1
|
Surya A, Bolton BM, Rothe R, Mejia-Trujillo R, Leonita A, Zhao Q, Arya A, Liu Y, Rangan R, Gorusu Y, Nguyen P, Cenik C, Sarinay Cenik E. Differential impacts of ribosomal protein haploinsufficiency on mitochondrial function. J Cell Biol 2025; 224:e202404084. [PMID: 39786340 PMCID: PMC11716151 DOI: 10.1083/jcb.202404084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/19/2024] [Accepted: 11/26/2024] [Indexed: 01/12/2025] Open
Abstract
The interplay between ribosomal protein (RP) composition and mitochondrial function is essential for energy homeostasis. Balanced RP production optimizes protein synthesis while minimizing energy costs, but its impact on mitochondrial functionality remains unclear. Here, we investigated haploinsufficiency for RP genes (rps-10, rpl-5, rpl-33, and rps-23) in Caenorhabditis elegans and corresponding reductions in human lymphoblast cells. Significant mitochondrial morphological differences, upregulation of glutathione transferases, and SKN-1-dependent oxidative stress resistance were observed across mutants. Loss of a Datasingle rps-10 copy reduced mitochondrial activity, energy levels, and oxygen consumption, mirrored by similar reductions in mitochondrial activity and energy levels in lymphoblast cells with 50% lower RPS10 transcripts. Both systems exhibited altered translation efficiency (TE) of mitochondrial electron transport chain components, suggesting a conserved mechanism to adjust mitochondrial protein synthesis under ribosomal stress. Finally, mitochondrial membrane and cytosolic RPs showed significant RNA and TE covariation in lymphoblastoid cells, highlighting the interplay between protein synthesis machinery and mitochondrial energy production.
Collapse
Affiliation(s)
- Agustian Surya
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Blythe Marie Bolton
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Reed Rothe
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | | | - Amanda Leonita
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Qiuxia Zhao
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Alia Arya
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Yue Liu
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Rekha Rangan
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Yasash Gorusu
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Pamela Nguyen
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Can Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Elif Sarinay Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
2
|
Wang H, Ma B, Stevens T, Knapp J, Lu J, Prochownik EV. MYC Binding Near Transcriptional End Sites Regulates Basal Gene Expression, Read-Through Transcription and Intragenic Contacts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.603118. [PMID: 39071289 PMCID: PMC11275772 DOI: 10.1101/2024.07.11.603118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The MYC oncoprotein regulates numerous genes involved in cellular processes such as cell cycle and mitochondrial and ribosomal structure and function. This requires heterodimerization with its partner, MAX, and binding to specific promoter and enhancer elements. Here, we show that MYC and MAX also bind near transcriptional end sites (TESs) of over one-sixth of all annotated genes. These interactions are dose-dependent, evolutionarily conserved, stabilize the normally short-lived MYC protein and regulate expression both in concert with and independent of MYC's binding elsewhere. MYC's TES binding occurs in association with other transcription factors, alters the chromatin landscape, increases nuclease susceptibility and can alter transcriptional read-through, particularly in response to certain stresses. MYC-bound TESs can directly contact promoters and may fine-tune gene expression in response to both physiologic and pathologic stimuli. Collectively, these findings support a previously unrecognized role for MYC in regulating transcription and its read-through via direct intragenic contacts between TESs and promoters.
Collapse
|
3
|
Surya A, Bolton BM, Rothe R, Mejia-Trujillo R, Zhao Q, Leonita A, Liu Y, Rangan R, Gorusu Y, Nguyen P, Cenik C, Cenik ES. Cytosolic Ribosomal Protein Haploinsufficiency affects Mitochondrial Morphology and Respiration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.16.589775. [PMID: 38659761 PMCID: PMC11042305 DOI: 10.1101/2024.04.16.589775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The interplay between ribosomal protein composition and mitochondrial function is essential for sustaining energy homeostasis. Precise stoichiometric production of ribosomal proteins is crucial to maximize protein synthesis efficiency while reducing the energy costs to the cell. However, the impact of this balance on mitochondrial ATP generation, morphology and function remains unclear. Particularly, the loss of a single copy ribosomal protein gene is observed in Mendelian disorders like Diamond Blackfan Anemia and is common in somatic tumors, yet the implications of this imbalance on mitochondrial function and energy dynamics are still unclear. In this study, we investigated the impact of haploinsufficiency for four ribosomal protein genes implicated in ribosomopathy disorders (rps-10, rpl-5, rpl-33, rps-23) in Caenorhabditis elegans and corresponding reductions in human lymphoblast cells. Our findings uncover significant, albeit variably penetrant, mitochondrial morphological differences across these mutants, alongside an upregulation of glutathione transferases, and SKN-1 dependent increase in oxidative stress resistance, indicative of increased ROS production. Specifically, loss of a single copy of rps-10 in C. elegans led to decreased mitochondrial activity, characterized by lower energy levels and reduced oxygen consumption. A similar reduction in mitochondrial activity and energy levels was observed in human leukemia cells with a 50% reduction in RPS10 transcript levels. Importantly, we also observed alterations in the translation efficiency of nuclear and mitochondrial electron transport chain components in response to reductions in ribosomal protein genes' expression in both C. elegans and human cells. This suggests a conserved mechanism whereby the synthesis of components vital for mitochondrial function are adjusted in the face of compromised ribosomal machinery. Finally, mitochondrial membrane and cytosolic ribosomal components exhibited significant covariation at the RNA and translation efficiency level in lymphoblastoid cells across a diverse group of individuals, emphasizing the interplay between the protein synthesis machinery and mitochondrial energy production. By uncovering the impact of ribosomal protein haploinsufficiency on the translation efficiency of electron transport chain components, mitochondrial physiology, and the adaptive stress responses, we provide evidence for an evolutionarily conserved strategy to safeguard cellular functionality under genetic stress.
Collapse
Affiliation(s)
- Agustian Surya
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Blythe Marie Bolton
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Reed Rothe
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Raquel Mejia-Trujillo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Qiuxia Zhao
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Amanda Leonita
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Yue Liu
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Rekha Rangan
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Yasash Gorusu
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Pamela Nguyen
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Can Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Elif Sarinay Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
4
|
Parker MD, Brunk ES, Getzler AJ, Karbstein K. The kinase Rio1 and a ribosome collision-dependent decay pathway survey the integrity of 18S rRNA cleavage. PLoS Biol 2024; 22:e3001767. [PMID: 39038273 PMCID: PMC11045238 DOI: 10.1371/journal.pbio.3001767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 03/05/2024] [Indexed: 07/24/2024] Open
Abstract
The 18S rRNA sequence is highly conserved, particularly at its 3'-end, which is formed by the endonuclease Nob1. How Nob1 identifies its target sequence is not known, and in vitro experiments have shown Nob1 to be error-prone. Moreover, the sequence around the 3'-end is degenerate with similar sites nearby. Here, we used yeast genetics, biochemistry, and next-generation sequencing to investigate a role for the ATPase Rio1 in monitoring the accuracy of the 18S rRNA 3'-end. We demonstrate that Nob1 can miscleave its rRNA substrate and that miscleaved rRNA accumulates upon bypassing the Rio1-mediated quality control (QC) step, but not in healthy cells with intact QC mechanisms. Mechanistically, we show that Rio1 binding to miscleaved rRNA is weaker than its binding to accurately processed 18S rRNA. Accordingly, excess Rio1 results in accumulation of miscleaved rRNA. Ribosomes containing miscleaved rRNA can translate, albeit more slowly, thereby inviting collisions with trailing ribosomes. These collisions result in degradation of the defective ribosomes utilizing parts of the machinery for mRNA QC. Altogether, the data support a model in which Rio1 inspects the 3'-end of the nascent 18S rRNA to prevent miscleaved 18S rRNA-containing ribosomes from erroneously engaging in translation, where they induce ribosome collisions. The data also demonstrate how ribosome collisions purify cells of altered ribosomes with different functionalities, with important implications for the concept of ribosome heterogeneity.
Collapse
Affiliation(s)
- Melissa D. Parker
- The Skaggs Graduate School of Chemical and Biological Sciences, The
Scripps Research Institute, La Jolla, California, United States of
America
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and
Technology, Jupiter, Florida, United States of America
| | - Elise S. Brunk
- The Skaggs Graduate School of Chemical and Biological Sciences, The
Scripps Research Institute, La Jolla, California, United States of
America
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and
Technology, Jupiter, Florida, United States of America
| | - Adam J. Getzler
- The Skaggs Graduate School of Chemical and Biological Sciences, The
Scripps Research Institute, La Jolla, California, United States of
America
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and
Technology, Jupiter, Florida, United States of America
| | - Katrin Karbstein
- The Skaggs Graduate School of Chemical and Biological Sciences, The
Scripps Research Institute, La Jolla, California, United States of
America
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and
Technology, Jupiter, Florida, United States of America
| |
Collapse
|
5
|
Blomqvist EK, Huang H, Karbstein K. A disease associated mutant reveals how Ltv1 orchestrates RP assembly and rRNA folding of the small ribosomal subunit head. PLoS Genet 2023; 19:e1010862. [PMID: 37910572 PMCID: PMC10695388 DOI: 10.1371/journal.pgen.1010862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/04/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023] Open
Abstract
Ribosomes are complex macromolecules assembled from 4 rRNAs and 79 ribosomal proteins (RPs). Their assembly is organized in a highly hierarchical manner, which is thought to avoid dead-end pathways, thereby enabling efficient assembly of ribosomes in the large quantities needed for healthy cellular growth. Moreover, hierarchical assembly also can help ensure that each RP is included in the mature ribosome. Nonetheless, how this hierarchy is achieved remains unknown, beyond the examples that depend on direct RP-RP interactions, which account for only a fraction of the observed dependencies. Using assembly of the small subunit head and a disease-associated mutation in the assembly factor Ltv1 as a model system, we dissect here how the hierarchy in RP binding is constructed. A combination of data from yeast genetics, mass spectrometry, DMS probing and biochemical experiments demonstrate that the LIPHAK-disease-associated Ltv1 mutation leads to global defects in head assembly, which are explained by direct binding of Ltv1 to 5 out of 15 RPs, and indirect effects that affect 4 additional RPs. These indirect effects are mediated by conformational transitions in the nascent subunit that are regulated by Ltv1. Mechanistically, Ltv1 aids the recruitment of some RPs via direct protein-protein interactions, but surprisingly also delays the recruitment of other RPs. Delayed binding of key RPs also delays the acquisition of RNA structure that is stabilized by these proteins. Finally, our data also indicate direct roles for Ltv1 in chaperoning the folding of a key rRNA structural element, the three-helix junction j34-35-38. Thus, Ltv1 plays critical roles in organizing the order of both RP binding to rRNA and rRNA folding, thereby enabling efficient 40S subunit assembly.
Collapse
Affiliation(s)
- Ebba K. Blomqvist
- Department of Integrative Structural and Computational Biology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, United States of America
| | - Haina Huang
- Department of Integrative Structural and Computational Biology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, United States of America
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, California, United States of America
| | - Katrin Karbstein
- Department of Integrative Structural and Computational Biology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, United States of America
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, California, United States of America
| |
Collapse
|
6
|
Blomqvist EK, Huang H, Karbstein K. A disease associated mutant reveals how Ltv1 orchestrates RP assembly and rRNA folding of the small ribosomal subunit head. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.10.548325. [PMID: 37503067 PMCID: PMC10369890 DOI: 10.1101/2023.07.10.548325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Ribosomes are complex macromolecules assembled from 4 rRNAs and 79 ribosomal proteins (RPs). Their assembly is organized in a highly hierarchical manner, which is thought to avoid dead-end pathways, thereby enabling efficient assembly of ribosomes in the large quantities needed for healthy cellular growth. Moreover, hierarchical assembly also can help ensure that each RP is included in the mature ribosome. Nonetheless, how this hierarchy is achieved remains unknown, beyond the examples that depend on direct RP-RP interactions, which account for only a fraction of the observed dependencies. Using assembly of the small subunit head and a disease-associated mutation in the assembly factor Ltv1 as a model system, we dissect here how the hierarchy in RP binding is constructed. Our data demonstrate that the LIPHAK-disease-associated Ltv1 mutation leads to global defects in head assembly, which are explained by direct binding of Ltv1 to 5 out of 15 RPs, and indirect effects that affect 4 additional RPs. These indirect effects are mediated by conformational transitions in the nascent subunit that are regulated by Ltv1. Mechanistically, Ltv1 aids the recruitment of some RPs via direct protein-protein interactions, but surprisingly also delays the recruitment of other RPs. Delayed binding of key RPs also delays the acquisition of RNA structure that is stabilized by these proteins. Finally, our data also indicate direct roles for Ltv1 in chaperoning the folding of a key rRNA structural element, the three-helix junction j34-35-38. Thus, Ltv1 plays critical roles in organizing the order of both RP binding to rRNA and rRNA folding, thereby enabling efficient 40S subunit assembly.
Collapse
Affiliation(s)
- Ebba K. Blomqvist
- Department of Integrative Structural and Computational Biology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida 33458, United States of America
| | - Haina Huang
- Department of Integrative Structural and Computational Biology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida 33458, United States of America
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA 92037
- Present Address: Arrakis Therapeutics, Waltham, MA 02451
| | - Katrin Karbstein
- Department of Integrative Structural and Computational Biology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida 33458, United States of America
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
7
|
Jia M, Rosas L, Kapetanaki MG, Tabib T, Sebrat J, Cruz T, Bondonese A, Mora AL, Lafyatis R, Rojas M, Benos PV. Early events marking lung fibroblast transition to profibrotic state in idiopathic pulmonary fibrosis. Respir Res 2023; 24:116. [PMID: 37085855 PMCID: PMC10122312 DOI: 10.1186/s12931-023-02419-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 04/12/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Idiopathic Pulmonary Fibrosis (IPF) is an age-associated progressive lung disease with accumulation of scar tissue impairing gas exchange. Previous high-throughput studies elucidated the role of cellular heterogeneity and molecular pathways in advanced disease. However, critical pathogenic pathways occurring in the transition of fibroblasts from normal to profibrotic have been largely overlooked. METHODS We used single cell transcriptomics (scRNA-seq) from lungs of healthy controls and IPF patients (lower and upper lobes). We identified fibroblast subclusters, genes and pathways associated with early disease. Immunofluorescence assays validated the role of MOXD1 early in fibrosis. RESULTS We identified four distinct fibroblast subgroups, including one marking the normal-to-profibrotic state transition. Our results show for the first time that global downregulation of ribosomal proteins and significant upregulation of the majority of copper-binding proteins, including MOXD1, mark the IPF transition. We find no significant differences in gene expression in IPF upper and lower lobe samples, which were selected to have low and high degree of fibrosis, respectively. CONCLUSIONS Early events during IPF onset in fibroblasts include dysregulation of ribosomal and copper-binding proteins. Fibroblasts in early stage IPF may have already acquired a profibrotic phenotype while hallmarks of advanced disease, including fibroblast foci and honeycomb formation, are still not evident. The new transitional fibroblasts we discover could prove very important for studying the role of fibroblast plasticity in disease progression and help develop early diagnosis tools and therapeutic interventions targeting earlier disease states.
Collapse
Affiliation(s)
- Minxue Jia
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, USA
- Joint Carnegie Mellon University – University of Pittsburgh PhD Program in Computational Biology, Pittsburgh, USA
| | - Lorena Rosas
- Department of Internal Medicine, Division Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, USA
| | - Maria G. Kapetanaki
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, USA
| | - Tracy Tabib
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - John Sebrat
- Department of Internal Medicine, Division Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, USA
| | - Tamara Cruz
- Department of Internal Medicine, Division Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, USA
| | - Anna Bondonese
- Department of Internal Medicine, Division Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, USA
| | - Ana L. Mora
- Department of Internal Medicine, Division Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Mauricio Rojas
- Department of Internal Medicine, Division Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Panayiotis V. Benos
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, USA
- Joint Carnegie Mellon University – University of Pittsburgh PhD Program in Computational Biology, Pittsburgh, USA
- Department of Epidemiology, University of Florida, 2004 Mowry Rd, Gainesville, FL 32610 USA
| |
Collapse
|
8
|
Parker MD, Karbstein K. Quality control ensures fidelity in ribosome assembly and cellular health. J Cell Biol 2023; 222:e202209115. [PMID: 36790396 PMCID: PMC9960125 DOI: 10.1083/jcb.202209115] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/09/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
The coordinated integration of ribosomal RNA and protein into two functional ribosomal subunits is safeguarded by quality control checkpoints that ensure ribosomes are correctly assembled and functional before they engage in translation. Quality control is critical in maintaining the integrity of ribosomes and necessary to support healthy cell growth and prevent diseases associated with mistakes in ribosome assembly. Its importance is demonstrated by the finding that bypassing quality control leads to misassembled, malfunctioning ribosomes with altered translation fidelity, which change gene expression and disrupt protein homeostasis. In this review, we outline our understanding of quality control within ribosome synthesis and how failure to enforce quality control contributes to human disease. We first provide a definition of quality control to guide our investigation, briefly present the main assembly steps, and then examine stages of assembly that test ribosome function, establish a pass-fail system to evaluate these functions, and contribute to altered ribosome performance when bypassed, and are thus considered "quality control."
Collapse
Affiliation(s)
- Melissa D. Parker
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, USA
- University of Florida—Scripps Biomedical Research, Jupiter, FL, USA
| | - Katrin Karbstein
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, USA
- University of Florida—Scripps Biomedical Research, Jupiter, FL, USA
- Howard Hughes Medical Institute Faculty Scholar, Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
9
|
Yang YM, Karbstein K. The chaperone Tsr2 regulates Rps26 release and reincorporation from mature ribosomes to enable a reversible, ribosome-mediated response to stress. SCIENCE ADVANCES 2022; 8:eabl4386. [PMID: 35213229 PMCID: PMC8880767 DOI: 10.1126/sciadv.abl4386] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/13/2022] [Indexed: 05/04/2023]
Abstract
Although ribosome assembly is quality controlled to maintain protein homeostasis, different ribosome populations have been described. How these form, especially under stress conditions that affect energy levels and stop the energy-intensive production of ribosomes, remains unknown. Here, we demonstrate how a physiologically relevant ribosome population arises during high Na+, sorbitol, or pH stress via dissociation of Rps26 from fully assembled ribosomes to enable a translational response to these stresses. The chaperone Tsr2 releases Rps26 in the presence of high Na+ or pH in vitro and is required for Rps26 release in vivo. Moreover, Tsr2 stores free Rps26 and promotes reincorporation of the protein, thereby repairing the subunit after the Na+ stress subsides. Our data implicate a residue in Rps26 involved in Diamond Blackfan Anemia in mediating the effects of Na+. These data demonstrate how different ribosome populations can arise rapidly, without major energy input and without bypass of quality control mechanisms.
Collapse
Affiliation(s)
- Yoon-Mo Yang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Katrin Karbstein
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
- HHMI Faculty Scholar, Chevy Chase, MD 20815, USA
| |
Collapse
|
10
|
Huang H, Ghalei H, Karbstein K. Quality control of 40S ribosome head assembly ensures scanning competence. J Cell Biol 2021; 219:152152. [PMID: 33007085 PMCID: PMC7534925 DOI: 10.1083/jcb.202004161] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/25/2020] [Accepted: 08/13/2020] [Indexed: 11/22/2022] Open
Abstract
During translation initiation, 40S ribosomes scan the mRNA until they encounter the start codon, where conformational changes produce a translation-competent 80S complex. Destabilizing the scanning complex results in misinitiation at non-AUG codons, demonstrating its importance for fidelity. Here, we use a combination of biochemical and genetic analyses to demonstrate that the ability of the nascent subunit to adopt the scanning complex is tested during assembly via structural mimicry. Specifically, formation of the 80S-like assembly intermediate, which structurally resembles scanning complexes, requires the correct folding of two rRNA elements in the subunit head and the proper positioning of the universally conserved head proteins Rps3, Rps15, Rps20, and Rps29. rRNA misfolding impairs the formation of 80S-like ribosomes, and bypass of individual checkpoints using cancer-associated mutations produces ribosomes defective in accurate start-site selection. Thus, the formation of 80S-like assembly intermediates is a quality control step that ensures scanning competence of the nascent subunit.
Collapse
Affiliation(s)
- Haina Huang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL
| | - Homa Ghalei
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL
| | - Katrin Karbstein
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL.,Howard Hughes Medical Institute, Chevy Chase, MD
| |
Collapse
|
11
|
Wang H, Lu J, Chen X, Schwalbe M, Gorka JE, Mandel JA, Wang J, Goetzman ES, Ranganathan S, Dobrowolski SF, Prochownik EV. Acquired deficiency of peroxisomal dicarboxylic acid catabolism is a metabolic vulnerability in hepatoblastoma. J Biol Chem 2021; 296:100283. [PMID: 33450224 PMCID: PMC7948956 DOI: 10.1016/j.jbc.2021.100283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 12/21/2022] Open
Abstract
Metabolic reprogramming provides transformed cells with proliferative and/or survival advantages. Capitalizing on this therapeutically, however, has been only moderately successful because of the relatively small magnitude of these differences and because cancers may further adapt their metabolism to evade metabolic pathway inhibition. Mice lacking the peroxisomal bifunctional enzyme enoyl-CoA hydratase/3-hydroxyacyl CoA dehydrogenase (Ehhadh) and supplemented with the 12-carbon fatty acid lauric acid (C12) accumulate the toxic metabolite dodecanedioic acid (DDDA), which causes acute hepatocyte necrosis and liver failure. We noted that, in a murine model of pediatric hepatoblastoma (HB) and in primary human HBs, downregulation of Ehhadh occurs in association with the suppression of mitochondrial β- and endosomal/peroxisomal ω-fatty acid oxidation pathways. This suggested that HBs might be more susceptible than normal liver tissue to C12 dietary intervention. Indeed, HB-bearing mice provided with C12- and/or DDDA-supplemented diets survived significantly longer than those on standard diets. In addition, larger tumors developed massive necrosis following short-term DDDA administration. In some HBs, the eventual development of DDDA resistance was associated with 129 transcript differences, ∼90% of which were downregulated, and approximately two-thirds of which correlated with survival in numerous human cancers. These transcripts often encoded extracellular matrix components, suggesting that DDDA resistance arises from reduced Ehhadh uptake. Lower Ehhadh expression was also noted in murine hepatocellular carcinomas and in subsets of certain human cancers, supporting the likely generality of these results. Our results demonstrate the feasibility of C12 or DDDA dietary supplementation that is nontoxic, inexpensive, and likely compatible with more standard chemotherapies.
Collapse
Affiliation(s)
- Huabo Wang
- Division of Hematology/Oncology, Department of Pediatrics UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jie Lu
- Division of Hematology/Oncology, Department of Pediatrics UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xiaoguang Chen
- Division of Hematology/Oncology, Department of Pediatrics UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA; School of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China
| | - Marie Schwalbe
- Division of Hematology/Oncology, Department of Pediatrics UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joanna E Gorka
- Division of Hematology/Oncology, Department of Pediatrics UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jordan A Mandel
- Division of Hematology/Oncology, Department of Pediatrics UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jinglin Wang
- Division of Hematology/Oncology, Department of Pediatrics UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA; Central South University Xiangya School of Medicine, Changsha, Hunan, People's Republic of China
| | - Eric S Goetzman
- Division of Medical Genetics, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Steven F Dobrowolski
- Division of Medical Genetics, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Edward V Prochownik
- Division of Hematology/Oncology, Department of Pediatrics UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA; The Hillman Cancer Center, The University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; The Pittsburgh Liver Research Institute, Pittsburgh, Pennsylvania, USA; The Department of Microbiology and Molecular Genetics, The University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
12
|
Shirakawa Y, Hide T, Yamaoka M, Ito Y, Ito N, Ohta K, Shinojima N, Mukasa A, Saito H, Jono H. Ribosomal protein S6 promotes stem-like characters in glioma cells. Cancer Sci 2020; 111:2041-2051. [PMID: 32246865 PMCID: PMC7293102 DOI: 10.1111/cas.14399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma multiforme (GBM), a lethal brain tumor developing in the white matter of the adult brain, contains a small population of GBM stem cells (GSCs), which potentially cause chemotherapeutic resistance and tumor recurrence. However, the mechanisms underlying the pathogenesis and maintenance of GSCs remain largely unknown. A recent study reported that incorporation of ribosomes and ribosomal proteins into somatic cells promoted lineage trans-differentiation toward multipotency. This study aimed to investigate the mechanism underlying stemness acquisition in GBM cells by focusing on 40S ribosomal protein S6 (RPS6). RPS6 was significantly upregulated in high-grade glioma and localized at perivascular, perinecrotic, and border niches in GBM tissues. siRNA-mediated RPS6 knock-down significantly suppressed the characteristics of GSCs, including their tumorsphere potential and GSC marker expression; STAT3 was downregulated in GBM cells. RPS6 overexpression enhanced the tumorsphere potential of GSCs and these effects were attenuated by STAT3 inhibitor (AG490). Moreover, RPS6 expression was significantly correlated with SOX2 expression in different glioma grades. Immunohistochemistry data herein indicated that RPS6 was predominant in GSC niches, concurrent with the data from IVY GAP databases. Furthermore, RPS6 and other ribosomal proteins were upregulated in GSC-predominant areas in this database. The present results indicate that, in GSC niches, ribosomal proteins play crucial roles in the development and maintenance of GSCs and are clinically associated with chemoradioresistance and GBM recurrence.
Collapse
Affiliation(s)
- Yuki Shirakawa
- Department of Clinical Pharmaceutical SciencesGraduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
| | - Takuichiro Hide
- Department of NeurosurgeryKitasato University School of MedicineSagamiharaJapan
| | - Michiko Yamaoka
- Department of Clinical Pharmaceutical SciencesGraduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
| | - Yuki Ito
- Department of Clinical Pharmaceutical SciencesGraduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
| | - Naofumi Ito
- Department of Developmental NeurobiologyGraduate School of Life SciencesKumamoto UniversityKumamotoJapan
| | - Kunimasa Ohta
- Department of Developmental NeurobiologyGraduate School of Life SciencesKumamoto UniversityKumamotoJapan
| | - Naoki Shinojima
- Department of NeurosurgeryFaculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Akitake Mukasa
- Department of NeurosurgeryFaculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Hideyuki Saito
- Department of Clinical Pharmaceutical SciencesGraduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
- Department of PharmacyKumamoto University HospitalKumamoto CityJapan
| | - Hirofumi Jono
- Department of Clinical Pharmaceutical SciencesGraduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
- Department of PharmacyKumamoto University HospitalKumamoto CityJapan
| |
Collapse
|
13
|
Mandel J, Avula R, Prochownik EV. Sequential analysis of transcript expression patterns improves survival prediction in multiple cancers. BMC Cancer 2020; 20:297. [PMID: 32264880 PMCID: PMC7140376 DOI: 10.1186/s12885-020-06756-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/13/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Long-term survival in numerous cancers often correlates with specific whole transcriptome profiles or the expression patterns of smaller numbers of transcripts. In some instances, these are better predictors of survival than are standard classification methods such as clinical stage or hormone receptor status in breast cancer. Here, we have used the method of "t-distributed stochastic neighbor embedding" (t-SNE) to show that, collectively, the expression patterns of small numbers of functionally-related transcripts from fifteen cancer pathways correlate with long-term survival in the vast majority of tumor types from The Cancer Genome Atlas (TCGA). We then ask whether the sequential application of t-SNE using the transcripts from a second pathway improves predictive capability or whether t-SNE can be used to refine the initial predictive power of whole transcriptome profiling. METHODS RNAseq data from 10,227 tumors in TCGA were previously analyzed using t-SNE-based clustering of 362 transcripts comprising 15 distinct cancer-related pathways. After showing that certain clusters were associated with differential survival, each relevant cluster was re-analyzed by t-SNE with a second pathway's transcripts. Alternatively, groups with differential survival identified by whole transcriptome profiling were subject to a second, t-SNE-based analysis. RESULTS Sequential analyses employing either t-SNE➔t-SNE or whole transcriptome profiling➔t-SNE analyses were in many cases superior to either individual method at predicting long-term survival. We developed a dynamic and intuitive R Shiny web application to explore the t-SNE based transcriptome clustering and survival analysis across all TCGA cancers and all 15 cancer-related pathways in this analysis. This application provides a simple interface to select specific t-SNE clusters and analyze survival predictability using both individual or sequential approaches. The user can recreate the relationships described in this analysis and further explore many different cancer, pathway, and cluster combinations. Non-R users can access the application on the web at https://chpupsom19.shinyapps.io/Survival_Analysis_tsne_umap_TCGA. The application, R scripts performing survival analysis, and t-SNE clustering results of TCGA expression data can be accessed on GitHub enabling users to download and run the application locally with ease (https://github.com/RavulaPitt/Sequential-t-SNE/). CONCLUSIONS The long-term survival of patients correlated with expression patterns of 362 transcripts from 15 cancer-related pathways. In numerous cases, however, survival could be further improved when the cohorts were re-analyzed using iterative t-SNE clustering or when t-SNE clustering was applied to cohorts initially segregated by whole transcriptome-based hierarchical clustering.
Collapse
Affiliation(s)
- Jordan Mandel
- The Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC, Rangos Research Center, Room, 5124, 4401 Penn Ave, Pittsburgh, PA, 15224, USA.
| | - Raghunandan Avula
- The Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC, Rangos Research Center, Room, 5124, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - Edward V Prochownik
- The Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC, Rangos Research Center, Room, 5124, 4401 Penn Ave, Pittsburgh, PA, 15224, USA.
- The Hillman Cancer Center of The University of Pittsburgh Medical Center, UPMC, 5150 Centre Ave, Pittsburgh, PA, 15232, USA.
- The Pittsburgh Liver Research Center, S414 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, USA.
- The Department of Microbiology and Molecular Genetics, 450 Technology Dr, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
14
|
Zhang W, Meyfeldt J, Wang H, Kulkarni S, Lu J, Mandel JA, Marburger B, Liu Y, Gorka JE, Ranganathan S, Prochownik EV. β-Catenin mutations as determinants of hepatoblastoma phenotypes in mice. J Biol Chem 2019; 294:17524-17542. [PMID: 31597698 DOI: 10.1074/jbc.ra119.009979] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/03/2019] [Indexed: 12/14/2022] Open
Abstract
Hepatoblastoma (HB) is the most common pediatric liver cancer. Although long-term survival of HB is generally favorable, it depends on clinical stage, tumor histology, and a variety of biochemical and molecular features. HB appears almost exclusively before the age of 3 years, is represented by seven histological subtypes, and is usually associated with highly heterogeneous somatic mutations in the catenin β1 (CTNNB1) gene, which encodes β-catenin, a Wnt ligand-responsive transcriptional co-factor. Numerous recurring β-catenin mutations, not previously documented in HB, have also been identified in various other pediatric and adult cancer types. Little is known about the underlying factors that determine the above HB features and behaviors or whether non-HB-associated β-catenin mutations are tumorigenic when expressed in hepatocytes. Here, we investigated the oncogenic properties of 14 different HB- and non-HB-associated β-catenin mutants encoded by Sleeping Beauty vectors following their delivery into the mouse liver by hydrodynamic tail-vein injection. We show that all β-catenin mutations, as well as WT β-catenin, are tumorigenic when co-expressed with a mutant form of yes-associated protein (YAP). However, tumor growth rates, histologies, nuclear-to-cytoplasmic partitioning, and metabolic and transcriptional landscapes were strongly influenced by the identities of the β-catenin mutations. These findings provide a context for understanding at the molecular level the notable biological diversity of HB.
Collapse
Affiliation(s)
- Weiqi Zhang
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224.,Tsinghua University School of Medicine, Beijing 100084, China
| | - Jennifer Meyfeldt
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224
| | - Huabo Wang
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224
| | - Sucheta Kulkarni
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224
| | - Jie Lu
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224
| | - Jordan A Mandel
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224
| | - Brady Marburger
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224.,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Ying Liu
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224.,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Joanna E Gorka
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224
| | - Sarangarajan Ranganathan
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224.,Department of Pathology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224.,Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213
| | - Edward V Prochownik
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224 .,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224.,Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213.,Department of Microbiology and Molecular Genetics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213.,Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15232
| |
Collapse
|
15
|
Cui K, Liu C, Li X, Zhang Q, Li Y. Comprehensive characterization of the rRNA metabolism-related genes in human cancer. Oncogene 2019; 39:786-800. [PMID: 31548613 DOI: 10.1038/s41388-019-1026-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 01/01/2023]
Abstract
Although rRNA metabolism-related genes have been reported to be associated with human cancer, a systematic assessment of rRNA metabolism-related genes across human cancers is lacking. Thus, we performed a Pan-cancer analysis of rRNA metabolism-related genes across 20 human cancers. Here, we examined mRNA expression, mutation, DNA methylation, copy number variation (CNV) and clinical landscape of rRNA metabolism-related genes in more than 8600 patients across 20 human cancers from The Cancer Genome Atlas (TCGA) dataset. Besides, ten independent Gene Expression Omnibus (GEO) datasets, Cancer Cell Line Encyclopedia (CCLE) dataset and Project Achilles dataset were used to verify our study. A landscape of rRNA metabolism-related genes was established across 20 human cancers. The results suggest that rRNA metabolism-related genes are upregulated in multiple cancers, particularly in digestive and respiratory system cancers. Most of the upregulated genes were driven by CNV gain rather than mutation or DNA hypomethylation. We systematically identified CNV-driven rRNA metabolism-related genes with clinical relevance, including EXOSC8. Finally, functional experiments confirmed the oncogenic roles of EXOSC8 in colorectal carcinoma. Our study highlights the important roles of rRNA metabolism-related genes in tumorigenesis as prognostic biomarkers.
Collapse
Affiliation(s)
- Kaisa Cui
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Cheng Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Xu Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Qiang Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Youjun Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China. .,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
16
|
de Nonneville A, Finetti P, Adelaide J, Lambaudie É, Viens P, Gonçalves A, Birnbaum D, Mamessier E, Bertucci F. A Tyrosine Kinase Expression Signature Predicts the Post-Operative Clinical Outcome in Triple Negative Breast Cancers. Cancers (Basel) 2019; 11:E1158. [PMID: 31412533 PMCID: PMC6721506 DOI: 10.3390/cancers11081158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/04/2019] [Accepted: 08/09/2019] [Indexed: 12/13/2022] Open
Abstract
Triple negative breast cancer (TNBC) represent 15% of breast cancers. Histoclinical features and marketed prognostic gene expression signatures (GES) failed to identify good- and poor-prognosis patients. Tyrosine kinases (TK) represent potential prognostic and/or therapeutic targets for TNBC. We sought to define a prognostic TK GES in a large series of TNBC. mRNA expression and histoclinical data of 6379 early BCs were collected from 16 datasets. We searched for a TK-based GES associated with disease-free survival (DFS) and tested its robustness in an independent validation set. A total of 1226 samples were TNBC. In the learning set of samples (N = 825), we identified a 13-TK GES associated with DFS. This GES was associated with cell proliferation and immune response. In multivariate analysis, it outperformed the previously published GESs and classical prognostic factors in the validation set (N = 401), in which the patients classified as "low-risk" had a 73% 5-year DFS versus 53% for "high-risk" patients (p = 1.85 × 10-3). The generation of 100,000 random 13-gene signatures by a resampling scheme showed the non-random nature of our classifier, which was also prognostic for overall survival in multivariate analysis. We identified a robust and non-random 13-TK GES that separated TNBC into subgroups of different prognosis. Clinical and functional validations are warranted.
Collapse
Affiliation(s)
- Alexandre de Nonneville
- Department of Medical Oncology, Institut Paoli-Calmettes, Aix-Marseille Univ, CRCM, CNRS, INSERM, 13000 Marseille, France
| | - Pascal Finetti
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Inserm UMR1068, CNRS UMR725, Aix-Marseille Université, 13000 Marseille, France
| | - José Adelaide
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Inserm UMR1068, CNRS UMR725, Aix-Marseille Université, 13000 Marseille, France
| | - Éric Lambaudie
- Department of Surgical Oncology, Institut Paoli-Calmettes, Aix-Marseille Univ, CNRS, INSERM, CRCM, 13000 Marseille, France
| | - Patrice Viens
- Department of Medical Oncology, Institut Paoli-Calmettes, Aix-Marseille Univ, CRCM, CNRS, INSERM, 13000 Marseille, France
| | - Anthony Gonçalves
- Department of Medical Oncology, Institut Paoli-Calmettes, Aix-Marseille Univ, CRCM, CNRS, INSERM, 13000 Marseille, France
| | - Daniel Birnbaum
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Inserm UMR1068, CNRS UMR725, Aix-Marseille Université, 13000 Marseille, France
| | - Emilie Mamessier
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Inserm UMR1068, CNRS UMR725, Aix-Marseille Université, 13000 Marseille, France
| | - François Bertucci
- Department of Medical Oncology, Institut Paoli-Calmettes, Aix-Marseille Univ, CRCM, CNRS, INSERM, 13000 Marseille, France.
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Inserm UMR1068, CNRS UMR725, Aix-Marseille Université, 13000 Marseille, France.
| |
Collapse
|
17
|
Mandel J, Wang H, Normolle DP, Chen W, Yan Q, Lucas PC, Benos PV, Prochownik EV. Expression patterns of small numbers of transcripts from functionally-related pathways predict survival in multiple cancers. BMC Cancer 2019; 19:686. [PMID: 31299925 PMCID: PMC6626418 DOI: 10.1186/s12885-019-5851-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/18/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Genetic profiling of cancers for variations in copy number, structure or expression of certain genes has improved diagnosis, risk-stratification and therapeutic decision-making. However the tumor-restricted nature of these changes limits their application to certain cancer types or sub-types. Tests with broader prognostic capabilities are lacking. METHODS Using RNAseq data from 10,227 tumors in The Cancer Genome Atlas (TCGA), we evaluated 212 protein-coding transcripts from 12 cancer-related pathways. We employed t-distributed stochastic neighbor embedding (t-SNE) to identify expression pattern difference among each pathway's transcripts. We have previously used t-SNE to show that survival in some cancers correlates with expression patterns of transcripts encoding ribosomal proteins and enzymes for cholesterol biosynthesis and fatty acid oxidation. RESULTS Using the above 212 transcripts, t-SNE-assisted transcript pattern profiling identified patient cohorts with significant survival differences in 30 of 34 different cancer types comprising 9350 tumors (91.4% of all TCGA cases). Small subsets of each pathway's transcripts, comprising no more than 50-60 from the original group, played particularly prominent roles in determining overall t-SNE patterns. In several cases, further refinements in long-term survival could be achieved by sequential t-SNE profiling with two pathways' transcripts, by a combination of t-SNE plus whole transcriptome profiling or by employing t-SNE on immuno-histochemically defined breast cancer subtypes. In two cancer types, individuals with Stage IV disease at presentation could be readily subdivided into groups with highly significant survival differences based on t-SNE-based tumor sub-classification. CONCLUSIONS t-SNE-assisted profiling of a small number of transcripts allows the prediction of long-term survival across multiple cancer types.
Collapse
Affiliation(s)
- Jordan Mandel
- The Division of Hematology/Oncology, Children’s Hospital of Pittsburgh of UPMC, Children’s Hospital of Pittsburgh of UPMC, Rangos Research Center, Fl. 5, Bay 8, 4401 Penn Ave, Pittsburgh, PA 15224 USA
| | - Huabo Wang
- The Division of Hematology/Oncology, Children’s Hospital of Pittsburgh of UPMC, Children’s Hospital of Pittsburgh of UPMC, Rangos Research Center, Fl. 5, Bay 8, 4401 Penn Ave, Pittsburgh, PA 15224 USA
| | - Daniel P. Normolle
- The Department of Biostatistics and The University of Pittsburgh Graduate School of Public Health, 130 De Soto Street, Pittsburgh, PA 15261 USA
- The Hillman Cancer Center of The University of Pittsburgh Medical Center, UPMC, 5150 Centre Ave, Pittsburgh, PA 15232 USA
| | - Wei Chen
- The Division of Pulmonary Medicine, Allergy and Immunology, Children’s Hospital of Pittsburgh of UPMC, 4401 Penn Ave, Pittsburgh, PA 15224 USA
| | - Qi Yan
- The Division of Pulmonary Medicine, Allergy and Immunology, Children’s Hospital of Pittsburgh of UPMC, 4401 Penn Ave, Pittsburgh, PA 15224 USA
| | - Peter C. Lucas
- The Division of Hematology/Oncology, Children’s Hospital of Pittsburgh of UPMC, Children’s Hospital of Pittsburgh of UPMC, Rangos Research Center, Fl. 5, Bay 8, 4401 Penn Ave, Pittsburgh, PA 15224 USA
- The Hillman Cancer Center of The University of Pittsburgh Medical Center, UPMC, 5150 Centre Ave, Pittsburgh, PA 15232 USA
- The Department of Pathology, The University of Pittsburgh Medical Center, S-417 BST 200 Lothrop Street, Pittsburgh, PA 15261 USA
| | - Panayiotis V. Benos
- The Department of Computational and Systems Biology, The University of Pittsburgh Medical Center, 3501 Fifth Avenue, 3064 BST3, Pittsburgh, PA 15260 USA
- Department of Biomedical Informatics, The University of Pittsburgh Medical Center, 5607 Baum Blvd, Pittsburgh, PA 15206 USA
- The Joint Carnegie Mellon-University of Pittsburgh Program in Computational Biology, 3501 Fifth Ave, Pittsburgh, PA 15213 USA
- The Pittsburgh Liver Research Center, S414 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15224 USA
| | - Edward V. Prochownik
- The Division of Hematology/Oncology, Children’s Hospital of Pittsburgh of UPMC, Children’s Hospital of Pittsburgh of UPMC, Rangos Research Center, Fl. 5, Bay 8, 4401 Penn Ave, Pittsburgh, PA 15224 USA
- The Hillman Cancer Center of The University of Pittsburgh Medical Center, UPMC, 5150 Centre Ave, Pittsburgh, PA 15232 USA
- The Pittsburgh Liver Research Center, S414 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15224 USA
- The Department of Microbiology and Molecular Genetics, 450 Technology Dr. Pittsburgh, Pittsburgh, PA 15219 USA
- Division of Hematology/Oncology, Children’s Hospital of Pittsburgh of UPMC, Rangos Research Center, 4401 Penn Ave, Pittsburgh, PA 15224 USA
| |
Collapse
|
18
|
Morcelle C, Menoyo S, Morón-Duran FD, Tauler A, Kozma SC, Thomas G, Gentilella A. Oncogenic MYC Induces the Impaired Ribosome Biogenesis Checkpoint and Stabilizes p53 Independent of Increased Ribosome Content. Cancer Res 2019; 79:4348-4359. [PMID: 31292158 DOI: 10.1158/0008-5472.can-18-2718] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 05/07/2019] [Accepted: 07/03/2019] [Indexed: 11/16/2022]
Abstract
The role of MYC in regulating p53 stability as a function of increased ribosome biogenesis is controversial. On the one hand, it was suggested that MYC drives the overexpression of ribosomal proteins (RP)L5 and RPL11, which bind and inhibit HDM2, stabilizing p53. On the other, it has been proposed that increased ribosome biogenesis leads the consumption of RPL5/RPL11 into nascent ribosomes, reducing p53 levels and enhancing tumorigenesis. Here, we show that the components that make up the recently described impaired ribosome biogenesis checkpoint (IRBC) complex, RPL5, RPL11, and 5S rRNA, are reduced following MYC silencing. This leads to a rapid reduction in p53 protein half-life in an HDM2-dependent manner. In contrast, MYC induction leads to increased ribosome biogenesis and p53 protein stabilization. Unexpectedly, there is no change in free RPL5/RPL11 levels, but there is a striking increase in IRBC complex bound to HDM2. Our data support a cell-intrinsic tumor-suppressor response to MYC expression, which is presently being exploited to treat cancer. SIGNIFICANCE: Oncogenic MYC induces the impaired ribosome biogenesis checkpoint, which could be potentially targeted for cancer treatment.
Collapse
Affiliation(s)
- Carmen Morcelle
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Sandra Menoyo
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Francisco D Morón-Duran
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Albert Tauler
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,Department of Biochemistry and Physiology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Sara C Kozma
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - George Thomas
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain. .,Physiological Sciences Department, Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
| | - Antonio Gentilella
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain. .,Department of Biochemistry and Physiology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| |
Collapse
|
19
|
Wang H, Lu J, Dolezal J, Kulkarni S, Zhang W, Chen A, Gorka J, Mandel JA, Prochownik EV. Inhibition of hepatocellular carcinoma by metabolic normalization. PLoS One 2019; 14:e0218186. [PMID: 31242205 PMCID: PMC6594671 DOI: 10.1371/journal.pone.0218186] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/28/2019] [Indexed: 12/22/2022] Open
Abstract
In two different mouse liver cancer models, we recently showed that a switch from oxidative phosphorylation (Oxphos) to glycolysis (the Warburg effect) is invariably accompanied by a marked decline in fatty acid oxidation (FAO) and a reciprocal increase in the activity of pyruvate dehydrogenase (PDH), which links glycolysis to the TCA cycle. We now show that short-term implementation of either medium-chain (MC) or long-chain (LC) high fat diets (HFDs) nearly doubled the survival of mice with c-Myc oncoprotein-driven hepatocellular carcinoma (HCC). Mechanistically, HFDs forced tumors to become more reliant on fatty acids as an energy source, thus normalizing both FAO and PDH activities. More generally, both MC- and LC-HFDs partially or completely normalized the expression of 682 tumor-dysregulated transcripts, a substantial fraction of which are involved in cell cycle control, proliferation and metabolism. That these same transcripts were responsive to HFDs in livers strongly suggested that the changes were the cause of tumor inhibition rather than its consequence. In seven different human cancer cohorts, patients with tumors containing high ratios of FAO-related:glycolysis-related transcripts had prolonged survival relative to those with low ratios. Furthermore, in 13 human cancer types, the expression patterns of transcripts encoding enzymes participating in FAO and/or cholesterol biosynthesis also correlated with significantly prolonged survival. Collectively, our results support the idea that the survival benefits of HFDs are due to a reversal of the Warburg effect and other tumor-associated metabolic and cell cycle abnormalities. They also suggest that short-term dietary manipulation, either alone or in combination with more traditional chemotherapeutic regimens, might be employed as a relatively non-toxic and cost-effective means of enhancing survival in certain cancer types.
Collapse
Affiliation(s)
- Huabo Wang
- Section of Hematology/Oncology, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
| | - Jie Lu
- Section of Hematology/Oncology, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
| | - James Dolezal
- Section of Hematology/Oncology, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
| | - Sucheta Kulkarni
- Section of Hematology/Oncology, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
| | - Weiqi Zhang
- Section of Hematology/Oncology, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
- Tsinghua University School of Medicine, Beijing, People’s Republic of China
| | - Angel Chen
- Section of Hematology/Oncology, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
| | - Joanna Gorka
- Section of Hematology/Oncology, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
| | - Jordan A. Mandel
- Section of Hematology/Oncology, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
| | - Edward V. Prochownik
- Section of Hematology/Oncology, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
- The Department of Microbiology and Molecular Genetics, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- The Hillman Cancer Center, The University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
- The University of Pittsburgh Liver Research Center, The University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
20
|
Ferretti MB, Karbstein K. Does functional specialization of ribosomes really exist? RNA (NEW YORK, N.Y.) 2019; 25:521-538. [PMID: 30733326 PMCID: PMC6467006 DOI: 10.1261/rna.069823.118] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
It has recently become clear that ribosomes are much more heterogeneous than previously thought, with diversity arising from rRNA sequence and modifications, ribosomal protein (RP) content and posttranslational modifications (PTMs), as well as bound nonribosomal proteins. In some cases, the existence of these diverse ribosome populations has been verified by biochemical or structural methods. Furthermore, knockout or knockdown of RPs can diversify ribosome populations, while also affecting the translation of some mRNAs (but not others) with biological consequences. However, the effects on translation arising from depletion of diverse proteins can be highly similar, suggesting that there may be a more general defect in ribosome function or stability, perhaps arising from reduced ribosome numbers. Consistently, overall reduced ribosome numbers can differentially affect subclasses of mRNAs, necessitating controls for specificity. Moreover, in order to study the functional consequences of ribosome diversity, perturbations including affinity tags and knockouts are introduced, which can also affect the outcome of the experiment. Here we review the available literature to carefully evaluate whether the published data support functional diversification, defined as diverse ribosome populations differentially affecting translation of distinct mRNA (classes). Based on these observations and the commonly observed cellular responses to perturbations in the system, we suggest a set of important controls to validate functional diversity, which should include gain-of-function assays and the demonstration of inducibility under physiological conditions.
Collapse
Affiliation(s)
- Max B Ferretti
- Department of Integrative Structural and Molecular Biology, The Scripps Research Institute, Jupiter, Florida 33458, USA
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Katrin Karbstein
- Department of Integrative Structural and Molecular Biology, The Scripps Research Institute, Jupiter, Florida 33458, USA
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, Florida 33458, USA
| |
Collapse
|
21
|
Pfister AS. Emerging Role of the Nucleolar Stress Response in Autophagy. Front Cell Neurosci 2019; 13:156. [PMID: 31114481 PMCID: PMC6503120 DOI: 10.3389/fncel.2019.00156] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
Autophagy represents a conserved self-digestion program, which allows regulated degradation of cellular material. Autophagy is activated by cellular stress, serum starvation and nutrient deprivation. Several autophagic pathways have been uncovered, which either non-selectively or selectively target the cellular cargo for lysosomal degradation. Autophagy engages the coordinated action of various key regulators involved in the steps of autophagosome formation, cargo targeting and lysosomal fusion. While non-selective (macro)autophagy is required for removal of bulk material or recycling of nutrients, selective autophagy mediates specific targeting of damaged organelles or protein aggregates. By proper action of the autophagic machinery, cellular homeostasis is maintained. In contrast, failure of this fundamental process is accompanied by severe pathophysiological conditions. Hallmarks of neuropathological disorders are for instance accumulated, mis-folded protein aggregates and damaged mitochondria. The nucleolus has been recognized as central hub in the cellular stress response. It represents a sub-nuclear organelle essential for ribosome biogenesis and also functions as stress sensor by mediating cell cycle arrest or apoptosis. Thus, proper nucleolar function is mandatory for cell growth and survival. Here, I highlight the emerging role of nucleolar factors in the regulation of autophagy. Moreover, I discuss the nucleolar stress response as a novel signaling pathway in the context of autophagy, health and disease.
Collapse
Affiliation(s)
- Astrid S Pfister
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, Ulm University, Ulm, Germany
| |
Collapse
|
22
|
Wang H, Lu J, Kulkarni S, Zhang W, Gorka JE, Mandel JA, Goetzman ES, Prochownik EV. Metabolic and oncogenic adaptations to pyruvate dehydrogenase inactivation in fibroblasts. J Biol Chem 2019; 294:5466-5486. [PMID: 30755479 DOI: 10.1074/jbc.ra118.005200] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 02/05/2019] [Indexed: 01/15/2023] Open
Abstract
Eukaryotic cell metabolism consists of processes that generate available energy, such as glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation (Oxphos), and those that consume it, including macromolecular synthesis, the maintenance of ionic gradients, and cellular detoxification. By converting pyruvate to acetyl-CoA (AcCoA), the pyruvate dehydrogenase (PDH) complex (PDC) links glycolysis and the TCA cycle. Surprisingly, disrupting the connection between glycolysis and the TCA cycle by inactivation of PDC has only minor effects on cell replication. However, the molecular basis for this metabolic re-equilibration is unclear. We report here that CRISPR/Cas9-generated PDH-knockout (PDH-KO) rat fibroblasts reprogrammed their metabolism and their response to short-term c-Myc (Myc) oncoprotein overexpression. PDH-KO cells replicated normally but produced surprisingly little lactate. They also exhibited higher rates of glycolysis and Oxphos. In addition, PDH-KO cells showed altered cytoplasmic and mitochondrial pH, redox states, and mitochondrial membrane potential (ΔΨM). Conditionally activated Myc expression affected some of these parameters in a PDH-dependent manner. PDH-KO cells had increased oxygen consumption rates in response to glutamate, but not to malate, and were depleted in all TCA cycle substrates between α-ketoglutarate and malate despite high rates of glutaminolysis, as determined by flux studies with isotopically labeled glutamine. Malate and pyruvate were diverted to produce aspartate, thereby potentially explaining the failure to accumulate lactate. We conclude that PDH-KO cells maintain proliferative capacity by utilizing glutamine to supply high rates of AcCoA-independent flux through the bottom portion of the TCA cycle while accumulating pyruvate and aspartate that rescue their redox defects.
Collapse
Affiliation(s)
- Huabo Wang
- From the Section of Hematology/Oncology and
| | - Jie Lu
- From the Section of Hematology/Oncology and
| | | | | | | | | | - Eric S Goetzman
- Division of Medical Genetics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | - Edward V Prochownik
- From the Section of Hematology/Oncology and .,the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219, and.,the The Hillman Cancer Center of UPMC, Pittsburgh, Pennsylvania 15232
| |
Collapse
|
23
|
Collins JC, Ghalei H, Doherty JR, Huang H, Culver RN, Karbstein K. Ribosome biogenesis factor Ltv1 chaperones the assembly of the small subunit head. J Cell Biol 2018; 217:4141-4154. [PMID: 30348748 PMCID: PMC6279377 DOI: 10.1083/jcb.201804163] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/17/2018] [Accepted: 09/20/2018] [Indexed: 11/22/2022] Open
Abstract
Collins et al. use yeast genetics, biochemistry, and structure probing to dissect the role of the assembly factor Ltv1 in 40S ribosome maturation. Ribosomes from Ltv1-deficient cells have substoichiometric amounts of Rps10 and Asc1 and misfolded head rRNA, leading to defects in translational fidelity and ribosome-mediated RNA quality control, demonstrating a role for Ltv1 in chaperoning the assembly of the subunit head. The correct assembly of ribosomes from ribosomal RNAs (rRNAs) and ribosomal proteins (RPs) is critical, as indicated by the diseases caused by RP haploinsufficiency and loss of RP stoichiometry in cancer cells. Nevertheless, how assembly of each RP is ensured remains poorly understood. We use yeast genetics, biochemistry, and structure probing to show that the assembly factor Ltv1 facilitates the incorporation of Rps3, Rps10, and Asc1/RACK1 into the small ribosomal subunit head. Ribosomes from Ltv1-deficient yeast have substoichiometric amounts of Rps10 and Asc1 and show defects in translational fidelity and ribosome-mediated RNA quality control. These defects provide a growth advantage under some conditions but sensitize the cells to oxidative stress. Intriguingly, relative to glioma cell lines, breast cancer cells have reduced levels of LTV1 and produce ribosomes lacking RPS3, RPS10, and RACK1. These data describe a mechanism to ensure RP assembly and demonstrate how cancer cells circumvent this mechanism to generate diverse ribosome populations that can promote survival under stress.
Collapse
Affiliation(s)
- Jason C Collins
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL
| | - Homa Ghalei
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL
| | - Joanne R Doherty
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL
| | - Haina Huang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL
| | - Rebecca N Culver
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL
| | - Katrin Karbstein
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL
| |
Collapse
|
24
|
Translational Reprogramming Provides a Blueprint for Cellular Adaptation. Cell Chem Biol 2018; 25:1372-1379.e3. [PMID: 30174311 DOI: 10.1016/j.chembiol.2018.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/23/2018] [Accepted: 08/02/2018] [Indexed: 12/22/2022]
Abstract
Consistent with its location on the ribosome, reporter assays demonstrate a role for Rps26 in recognition of the Kozak sequence. Consequently, Rps26-deficient ribosomes display preference for mRNAs encoding components of the high salt and high pH stress response pathways and accumulate in yeast exposed to high salt or pH. Here we use this information to reprogram the cellular response to high salt by introducing point mutations in the Kozak sequence of key regulators for the cell wall MAP-kinase, filamentation, or DNA repair pathways. This stimulates their translation upon genetic, or salt-induced Rps26 depletion from ribosomes. Stress resistance assays show activation of the targeted pathways in an Rps26- and salt-dependent manner. Genomic alterations in diverse yeast populations indicate that analogous tuning occurs during adaptation to ecological niches. Thus, evolution shapes translational control across the genome by taking advantage of the accumulation of diverse ribosome populations.
Collapse
|
25
|
Wang H, Dolezal JM, Kulkarni S, Lu J, Mandel J, Jackson LE, Alencastro F, Duncan AW, Prochownik EV. Myc and ChREBP transcription factors cooperatively regulate normal and neoplastic hepatocyte proliferation in mice. J Biol Chem 2018; 293:14740-14757. [PMID: 30087120 DOI: 10.1074/jbc.ra118.004099] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/02/2018] [Indexed: 12/31/2022] Open
Abstract
Analogous to the c-Myc (Myc)/Max family of bHLH-ZIP transcription factors, there exists a parallel regulatory network of structurally and functionally related proteins with Myc-like functions. Two related Myc-like paralogs, termed MondoA and MondoB/carbohydrate response element-binding protein (ChREBP), up-regulate gene expression in heterodimeric association with the bHLH-ZIP Max-like factor Mlx. Myc is necessary to support liver cancer growth, but not for normal hepatocyte proliferation. Here, we investigated ChREBP's role in these processes and its relationship to Myc. Unlike Myc loss, ChREBP loss conferred a proliferative disadvantage to normal murine hepatocytes, as did the combined loss of ChREBP and Myc. Moreover, hepatoblastomas (HBs) originating in myc-/-, chrebp-/-, or myc-/-/chrebp-/- backgrounds grew significantly more slowly. Metabolic studies on livers and HBs in all three genetic backgrounds revealed marked differences in oxidative phosphorylation, fatty acid β-oxidation (FAO), and pyruvate dehydrogenase activity. RNA-Seq of livers and HBs suggested seven distinct mechanisms of Myc-ChREBP target gene regulation. Gene ontology analysis indicated that many transcripts deregulated in the chrebp-/- background encode enzymes functioning in glycolysis, the TCA cycle, and β- and ω-FAO, whereas those dysregulated in the myc-/- background encode enzymes functioning in glycolysis, glutaminolysis, and sterol biosynthesis. In the myc-/-/chrebp-/- background, additional deregulated transcripts included those involved in peroxisomal β- and α-FAO. Finally, we observed that Myc and ChREBP cooperatively up-regulated virtually all ribosomal protein genes. Our findings define the individual and cooperative proliferative, metabolic, and transcriptional roles for the "Extended Myc Network" under both normal and neoplastic conditions.
Collapse
Affiliation(s)
- Huabo Wang
- From the Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC
| | - James M Dolezal
- From the Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC
| | - Sucheta Kulkarni
- From the Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC
| | - Jie Lu
- From the Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC
| | - Jordan Mandel
- From the Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC
| | - Laura E Jackson
- From the Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC
| | | | | | - Edward V Prochownik
- From the Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC, .,the Pittsburgh Liver Center.,the Hillman Cancer Center of UPMC, and.,the Department of Microbiology and Molecular Genetics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15224
| |
Collapse
|
26
|
Wolpaw AJ, Dang CV. MYC-induced metabolic stress and tumorigenesis. Biochim Biophys Acta Rev Cancer 2018; 1870:43-50. [PMID: 29791870 DOI: 10.1016/j.bbcan.2018.05.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/25/2022]
Abstract
The MYC oncogene is commonly altered across human cancers. Distinct from the normal MYC proto-oncogene, which is under tight transcriptional, translational, and post-translational control, deregulated oncogenic MYC drives imbalanced, non-linear amplification of transcription that results in oncogenic 'stress.' The term 'stress' had been a euphemism for our lack of mechanistic understanding, but synthesis of many studies over the past decade provides a more coherent picture of oncogenic MYC driving metastable cellular states, particularly altered metabolism, that activate and depend on cellular stress response pathways to allow for continued growth and survival. Both deregulated metabolism and these stress response pathways represent vulnerabilities that can be exploited therapeutically.
Collapse
Affiliation(s)
- Adam J Wolpaw
- Divisions of Hematology and Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; The Wistar Institute, Philadelphia, PA 19104, USA
| | - Chi V Dang
- The Wistar Institute, Philadelphia, PA 19104, USA; Ludwig Institute for Cancer Research, New York, NY 10017, USA.
| |
Collapse
|
27
|
Dolezal JM, Dash AP, Prochownik EV. Diagnostic and prognostic implications of ribosomal protein transcript expression patterns in human cancers. BMC Cancer 2018. [PMID: 29530001 PMCID: PMC5848553 DOI: 10.1186/s12885-018-4178-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background Ribosomes, the organelles responsible for the translation of mRNA, are comprised of four rRNAs and ~ 80 ribosomal proteins (RPs). Although canonically assumed to be maintained in equivalent proportions, some RPs have been shown to possess differential expression across tissue types. Dysregulation of RP expression occurs in a variety of human diseases, notably in many cancers, and altered expression of some RPs correlates with different tumor phenotypes and patient survival. Little work has been done, however, to characterize overall patterns of RP transcript (RPT) expression in human cancers. Methods To investigate the impact of global RPT expression patterns on tumor phenotypes, we analyzed RPT expression of ~ 10,000 human tumors and over 700 normal tissues from The Cancer Genome Atlas (TCGA) using t-distributed stochastic neighbor embedding (t-SNE). Clusters of tumors identified by t-SNE were then analyzed with chi-squared and t-tests to compare phenotypic data, ANOVA to compare individual RPT expression, and Kaplan-Meier curves to assess survival differences. Results Normal tissues and cancers possess distinct and readily discernible RPT expression patterns that are independent of their absolute levels of expression. In tumors, RPT patterning is distinct from that of normal tissues, identifies heretofore unrecognized tumor subtypes, and in many cases correlates with molecular, pathological, and clinical features, including survival. Conclusions RPT expression patterns are both tissue-specific and tumor-specific. These could be used as a powerful and novel method of tumor classification, offering a potential clinical tool for prognosis and therapeutic stratification. Electronic supplementary material The online version of this article (10.1186/s12885-018-4178-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- James M Dolezal
- Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA.
| | - Arie P Dash
- Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | - Edward V Prochownik
- Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA.,Department of Microbiology and Molecular Genetics, The University of Pittsburgh Medical Center; The University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|