IL1A, the expressions of pro-inflammatory cytokines and Toll-like receptor signaling pathway-related proteins (TLR2, TLR4, MyD88) were all reduced. Conclusion: It is confirmed that IL1A is a promoting gene in gout with a good diagnostic value, and specifically it affects the inflammation in gout through Toll-like receptor pathway. Our research offers fresh perspectives on the pathophysiology of gout and valuable directions for future diagnosis and treatment.
Collapse
Affiliation(s)
- Meirong Ling
- Emergency Medical Department, Minhang Hospital, Fudan University, 170 Xinsong Road, 201199, Shanghai, China
| | - Jiaqi Gan
- Department of General Medicine, Minhang Hospital, Fudan University, 170 Xinsong Road, 201199, Shanghai, China
| | - Mengting Hu
- Department of General Medicine, Minhang Hospital, Fudan University, 170 Xinsong Road, 201199, Shanghai, China
| | - Fei Pan
- Department of General Medicine, Minhang Hospital, Fudan University, 170 Xinsong Road, 201199, Shanghai, China
| | - Mei Liu
- Department of General Medicine, Minhang Hospital, Fudan University, 170 Xinsong Road, 201199, Shanghai, China
| |
Collapse
|
12
|
Zaninelli TH, Martelossi-Cebinelli G, Saraiva-Santos T, Borghi SM, Fattori V, Casagrande R, Verri WA. New drug targets for the treatment of gout arthritis: what's new? Expert Opin Ther Targets 2023; 27:679-703. [PMID: 37651647 DOI: 10.1080/14728222.2023.2247559] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/14/2023] [Accepted: 08/09/2023] [Indexed: 09/02/2023]
Abstract
INTRODUCTION Gout arthritis (GA) is an intermittent inflammatory disease affecting approximately 10% of the worldwide population. Symptomatic phases (acute flares) are timely spaced by asymptomatic periods. During an acute attack, redness, joint swelling, limited movement, and excruciating pain are common symptoms. However, the current available therapies are not fully effective in reducing symptoms and offer numerous side effects. Therefore, unveiling new drug targets and effector molecules are required in developing novel GA therapeutics. AREAS COVERED This review discusses the pathophysiological mechanisms of GA and explores potential pharmacological targets to ameliorate disease outcome. In addition, we listed promising pre-clinical studies demonstrating effector molecules with therapeutical potential. Among those, we emphasized the importance of natural products, including traditional Chinese medicine formulas and their multitarget mechanisms of action. EXPERT OPINION In our search, we observed that there is a massive gap between pre-clinical and clinical knowledge. Only a minority (4.4%) of clinical trials aimed to intervene by applying natural products or current hot targets described herein. In this sense, we envisage four possibilities for GA therapeutics, which include the repurposing of existing therapies, ALX/FPR2 agonism for improvement in disease outcome, the use of multitarget drugs (e.g. natural products), and targeting the neuroinflammatory component of GA.
Collapse
Affiliation(s)
- Tiago H Zaninelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Geovana Martelossi-Cebinelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Telma Saraiva-Santos
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Sergio M Borghi
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
- Center for Research in Health Sciences, University of Northern Londrina, Londrina, Brazil
| | - Victor Fattori
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital-Harvard Medical School, Karp Research Building, Boston, MA, USA
| | - Rubia Casagrande
- Laboratory of Antioxidants and Inflammation, Department of Pharmaceutical Sciences, Centre of Health Sciences, Londrina State University, Londrina, Brazil
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| |
Collapse
|
13
|
Li MY, Fang X, Ma Y, Pan XY, Dai XJ, Li XM, Li XL, Wang YP, Tao JH, Li XP. The functional change of the P2X7R containing the Ala 348 to Thr polymorphism is associated with the pathogenesis of gout. Sci Rep 2023; 13:5603. [PMID: 37020014 PMCID: PMC10076518 DOI: 10.1038/s41598-023-32365-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
Our previous study has shown that ATP action on P2X7R could be the second signal to induce the onset of gouty arthritis. However, the functional changes of P2X7R single nucleotide polymorphisms (SNPs) on the effects of ATP-P2X7R-IL-1β signaling pathway and uric acid remained unknown. We aimed to investigate the association between the functional change of P2X7R containing the Ala348 to Thr polymorphisms (rs1718119) and the pathogenesis of gout. First, 270 gout patients and 70 hyperuricemic patients (without gout attack history in recent 5 years) were recruited for genotyping. In addition, the changes of ATP-induced pore formation were assessed in HEK-293T cells overexpressing different mutants in P2RX7, and the effects on P2X7R-NLRP3-IL-1β pathway activation were explored in P2RX7 overexpression THP-1 cells. The risk allele for gout was A at rs1718119, and the AA and AG genotypes exhibited a higher risk of gout. Furthermore, Ala348 to Thr mutants increased P2X7-dependent ethidium+ bromide uptake, upregulated IL-1β and NLRP3 levels as compared to the wild-type. We suggest that genetic polymorphisms of P2X7R containing the Ala348 to Thr are associated with the increased risk of gout, showing an enhanced gain-of-function effect on the development of this disease.
Collapse
Affiliation(s)
- Man-Yun Li
- Anhui Provincial Children's Hospital, Children's Hospital of Fudan University Anhui Hospital, Hefei, Anhui Province, 230051, People's Republic of China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, 230001, People's Republic of China
| | - Xuan Fang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, 230001, People's Republic of China
| | - Yan Ma
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, 230001, People's Republic of China
| | - Xian-Yang Pan
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, 230001, People's Republic of China
| | - Xiao-Juan Dai
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, 230001, People's Republic of China
| | - Xiao-Mei Li
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, 230001, People's Republic of China
| | - Xiao-Ling Li
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, 230001, People's Republic of China
| | - Yi-Ping Wang
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Jin-Hui Tao
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, 230001, People's Republic of China.
| | - Xiang-Pei Li
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, 230001, People's Republic of China.
| |
Collapse
|
14
|
P2X7R Mediates the Synergistic Effect of ATP and MSU Crystals to Induce Acute Gouty Arthritis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:3317307. [PMID: 36686377 PMCID: PMC9851801 DOI: 10.1155/2023/3317307] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/26/2022] [Accepted: 12/13/2022] [Indexed: 01/15/2023]
Abstract
Activation of the nod-like receptor protein 3 (NLRP3) inflammasome by monosodium urate (MSU) crystals has been identified as the molecular basis for the acute inflammatory response in gouty arthritis. However, MSU crystals alone are not sufficient to induce acute gouty arthritis (AGA). Adenosine triphosphate (ATP) is an endogenous signaling molecule involved in the NLRP3 inflammasome activation. We aimed to explore the role of ATP in MSU crystal-induced AGA development. In peripheral blood mononuclear cell-derived macrophages obtained from gout patients, we observed a synergistic effect of ATP on MSU crystal-induced IL-1β release. Furthermore, in a rat model of spontaneous gout, we demonstrated that a synergistic effect of ATP and MSU crystals, but not MSU crystals alone, is essential for triggering AGA. Mechanistically, this synergistic effect is achieved through the purinergic receptor P2X7 (P2X7R). Blockade of P2X7R prevented AGA induction in rats after local injection of MSU crystals, and carrying the mutant hP2X7R gene contributed to the inhibition of NLRP3 inflammasome activation induced by costimulation of MSU crystals and ATP in vitro. Taken together, these results support the synergistic effect of ATP on MSU crystal-induced NLRP3 inflammasome activation facilitating inflammatory episodes in AGA. In this process, P2X7R plays a key regulatory role, suggesting targeting P2X7R to be an attractive therapeutic strategy for the treatment of AGA.
Collapse
|
15
|
Wu P, Wang Y, Liu Y, Liu Y, Zhou G, Wu X, Wen Q. Emerging roles of the P2X7 receptor in cancer pain. Purinergic Signal 2022:10.1007/s11302-022-09902-1. [DOI: 10.1007/s11302-022-09902-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/03/2022] [Indexed: 11/21/2022] Open
Abstract
AbstractCancer pain is the most prevalent symptom experienced by cancer patients. It substantially impacts a patient’s long-term physical and emotional health, making it a pressing issue that must be addressed. Purinergic receptor P2X7 (P2X7R) is a widely distributed and potent non-selective ATP-gated ion channel that regulates tumor proliferation, chronic pain, and the formation of inflammatory lesions in the central nervous system. P2X7R plays an essential role in cancer pain and complications related to cancer pain including depression and opioid tolerance. This review focuses on the structure and distribution of P2X7R, its role in diverse tissues in cancer pain, and the application of P2X7R antagonists in the treatment of cancer pain to propose new ideas for cancer pain management.
Collapse
|
16
|
Jiang ZF, Wu W, Hu HB, Li ZY, Zhong M, Zhang L. P2X7 receptor as the regulator of T-cell function in intestinal barrier disruption. World J Gastroenterol 2022; 28:5265-5279. [PMID: 36185635 PMCID: PMC9521516 DOI: 10.3748/wjg.v28.i36.5265] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/20/2022] [Accepted: 09/01/2022] [Indexed: 02/06/2023] Open
Abstract
The intestinal mucosa is a highly compartmentalized structure that forms a direct barrier between the host intestine and the environment, and its dysfunction could result in a serious disease. As T cells, which are important components of the mucosal immune system, interact with gut microbiota and maintain intestinal homeostasis, they may be involved in the process of intestinal barrier dysfunction. P2X7 receptor (P2X7R), a member of the P2X receptors family, mediates the effects of extracellular adenosine triphosphate and is expressed by most innate or adaptive immune cells, including T cells. Current evidence has demonstrated that P2X7R is involved in inflammation and mediates the survival and differentiation of T lymphocytes, indicating its potential role in the regulation of T cell function. In this review, we summarize the available research about the regulatory role and mechanism of P2X7R on the intestinal mucosa-derived T cells in the setting of intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Zhi-Feng Jiang
- Center of Emergency & Intensive Care Unit, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Wei Wu
- Department of Critical Care Medicine, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Han-Bing Hu
- Center of Emergency & Intensive Care Unit, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Zheng-Yang Li
- Department of Gastroenterology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Ming Zhong
- Department of Critical Care Medicine, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Lin Zhang
- Center of Emergency & Intensive Care Unit, Jinshan Hospital of Fudan University, Shanghai 201508, China
| |
Collapse
|
17
|
Zhang H, Gao J, Fang W, Tang Y, Fang X, Jin T, Tao J. Role of NINJ1 in Gout Flare and Potential as a Drug Target. J Inflamm Res 2022; 15:5611-5620. [PMID: 36199745 PMCID: PMC9527815 DOI: 10.2147/jir.s378341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
Objective To determine the role of nerve injury-induced protein 1 (NINJ1) introduced plasma membrane rupture (PMR) and damage-associated molecular patterns (DAMPs) release in the pathogenesis and progression of gout and to explore the potential of NINJ1 as a therapeutic target in gout. Methods Both peripheral blood mononuclear cells (PBMCs) and serum sample from gout patients (n = 58) and healthy controls (n = 16) were collected and processed to NINJ1 expression, lactate dehydrogenase (LDH) detection, NINJ1 inhibition, and NINJ1 expression experiments, respectively. NINJ1 knockdown was carried out by lentivirus in a monosodium urate (MSU) induced rat model, and NINJ1 neutralizing antibody was applied in a MSU induced mouse model. Results Our results found that NINJ1 was upregulated during a gout flare, and the resulting induction of PMR correlated with gout progression. NINJ1 knockdown significantly reduced the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation and joint swelling in the rat model, and NINJ1 neutralizing antibody also significantly reduced gout flare in the mouse model and PBMCs. Moreover, NINJ1 expression is under NLRP3 inflammasome produced interleukin (IL)-1β control. Conclusion These results support the notion of a pathogenic role of NINJ1 introduced PMR in gout and provide a detailed mechanism for gout pathogenesis involving inflammatory cell death and DAMPs release introduced by IL-1β. In addition, targeting NINJ1 might be a potential therapeutic approach for gout.
Collapse
Affiliation(s)
- Hongliang Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, People’s Republic of China
| | - Jie Gao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, People’s Republic of China
| | - Wenxiang Fang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, People’s Republic of China
| | - Yujie Tang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, People’s Republic of China
| | - Xuan Fang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, People’s Republic of China
| | - Tengchuan Jin
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, People’s Republic of China
| | - Jinhui Tao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, People’s Republic of China
- Correspondence: Jinhui Tao; Tengchuan Jin, Email ;
| |
Collapse
|
18
|
Li X, Liu Y, Luo C, Tao J. Z1456467176 alleviates gouty arthritis by allosterically modulating P2X7R to inhibit NLRP3 inflammasome activation. Front Pharmacol 2022; 13:979939. [PMID: 36052144 PMCID: PMC9424684 DOI: 10.3389/fphar.2022.979939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
NLRP3 inflammasome activation is a central process in initiating gout flares. The unique conformational rearrangement of the P2X7 receptor (P2X7R) upon ATP binding is critical for the activation of the NLRP3 inflammasome. However, studies on allosteric modulation of P2X7R in gout treatment are limited. Here, we aimed to investigate the therapeutic implications of targeting P2X7R in gout by designing a P2X7R allosteric inhibitor and validating the inhibitory function on NLRP3 inflammasome activation. Through virtual screening, we identified Z1456467176 (N-{3-[(2-aminoethyl) sulfamoyl] phenyl}-2-methyl-3-[3-(trifluoromethyl) phenyl] propanamide hydrochloride) bound to the drug-binding pocket as a potential antagonist of P2X7R. In functional assays, ATP- or BzATP-induced P2X7R function was assessed in vitro in HEK-293T cells overexpressing hP2X7R (dye uptake assay) and macrophages (IL-1β release assay). Z1456467176 exhibited a stable and significant P2X7R inhibitory effect. Importantly, in MSU crystal-induced gout, the presence and involvement of ATP were confirmed. Z1456467176 blocked ATP-induced activation of the NLRP3-caspase-1-IL-1β pathway and exerted promising effects in reducing gouty joint inflammation in rats. In addition, molecular docking and molecular dynamics simulation studies showed that the P27XR protein conformation was remodeled by Z1456467176 binding. Collectively, our results provide a potent P2X7R allosteric inhibitor that facilitates the remission of MSU crystal-induced gout inflammation by inhibiting NLRP3 inflammasome activation, suggesting that allosteric inhibition of P2X7R represents a new direction in gout treatment.
Collapse
|
19
|
Dai X, Fang X, Xia Y, Li M, Li X, Wang Y, Tao J, Li X. ATP-Activated P2X7R Promote the Attack of Acute Gouty Arthritis in Rats Through Activating NLRP3 Inflammasome and Inflammatory Cytokine Production. J Inflamm Res 2022; 15:1237-1248. [PMID: 35845088 PMCID: PMC9283387 DOI: 10.2147/jir.s351660] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/15/2022] [Indexed: 11/23/2022] Open
Abstract
Objective To investigate the effect of P2X7R on MSU crystal-induced acute gouty arthritis in rats and its mechanism on inflammatory responses. Methods In vivo activation or inhibition of P2X7R was examined in the ATP group or the BBG group of rats, and the control group were injected with PBS. All three groups of rats were injected with MSU in the right joint cavity. The development of acute gouty arthritis was observed and evaluated at 6h, 12h, 24h, 48h and 72h. The clinical manifestations of acute arthritis, the expression level of P2X7R in spleen macrophages, the ability of macrophages to take up YO-PRO-1, and the level of Tregs, Th17 cells and inflammatory cytokines were assessed. Besides, mRNA expression levels of P2X7R, NLRP3 and IL-1β were also detected. Results After 12h and 24h administration, P2X7R agonist ATP significantly accelerated the development of acute gouty arthritis, while the P2X7R inhibitor BBG had the opposite effect on this process. Activation of P2X7R significantly aggravated the ankle joint arthritis of the rat and promoted the infiltration of neutrophils and macrophages in the synovial tissue. In addition, the expression of P2X7R in macrophages of ATP group, the uptake of YO-PRO-1 and the expression of NLRP3 mRNA were significantly higher than that in other two groups. At 12h or 24h, activation or inhibition P2X7R had a significant effect on the IL-1β, IL-6, IL-17, IL-10 and TGF-β1. The ratios of Treg/Th17 gradually decreased in the First three time points, it was the lowest at 24h. Conclusion Activation of P2X7R by ATP aggravated the development of acute gouty arthritis through P2X7R/NLRP3 pathway, promoted the secretion of related inflammatory cytokines, which affected radio of Tregs/Th17 cells. The whole pathogenesis process appeared a pattern from acute attack to remission in time-dependent trend.
Collapse
Affiliation(s)
- Xiaojuan Dai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People’s Republic of China
| | - Xuan Fang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People’s Republic of China
| | - Yuan Xia
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People’s Republic of China
| | - Manyun Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People’s Republic of China
| | - Xiaomei Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People’s Republic of China
| | - Yiping Wang
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Jinhui Tao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People’s Republic of China
| | - Xiangpei Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People’s Republic of China
| |
Collapse
|
20
|
Li X, Gao J, Tao J. Purinergic Signaling in the Regulation of Gout Flare and Resolution. Front Immunol 2021; 12:785425. [PMID: 34925366 PMCID: PMC8671294 DOI: 10.3389/fimmu.2021.785425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/15/2021] [Indexed: 12/15/2022] Open
Abstract
Gout flares require monosodium urate (MSU) to activate the NLRP3 inflammasome and secrete sufficient IL-1β. However, MSU alone is not sufficient to cause a flare. This is supported by the evidence that most patients with hyperuricemia do not develop gout throughout their lives. Recent studies have shown that, besides MSU, various purine metabolites, including adenosine triphosphate, adenosine diphosphate, and adenosine bind to different purine receptors for regulating IL-1β secretion implicated in the pathogenesis of gout flares. Purine metabolites such as adenosine triphosphate mainly activate the NLRP3 inflammasome through P2X ion channel receptors, which stimulates IL-1β secretion and induces gout flares, while some purine metabolites such as adenosine diphosphate and adenosine mainly act on the G protein-coupled receptors exerting pro-inflammatory or anti-inflammatory effects to regulate the onset and resolution of a gout flare. Given that the purine signaling pathway exerts different regulatory effects on inflammation and that, during the inflammatory process of a gout flare, an altered expression of purine metabolites and their receptors was observed in response to the changes in the internal environment. Thus, the purine signaling pathway is involved in regulating gout flare and resolution. This study was conducted to review and elucidate the role of various purine metabolites and purinergic receptors during the process.
Collapse
Affiliation(s)
| | | | - Jinhui Tao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
21
|
Clavijo-Cornejo D, Hernández-González O, Gutierrez M. The current role of NLRP3 inflammasome polymorphism in gout susceptibility. Int J Rheum Dis 2021; 24:1257-1265. [PMID: 34390315 DOI: 10.1111/1756-185x.14205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/27/2021] [Accepted: 08/02/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION The NLR family pyrin domain containing 3 (NLRP3) signaling pathway has an important role in inflammation mediated by monosodium urate crystals in gout, and the characterization of single nucleotide polymorphisms (SNPs) have helped to recognize disease susceptibility. OBJECTIVE The aim of this review is to provide an overview of the potential role of the inflammasome gene SNPs as a susceptibility factor for gout, discussing the current evidence available. METHODS This review analyzes the relevant literature in the field of inflammasome SNPs and gout published in the last 10 years. The systematic research was performed in 16 articles, including both the SNPs associated and those not associated with gout, with the goal to have a complete overview. RESULTS Sixty-nine SNPs from 10 different genes have been reported in the literature. Of these, 13 SNPs present association with gout susceptibility in different populations, while 56 have been established as not being associated with the disease. CONCLUSIONS This review is a summary of the potential role of inflammasome gene SNPs and their association with gout risk, all of them related with NLRP3 inflammasome signaling, suggesting these polymorphisms are susceptibility candidates and genetic markers for gout. From the 69 SNPs analyzed in the literature, 13 of them have been associated with gout as follows: NLRP3 (rs3806268 and rs10754558), CARD8 (rs2043211), TLR4 (rs2149356), CD14 (rs2569190), IL-1β (rs1143623), P2RX7 (rs2230911, rs1653624, rs7958316 and rs17525809) and PPARGC1B (rs45520937, rs10491360 and rs7712296) in different populations.
Collapse
Affiliation(s)
- Denise Clavijo-Cornejo
- Division of Musculoskeletal and Rheumatic Diseases, Instituto Nacional de Rehabilitación, Mexico City, Mexico
| | | | - Marwin Gutierrez
- Division of Musculoskeletal and Rheumatic Diseases, Instituto Nacional de Rehabilitación, Mexico City, Mexico
| |
Collapse
|
22
|
Zhang H, Tang Y, Tao J. Sex-Related Overactivation of NLRP3 Inflammasome Increases Lethality of the Male COVID-19 Patients. Front Mol Biosci 2021; 8:671363. [PMID: 34150848 PMCID: PMC8212049 DOI: 10.3389/fmolb.2021.671363] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/20/2021] [Indexed: 12/30/2022] Open
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2 infection, remains a dramatic threat to human life and economic well-being worldwide. Significant heterogeneity in the severity of disease was observed for patients infected with SARS-CoV-2 ranging from asymptomatic to severe cases. Moreover, male patients had a higher probability of suffering from high mortality and severe symptoms linked to cytokine storm and excessive inflammation. The NLRP3 inflammasome is presumably critical to this process. Sex differences may directly affect the activation of NLRP3 inflammasome, impacting the severity of observed COVID-19 symptoms. To elucidate the potential mechanisms underlying sex based differences in NLRP3 activation during SARS-CoV-2 infection, this review summarizes the reported mechanisms and identifies potential therapeutic targets.
Collapse
Affiliation(s)
| | | | - Jinhui Tao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
23
|
Autoinflammatory Features in Gouty Arthritis. J Clin Med 2021; 10:jcm10091880. [PMID: 33926105 PMCID: PMC8123608 DOI: 10.3390/jcm10091880] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022] Open
Abstract
In the panorama of inflammatory arthritis, gout is the most common and studied disease. It is known that hyperuricemia and monosodium urate (MSU) crystal-induced inflammation provoke crystal deposits in joints. However, since hyperuricemia alone is not sufficient to develop gout, molecular-genetic contributions are necessary to better clinically frame the disease. Herein, we review the autoinflammatory features of gout, from clinical challenges and differential diagnosis, to the autoinflammatory mechanisms, providing also emerging therapeutic options available for targeting the main inflammatory pathways involved in gout pathogenesis. This has important implication as treating the autoinflammatory aspects and not only the dysmetabolic side of gout may provide an effective and safer alternative for patients even in the prevention of possible gouty attacks.
Collapse
|
24
|
NLRP3 as a sensor of metabolism gone awry. Curr Opin Biotechnol 2021; 68:300-309. [PMID: 33862489 DOI: 10.1016/j.copbio.2021.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 12/28/2022]
Abstract
The NLRP3 inflammasome is an important player in innate immunity and pathogenic inflammation. Numerous studies have implicated it in sensing endogenous danger signals, yet the precise mechanisms remain unknown. Here, we review the current knowledge on the organismal and cellular metabolic triggers engaging NLRP3, and the mechanisms involved in integrating the diverse signals.
Collapse
|
25
|
Association of P2X7 receptor genetic polymorphisms and expression with rheumatoid arthritis susceptibility in a sample of the Iranian population: a case-control study. Clin Rheumatol 2021; 40:3115-3126. [PMID: 33580375 DOI: 10.1007/s10067-021-05645-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is a complex inflammatory autoimmune disease with joint eruption, systemic manifestation, and numerous predisposing genetic factors. The P2X7 receptor is an essential ligand-gated channel that contributes to many physiological processes, especially inflammation. However, genetic variations can alter the P2X7 receptor function. Therefore, the present study aimed to explore the impact of P2X7 genetic polymorphisms and expression on susceptibility to RA in a sample of the Iranian population. METHODS We enrolled 160 (145 female, 15 male) RA patients and 160 (142 female, 18 male) healthy individuals in this study. Genotyping was performed using tetra amplification refractory mutation system-polymerase chain reaction (TARMS-PCR) for rs1718119, rs2230912, rs2393799, rs28360457, rs35933842, and allele-specific PCR for rs1653624 and rs3751143. Furthermore, 44 new cases of RA and 48 healthy controls were recruited to investigate whether P2X7 mRNA expression is associated with RA susceptibility. RESULTS The results revealed that the rs2393799 significantly increased the risk of RA in all genetic models (p<0.05), while rs3751143 in codominant (CC vs. AA, OR=0.49, 95% CI=0.26-0.92), dominant (AC+CC, OR=0.59, 95% CI=0.37-0.94), C allele (OR=0.63, 95% CI=0.46-0.88), and rs2230912 in codominant (AG vs. AA, OR=0.56, 95% CI=0.34-0.94), dominant (AG+GG vs. AA, OR=0.59, 95% CI=0.35-0.99), and overdominant (AG vs. AA+GG, OR=0.57, 95% CI=0.33-0.98) significantly decreased the RA risk (p<0.05). Furthermore, the rs1718119 and rs1653624 were not associated with susceptibility of RA (p>0.05), and rs28360457 and rs35933842 were not polymorphic in our study. The mRNA expression level of P2X7 in both groups revealed that the P2X7 gene was significantly upregulated in RA (3.18±0.43) compared to healthy subjects (1.47±0.15, p<0.001). CONCLUSION Our results suggest that rs2393799, rs3751143, and rs2230912 variants of the P2X7 gene are associated with RA's susceptibility in a sample of the Iranian population. Also, P2X7 mRNA expression was higher in our new RA patients. The P2X7 receptor has been considered as a potential pharmacologic target in RA. Key Points • P2X7 variants (rs2393799, rs2230912, rs3751143) were associated with RA susceptibility in a sample of the Iranian population. • rs2393799 increases the risk of RA, while rs2230912 and rs3751143 decrease the risk of RA. • P2X7 expression was significantly upregulated in new RA patients compared to controls.
Collapse
|
26
|
Kringel D, Malkusch S, Kalso E, Lötsch J. Computational Functional Genomics-Based AmpliSeq™ Panel for Next-Generation Sequencing of Key Genes of Pain. Int J Mol Sci 2021; 22:ijms22020878. [PMID: 33467215 PMCID: PMC7830224 DOI: 10.3390/ijms22020878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/27/2020] [Accepted: 01/12/2021] [Indexed: 11/16/2022] Open
Abstract
The genetic background of pain is becoming increasingly well understood, which opens up possibilities for predicting the individual risk of persistent pain and the use of tailored therapies adapted to the variant pattern of the patient's pain-relevant genes. The individual variant pattern of pain-relevant genes is accessible via next-generation sequencing, although the analysis of all "pain genes" would be expensive. Here, we report on the development of a cost-effective next generation sequencing-based pain-genotyping assay comprising the development of a customized AmpliSeq™ panel and bioinformatics approaches that condensate the genetic information of pain by identifying the most representative genes. The panel includes 29 key genes that have been shown to cover 70% of the biological functions exerted by a list of 540 so-called "pain genes" derived from transgenic mice experiments. These were supplemented by 43 additional genes that had been independently proposed as relevant for persistent pain. The functional genomics covered by the resulting 72 genes is particularly represented by mitogen-activated protein kinase of extracellular signal-regulated kinase and cytokine production and secretion. The present genotyping assay was established in 61 subjects of Caucasian ethnicity and investigates the functional role of the selected genes in the context of the known genetic architecture of pain without seeking functional associations for pain. The assay identified a total of 691 genetic variants, of which many have reports for a clinical relevance for pain or in another context. The assay is applicable for small to large-scale experimental setups at contemporary genotyping costs.
Collapse
Affiliation(s)
- Dario Kringel
- Institute of Clinical Pharmacology, Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (D.K.); (S.M.)
| | - Sebastian Malkusch
- Institute of Clinical Pharmacology, Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (D.K.); (S.M.)
| | - Eija Kalso
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, P.O. Box 440, 00029 HUS Helsinki, Finland;
| | - Jörn Lötsch
- Institute of Clinical Pharmacology, Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (D.K.); (S.M.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Correspondence: ; Tel.: +49-69-6301-4589; Fax: +49-69-6301-4354
| |
Collapse
|
27
|
Yang C, Shi S, Su Y, Tong JS, Li L. P2X7R promotes angiogenesis and tumour-associated macrophage recruitment by regulating the NF-κB signalling pathway in colorectal cancer cells. J Cell Mol Med 2020; 24:10830-10841. [PMID: 32735377 PMCID: PMC7521273 DOI: 10.1111/jcmm.15708] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/12/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
Overexpression of P2X7R has been observed in several tumours and is related to cancer advancement and metastasis. However, the role of P2X7R in colorectal cancer (CRC) patients is not well understood. In the current study, overexpression of P2X7R and the effects at the molecular and functional levels in CRC were assessed in a mouse orthotopic model. Functional assays, such as the CCK‐8 assay, wound healing and transwell assay, were used to determine the biological role of P2X7R in CRC cells. CSC‐related genes and properties were detected via sphere formation and real‐time PCR assays. The underlying mechanisms were explored by Western blotting, real‐time PCR and Flow cytometry. In this study, we found that overexpression of P2X7R increases in the in vivo growth of tumours. P2X7R overexpression also increased CD31, VEGF and concurrent angiogenesis. P2X7R up‐regulates aldehyde dehydrogenase‐1 (ALDH1) and CSC characteristics. Transplanted tumour cells with P2X7R overexpression stimulated cytokines to recruit tumour‐associated macrophage (TAMs) to increase the growth of tumours. We also found that the NF‐κB signalling pathway is involved in P2X7R‐induced cytokine up‐regulation. P2X7R promotes NF‐κB–dependent cytokine induction, which leads to TAM recruitment to control tumour growth and advancement and remodelling of the stroma. Our findings demonstrate that P2X7R plays a key role in TAM recruitment, which may be a therapeutic target for CRC patients.
Collapse
Affiliation(s)
- Chunhui Yang
- Department of Clinical Laboratory, the Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shuang Shi
- Department of Clinical Laboratory, the Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Su
- Department of Clinical Laboratory, the Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jing-Shan Tong
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Liangjun Li
- Department of Clinical Laboratory, the Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
28
|
Bodofsky S, Merriman TR, Thomas TJ, Schlesinger N. Advances in our understanding of gout as an auto-inflammatory disease. Semin Arthritis Rheum 2020; 50:1089-1100. [PMID: 32916560 DOI: 10.1016/j.semarthrit.2020.06.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/01/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022]
Abstract
Gout, the most common inflammatory arthritis, is the result of hyperuricemia and inflammation induced by monosodium urate (MSU) crystal deposition. However, most people with hyperuricemia will never develop gout, implying a molecular-genetic contribution to the development of gout. Recent genomic studies reveal links between certain genetic variations and gout. We highlight recent advances in our understanding of gout as an auto-inflammatory disease. We review the auto-inflammatory aspects of gout, including the inflammasome and thirteen gout-associated inflammatory-pathway genes and associated comorbidities. This information provides important insights into emerging immune-modulating targets in the management of gout, and future novel therapeutic targets in gout treatment. Cumulatively, this has important implications for treating gout as an auto-inflammatory disease, as opposed to a purely metabolic disease.
Collapse
Affiliation(s)
- Shari Bodofsky
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States.
| | - Tony R Merriman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - T J Thomas
- Division of Rheumatology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Naomi Schlesinger
- Division of Rheumatology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Many novel genetic associations in the field of hyperuricaemia and gout have been described recently. This review discusses advances in gout genetics and their potential clinical applications. RECENT FINDINGS Genome-wide association studies have identified approximately 30 serum urate-associated loci, some of which represent targets for drug development in gout. Some genes implicated in initiating the inflammatory response to deposited crystals in gout flares have also been described. In addition, genetic studies have been used to understand the link between hyperuricaemia and other comorbidities, particularly cardiometabolic diseases. ABCG2 has been established as a key genetic determinant in the onset of gout, and plays a role in the progression and severity of disease. Recent pharmacogenetic studies have also demonstrated the association between ABCG2 and poor response to allopurinol, and the link between HLA-B58:01 genotype and adverse drug reactions to allopurinol. SUMMARY Advances in gout genetics have provided important molecular insights into disease pathogenesis, better characterized the pharmacogenetics of allopurinol, and raised the possibility of using genetic testing to provide personalized treatment for patients. Prospective studies are now needed to clarify whether genetic testing in gout provides further benefit when added to established clinical management.
Collapse
|
30
|
Pan Z, Zhang X, Ma Y, Xu S, Shuai Z, Pan F, Sun G. Genetic variation of rs7958311 in P2X7R gene is associated with the susceptibility and disease activity of ankylosing spondylitis. Postgrad Med J 2019; 95:251-257. [PMID: 30992418 DOI: 10.1136/postgradmedj-2018-136036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 02/05/2019] [Accepted: 03/12/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To describe association between the genetic variation of inflammation-associated gene, P2X7R, and ankylosing spondylitis (AS) susceptibility. METHODS Four single nucleotide polymorphisms (SNPs) of P2 X 7 R gene were genotyped in 673 patients with AS and 687 healthy controls. Allele and genotype frequencies and different genetic models were performed to calculate ORs and 95% CIs, the demographic and clinical characteristics of patients were recorded. The data analyses were also conducted by sex. RESULTS Compared with controls, genetic variation in rs7958311 but not the other three SNPs was statistically significant in female patients (χ2=6.907, p=0.032). Specifically, the P2 X 7 R gene rs7958311 polymorphism A allele showed a protective effect in AS susceptibility (OR=0.704, p=0.049, pFDR=0.061). In addition, female individuals with GA and/or AA genotypes had a lower risk of having AS compared with those with GG genotype (GA vs GG: OR=0.446, p=0.012, pFDR=0.030; AA vs GG: OR=0.440, p=0.039, pFDR=0.061; GA/AA vs GG: OR=0.445, p=0.009, pFDR=0.030). Furthermore, individuals with A allele (ie, GA/AA vs GG) had a higher disease activity, including Bath Ankylosing Spondylitis Disease Activity Index (overall: Z=- 2.630, p=0.014; male: Z=- 2.243, p=0.025), Schober test (overall: Z=- 3.041, p<0.001; male: Z=- 2.243, p=0.025) and chest expansion (overall: Z=- 3.895, p=0.004; male: Z=- 2.403, p=0.016). CONCLUSION The allelic variation of rs7958311 SNP in P2X7R gene may have a protective effect on AS susceptibility in females and is associated with disease activity in male patients.
Collapse
Affiliation(s)
- Zhipeng Pan
- Department of Medical Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xu Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,School of Public Health, The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, China
| | - Yubo Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,School of Public Health, The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, China
| | - Shengqian Xu
- Department of Rheumatism and Immunity, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zongwen Shuai
- Department of Rheumatism and Immunity, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China .,School of Public Health, The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, China
| | - Guoping Sun
- Department of Medical Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
31
|
Zeng D, Yao P, Zhao H. P2X7, a critical regulator and potential target for bone and joint diseases. J Cell Physiol 2018; 234:2095-2103. [PMID: 30317598 DOI: 10.1002/jcp.27544] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 09/13/2018] [Indexed: 12/18/2022]
Abstract
Abundant evidence indicted that P2X7 receptor show a essential role in human health and some human diseases including hypertension, atherosclerosis, pulmonary inflammation, tuberculosis infection, psychiatric disorders, and cancer. P2X7 receptor also has an important role in some central nervous system diseases such as neurodegenerative disorders. Recently, more research suggested that P2X7 receptor also plays a crucial role in bone and joint diseases. But the effect of P2X7 receptor on skeletal and joint diseases has not been systematically reviewed. In this article, the role of P2X7 receptor in skeletal and joint diseases is elaborated. The activation of P2X7 receptor can ameliorate osteoporosis by inducing a fine balance between osteoclastic resorption and osteoblastic bone formation. The activation of P2X7 receptor can relieve the stress fracture injury by increasing the response to mechanical loading and inducing osteogenesis. But the activation of P2X7 receptor mediates the cell growth and cell proliferation in bone cancer. In addition, the activation of P2X7 receptor can aggravate the process of some joint diseases such as osteoarthritis, rheumatoid arthritis, and acute gouty arthritis. The inhibition of P2X7 receptor can alleviate the pathological process of joint disease to some extent. In conclusion, P2X7 receptor may be a critical regulator and therapeutic target for bone and joint diseases.
Collapse
Affiliation(s)
- Dehui Zeng
- Department of Orthopedics, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Pingbo Yao
- Department of Orthopedics, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Hong Zhao
- Institute of Pharmacy and Pharmacology, Nursing College, University of South China, Hengyang, China
| |
Collapse
|
32
|
Zhu W, Deng Y, Zhou X. Multiple Membrane Transporters and Some Immune Regulatory Genes are Major Genetic Factors to Gout. Open Rheumatol J 2018; 12:94-113. [PMID: 30123371 PMCID: PMC6062909 DOI: 10.2174/1874312901812010094] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/30/2018] [Accepted: 06/20/2018] [Indexed: 01/10/2023] Open
Abstract
Gout is a common form of inflammatory arthritis caused by hyperuricemia and the deposition of Monosodium Urate (MSU) crystals. It is also considered as a complex disorder in which multiple genetic factors have been identified in association with its susceptibility and/or clinical outcomes. Major genes that were associated with gout include URAT1, GLUT9, OAT4, NPT1 (SLC17A1), NPT4 (SLC17A3), NPT5 (SLC17A4), MCT9, ABCG2, ABCC4, KCNQ1, PDZK1, NIPAL1, IL1β, IL-8, IL-12B, IL-23R, TNFA, MCP-1/CCL2, NLRP3, PPARGC1B, TLR4, CD14, CARD8, P2X7R, EGF, A1CF, HNF4G and TRIM46, LRP2, GKRP, ADRB3, ADH1B, ALDH2, COMT, MAOA, PRKG2, WDR1, ALPK1, CARMIL (LRRC16A), RFX3, BCAS3, CNIH-2, FAM35A and MYL2-CUX2. The proteins encoded by these genes mainly function in urate transport, inflammation, innate immunity and metabolism. Understanding the functions of gout-associated genes will provide important insights into future studies to explore the pathogenesis of gout, as well as to develop targeted therapies for gout.
Collapse
Affiliation(s)
- Weifeng Zhu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Nanchang University, Nanchang, China.,Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yan Deng
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Ophthalmology of Children, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaodong Zhou
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|