1
|
Fayed B, Luo S, Yassin AEB. Challenges and recent advances in erythropoietin stability. Pharm Dev Technol 2024; 29:930-944. [PMID: 39340397 DOI: 10.1080/10837450.2024.2410448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 09/30/2024]
Abstract
Erythropoietin (EPO) is a pivotal hormone that regulates red blood cell production, predominantly synthesized by the kidneys and also produced by the liver. Since the introduction of recombinant human EPO (rh-EPO) in 1989 through recombinant DNA technology, the therapeutic landscape for anemia has been improved. rh-EPO's market expansion has been substantial, with its application extending across various conditions such as chronic kidney disease, cancer-related anemia, and other disorders. Despite its success, significant concerns remain regarding the stability of EPO, which is critical for preserving its biological activity and ensuring therapeutic efficacy under diverse environmental conditions. Instability issues, including degradation and loss of biological activity, challenge both drug development and treatment outcomes. Factors contributing to EPO instability include temperature fluctuations, light exposure, and interactions with other substances. To overcome these challenges, pharmaceutical research has focused on developing innovative strategies such as stabilizing agents, advanced formulation techniques, and optimized storage conditions. This review article explores the multifaceted aspects of EPO stability, examining the impact of instability on clinical efficacy and drug development. It also provides a comprehensive review of current stabilization strategies, including the use of excipients, lyophilization, and novel delivery systems.
Collapse
Affiliation(s)
- Bahgat Fayed
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, Egypt
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Alaa Eldeen B Yassin
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Biswas D, Chakraborty A, Mukherjee S, Ghosh B. Hairy root culture: a potent method for improved secondary metabolite production of Solanaceous plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1197555. [PMID: 37731987 PMCID: PMC10507345 DOI: 10.3389/fpls.2023.1197555] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/13/2023] [Indexed: 09/22/2023]
Abstract
Secondary metabolites synthesized by the Solanaceous plants are of major therapeutic and pharmaceutical importance, many of which are commonly obtained from the roots of these plants. 'Hairy roots', mirroring the same phytochemical pattern of the corresponding root of the parent plant with higher growth rate and productivity, are therefore extensively studied as an effective alternative for the in vitro production of these metabolites. Hairy roots are the transformed roots, generated from the infection site of the wounded plants with Agrobacterium rhizogenes. With their fast growth, being free from pathogen and herbicide contamination, genetic stability, and autotrophic nature for plant hormones, hairy roots are considered as useful bioproduction systems for specialized metabolites. Lately, several elicitation methods have been employed to enhance the accumulation of these compounds in the hairy root cultures for both small and large-scale production. Nevertheless, in the latter case, the cultivation of hairy roots in bioreactors should still be optimized. Hairy roots can also be utilized for metabolic engineering of the regulatory genes in the metabolic pathways leading to enhanced production of metabolites. The present study summarizes the updated and modern biotechnological aspects for enhanced production of secondary metabolites in the hairy root cultures of the plants of Solanaceae and their respective importance.
Collapse
Affiliation(s)
- Diptesh Biswas
- Plant Biotechnology Laboratory, Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
| | - Avijit Chakraborty
- Plant Biotechnology Laboratory, Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
| | - Swapna Mukherjee
- Department of Microbiology, Dinabandhu Andrews College, Kolkata, India
| | - Biswajit Ghosh
- Plant Biotechnology Laboratory, Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
| |
Collapse
|
3
|
Aragão MM, Alvarez MA, Caiafa L, Santos MO. Nicotiana hairy roots for recombinant protein expression, where to start? A systematic review. Mol Biol Rep 2023; 50:4587-4604. [PMID: 36917368 DOI: 10.1007/s11033-023-08360-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/23/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND Hairy roots are a plant-tissue culture raised by Rhizobium rhizogenes infection (formerly known as Agrobacterium rhizogenes). Nowadays, these roots have been gaining more space in biotechnology due to their benefits for the recombinant expression of valuables proteins; it includes simplified downstream processing, protein rhizosecretion, and scalability in bioreactors. However, due to methodological inconsistency among reports, the tissue platform is still a promising technology. METHODS AND RESULTS In the current paper, we propose the first step to overcome this issue through a systematic review of studies that employ Nicotiana hairy roots for recombinant expression. We conducted a qualitative synthesis of 36 out of 387 publications initially selected. Following the PRISMA procedure, all papers were assessed for exclusion and inclusion criteria. Multiple points of root culture were explored, including transformation methods, root growth curve, external additives, and scale-up with bioreactors to determine which approaches performed best and what is still required to achieve a robust protocol. CONCLUSION The information presented here may help researchers who want to work with hairy roots in their laboratories trace a successful path to appraisal the literature status.
Collapse
Affiliation(s)
- M M Aragão
- Departamento de Biologia, ICB - Universidade Federal de Juiz de Fora,, R. José Lourenço Kelmer, S/N, Juiz de Fora, MG, Brazil
| | - M A Alvarez
- CONICET - Universidade Maimónides (CEBBAD), Hidalgo 775, Lab 603, Buenos Aires, Argentina
| | - L Caiafa
- Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora, R. José Lourenço Kelmer, S/N, Juiz de Fora, MG, Brazil
| | - M O Santos
- Departamento de Biologia, ICB - Universidade Federal de Juiz de Fora,, R. José Lourenço Kelmer, S/N, Juiz de Fora, MG, Brazil.
| |
Collapse
|
4
|
Rozov SM, Zagorskaya AA, Konstantinov YM, Deineko EV. Three Parts of the Plant Genome: On the Way to Success in the Production of Recombinant Proteins. PLANTS (BASEL, SWITZERLAND) 2022; 12:38. [PMID: 36616166 PMCID: PMC9824153 DOI: 10.3390/plants12010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Recombinant proteins are the most important product of current industrial biotechnology. They are indispensable in medicine (for diagnostics and treatment), food and chemical industries, and research. Plant cells combine advantages of the eukaryotic protein production system with simplicity and efficacy of the bacterial one. The use of plants for the production of recombinant proteins is an economically important and promising area that has emerged as an alternative to traditional approaches. This review discusses advantages of plant systems for the expression of recombinant proteins using nuclear, plastid, and mitochondrial genomes. Possibilities, problems, and prospects of modifications of the three parts of the genome in light of obtaining producer plants are examined. Examples of successful use of the nuclear expression platform for production of various biopharmaceuticals, veterinary drugs, and technologically important proteins are described, as are examples of a high yield of recombinant proteins upon modification of the chloroplast genome. Potential utility of plant mitochondria as an expression system for the production of recombinant proteins and its advantages over the nucleus and chloroplasts are substantiated. Although these opportunities have not yet been exploited, potential utility of plant mitochondria as an expression system for the production of recombinant proteins and its advantages over the nucleus and chloroplasts are substantiated.
Collapse
Affiliation(s)
- Sergey M. Rozov
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, pr. Akad. Lavrentieva 10, Novosibirsk 630090, Russia
| | - Alla A. Zagorskaya
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, pr. Akad. Lavrentieva 10, Novosibirsk 630090, Russia
| | - Yuri M. Konstantinov
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of Russian Academy of Sciences, Lermontova Str. 132, Irkutsk 664033, Russia
| | - Elena V. Deineko
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, pr. Akad. Lavrentieva 10, Novosibirsk 630090, Russia
| |
Collapse
|
5
|
Karki U, Wright T, Xu J. High yield secretion of human erythropoietin from tobacco cells for ex vivo differentiation of hematopoietic stem cells towards red blood cells. J Biotechnol 2022; 355:10-20. [PMID: 35777457 PMCID: PMC9492895 DOI: 10.1016/j.jbiotec.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022]
Abstract
Human erythropoietin (EPO) is a key cytokine in erythropoiesis by regulating differentiation of erythroid progenitor cells into red blood cells (RBCs). Plant cell cultures are considered as promising alternative bioproduction platforms for EPO. To overcome the bottlenecks of low protein productivity and secretion, EPO was expressed in tobacco BY-2 cells with a designer peptide tag, termed (SP)20 that consists of 20 tandem repeats of a "Ser-Pro" motif. This de novo designed tag directed extensive O-glycosylation on each Pro residue in plant cells and acted as a molecular carrier to promote the extracellular secretion of EPO. To facilitate the establishment of stable and high-expression BY-2 cell lines, EPO molecules were co-expressed with a reporter protein GFP, which could be used as a visual marker to monitor the protein expression during the subculture. The engineered (SP)20 glycomodule substantially increased the secreted yields of EPO up to 4.31 μg/mL. The (SP)20-tagged EPOs exhibited the expected activity in promoting the proliferation of TF-1 cells, though their EC50 was 12-fold higher than that of EPO standard. The (SP)20-tagged EPOs could also stimulate the ex vivo expansion and differentiation of hematopoietic stem cell (CD34+ cells) towards RBCs.
Collapse
Affiliation(s)
- Uddhab Karki
- Arkansas Biosciences Institute, USA; Department of Biological Sciences, USA
| | | | - Jianfeng Xu
- Arkansas Biosciences Institute, USA; College of Agriculture, Arkansas State University, Jonesboro, AR 72401, USA.
| |
Collapse
|
6
|
Ghag SB, Adki VS, Ganapathi TR, Bapat VA. Plant Platforms for Efficient Heterologous Protein Production. BIOTECHNOL BIOPROC E 2021; 26:546-567. [PMID: 34393545 PMCID: PMC8346785 DOI: 10.1007/s12257-020-0374-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 02/07/2023]
Abstract
Production of recombinant proteins is primarily established in cultures of mammalian, insect and bacterial cells. Concurrently, concept of using plants to produce high-value pharmaceuticals such as vaccines, antibodies, and dietary proteins have received worldwide attention. Newer technologies for plant transformation such as plastid engineering, agroinfiltration, magnifection, and deconstructed viral vectors have been used to enhance the protein production in plants along with the inherent advantage of speed, scale, and cost of production in plant systems. Production of therapeutic proteins in plants has now a more pragmatic approach when several plant-produced vaccines and antibodies successfully completed Phase I clinical trials in humans and were further scheduled for regulatory approvals to manufacture clinical grade products on a large scale which are safe, efficacious, and meet the quality standards. The main thrust of this review is to summarize the data accumulated over the last two decades and recent development and achievements of the plant derived therapeutics. It also attempts to discuss different strategies employed to increase the production so as to make plants more competitive with the established production systems in this industry.
Collapse
Affiliation(s)
- Siddhesh B. Ghag
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai campus, Kalina, Santacruz, Mumbai, 400098 India
| | - Vinayak S. Adki
- V. G. Shivdare College of Arts, Commerce and Science, Solapur, Maharashtra 413004 India
| | - Thumballi R. Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
| | - Vishwas A. Bapat
- Department of Biotechnology, Shivaji University, Vidyanagar, Kolhapur, Maharashtra 416004 India
| |
Collapse
|
7
|
Shanmugaraj B, I. Bulaon CJ, Phoolcharoen W. Plant Molecular Farming: A Viable Platform for Recombinant Biopharmaceutical Production. PLANTS 2020; 9:plants9070842. [PMID: 32635427 PMCID: PMC7411908 DOI: 10.3390/plants9070842] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/20/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022]
Abstract
The demand for recombinant proteins in terms of quality, quantity, and diversity is increasing steadily, which is attracting global attention for the development of new recombinant protein production technologies and the engineering of conventional established expression systems based on bacteria or mammalian cell cultures. Since the advancements of plant genetic engineering in the 1980s, plants have been used for the production of economically valuable, biologically active non-native proteins or biopharmaceuticals, the concept termed as plant molecular farming (PMF). PMF is considered as a cost-effective technology that has grown and advanced tremendously over the past two decades. The development and improvement of the transient expression system has significantly reduced the protein production timeline and greatly improved the protein yield in plants. The major factors that drive the plant-based platform towards potential competitors for the conventional expression system are cost-effectiveness, scalability, flexibility, versatility, and robustness of the system. Many biopharmaceuticals including recombinant vaccine antigens, monoclonal antibodies, and other commercially viable proteins are produced in plants, some of which are in the pre-clinical and clinical pipeline. In this review, we consider the importance of a plant- based production system for recombinant protein production, and its potential to produce biopharmaceuticals is discussed.
Collapse
Affiliation(s)
- Balamurugan Shanmugaraj
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand;
| | - Christine Joy I. Bulaon
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand;
| | - Waranyoo Phoolcharoen
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand;
- Correspondence: ; Tel.: +66-2-218-8359; Fax: +66-2-218-8357
| |
Collapse
|
8
|
Gutierrez-Valdes N, Häkkinen ST, Lemasson C, Guillet M, Oksman-Caldentey KM, Ritala A, Cardon F. Hairy Root Cultures-A Versatile Tool With Multiple Applications. FRONTIERS IN PLANT SCIENCE 2020; 11:33. [PMID: 32194578 PMCID: PMC7064051 DOI: 10.3389/fpls.2020.00033] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/13/2020] [Indexed: 05/24/2023]
Abstract
Hairy roots derived from the infection of a plant by Rhizobium rhizogenes (previously referred to as Agrobacterium rhizogenes) bacteria, can be obtained from a wide variety of plants and allow the production of highly diverse molecules. Hairy roots are able to produce and secrete complex active glycoproteins from a large spectrum of organisms. They are also adequate to express plant natural biosynthesis pathways required to produce specialized metabolites and can benefit from the new genetic tools available to facilitate an optimized production of tailor-made molecules. This adaptability has positioned hairy root platforms as major biotechnological tools. Researchers and industries have contributed to their advancement, which represents new alternatives from classical systems to produce complex molecules. Now these expression systems are ready to be used by different industries like pharmaceutical, cosmetics, and food sectors due to the development of fully controlled large-scale bioreactors. This review aims to describe the evolution of hairy root generation and culture methods and to highlight the possibilities offered by hairy roots in terms of feasibility and perspectives.
Collapse
Affiliation(s)
| | | | | | | | | | - Anneli Ritala
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | | |
Collapse
|
9
|
Moon KB, Park JS, Park YI, Song IJ, Lee HJ, Cho HS, Jeon JH, Kim HS. Development of Systems for the Production of Plant-Derived Biopharmaceuticals. PLANTS 2019; 9:plants9010030. [PMID: 31878277 PMCID: PMC7020158 DOI: 10.3390/plants9010030] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/21/2022]
Abstract
Over the last several decades, plants have been developed as a platform for the production of useful recombinant proteins due to a number of advantages, including rapid production and scalability, the ability to produce unique glycoforms, and the intrinsic safety of food crops. The expression methods used to produce target proteins are divided into stable and transient systems depending on applications that use whole plants or minimally processed forms. In the early stages of research, stable expression systems were mostly used; however, in recent years, transient expression systems have been preferred. The production of the plant itself, which produces recombinant proteins, is currently divided into two major approaches, open-field cultivation and closed-indoor systems. The latter encompasses such regimes as greenhouses, vertical farming units, cell bioreactors, and hydroponic systems. Various aspects of each system will be discussed in this review, which focuses mainly on practical examples and commercially feasible approaches.
Collapse
Affiliation(s)
- Ki-Beom Moon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (K.-B.M.); (J.-S.P.); (H.-J.L.); (H.S.C.); (J.-H.J.)
- Department of Biological Sciences, Chungnam National University, 99 Deahank-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Ji-Sun Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (K.-B.M.); (J.-S.P.); (H.-J.L.); (H.S.C.); (J.-H.J.)
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University, 99 Deahank-ro, Yuseong-gu, Daejeon 34134, Korea
| | - In-Ja Song
- National Research Safety Headquarters, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Chungbuk-do 28116, Korea;
| | - Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (K.-B.M.); (J.-S.P.); (H.-J.L.); (H.S.C.); (J.-H.J.)
| | - Hye Sun Cho
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (K.-B.M.); (J.-S.P.); (H.-J.L.); (H.S.C.); (J.-H.J.)
| | - Jae-Heung Jeon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (K.-B.M.); (J.-S.P.); (H.-J.L.); (H.S.C.); (J.-H.J.)
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (K.-B.M.); (J.-S.P.); (H.-J.L.); (H.S.C.); (J.-H.J.)
- Correspondence: ; Tel.: +82-42-860-4493
| |
Collapse
|
10
|
Kozlov ON, Mitiouchkina TY, Tarasenko IV, Shaloiko LA, Firsov AP, Dolgov SV. Agrobacterium-Mediated Transformation of Lemna minor L. with Hirudin and β-Glucuronidase Genes. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819080076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Zhang N, Wright T, Wang X, Karki U, Savary BJ, Xu J. Engineering 'designer' glycomodules for boosting recombinant protein secretion in tobacco hairy root culture and studying hydroxyproline-O-glycosylation process in plants. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1130-1141. [PMID: 30467956 PMCID: PMC6523594 DOI: 10.1111/pbi.13043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 09/18/2018] [Accepted: 11/09/2018] [Indexed: 05/21/2023]
Abstract
The key technical bottleneck for exploiting plant hairy root cultures as a robust bioproduction platform for therapeutic proteins has been low protein productivity, particularly low secreted protein yields. To address this, we engineered novel hydroxyproline (Hyp)-O-glycosylated peptides (HypGPs) into tobacco hairy roots to boost the extracellular secretion of fused proteins and to elucidate Hyp-O-glycosylation process of plant cell wall Hyp-rich glycoproteins. HypGPs representing two major types of cell wall glycoproteins were examined: an extensin module consisting of 18 tandem repeats of 'Ser-Hyp-Hyp-Hyp-Hyp' motif or (SP4)18 and an arabinogalactan protein module consisting of 32 tandem repeats of 'Ser-Hyp' motif or (SP)32 . Each module was expressed in tobacco hairy roots as a fusion to the enhanced green fluorescence protein (EGFP). Hairy root cultures engineered with a HypGP module secreted up to 56-fold greater levels of EGFP, compared with an EGFP control lacking any HypGP module, supporting the function of HypGP modules as a molecular carrier in promoting efficient transport of fused proteins into the culture media. The engineered (SP4)18 and (SP)32 modules underwent Hyp-O-glycosylation with arabino-oligosaccharides and arabinogalactan polysaccharides, respectively, which were essential in facilitating secretion of the fused EGFP protein. Distinct non-Hyp-O-glycosylated (SP4)18 -EGFP and (SP)32 -EGFP intermediates were consistently accumulated within the root tissues, indicating a rate-limiting trafficking and/or glycosylation of the engineered HypGP modules. An updated model depicting the intracellular trafficking, Hyp-O-glycosylation and extracellular secretion of extensin-styled (SP4)18 module and AGP-styled (SP)32 module is proposed.
Collapse
Affiliation(s)
- Ningning Zhang
- Arkansas Biosciences InstituteArkansas State UniversityJonesboroARUSA
| | - Tristen Wright
- Arkansas Biosciences InstituteArkansas State UniversityJonesboroARUSA
| | - Xiaoting Wang
- Arkansas Biosciences InstituteArkansas State UniversityJonesboroARUSA
| | - Uddhab Karki
- Arkansas Biosciences InstituteArkansas State UniversityJonesboroARUSA
| | - Brett J. Savary
- Arkansas Biosciences InstituteArkansas State UniversityJonesboroARUSA
- College of Agriculture and TechnologyArkansas State UniversityJonesboroARUSA
| | - Jianfeng Xu
- Arkansas Biosciences InstituteArkansas State UniversityJonesboroARUSA
- College of Agriculture and TechnologyArkansas State UniversityJonesboroARUSA
| |
Collapse
|