1
|
Conway MJ, Haslitt DP, Swarts BM. Targeting Aedes aegypti Metabolism with Next-Generation Insecticides. Viruses 2023; 15:469. [PMID: 36851683 PMCID: PMC9964334 DOI: 10.3390/v15020469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Aedes aegypti is the primary vector of dengue virus (DENV), zika virus (ZIKV), and other emerging infectious diseases of concern. A key disease mitigation strategy is vector control, which relies heavily on the use of insecticides. The development of insecticide resistance poses a major threat to public health worldwide. Unfortunately, there is a limited number of chemical compounds available for vector control, and these chemicals can have off-target effects that harm invertebrate and vertebrate species. Fundamental basic science research is needed to identify novel molecular targets that can be exploited for vector control. Next-generation insecticides will have unique mechanisms of action that can be used in combination to limit selection of insecticide resistance. Further, molecular targets will be species-specific and limit off-target effects. Studies have shown that mosquitoes rely on key nutrients during multiple life cycle stages. Targeting metabolic pathways is a promising direction that can deprive mosquitoes of nutrition and interfere with development. Metabolic pathways are also important for the virus life cycle. Here, we review studies that reveal the importance of dietary and stored nutrients during mosquito development and infection and suggest strategies to identify next-generation insecticides with a focus on trehalase inhibitors.
Collapse
Affiliation(s)
- Michael J. Conway
- Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI 48859, USA
| | - Douglas P. Haslitt
- Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI 48859, USA
| | - Benjamin M. Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, USA
- Biochemistry, Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount Pleasant, MI 48859, USA
| |
Collapse
|
2
|
Muthuraj PG, Krishnamoorthy C, Anderson-Berry A, Hanson C, Natarajan SK. Novel Therapeutic Nutrients Molecules That Protect against Zika Virus Infection with a Special Note on Palmitoleate. Nutrients 2022; 15:124. [PMID: 36615782 PMCID: PMC9823984 DOI: 10.3390/nu15010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/11/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Zika virus (ZIKV) is a Flavivirus from the Flaviviridae family and a positive-sense single strand RNA virus. ZIKV infection can cause a mild infection to the mother but can be vertically transmitted to the developing fetus, causing congenital anomalies. The prevalence of ZIKV infections was relatively insignificant with sporadic outbreaks in the Asian and African continents until 2006. However, recent epidemic in the Caribbean showed significant increased incidence of Congenital Zika Syndrome. ZIKV infection results in placental pathology which plays a crucial role in disease transmission from mother to fetus. Currently, there is no Food and Drug Administration (FDA) approved vaccine or therapeutic drug against ZIKV. This review article summarizes the recent advances on ZIKV transmission and diagnosis and reviews nutraceuticals which can protect against the ZIKV infection. Further, we have reviewed recent advances related to the novel therapeutic nutrient molecules that have been shown to possess activity against Zika virus infected cells. We also review the mechanism of ZIKV-induced endoplasmic reticulum and apoptosis and the protective role of palmitoleate (nutrient molecule) against ZIKV-induced ER stress and apoptosis in the placental trophoblasts.
Collapse
Affiliation(s)
- Philma Glora Muthuraj
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Chandan Krishnamoorthy
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Ann Anderson-Berry
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Corrine Hanson
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Medical Nutrition Education, College of Allied Health Profession, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sathish Kumar Natarajan
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Medical Nutrition Education, College of Allied Health Profession, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
3
|
Vaughan JA, Newman RA, Turell MJ. Bird species define the relationship between West Nile viremia and infectiousness to Culex pipiens mosquitoes. PLoS Negl Trop Dis 2022; 16:e0010835. [PMID: 36201566 PMCID: PMC9578590 DOI: 10.1371/journal.pntd.0010835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/18/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022] Open
Abstract
The transmission cycle of West Nile virus (WNV) involves multiple species of birds. The relative importance of various bird species to the overall transmission is often inferred from the level and duration of viremia that they experience upon infection. Reports utilizing in vitro feeding techniques suggest that the source and condition of blood in which arboviruses are fed to mosquitoes can significantly alter the infectiousness of arbovirus to mosquitoes. We confirmed this using live hosts. A series of mosquito feedings with Culex pipiens was conducted on WNV-infected American robins and common grackles over a range of viremias. Mosquitoes were assayed individually by plaque assay for WNV at 3 to 7 days after feeding. At equivalent viremia, robins always infected more mosquitoes than did grackles. We conclude that the infectiousness of viremic birds cannot always be deduced from viremia alone. If information concerning the infectiousness of a particular bird species is important, such information is best acquired by feeding mosquitoes directly on experimentally infected individuals of that species.
Collapse
Affiliation(s)
- Jefferson A. Vaughan
- Department of Biology, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Robert A. Newman
- Department of Biology, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Michael J. Turell
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| |
Collapse
|
4
|
Evidence of Spreading Zika Virus Infection Caused by Males of Different Species. Viruses 2022; 14:v14092047. [PMID: 36146853 PMCID: PMC9506123 DOI: 10.3390/v14092047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Zika virus (ZIKV) is a positive-sense single-stranded RNA flavivirus and is mainly transmitted by Aedes mosquitoes. This arbovirus has had a significant impact on health in recent years by causing malformations, such as microcephaly in babies and Guillain–Barré syndrome in adults. Some evidence indicates that ZIKV can be sexually transmitted and may persist in the male reproductive tract for an extended period in humans. Knockout and vasectomized mice have been used as models to reveal ZIKV infection in the male reproductive tract as a virus source. ZIKV presence in male and female mosquito reproductive tracts and eggs point to venereal and vertical/transovarian transmission, again demonstrating that the reproductive tract can be involved in the spread of ZIKV. Moreover, eggs protected by eggshells have the potential to be a ZIKV reservoir. Given the +-lack of vaccines and therapies for Zika fever and the underestimated prevalence rate, an understanding of ZIKV infection and its spread from the reproductive tract, which is protected from the immune system and potentially active for virus transmission, is imperative. We must also develop cheaper, more efficient techniques for virological surveillance inside vectors and humans, control vectors with ecofriendly insecticides, and promote condom use to avoid ZIKV contamination during sexual intercourse, as recommended by the World Health Organization.
Collapse
|
5
|
Winkler ES, Shrihari S, Hykes BL, Handley SA, Andhey PS, Huang YJS, Swain A, Droit L, Chebrolu KK, Mack M, Vanlandingham DL, Thackray LB, Cella M, Colonna M, Artyomov MN, Stappenbeck TS, Diamond MS. The Intestinal Microbiome Restricts Alphavirus Infection and Dissemination through a Bile Acid-Type I IFN Signaling Axis. Cell 2020; 182:901-918.e18. [PMID: 32668198 PMCID: PMC7483520 DOI: 10.1016/j.cell.2020.06.029] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/09/2020] [Accepted: 06/17/2020] [Indexed: 12/31/2022]
Abstract
Chikungunya virus (CHIKV), an emerging alphavirus, has infected millions of people. However, the factors modulating disease outcome remain poorly understood. Here, we show in germ-free mice or in oral antibiotic-treated conventionally housed mice with depleted intestinal microbiomes that greater CHIKV infection and spread occurs within 1 day of virus inoculation. Alteration of the microbiome alters TLR7-MyD88 signaling in plasmacytoid dendritic cells (pDCs) and blunts systemic production of type I interferon (IFN). Consequently, circulating monocytes express fewer IFN-stimulated genes and become permissive for CHIKV infection. Reconstitution with a single bacterial species, Clostridium scindens, or its derived metabolite, the secondary bile acid deoxycholic acid, can restore pDC- and MyD88-dependent type I IFN responses to restrict systemic CHIKV infection and transmission back to vector mosquitoes. Thus, symbiotic intestinal bacteria modulate antiviral immunity and levels of circulating alphaviruses within hours of infection through a bile acid-pDC-IFN signaling axis, which affects viremia, dissemination, and potentially transmission.
Collapse
Affiliation(s)
- Emma S Winkler
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Swathi Shrihari
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Barry L Hykes
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Scott A Handley
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Prabhakar S Andhey
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yan-Jang S Huang
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Biosecurity Research Institute, Kansas State University, Manhattan, KS 66506, USA
| | - Amanda Swain
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lindsay Droit
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kranthi K Chebrolu
- Proteomics and Mass Spectrometry Facility, Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Matthias Mack
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Dana L Vanlandingham
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Biosecurity Research Institute, Kansas State University, Manhattan, KS 66506, USA
| | - Larissa B Thackray
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thaddeus S Stappenbeck
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
6
|
Huang YJS, Vanlandingham DL, Bilyeu AN, Sharp HM, Hettenbach SM, Higgs S. SARS-CoV-2 failure to infect or replicate in mosquitoes: an extreme challenge. Sci Rep 2020; 10:11915. [PMID: 32681089 PMCID: PMC7368071 DOI: 10.1038/s41598-020-68882-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/29/2020] [Indexed: 01/16/2023] Open
Abstract
This research addresses public speculation that SARS-CoV-2 might be transmitted by mosquitoes. The World Health Organization has stated “To date there has been no information nor evidence to suggest that the new coronavirus could be transmitted by mosquitoes”. Here we provide the first experimental data to investigate the capacity of SARS-CoV-2 to infect and be transmitted by mosquitoes. Three widely distributed species of mosquito; Aedes aegypti, Ae. albopictus and Culex quinquefasciatus, representing the two most significant genera of arbovirus vectors that infect people, were tested. We demonstrate that even under extreme conditions, SARS-CoV-2 virus is unable to replicate in these mosquitoes and therefore cannot be transmitted to people even in the unlikely event that a mosquito fed upon a viremic host.
Collapse
Affiliation(s)
- Yan-Jang S Huang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA.,Biosecurity Research Institute, Kansas State University, Manhattan, KS, 66506, USA
| | - Dana L Vanlandingham
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA.,Biosecurity Research Institute, Kansas State University, Manhattan, KS, 66506, USA
| | - Ashley N Bilyeu
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA.,Biosecurity Research Institute, Kansas State University, Manhattan, KS, 66506, USA
| | - Haelea M Sharp
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA.,Biosecurity Research Institute, Kansas State University, Manhattan, KS, 66506, USA
| | - Susan M Hettenbach
- Biosecurity Research Institute, Kansas State University, Manhattan, KS, 66506, USA
| | - Stephen Higgs
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA. .,Biosecurity Research Institute, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
7
|
Jones R, Kulkarni MA, Davidson TMV, RADAM-LAC Research Team, Talbot B. Arbovirus vectors of epidemiological concern in the Americas: A scoping review of entomological studies on Zika, dengue and chikungunya virus vectors. PLoS One 2020; 15:e0220753. [PMID: 32027652 PMCID: PMC7004335 DOI: 10.1371/journal.pone.0220753] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/02/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Three arthropod-borne viruses (arboviruses) causing human disease have been the focus of a large number of studies in the Americas since 2013 due to their global spread and epidemiological impacts: Zika, dengue, and chikungunya viruses. A large proportion of infections by these viruses are asymptomatic. However, all three viruses are associated with moderate to severe health consequences in a small proportion of cases. Two mosquito species, Aedes aegypti and Aedes albopictus, are among the world's most prominent arboviral vectors, and are known vectors for all three viruses in the Americas. OBJECTIVES This review summarizes the state of the entomological literature surrounding the mosquito vectors of Zika, dengue and chikungunya viruses and factors affecting virus transmission. The rationale of the review was to identify and characterize entomological studies that have been conducted in the Americas since the introduction of chikungunya virus in 2013, encompassing a period of arbovirus co-circulation, and guide future research based on identified knowledge gaps. METHODS The preliminary search for this review was conducted on PubMed (National Library of Health, Bethesda, MD, United States). The search included the terms 'zika' OR 'dengue' OR 'chikungunya' AND 'vector' OR 'Aedes aegypti' OR 'Aedes albopictus'. The search was conducted on March 1st of 2018, and included all studies since January 1st of 2013. RESULTS A total of 96 studies were included in the scoping review after initial screening and subsequent exclusion of out-of-scope studies, secondary data publications, and studies unavailable in English language. KEY FINDINGS We observed a steady increase in number of publications, from 2013 to 2018, with half of all studies published from January 2017 to March 2018. Interestingly, information on Zika virus vector species composition was abundant, but sparse on Zika virus transmission dynamics. Few studies examined natural infection rates of Zika virus, vertical transmission, or co-infection with other viruses. This is in contrast to the wealth of research available on natural infection and co-infection for dengue and chikungunya viruses, although vertical transmission research was sparse for all three viruses.
Collapse
Affiliation(s)
- Reilly Jones
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Manisha A. Kulkarni
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | | | - RADAM-LAC Research Team
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Center for Investigation in Tropical Microbiology and Parasitology, Universidad de los Andes, Bogota, Colombia
- Department of Mathematics and Statistics, York University, Toronto, ON, Canada
- Group for Investigation in Applied Genetics (GIGA), IBS, UNaM-CONICET, Posadas, Argentina
- School of Medicine, Universidad Laica Elroy Alfaro de Manabí, Manta, Ecuador
- Center for Investigation of Arthropod Vectors, Instituto Nacional de Investigación en Salud Pública, Quito, Ecuador
| | - Benoit Talbot
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
8
|
Bottino-Rojas V, Pereira LOR, Silva G, Talyuli OAC, Dunkov BC, Oliveira PL, Paiva-Silva GO. Non-canonical transcriptional regulation of heme oxygenase in Aedes aegypti. Sci Rep 2019; 9:13726. [PMID: 31551499 PMCID: PMC6760526 DOI: 10.1038/s41598-019-49396-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/22/2019] [Indexed: 12/19/2022] Open
Abstract
Heme oxygenase (HO) is a ubiquitous enzyme responsible for heme breakdown, which yields carbon monoxide (CO), biliverdin (BV) and ferrous ion. Here we show that the Aedes aegypti heme oxygenase gene (AeHO - AAEL008136) is expressed in different developmental stages and tissues. AeHO expression increases after a blood meal in the midgut, and its maximal transcription levels overlaps with the maximal rate of the further modified A. aegypti biglutaminyl-biliverdin (AeBV) pigment production. HO is a classical component of stress response in eukaryotic cells, being activated under oxidative stress or increased heme levels. Indeed, the final product of HO activity in the mosquito midgut, AeBV, exerts a protective antioxidant activity. AeHO, however, does not seem to be under a classical redox-sensitive transcriptional regulation, being unresponsive to heme itself, and even down regulated when insects face a pro-oxidant insult. In contrast, AeHO gene expression responds to nutrient sensing mechanisms, through the target of rapamycin (TOR) pathway. This unusual transcriptional control of AeHO, together with the antioxidant properties of AeBV, suggests that heme degradation by HO, in addition to its important role in protection of Aedes aegypti against heme exposure, also acts as a digestive feature, being an essential adaptation to blood feeding.
Collapse
Affiliation(s)
- Vanessa Bottino-Rojas
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Luiza O R Pereira
- Laboratório de Pesquisas em Leishmaniose, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-360, Brazil
| | - Gabriela Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Octavio A C Talyuli
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Boris C Dunkov
- Center for Insect Science, The University of Arizona, Tucson, AZ, 85721-0106, USA
| | - Pedro L Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Gabriela O Paiva-Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil.
| |
Collapse
|
9
|
Azar SR, Weaver SC. Vector Competence: What Has Zika Virus Taught Us? Viruses 2019; 11:E867. [PMID: 31533267 PMCID: PMC6784050 DOI: 10.3390/v11090867] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 11/16/2022] Open
Abstract
The unprecedented outbreak of Zika virus (ZIKV) infection in the Americas from 2015 to 2017 prompted the publication of a large body of vector competence data in a relatively short period of time. Although differences in vector competence as a result of disparities in mosquito populations and viral strains are to be expected, the limited competence of many populations of the urban mosquito vector, Aedes aegypti, from the Americas (when its susceptibility is viewed relative to other circulating/reemerging mosquito-borne viruses such as dengue (DENV), yellow fever (YFV), and chikungunya viruses (CHIKV)) has proven a paradox for the field. This has been further complicated by the lack of standardization in the methodologies utilized in laboratory vector competence experiments, precluding meta-analyses of this large data set. As the calls for the standardization of such studies continue to grow in number, it is critical to examine the elements of vector competence experimental design. Herein, we review the various techniques and considerations intrinsic to vector competence studies, with respect to contemporary findings for ZIKV, as well as historical findings for other arboviruses, and discuss potential avenues of standardization going forward.
Collapse
Affiliation(s)
- Sasha R Azar
- Department of Microbiology and Immunology, University of Texas Medical Branch, 300 University Blvd, Galveston, TX 77555, USA.
- Institute for Translational Sciences, University of Texas Medical Branch, 300 University Blvd, Galveston, TX 77555, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, 300 University Blvd, Galveston, TX 77555, USA.
| | - Scott C Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, 300 University Blvd, Galveston, TX 77555, USA.
- Institute for Translational Sciences, University of Texas Medical Branch, 300 University Blvd, Galveston, TX 77555, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, 300 University Blvd, Galveston, TX 77555, USA.
| |
Collapse
|
10
|
Gonzales KK, Rodriguez SD, Chung HN, Kowalski M, Vulcan J, Moore EL, Li Y, Willette SM, Kandel Y, Van Voorhies WA, Holguin FO, Hanley KA, Hansen IA. The Effect of SkitoSnack, an Artificial Blood Meal Replacement, on Aedes aegypti Life History Traits and Gut Microbiota. Sci Rep 2018; 8:11023. [PMID: 30038361 PMCID: PMC6056539 DOI: 10.1038/s41598-018-29415-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/09/2018] [Indexed: 12/14/2022] Open
Abstract
Public health research and vector control frequently require the rearing of large numbers of vector mosquitoes. All target vector mosquito species are anautogenous, meaning that females require vertebrate blood for egg production. Vertebrate blood, however, is costly, with a short shelf life. To overcome these constraints, we have developed SkitoSnack, an artificial blood meal replacement for the mosquito Aedes aegypti, the vector of dengue, Zika and chikungunya virus. SkitoSnack contains bovine serum albumin and hemoglobin as protein source as well as egg yolk and a bicarbonate buffer. SkitoSnack-raised females had comparable life history traits as blood-raised females. Mosquitoes reared from SkitoSnack-fed females had similar levels of infection and dissemination when orally challenged with dengue virus type 2 (DENV-2) and significantly lower infection with DENV-4. When SkitoSnack was used as a vehicle for DENV-2 delivery, blood-raised and SkitoSnack-raised females were equally susceptible. The midgut microbiota differed significantly between mosquitoes fed on SkitoSnack and mosquitoes fed on blood. By rearing 20 generations of Aedes exclusively on SkitoSnack, we have proven that this artificial diet can replace blood in mosquito mass rearing.
Collapse
Affiliation(s)
- Kristina K Gonzales
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Stacy D Rodriguez
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Hae-Na Chung
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Margaret Kowalski
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Julia Vulcan
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Emily L Moore
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Yiyi Li
- Department of Computer Science, New Mexico State University, Las Cruces, NM, USA
| | - Stephanie M Willette
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, USA
| | - Yashoda Kandel
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | | | - F Omar Holguin
- Molecular Biology Program, New Mexico State University, Las Cruces, NM, USA
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, USA
| | - Kathryn A Hanley
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
- Molecular Biology Program, New Mexico State University, Las Cruces, NM, USA
| | - Immo A Hansen
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA.
- Institute of Applied Biosciences, New Mexico State University, Las Cruces, NM, USA.
- Molecular Biology Program, New Mexico State University, Las Cruces, NM, USA.
| |
Collapse
|
11
|
Alfonso-Parra C, Avila FW. Molecular Responses to the Zika Virus in Mosquitoes. Pathogens 2018; 7:pathogens7020049. [PMID: 29751526 PMCID: PMC6027243 DOI: 10.3390/pathogens7020049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 04/23/2018] [Accepted: 04/28/2018] [Indexed: 12/17/2022] Open
Abstract
The Zika virus (ZIKV), originally discovered in 1947, did not become a major concern until the virus swept across the Pacific and into the Americas in the last decade, bringing with it news of neurological complications and birth defects in ZIKV affected areas. This prompted researchers to dissect the molecular interactions between ZIKV and the mosquito vector in an attempt to better understand not only the changes that occur upon infection, but to also identify molecules that may potentially enhance or suppress a mosquito’s ability to become infected and/or transmit the virus. Here, we review what is currently known regarding ZIKV-mosquito molecular interactions, focusing on ZIKV infection of Aedes aegypti and Aedes albopictus, the primary species implicated in transmitting ZIKV during the recent outbreaks.
Collapse
Affiliation(s)
- Catalina Alfonso-Parra
- Max Planck Tandem Group in Mosquito Reproductive Biology, University of Antioquia, Calle 67 #53-108, Medellín 050010, Colombia.
- Instituto Colombiano de Medicina Tropical, Carerra 43A # 52 sur-99, Sabaneta 055450, Colombia.
| | - Frank W Avila
- Max Planck Tandem Group in Mosquito Reproductive Biology, University of Antioquia, Calle 67 #53-108, Medellín 050010, Colombia.
| |
Collapse
|
12
|
Epelboin Y, Talaga S, Epelboin L, Dusfour I. Zika virus: An updated review of competent or naturally infected mosquitoes. PLoS Negl Trop Dis 2017; 11:e0005933. [PMID: 29145400 PMCID: PMC5690600 DOI: 10.1371/journal.pntd.0005933] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Zika virus (ZIKV) is an arthropod-borne virus (arbovirus) that recently caused outbreaks in the Americas. Over the past 60 years, this virus has been observed circulating among African, Asian, and Pacific Island populations, but little attention has been paid by the scientific community until the discovery that large-scale urban ZIKV outbreaks were associated with neurological complications such as microcephaly and several other neurological malformations in fetuses and newborns. This paper is a systematic review intended to list all mosquito species studied for ZIKV infection or for their vector competence. We discuss whether studies on ZIKV vectors have brought enough evidence to formally exclude other mosquitoes than Aedes species (and particularly Aedes aegypti) to be ZIKV vectors. From 1952 to August 15, 2017, ZIKV has been studied in 53 mosquito species, including 6 Anopheles, 26 Aedes, 11 Culex, 2 Lutzia, 3 Coquillettidia, 2 Mansonia, 2 Eretmapodites, and 1 Uranotaenia. Among those, ZIKV was isolated from 16 different Aedes species. The only species other than Aedes genus for which ZIKV was isolated were Anopheles coustani, Anopheles gambiae, Culex perfuscus, and Mansonia uniformis. Vector competence assays were performed on 22 different mosquito species, including 13 Aedes, 7 Culex, and 2 Anopheles species with, as a result, the discovery that A. aegypti and Aedes albopictus were competent for ZIKV, as well as some other Aedes species, and that there was a controversy surrounding Culex quinquefasciatus competence. Although Culex, Anopheles, and most of Aedes species were generally observed to be refractory to ZIKV infection, other potential vectors transmitting ZIKV should be explored.
Collapse
Affiliation(s)
- Yanouk Epelboin
- Vectopôle Amazonien Emile Abonnenc, Vector Control and Adaptation Unit, Institut Pasteur de la Guyane, Cayenne, French Guiana, France
- * E-mail:
| | - Stanislas Talaga
- Vectopôle Amazonien Emile Abonnenc, Vector Control and Adaptation Unit, Institut Pasteur de la Guyane, Cayenne, French Guiana, France
| | - Loïc Epelboin
- Infectious and Tropical Diseases Unit, Centre Hospitalier Andrée Rosemon, Cayenne, French Guiana, France
- Ecosystèmes amazoniens et pathologie tropicale (EPAT), EA 3593, Université de Guyane–Cayenne, French Guiana
| | - Isabelle Dusfour
- Vectopôle Amazonien Emile Abonnenc, Vector Control and Adaptation Unit, Institut Pasteur de la Guyane, Cayenne, French Guiana, France
| |
Collapse
|