1
|
Friero I, Martínez-Subirà M, Romero MP, Moralejo M. Improving functional and nutritional profiles of barley flours with diverse starch types through pearling. Food Chem 2024; 460:140611. [PMID: 39068808 DOI: 10.1016/j.foodchem.2024.140611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
A comparative analysis of chemical, functional, and digestive parameters was conducted on five new barley genotypes designed for food purposes, differing in starch type, β-glucans, and arabinoxylan content. Both whole and pearled grain flours were examined. Amylose exhibited positive correlations with least gelation capacity (r = 0.60), gelation temperature (r = 0.90), and resistant starch (r = 0.80). Waxy varieties showed greater water-holding capacity, viscosity, and rapid digestibility compared to normal and high-amylose varieties. Pearling (10%) decreased arabinoxylans by 48% and proteins by 7%, while increasing β-glucans by 8% and starch by 13%. Additionally, pearling improved viscosity and hydration parameters across varieties. This allowed normal and high-amylose genotypes to enhance their functional properties and nutritional value through increased β-glucan and resistant starch content. This exploration advances the understanding of barley's functional attributes for food industry and underscores the potential of pearling to augment consumer nutritional value and health-promoting properties.
Collapse
Affiliation(s)
- Iván Friero
- Universidad de Lleida - agrotecnio-cerca Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain.
| | - Mariona Martínez-Subirà
- Universidad de Lleida - agrotecnio-cerca Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain.
| | - María-Paz Romero
- Universidad de Lleida - agrotecnio-cerca Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain.
| | - Marian Moralejo
- Universidad de Lleida - agrotecnio-cerca Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain.
| |
Collapse
|
2
|
Zamorski R, Baba K, Noda T, Sawada R, Miyata K, Itoh T, Kaku H, Shibuya N. Variety-dependent accumulation of glucomannan in the starchy endosperm and aleurone cell walls of rice grains and its possible genetic basis. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:321-336. [PMID: 38434111 PMCID: PMC10905567 DOI: 10.5511/plantbiotechnology.23.0809a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/09/2023] [Indexed: 03/05/2024]
Abstract
Plant cell wall plays important roles in the regulation of plant growth/development and affects the quality of plant-derived food and industrial materials. On the other hand, genetic variability of cell wall structure within a plant species has not been well understood. Here we show that the endosperm cell walls, including both starchy endosperm and aleurone layer, of rice grains with various genetic backgrounds are clearly classified into two groups depending on the presence/absence of β-1,4-linked glucomannan. All-or-none distribution of the glucomannan accumulation among rice varieties is very different from the varietal differences of arabinoxylan content in wheat and barley, which showed continuous distributions. Immunoelectron microscopic observation suggested that the glucomannan was synthesized in the early stage of endosperm development, but the synthesis was down-regulated during the secondary thickening process associated with the differentiation of aleurone layer. Significant amount of glucomannan in the cell walls of the glucomannan-positive varieties, i.e., 10% or more of the starchy endosperm cell walls, and its close association with the cellulose microfibril suggested possible effects on the physicochemical/biochemical properties of these cell walls. Comparative genomic analysis indicated the presence of striking differences between OsCslA12 genes of glucomannan-positive and negative rice varieties, Kitaake and Nipponbare, which seems to explain the all-or-none glucomannan cell wall trait in the rice varieties. Identification of the gene responsible for the glucomannan accumulation could lead the way to clarify the effect of the accumulation of glucomannan on the agronomic traits of rice by using genetic approaches.
Collapse
Affiliation(s)
- Ryszard Zamorski
- National Institute of Agrobiological Resources, Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki 305-8634, Japan
- National Food Research Institute, Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki 305-8642, Japan
- Faculty of Agriculture and Biotechnology, University of Science and Technology, Bydgoszcz 85-796, Poland
| | - Kei’ichi Baba
- Wood Research Institute, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Takahiro Noda
- National Institute of Agrobiological Resources, Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki 305-8634, Japan
- Hokkaido Agricultural Research Center, NARO, Memuro, Hokkaido 082-0081, Japan
| | - Rimpei Sawada
- National Institute of Agrobiological Resources, Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki 305-8634, Japan
- Plant Biotechnology Laboratory, Life Science Institute, Mitsui Toatsu Chemicals Inc., Mobara, Chiba 297-0017, Japan
| | - Kana Miyata
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Takao Itoh
- Wood Research Institute, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hanae Kaku
- National Institute of Agrobiological Resources, Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki 305-8634, Japan
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Naoto Shibuya
- National Institute of Agrobiological Resources, Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki 305-8634, Japan
- National Food Research Institute, Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki 305-8642, Japan
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
3
|
Panahabadi R, Ahmadikhah A, Farrokhi N. Genetic dissection of monosaccharides contents in rice whole grain using genome-wide association study. THE PLANT GENOME 2023; 16:e20292. [PMID: 36691363 DOI: 10.1002/tpg2.20292] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
The simplest form of carbohydrates are monosaccharides which are the building blocks for the synthesis of polymers or complex carbohydrates. Monosaccharide contents of 197 rice accessions were quantified by HPAEC-PAD in rice (Oryza sativa L.) whole grain (RWG). A genome-wide association study (GWAS) was carried out using 33,812 single nucleotide polymorphisms (SNPs) to identify corresponding genomic regions influencing neutral monosaccharides contents. In total, 49 GWAS signals contained in 17 genomic regions (quantitative trait loci [QTLs]) on seven chromosomes of rice were determined to be associated with monosaccharides contents of whole grain. The QTLs were found for fucose (1), mannose (1), xylose (2), arabinose (2), galactose (4), and rhamnose (7) contents, all of which are novel. Based on co-location of annotated rice genes in the vicinity of GWAS signals, the constituents of the whole grain were associated with the following candidate genes: arabinose content with α-N-arabinofuranosidase, pectinesterase inhibitor, and glucosamine-fructose-6-phosphate aminotransferase 1; xylose content with ZOS1-10 (a C2H2 zinc finger transcription factor [TF]); mannose content with aldose 1-epimerase-like protein and a MYB family TF; galactose content with a GT8 family member (galacturonosyltransferase-like 3), a GRAS family TF, and a GH16 family member (xyloglucan endotransglucosylase/hydrolase xyloglucan 23); fucose content with gibberellin 20 oxidase and a lysine-rich arabinogalactan protein 19, and finally rhamnose content with myo-inositol-1-phosphate synthase, UDP-arabinopyranose mutase, and COBRA-like protein precursor. The results of this study should improve our understanding of the genetic basis of the factors that might be involved in the biosynthesis, regulation, and turnover of monosaccharides in RWG, aiming to enhance the nutritional value of rice grain and impact the related industries.
Collapse
Affiliation(s)
- Rahele Panahabadi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti Univ., Tehran, Iran
| | | | - Naser Farrokhi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti Univ., Tehran, Iran
| |
Collapse
|
4
|
Kaur G, Toora PK, Tuan PA, McCartney CA, Izydorczyk MS, Badea A, Ayele BT. Genome-wide association and targeted transcriptomic analyses reveal loci and candidate genes regulating preharvest sprouting in barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:202. [PMID: 37642745 DOI: 10.1007/s00122-023-04449-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
KEY MESSAGE Genome-wide association study of diverse barley genotypes identified loci, single nucleotide polymorphisms and candidate genes that control seed dormancy and therefore enhance resistance to preharvest sprouting. Preharvest sprouting (PHS) causes significant yield and quality loss in barley and it is strongly associated with the level of seed dormancy. This study performed genome-wide association study using a collection of 255 diverse barley genotypes grown over four environments to identify loci controlling dormancy/PHS. Our phenotypic analysis revealed substantial variation in germination index/dormancy levels among the barley genotypes. Marker-trait association and linkage disequilibrium (LD) decay analyses identified 16 single nucleotide polymorphisms (SNPs) and two QTLs associated with dormancy/PHS, respectively, on chromosome 3H and 5H explaining 6.9% to 11.1% of the phenotypic variation. QTL.5H consist of 14 SNPs of which 12 SNPs satisfy the FDR threshold of α = 0.05, and it may represent the SD2 locus. The QTL on 3H consists of one SNP that doesn't satisfy FDR (α = 0.05). Genes harbouring the significant SNPs were analyzed for their expression pattern in the seeds of selected dormant and non-dormant genotypes. Of these genes, HvRCD1, HvPSRP1 and HvF3H exhibited differential expression between the dormant and non-dormant seed samples, suggesting their role in controlling seed dormancy/PHS. Three SNPs located within the differentially expressed genes residing in QTL.5H explained considerable phenotypic variation (≥ 8.6%), suggesting their importance in regulating PHS resistance. Analysis of the SNP marker data in QTL.5H identified a haplotype for PHS resistance. Overall, the study identified loci, SNPs and candidate genes that control dormancy and therefore play important roles in enhancing PHS resistance in barley through marker-assisted breeding.
Collapse
Affiliation(s)
- Gurkamal Kaur
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB, R3T 2N2, Canada
| | - Parneet K Toora
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB, R3T 2N2, Canada
| | - Pham Anh Tuan
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB, R3T 2N2, Canada
| | - Curt A McCartney
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB, R3T 2N2, Canada
| | - Marta S Izydorczyk
- Grain Research Laboratory, Canadian Grain Commission, Winnipeg, MB, R3C 3G8, Canada
| | - Ana Badea
- Brandon Research and Development Center, Agriculture and Agri-Food Canada, Brandon, MB, R7A 5Y3, Canada
| | - Belay T Ayele
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
5
|
Houston K, Learmonth A, Hassan AS, Lahnstein J, Looseley M, Little A, Waugh R, Burton RA, Halpin C. Natural variation in HvAT10 underlies grain cell wall-esterified phenolic acid content in cultivated barley. FRONTIERS IN PLANT SCIENCE 2023; 14:1095862. [PMID: 37235033 PMCID: PMC10206312 DOI: 10.3389/fpls.2023.1095862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/06/2023] [Indexed: 05/28/2023]
Abstract
The phenolic acids, ferulic acid and p-coumaric acid, are components of plant cell walls in grasses, including many of our major food crops. They have important health-promoting properties in grain, and influence the digestibility of biomass for industrial processing and livestock feed. Both phenolic acids are assumed to be critical to cell wall integrity and ferulic acid, at least, is important for cross-linking cell wall components, but the role of p-coumaric acid is unclear. Here we identify alleles of a BAHD p-coumaroyl arabinoxylan transferase, HvAT10, as responsible for the natural variation in cell wall-esterified phenolic acids in whole grain within a cultivated two-row spring barley panel. We show that HvAT10 is rendered non-functional by a premature stop codon mutation in half of the genotypes in our mapping panel. This results in a dramatic reduction in grain cell wall-esterifed p-coumaric acid, a moderate rise in ferulic acid, and a clear increase in the ferulic acid to p-coumaric acid ratio. The mutation is virtually absent in wild and landrace germplasm suggesting an important function for grain arabinoxylan p-coumaroylation pre-domestication that is dispensable in modern agriculture. Intriguingly, we detected detrimental impacts of the mutated locus on grain quality traits where it was associated with smaller grain and poorer malting properties. HvAT10 could be a focus for improving grain quality for malting or phenolic acid content in wholegrain foods.
Collapse
Affiliation(s)
- Kelly Houston
- Cell and Molecular Sciences, The James Hutton Institute, Scotland, United Kingdom
| | - Amy Learmonth
- Division of Plant Sciences, School of Life Sciences, University of Dundee at The James Hutton Institute, Scotland, United Kingdom
| | - Ali Saleh Hassan
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Jelle Lahnstein
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Mark Looseley
- Cell and Molecular Sciences, The James Hutton Institute, Scotland, United Kingdom
| | - Alan Little
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Robbie Waugh
- Cell and Molecular Sciences, The James Hutton Institute, Scotland, United Kingdom
- Division of Plant Sciences, School of Life Sciences, University of Dundee at The James Hutton Institute, Scotland, United Kingdom
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Rachel A. Burton
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Claire Halpin
- Division of Plant Sciences, School of Life Sciences, University of Dundee at The James Hutton Institute, Scotland, United Kingdom
| |
Collapse
|
6
|
Wood HAC, Ehrlich K, Yerolatsitis S, Kufcsák A, Quinn TM, Fernandes S, Norberg D, Jenkins NC, Young V, Young I, Hamilton K, Seth S, Akram A, Thomson RR, Finlayson K, Dhaliwal K, Stone JM. Tri-mode optical biopsy probe with fluorescence endomicroscopy, Raman spectroscopy, and time-resolved fluorescence spectroscopy. JOURNAL OF BIOPHOTONICS 2023; 16:e202200141. [PMID: 36062395 DOI: 10.1002/jbio.202200141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/30/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
We present an endoscopic probe that combines three distinct optical fibre technologies including: A high-resolution imaging fibre for optical endomicroscopy, a multimode fibre for time-resolved fluorescence spectroscopy, and a hollow-core fibre with multimode signal collection cores for Raman spectroscopy. The three fibers are all enclosed within a 1.2 mm diameter clinical grade catheter with a 1.4 mm end cap. To demonstrate the probe's flexibility we provide data acquired with it in loops of radii down to 2 cm. We then use the probe in an anatomically accurate model of adult human airways, showing that it can be navigated to any part of the distal lung using a commercial bronchoscope. Finally, we present data acquired from fresh ex vivo human lung tissue. Our experiments show that this minimally invasive probe can deliver real-time optical biopsies from within the distal lung - simultaneously acquiring co-located high-resolution endomicroscopy and biochemical spectra.
Collapse
Affiliation(s)
- Harry Alexander Charles Wood
- Centre for Photonics and Photonic Materials, University of Bath, Bath, UK
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Katjana Ehrlich
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Scottish Universities Physics Alliance (SUPA), Institute of Photonics and Quantum Science, Heriot-Watt University, Edinburgh, UK
| | - Stephanos Yerolatsitis
- Centre for Photonics and Photonic Materials, University of Bath, Bath, UK
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
- The College of Optics and Photonics (CREOL), University of Central Florida, Orlando, Florida, USA
| | - András Kufcsák
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Tom Michael Quinn
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Susan Fernandes
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Dominic Norberg
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Nia Caitlin Jenkins
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Vikki Young
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Irene Young
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Katie Hamilton
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Sohan Seth
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Ahsan Akram
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Robert Rodrick Thomson
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Scottish Universities Physics Alliance (SUPA), Institute of Photonics and Quantum Science, Heriot-Watt University, Edinburgh, UK
| | - Keith Finlayson
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Kevin Dhaliwal
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - James Morgan Stone
- Centre for Photonics and Photonic Materials, University of Bath, Bath, UK
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
7
|
Lee MH, Park J, Kim KH, Kim KM, Kang CS, Lee GE, Choi JY, Shon J, Ko JM, Choi C. Genome-Wide Association Study of Arabinoxylan Content from a 562 Hexaploid Wheat Collection. PLANTS (BASEL, SWITZERLAND) 2023; 12:184. [PMID: 36616313 PMCID: PMC9823421 DOI: 10.3390/plants12010184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
The selection of wheat varieties with high arabinoxylan (AX) levels could effectively improve the daily consumption of dietary fiber. However, studies on the selection of markers for AX levels are scarce. This study analyzed AX levels in 562 wheat genotypes collected from 46 countries using a GWAS with the BLINK model in the GAPIT3. Wheat genotypes were classified into eight subpopulations that exhibited high genetic differentiation based on 31,926 SNP loci. Eight candidate genes were identified, among which those encoding F-box domain-containing proteins, disease resistance protein RPM1, and bZIP transcription factor 29 highly correlated with AX levels. The AX level was higher in the adenine allele than in the guanine alleles of these genes in the wheat collection. In addition, the AX level was approximately 10% higher in 3 adenine combinations than 2 guanine, 1 adenine, and 3 guanine combinations in genotypes of three genes (F-box domain-containing proteins, RPM1, and bZIP transcription factor 29). The adenine allele, present in 97.46% of AX-95086356 SNP, exhibited a high correlation with AX levels following classification by country. Notably, the East Asian wheat genotypes contain high adenine alleles in three genes. These results highlight the potential of these three SNPs to serve as selectable markers for high AX content.
Collapse
|
8
|
Mio K, Ogawa R, Tadenuma N, Aoe S. Arabinoxylan as well as β-glucan in barley promotes GLP-1 secretion by increasing short-chain fatty acids production. Biochem Biophys Rep 2022; 32:101343. [PMID: 36123993 PMCID: PMC9482107 DOI: 10.1016/j.bbrep.2022.101343] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/16/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Barley is rich in soluble dietary fiber including β-glucan and arabinoxylan. Barley β-glucan is fermented by gut bacteria and, thereby contributes to an effect on intestinal bacterial composition and short-chain fatty acids (SCFAs). It also increases GLP-1 secretion via SCFAs receptor. However, few studies have focused on barley arabinoxylan. Therefore, we have investigated the effects of arabinoxylan from barley on intestinal fermentability and GLP-1 secretion. C57BL/6J mice were fed a high-fat diet containing arabinoxylan-dominant barley flour without β-glucan (bgl) and high β-glucan-containing barley flour (BF) for 12 weeks. We conducted oral glucose tolerance test (OGTT) to measure insulin and GLP-1 concentrations. The concentration of SCFAs in the cecum contents was also determined. Furthermore, we measured mRNA expression assay GLP-1 secretion using real-time PCR. The OGTT result showed that GLP-1 concentrations at 60 min were increased in mice fed bgl and BF. Acetic acid and total SCFAs concentrations in the cecum contents were increased in both the barley groups, and butyric acid was increased in the bgl group. Furthermore, the bgl and BF groups had increased Gpr43, a receptor for SCFAs, and NeuroD which is involved in L cell differentiation. These results show arabinoxylan as well as β-glucan is involved in the SCFAs-mediated increase in GLP-1 secretion upon barley consumption.
Collapse
|
9
|
Chen Y, Schreiber M, Bayer MM, Dawson IK, Hedley PE, Lei L, Akhunova A, Liu C, Smith KP, Fay JC, Muehlbauer GJ, Steffenson BJ, Morrell PL, Waugh R, Russell JR. The evolutionary patterns of barley pericentromeric chromosome regions, as shaped by linkage disequilibrium and domestication. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1580-1594. [PMID: 35834607 PMCID: PMC9546296 DOI: 10.1111/tpj.15908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/30/2022] [Accepted: 07/13/2022] [Indexed: 05/17/2023]
Abstract
The distribution of recombination events along large cereal chromosomes is uneven and is generally restricted to gene-rich telomeric ends. To understand how the lack of recombination affects diversity in the large pericentromeric regions, we analysed deep exome capture data from a final panel of 815 Hordeum vulgare (barley) cultivars, landraces and wild barleys, sampled from across their eco-geographical ranges. We defined and compared variant data across the pericentromeric and non-pericentromeric regions, observing a clear partitioning of diversity both within and between chromosomes and germplasm groups. Dramatically reduced diversity was found in the pericentromeres of both cultivars and landraces when compared with wild barley. We observed a mixture of completely and partially differentiated single-nucleotide polymorphisms (SNPs) between domesticated and wild gene pools, suggesting that domesticated gene pools were derived from multiple wild ancestors. Patterns of genome-wide linkage disequilibrium, haplotype block size and number, and variant frequency within blocks showed clear contrasts among individual chromosomes and between cultivars and wild barleys. Although most cultivar chromosomes shared a single major pericentromeric haplotype, chromosome 7H clearly differentiated the two-row and six-row types associated with different geographical origins. Within the pericentromeric regions we identified 22 387 non-synonymous SNPs, 92 of which were fixed for alternative alleles in cultivar versus wild accessions. Surprisingly, only 29 SNPs found exclusively in the cultivars were predicted to be 'highly deleterious'. Overall, our data reveal an unconventional pericentromeric genetic landscape among distinct barley gene pools, with different evolutionary processes driving domestication and diversification.
Collapse
Affiliation(s)
- Yun‐Yu Chen
- The James Hutton Institute, InvergowrieDundeeDD2 5DAUK
- Fios GenomicsBioQuarter, 13 Little France RdEdinburghEH16 4UXUK
| | - Miriam Schreiber
- The James Hutton Institute, InvergowrieDundeeDD2 5DAUK
- Division of Plant Sciences, School of Life SciencesUniversity of DundeeDow StreetDundeeDD1 5EHUK
| | | | - Ian K. Dawson
- The James Hutton Institute, InvergowrieDundeeDD2 5DAUK
- Scotland's Rural College, Kings BuildingsWest Mains RdEdinburghEH9 3JGUK
| | | | - Li Lei
- Department of Agronomy & Plant GeneticsUniversity of Minnesota411 Borlaug Hall, 1991 Buford CircleSt PaulMN55108USA
| | - Alina Akhunova
- Department of Agronomy & Plant GeneticsUniversity of Minnesota411 Borlaug Hall, 1991 Buford CircleSt PaulMN55108USA
- Department of Plant PathologyKansas State UniversityThrockmorton HallManhattanKS66506USA
| | - Chaochih Liu
- Department of Agronomy & Plant GeneticsUniversity of Minnesota411 Borlaug Hall, 1991 Buford CircleSt PaulMN55108USA
| | - Kevin P. Smith
- Department of Agronomy & Plant GeneticsUniversity of Minnesota411 Borlaug Hall, 1991 Buford CircleSt PaulMN55108USA
| | - Justin C. Fay
- Department of BiologyUniversity of Rochester319 HutchisonRochesterNY14627USA
| | - Gary J. Muehlbauer
- Department of Agronomy & Plant GeneticsUniversity of Minnesota411 Borlaug Hall, 1991 Buford CircleSt PaulMN55108USA
| | - Brian J. Steffenson
- Department of Plant PathologyUniversity of Minnesota495 Borlaug Hall, 1991 Buford CircleSt PaulMN55108USA
| | - Peter L. Morrell
- Department of Agronomy & Plant GeneticsUniversity of Minnesota411 Borlaug Hall, 1991 Buford CircleSt PaulMN55108USA
| | - Robbie Waugh
- The James Hutton Institute, InvergowrieDundeeDD2 5DAUK
- Division of Plant Sciences, School of Life SciencesUniversity of DundeeDow StreetDundeeDD1 5EHUK
| | | |
Collapse
|
10
|
Barsby JP, Cowley JM, Leemaqz SY, Grieger JA, McKeating DR, Perkins AV, Bastian SEP, Burton RA, Bianco-Miotto T. Nutritional properties of selected superfood extracts and their potential health benefits. PeerJ 2021; 9:e12525. [PMID: 34900436 PMCID: PMC8628624 DOI: 10.7717/peerj.12525] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/29/2021] [Indexed: 11/20/2022] Open
Abstract
Background The term 'superfoods' is used to market foods considered to have significant health benefits. 'Superfoods' are claimed to prevent diseases as well as improving overall health, though the lack of explicit criteria means that any food can be labelled 'super' without support from scientific research. Typically, these 'superfoods' are rich in a particular nutrient for example antioxidants or omega-3 fatty acids. The objective of this study was to investigate the nutritional properties of a selection of superfood seeds: flax, chia, hulled sunflower and two types of processed hemp seeds and determine whether they may have potential health benefits. Methods We developed a simple aqueous extraction method for ground seeds and analysed their composition by mineral, protein and monosaccharide analyses. Cell viability assays were performed on Caco-2 and IEC-6 intestinal epithelial cells using increasing doses of the prepared extracts. Results Increased cell viability was observed in both cell lines with increasing concentrations of the flax seed, chia seed or hulled sunflower extracts (P < 0.05). Compositional analyses revealed the presence of polysaccharides, proteins and essential minerals in the aqueous extracts and in vitro assays showed sunflower had the highest antioxidant activity. However, differences in extract composition and antioxidant properties could not be directly related to the observed increase in cell viability suggesting that other components in the extracts may be responsible. Future studies will further characterize these extracts and investigate whether they are beneficial for gastrointestinal health.
Collapse
Affiliation(s)
- Jacqueline P Barsby
- Waite Research Institute and School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - James M Cowley
- Waite Research Institute and School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia
| | - Shalem Y Leemaqz
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia.,College of Medicine and Public Health, Flinders University of South Australia, Bedford Park, SA, Australia
| | - Jessica A Grieger
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Daniel R McKeating
- School of Medical Science, Griffith University, Southport, QLD, Australia
| | - Anthony V Perkins
- School of Medical Science, Griffith University, Southport, QLD, Australia
| | - Susan E P Bastian
- Waite Research Institute and School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia
| | - Rachel A Burton
- Waite Research Institute and School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia
| | - Tina Bianco-Miotto
- Waite Research Institute and School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
11
|
Siekmann D, Jansen G, Zaar A, Kilian A, Fromme FJ, Hackauf B. A Genome-Wide Association Study Pinpoints Quantitative Trait Genes for Plant Height, Heading Date, Grain Quality, and Yield in Rye ( Secale cereale L.). FRONTIERS IN PLANT SCIENCE 2021; 12:718081. [PMID: 34777409 PMCID: PMC8586073 DOI: 10.3389/fpls.2021.718081] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/22/2021] [Indexed: 06/03/2023]
Abstract
Rye is the only cross-pollinating Triticeae crop species. Knowledge of rye genes controlling complex-inherited traits is scarce, which, currently, largely disables the genomics assisted introgression of untapped genetic variation from self-incompatible germplasm collections in elite inbred lines for hybrid breeding. We report on the first genome-wide association study (GWAS) in rye based on the phenotypic evaluation of 526 experimental hybrids for plant height, heading date, grain quality, and yield in 2 years and up to 19 environments. We established a cross-validated NIRS calibration model as a fast, effective, and robust analytical method to determine grain quality parameters. We observed phenotypic plasticity in plant height and tiller number as a resource use strategy of rye under drought and identified increased grain arabinoxylan content as a striking phenotype in osmotically stressed rye. We used DArTseq™ as a genotyping-by-sequencing technology to reduce the complexity of the rye genome. We established a novel high-density genetic linkage map that describes the position of almost 19k markers and that allowed us to estimate a low genome-wide LD based on the assessed genetic diversity in elite germplasm. We analyzed the relationship between plant height, heading date, agronomic, as well as grain quality traits, and genotype based on 20k novel single-nucleotide polymorphism markers. In addition, we integrated the DArTseq™ markers in the recently established 'Lo7' reference genome assembly. We identified cross-validated SNPs in 'Lo7' protein-coding genes associated with all traits studied. These include associations of the WUSCHEL-related homeobox transcription factor DWT1 and grain yield, the DELLA protein gene SLR1 and heading date, the Ethylene overproducer 1-like protein gene ETOL1 and thousand-grain weight, protein and starch content, as well as the Lectin receptor kinase SIT2 and plant height. A Leucine-rich repeat receptor protein kinase and a Xyloglucan alpha-1,6-xylosyltransferase count among the cross-validated genes associated with water-extractable arabinoxylan content. This study demonstrates the power of GWAS, hybrid breeding, and the reference genome sequence in rye genetics research to dissect and identify the function of genes shaping genetic diversity in agronomic and grain quality traits of rye. The described links between genetic causes and phenotypic variation will accelerate genomics-enabled rye improvement.
Collapse
Affiliation(s)
- Dörthe Siekmann
- Julius Kühn Institute, Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Agricultural Crops, Sanitz, Germany
- HYBRO Saatzucht GmbH & Co. KG, Schenkenberg, Germany
| | - Gisela Jansen
- Julius Kühn Institute, Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Sanitz, Germany
| | - Anne Zaar
- Julius Kühn Institute, Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Sanitz, Germany
| | | | | | - Bernd Hackauf
- Julius Kühn Institute, Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Agricultural Crops, Sanitz, Germany
| |
Collapse
|
12
|
Bioactive Compounds and Antioxidant Capacity in Pearling Fractions of Hulled, Partially Hull-Less and Hull-Less Food Barley Genotypes. Foods 2021; 10:foods10030565. [PMID: 33803221 PMCID: PMC8001832 DOI: 10.3390/foods10030565] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 01/19/2023] Open
Abstract
Three food barley genotypes differing in the presence or absence of husks were sequentially pearled and their fractions analyzed for ash, proteins, bioactive compounds and antioxidant capacity in order to identify potential functional food ingredients. Husks were high in ash, arabinoxylans, procyanidin B3, prodelphinidin B4 and p-coumaric, ferulic and diferulic bound acids, resulting in a high antioxidant capacity. The outermost layers provided a similar content of those bioactive compounds and antioxidant capacity that were high in husks, and also an elevated content of tocols, representing the most valuable source of bioactive compounds. Intermediate layers provided high protein content, β-glucans, tocopherols and such phenolic compounds as catechins and bound hydroxybenzoic acid. The endosperm had very high β-glucan content and relative high levels of catechins and hydroxybenzoic acid. Based on the spatial distribution of the bioactive compounds, the outermost 30% pearling fractions seem the best option to exploit the antioxidant capacity of barley to the full, whereas pearled grains supply β-glucans enriched flours. Current regulations require elimination of inedible husks from human foods. However, due to their high content in bioactive compounds and antioxidant capacity, they should be considered as a valuable material, at least for animal feeds.
Collapse
|
13
|
Agyekum A, Beaulieu A, Pieper R, Van Kessel A. Fermentation of barley and wheat with lactic acid bacteria and exogenous enzyme on nutrient composition, microbial count, and fermentative characteristics. CANADIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1139/cjas-2019-0183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Characteristics of wheat and barley inoculated with a homo-fermentative (HO) or hetero-fermentative (HE) lactic acid bacteria (LAB) were investigated in separate 97 d studies conducted using a 3 × 2 factorial arrangement comparing inoculants (no inoculant, HO or HE) and multi-enzyme (no or yes) addition. The pH declined (P < 0.05) to below 4.5 by day 6, coinciding with peaks in lactobacilli and yeast counts. A more rapid decline (P < 0.05) in pH and lactobacilli count but higher (P < 0.05) yeast count was observed with HO relative to HE. Enzyme addition reduced pH in inoculated grains only, particularly with HE (inoculant × enzyme effect; P < 0.05). Higher dry matter losses (P < 0.05) were observed with HE, most apparent in barley. Lactate was generally highest in HO and was increased by enzyme addition. Acetate was higher (P < 0.05) in HE. Ethanol and ammonia were lowest (P < 0.05) in HO. Wheat neutral detergent fibre (NDF) was reduced by both inoculants compared with control, whereas enzyme addition reduced NDF content in both grains. In conclusion, although not marked, fermentation responses appeared greater in wheat than barley although either LAB inoculant improved grain fermentation characteristics. The multi-enzyme appeared active during fermentation.
Collapse
Affiliation(s)
- A.K. Agyekum
- University of Copenhagen, Grønnegårdsvej 3, 1870 Frederiksberg C, Denmark
| | - A.D. Beaulieu
- Department of Animal and Poultry Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
- Prairie Swine Centre, Saskatoon, SK S7H 5N9, Canada
| | - R. Pieper
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Strasse 49, Berlin 14195, Germany
| | - A.G. Van Kessel
- Department of Animal and Poultry Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| |
Collapse
|
14
|
Garcia-Gimenez G, Barakate A, Smith P, Stephens J, Khor SF, Doblin MS, Hao P, Bacic A, Fincher GB, Burton RA, Waugh R, Tucker MR, Houston K. Targeted mutation of barley (1,3;1,4)-β-glucan synthases reveals complex relationships between the storage and cell wall polysaccharide content. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1009-1022. [PMID: 32890421 DOI: 10.1111/tpj.14977] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/28/2020] [Accepted: 08/04/2020] [Indexed: 05/20/2023]
Abstract
Barley (Hordeum vulgare L) grain is comparatively rich in (1,3;1,4)-β-glucan, a source of fermentable dietary fibre that protects against various human health conditions. However, low grain (1,3;1,4)-β-glucan content is preferred for brewing and distilling. We took a reverse genetics approach, using CRISPR/Cas9 to generate mutations in members of the Cellulose synthase-like (Csl) gene superfamily that encode known (HvCslF6 and HvCslH1) and putative (HvCslF3 and HvCslF9) (1,3;1,4)-β-glucan synthases. Resultant mutations ranged from single amino acid (aa) substitutions to frameshift mutations causing premature stop codons, and led to specific differences in grain morphology, composition and (1,3;1,4)-β-glucan content. (1,3;1,4)-β-Glucan was absent in the grain of cslf6 knockout lines, whereas cslf9 knockout lines had similar (1,3;1,4)-β-glucan content to wild-type (WT). However, cslf9 mutants showed changes in the abundance of other cell-wall-related monosaccharides compared with WT. Thousand grain weight (TGW), grain length, width and surface area were altered in cslf6 knockouts, and to a lesser extent TGW in cslf9 knockouts. cslf3 and cslh1 mutants had no effect on grain (1,3;1,4)-β-glucan content. Our data indicate that multiple members of the CslF/H family fulfil important functions during grain development but, with the exception of HvCslF6, do not impact the abundance of (1,3;1,4)-β-glucan in mature grain.
Collapse
Affiliation(s)
| | - Abdellah Barakate
- The James Hutton Institute, Invergowrie, Dundee, Scotland, DD2 5DA, UK
| | - Pauline Smith
- The James Hutton Institute, Invergowrie, Dundee, Scotland, DD2 5DA, UK
| | - Jennifer Stephens
- The James Hutton Institute, Invergowrie, Dundee, Scotland, DD2 5DA, UK
| | - Shi F Khor
- School of Agriculture and Wine, Waite Research Institute, University of Adelaide, Urrbrae, SA 5064, Australia
| | - Monika S Doblin
- La Trobe Institute for Agriculture and Food, School of Life Sciences, Department of Animal, Plant, and Soil Sciences, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Pengfei Hao
- La Trobe Institute for Agriculture and Food, School of Life Sciences, Department of Animal, Plant, and Soil Sciences, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Antony Bacic
- La Trobe Institute for Agriculture and Food, School of Life Sciences, Department of Animal, Plant, and Soil Sciences, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Geoffrey B Fincher
- School of Agriculture and Wine, Waite Research Institute, University of Adelaide, Urrbrae, SA 5064, Australia
| | - Rachel A Burton
- School of Agriculture and Wine, Waite Research Institute, University of Adelaide, Urrbrae, SA 5064, Australia
| | - Robbie Waugh
- The James Hutton Institute, Invergowrie, Dundee, Scotland, DD2 5DA, UK
- School of Agriculture and Wine, Waite Research Institute, University of Adelaide, Urrbrae, SA 5064, Australia
- Plant Sciences Division, College of Life Sciences, University of Dundee. Dundee, Scotland, DD1 5EH, UK
| | - Matthew R Tucker
- School of Agriculture and Wine, Waite Research Institute, University of Adelaide, Urrbrae, SA 5064, Australia
| | - Kelly Houston
- The James Hutton Institute, Invergowrie, Dundee, Scotland, DD2 5DA, UK
| |
Collapse
|
15
|
Martínez-Subirà M, Romero MP, Puig E, Macià A, Romagosa I, Moralejo M. Purple, high β-glucan, hulless barley as valuable ingredient for functional food. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109582] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Molecular Mechanism of Functional Ingredients in Barley to Combat Human Chronic Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3836172. [PMID: 32318238 PMCID: PMC7149453 DOI: 10.1155/2020/3836172] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 03/10/2020] [Indexed: 12/18/2022]
Abstract
Barley plays an important role in health and civilization of human migration from Africa to Asia, later to Eurasia. We demonstrated the systematic mechanism of functional ingredients in barley to combat chronic diseases, based on PubMed, CNKI, and ISI Web of Science databases from 2004 to 2020. Barley and its extracts are rich in 30 ingredients to combat more than 20 chronic diseases, which include the 14 similar and 9 different chronic diseases between grains and grass, due to the major molecular mechanism of six functional ingredients of barley grass (GABA, flavonoids, SOD, K-Ca, vitamins, and tryptophan) and grains (β-glucans, polyphenols, arabinoxylan, phytosterols, tocols, and resistant starch). The antioxidant activity of barley grass and grain has the same and different functional components. These results support findings that barley grain and its grass are the best functional food, promoting ancient Babylonian and Egyptian civilizations, and further show the depending functional ingredients for diet from Pliocene hominids in Africa and Neanderthals in Europe to modern humans in the world. This review paper not only reveals the formation and action mechanism of barley diet overcoming human chronic diseases, but also provides scientific basis for the development of health products and drugs for the prevention and treatment of human chronic diseases.
Collapse
|
17
|
Sun J, Xu F, Lu J. A Glycoside Hydrolase Family 62 A-L-Arabinofuranosidase from Trichoderma Reesei and Its Applicable Potential during Mashing. Foods 2020; 9:foods9030356. [PMID: 32204354 PMCID: PMC7143738 DOI: 10.3390/foods9030356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 02/01/2023] Open
Abstract
Arabinoxylan is the second most abundant component in the endosperm cell wall of barley and it has been shown to have negative effects on the viscosity and filtration rate of wort and beer. In this study, a glycoside hydrolase (GH) family 62 α-L-arabinofuranosidase (AFase), termed as TrAbf62A, was purified from the culture filtrate of Trichoderma reesei CICC 41495 by a combined chromatographic method. The preferred substrates of the purified TrAbf62A were soluble, highly substituted arabinoxylan oligosaccharides and polymers, similar to the type found in barley grain. TrAbf62A exhibited activity towards oligomeric and polymeric arabinoxylans, as well as colorimetric arabinose-based substrates, thus meeting the criteria to be classified as a type B AFase. TrAbf62A released mainly arabinose and xylose from soluble wheat arabinoxylan, thus indicating a dual lytic enzyme activity. Supplementation of TrAbf62A during mashing, with a loading of 12 mU/g malt, resulted in a 36.3% decrease in arabinoxylan polymer content, a 5.6% reduction in viscosity, and finally, a 22.1% increase in filtration rate. These results revealed that TrAbf62A has a high potential value in improving lautering performance during mashing.
Collapse
Affiliation(s)
- Junyong Sun
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu, China;
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Feng Xu
- Wuxi Newway Biotechnology Co. Ltd., 100 Konggang Road, Wuxi 214122, Jiangsu, China;
| | - Jian Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu, China;
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- Correspondence: ; Tel./Fax: +86-510-85918191
| |
Collapse
|
18
|
Cowley JM, Herliana L, Neumann KA, Ciani S, Cerne V, Burton RA. A small-scale fractionation pipeline for rapid analysis of seed mucilage characteristics. PLANT METHODS 2020; 16:20. [PMID: 32123537 PMCID: PMC7038624 DOI: 10.1186/s13007-020-00569-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Myxospermy is a process by which the external surfaces of seeds of many plant species produce mucilage-a polysaccharide-rich gel with numerous fundamental research and industrial applications. Due to its functional properties the mucilage can be difficult to remove from the seed and established methods for mucilage extraction are often incomplete, time-consuming and unnecessarily wasteful of precious seed stocks. RESULTS Here we tested the efficacy of several established protocols for seed mucilage extraction and then downsized and adapted the most effective elements into a rapid, small-scale extraction and analysis pipeline. Within 4 h, three chemically- and functionally-distinct mucilage fractions were obtained from myxospermous seeds. These fractions were used to study natural variation and demonstrate structure-function links, to screen for known mucilage quality markers in a field trial, and to identify research and industry-relevant lines from a large mutant population. CONCLUSION The use of this pipeline allows rapid analysis of mucilage characteristics from diverse myxospermous germplasm which can contribute to fundamental research into mucilage production and properties, quality testing for industrial manufacturing, and progressing breeding efforts in myxospermous crops.
Collapse
Affiliation(s)
- James M. Cowley
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA Australia
| | - Lina Herliana
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA Australia
| | - Kylie A. Neumann
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA Australia
| | - Silvano Ciani
- Dr. Schär R&D Centre, AREA Science Park, Padriciano 99, 34149 Trieste, Italy
| | - Virna Cerne
- Dr. Schär R&D Centre, AREA Science Park, Padriciano 99, 34149 Trieste, Italy
| | - Rachel A. Burton
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA Australia
| |
Collapse
|
19
|
Lim WL, Collins HM, Byrt CS, Lahnstein J, Shirley NJ, Aubert MK, Tucker MR, Peukert M, Matros A, Burton RA. Overexpression of HvCslF6 in barley grain alters carbohydrate partitioning plus transfer tissue and endosperm development. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:138-153. [PMID: 31536111 PMCID: PMC6913740 DOI: 10.1093/jxb/erz407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/06/2019] [Indexed: 05/05/2023]
Abstract
In cereal grain, sucrose is converted into storage carbohydrates: mainly starch, fructan, and mixed-linkage (1,3;1,4)-β-glucan (MLG). Previously, endosperm-specific overexpression of the HvCslF6 gene in hull-less barley was shown to result in high MLG and low starch content in mature grains. Morphological changes included inwardly elongated aleurone cells, irregular cell shapes of peripheral endosperm, and smaller starch granules of starchy endosperm. Here we explored the physiological basis for these defects by investigating how changes in carbohydrate composition of developing grain impact mature grain morphology. Augmented MLG coincided with increased levels of soluble carbohydrates in the cavity and endosperm at the storage phase. Transcript levels of genes relating to cell wall, starch, sucrose, and fructan metabolism were perturbed in all tissues. The cell walls of endosperm transfer cells (ETCs) in transgenic grain were thinner and showed reduced mannan labelling relative to the wild type. At the early storage phase, ruptures of the non-uniformly developed ETCs and disorganization of adjacent endosperm cells were observed. Soluble sugars accumulated in the developing grain cavity, suggesting a disturbance of carbohydrate flow from the cavity towards the endosperm, resulting in a shrunken mature grain phenotype. Our findings demonstrate the importance of regulating carbohydrate partitioning in maintenance of grain cellularization and filling processes.
Collapse
Affiliation(s)
- Wai Li Lim
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Helen M Collins
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Caitlin S Byrt
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- Present address: Australian Research Council Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Jelle Lahnstein
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Neil J Shirley
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Matthew K Aubert
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Matthew R Tucker
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Manuela Peukert
- Applied Biochemistry Group, Leibniz Institute of Plant Genetics and Crop Plant Research Stadt Seeland, Gatersleben, Germany
- Present address: Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Meat, Kulmbach, Bavaria, Germany
| | - Andrea Matros
- Applied Biochemistry Group, Leibniz Institute of Plant Genetics and Crop Plant Research Stadt Seeland, Gatersleben, Germany
- Present address: Australian Research Council Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Rachel A Burton
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- Correspondence:
| |
Collapse
|
20
|
Lu X, Fang Y, Tian B, Tong T, Wang J, Wang H, Cai S, Hu J, Zeng D, Xu H, Zhang X, Xue D. Genetic variation of HvXYN1 associated with endoxylanase activity and TAX content in barley (Hordeum vulgare L.). BMC PLANT BIOLOGY 2019; 19:170. [PMID: 31039733 PMCID: PMC6492322 DOI: 10.1186/s12870-019-1747-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 03/29/2019] [Indexed: 05/16/2023]
Abstract
BACKGROUND Endo-β-1,4-xylanase1 (EA), the key endoxylanase in plants, is involved in the degradation of arabinoxylan during grain germination. In barley (Hordeum vulgare L.), one gene (HvXYN-1) that encode a endo-beta-1,4-xylanase, has been cloned. However, the single nucleotide polymorphisms (SNPs) that affect the endoxylanase activity and total arabinoxylan (TAX) content have yet to be characterized. The investigation of genetic variation in HvXYN1 may facilitate a better understanding of the relationship between TAX content and EA activity in barley. RESULTS In the current study, 56 polymorphisms were detected in HvXYN1 among 210 barley accessions collected from 34 countries, with 10 distinct haplotypes identified. The SNPs at positions 110, 305, 1045, 1417, 1504, 1597, 1880 bp in the genomic region of HvXYN1 were significantly associated with EA activity (P < 0.0001), and the sites 110, 305, and 1045 were highly significantly associated with TAX content. The amount of phenotypic variation in a given trait explained by each associated polymorphism ranged from 6.96 to 9.85%. Most notably, we found two variants at positions 1504 bp and 1880 bp in the second exon that significantly (P < 0.0001) affected EA activity; this result could be used in breeding programs to improve beer quality. In addition, African accessions had the highest EA activity and TAX content, and the richest germplasm resources were from Asia, indicating the high potential value of Asian barley. CONCLUSION This study provided insight into understanding the relationship, EA activity, TAX content with the SNPs of HvXYN1 in barley. These SNPs can be applied as DNA markers in breeding programs to improve the quality of barley for beer brewing after further validation.
Collapse
Affiliation(s)
- Xueli Lu
- College of Life and Environmental Sciences, Hangzhou Normal University, 16 Xiasha Road, Hangzhou, 310036, China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyu Road, Hangzhou, 310006, China
| | - Yunxia Fang
- College of Life and Environmental Sciences, Hangzhou Normal University, 16 Xiasha Road, Hangzhou, 310036, China
| | - Bin Tian
- College of Life and Environmental Sciences, Hangzhou Normal University, 16 Xiasha Road, Hangzhou, 310036, China
| | - Tao Tong
- College of Life and Environmental Sciences, Hangzhou Normal University, 16 Xiasha Road, Hangzhou, 310036, China
| | - Jiahui Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, 16 Xiasha Road, Hangzhou, 310036, China
| | - Hua Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Science, 298 Deshengzhong Road, Hangzhou, 310021, China
| | - Shengguan Cai
- Agronomy Department, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyu Road, Hangzhou, 310006, China
| | - Dali Zeng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyu Road, Hangzhou, 310006, China
| | - Heng Xu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Science, 298 Deshengzhong Road, Hangzhou, 310021, China
| | - Xiaoqin Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, 16 Xiasha Road, Hangzhou, 310036, China.
| | - Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, 16 Xiasha Road, Hangzhou, 310036, China.
| |
Collapse
|
21
|
Monteagudo A, Casas AM, Cantalapiedra CP, Contreras-Moreira B, Gracia MP, Igartua E. Harnessing Novel Diversity From Landraces to Improve an Elite Barley Variety. FRONTIERS IN PLANT SCIENCE 2019; 10:434. [PMID: 31031782 PMCID: PMC6470277 DOI: 10.3389/fpls.2019.00434] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/22/2019] [Indexed: 05/20/2023]
Abstract
The Spanish Barley Core Collection (SBCC) is a source of genetic variability of potential interest for breeding, particularly for adaptation to Mediterranean environments. Two backcross populations (BC2F5) were developed using the elite cultivar Cierzo as the recurrent parent. The donor parents, namely SBCC042 and SBCC073, were selected from the SBCC lines due to their outstanding yield in drought environments. Flowering time, yield and drought-related traits were evaluated in two field trials in Zaragoza (Spain) during the 2014-15 and 2015-16 seasons and validated in the 2017-18 season. Two hundred sixty-four lines of each population were genotyped with the Barley Illumina iSelect 50k SNP chip. Genetic maps for each population were generated. The map for SBCC042 × Cierzo contains 12,893 SNPs distributed in 9 linkage groups. The map for SBCC073 × Cierzo includes 12,026 SNPs in 7 linkage groups. Both populations shared two QTL hotspots. There are QTLs for flowering time, thousand-kernel weight (TKW), and hectoliter weight on a segment of 23 Mb at ~515 Mb on chromosome 1H, which encompasses the HvFT3 gene. In both populations, flowering was accelerated by the landrace allele, which also increased the TKW. In the same region, better soil coverage was contributed by SBCC042 but coincident with a lower hectoliter weight. The second large hotspot was on chromosome 6H and contained QTLs with wide intervals for grain yield, plant height and TKW. Landrace alleles contributed to increased plant height and TKW and reduced grain yield. Only SBCC042 contributed favorable alleles for "green area," with three significant QTLs that increased ground coverage after winter, which might be exploited as an adaptive trait of this landrace. Some genes of interest found in or very close to the peaks of the QTLs are highlighted. Strategies to deploy the QTLs found for breeding and pre-breeding are proposed.
Collapse
Affiliation(s)
| | - Ana M. Casas
- Aula Dei Experimental Station (EEAD-CSIC), Zaragoza, Spain
| | | | | | | | | |
Collapse
|
22
|
Marker-trait associations in two-rowed spring barley accessions from Kazakhstan and the USA. PLoS One 2018; 13:e0205421. [PMID: 30308008 PMCID: PMC6181366 DOI: 10.1371/journal.pone.0205421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/25/2018] [Indexed: 01/02/2023] Open
Abstract
In this study, phenotyping and single nucleotide polymorphism (SNP) genotyping data of 272 accessions of two-rowed spring barley from the USA along with 94 accessions from Kazakhstan were assessed in field trials at six breeding organizations in Kazakhstan to evaluate the performance of the USA samples over three years (2009-2011). The average grain yield over the six locations was not significantly higher in Kazakh accessions in comparison to the USA samples. Twenty four samples from Montana, Washington, the USDA station in Aberdeen Idaho, and the Anheuser-Busch breeding programs showed heavier average yield than the local standard cultivar "Ubagan". Principal Coordinate analysis based on two sets of SNP data suggested that Kazakh accessions were closest to the USA accessions among eight groups of samples from different parts of the World, and within five US barley origin groups the samples from Montana and Washington perfectly matched six groups of Kazakh breeding origins. A genome-wide association study (GWAS) using data from eighteen field trials allowed the identification of ninety one marker-trait associations (MTA) in two or more environments for nine traits, including key characters such as heading time (HT), number of kernels per spike (NKS), and thousand grain weight (TGW). Our GWAS allowed the identification of eight MTA for HT and NKS, and sixteen MTA for TGW, when those MTA were linked to mapped SNPs. Based on comparisons of chromosomal positions of MTA identified in this study, and positions of known genes and quantitative trait loci for HT, NKS and TGW, it was suggested that MTA for HT on chromosome 2H (at 158.2 cM, 11_21414), MTA for NKS on 5H (at 118.6 cM, 11_20298), and two MTA for TGW on chromosome 4H (at 94.7 cM, 12_30718, and at 129.3 cM, 11_20013) were potentially new associations in barley. GWAS suggested that six MTA for HT, including two on chromosome 1H, two on chromosome 3H, and one each on chromosomes 4H and 6H, had useful pleiotropic effects for improving barley spike traits.
Collapse
|
23
|
Aubert MK, Coventry S, Shirley NJ, Betts NS, Würschum T, Burton RA, Tucker MR. Differences in hydrolytic enzyme activity accompany natural variation in mature aleurone morphology in barley (Hordeum vulgare L.). Sci Rep 2018; 8:11025. [PMID: 30038399 DOI: 10.1038/s41598-018-29068-29064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/04/2018] [Indexed: 05/27/2023] Open
Abstract
The aleurone is a critical component of the cereal seed and is located at the periphery of the starchy endosperm. During germination, the aleurone is responsible for releasing hydrolytic enzymes that degrade cell wall polysaccharides and starch granules, which is a key requirement for barley malt production. Inter- and intra-species differences in aleurone layer number have been identified in the cereals but the significance of this variation during seed development and germination remains unclear. In this study, natural variation in mature aleurone features was examined in a panel of 33 Hordeum vulgare (barley) genotypes. Differences were identified in the number of aleurone cell layers, the transverse thickness of the aleurone and the proportion of aleurone relative to starchy endosperm. In addition, variation was identified in the activity of hydrolytic enzymes that are associated with germination. Notably, activity of the free fraction of β-amylase (BMY), but not the bound fraction, was increased at grain maturity in barley varieties possessing more aleurone. Laser capture microdissection (LCM) and transcriptional profiling confirmed that HvBMY1 is the most abundant BMY gene in developing grain and accumulates in the aleurone during early stages of grain fill. The results reveal a link between molecular pathways influencing early aleurone development and increased levels of free β-amylase enzyme, potentially highlighting the aleurone as a repository of free β-amylase at grain maturity.
Collapse
Affiliation(s)
- Matthew K Aubert
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA, Australia
- Australian Research Council Centre of Excellence in Plant Cell Walls, the University of Adelaide, Adelaide, Australia
| | - Stewart Coventry
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA, Australia
| | - Neil J Shirley
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA, Australia
- Australian Research Council Centre of Excellence in Plant Cell Walls, the University of Adelaide, Adelaide, Australia
| | - Natalie S Betts
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA, Australia
| | - Tobias Würschum
- State Plant Breeding Institute, University of Hohenheim, Stuttgart, Germany
| | - Rachel A Burton
- Australian Research Council Centre of Excellence in Plant Cell Walls, the University of Adelaide, Adelaide, Australia
| | - Matthew R Tucker
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA, Australia.
| |
Collapse
|
24
|
Differences in hydrolytic enzyme activity accompany natural variation in mature aleurone morphology in barley (Hordeum vulgare L.). Sci Rep 2018; 8:11025. [PMID: 30038399 PMCID: PMC6056469 DOI: 10.1038/s41598-018-29068-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/04/2018] [Indexed: 12/11/2022] Open
Abstract
The aleurone is a critical component of the cereal seed and is located at the periphery of the starchy endosperm. During germination, the aleurone is responsible for releasing hydrolytic enzymes that degrade cell wall polysaccharides and starch granules, which is a key requirement for barley malt production. Inter- and intra-species differences in aleurone layer number have been identified in the cereals but the significance of this variation during seed development and germination remains unclear. In this study, natural variation in mature aleurone features was examined in a panel of 33 Hordeum vulgare (barley) genotypes. Differences were identified in the number of aleurone cell layers, the transverse thickness of the aleurone and the proportion of aleurone relative to starchy endosperm. In addition, variation was identified in the activity of hydrolytic enzymes that are associated with germination. Notably, activity of the free fraction of β-amylase (BMY), but not the bound fraction, was increased at grain maturity in barley varieties possessing more aleurone. Laser capture microdissection (LCM) and transcriptional profiling confirmed that HvBMY1 is the most abundant BMY gene in developing grain and accumulates in the aleurone during early stages of grain fill. The results reveal a link between molecular pathways influencing early aleurone development and increased levels of free β-amylase enzyme, potentially highlighting the aleurone as a repository of free β-amylase at grain maturity.
Collapse
|