1
|
Jiang J, Xu L, Wang X, Wang M, Cao Y, Li R, Zheng K, Wu X. A comprehensive strategy for the development of a multi-epitope vaccine targeting Treponema pallidum, utilizing heat shock proteins, encompassing the entire process from vaccine design to in vitro evaluation of immunogenicity. Front Microbiol 2025; 16:1551437. [PMID: 40177491 PMCID: PMC11962626 DOI: 10.3389/fmicb.2025.1551437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/03/2025] [Indexed: 04/05/2025] Open
Abstract
Background Treponema pallidum, the causative spirochete of syphilis, is primarily transmitted through sexual contact and has emerged as a significant global health concern. To address this issue, enhancing diagnostic capabilities, strengthening public health interventions, and developing a safe and effective vaccine are critical strategies. Objective This study employed an immunoinformatics approach to design a vaccine with high immunogenic potential, targeting the heat shock proteins of T. pallidum. Methods Based on heat shock proteins of T. pallidum, we predicted B-cell, CTL, and HTL epitopes and all the selected epitopes were linked to construct a multi-epitope vaccine. Antigenicity, toxicity, and allergenicity of epitopes were checked by VaxiJen 2.0, AllerTOP v2.0, and ToxinPred servers. After constructing the multi-epitope vaccine, we subsequently predicted its secondary and tertiary protein structures. After refining and validating the modeled structure, we utilized advanced computational approaches, including molecular docking and dynamic simulations, to evaluate the binding affinity, compatibility, and stability of the vaccine-adjuvant complexes. Eventually, in silico cloning was conducted to optimize protein expression and production. Results The multi-epitope subunit vaccine we developed was constructed by seven cytotoxic T lymphocyte epitopes, five helper T lymphocyte epitopes, four B cell epitopes, and adjuvant β-defensin. An adjuvant was used to enhance immune responses, all of which were linked to one another using GPGPG, AAY, and KK linkers, respectively. The population coverage of the designed vaccine was 94.41% worldwide. Molecular docking and MD simulations indicated strong binding interactions with TLR1/2, TLR-2 and TLR-4 in a stable vaccine-receptor complex. The final designed vaccine, composed of 502 amino acids, theoretically exhibits high antigenicity and immunity, capable of inducing both humoral and cellular immune responses. Conclusion The vaccine developed in this study theoretically represents a safe and potent multi-epitope prophylactic strategy against T. pallidum, subject to further experimental validation to ascertain its actual protective efficacy.
Collapse
Affiliation(s)
- Jing Jiang
- The First Affiliated Hospital of Hunan Traditional Chinese Medical College (Hunan Province Directly Affiliated TCM Hospital), Zhuzhou, China
- Department of Clinical Laboratory, Affiliated Hengyang Hospital of Hunan Normal University & Hengyang Central Hospital, Hengyang, China
| | - Linglan Xu
- The First Affiliated Hospital of Hunan Traditional Chinese Medical College (Hunan Province Directly Affiliated TCM Hospital), Zhuzhou, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, China
| | - Xuefeng Wang
- Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
| | - Ming Wang
- The First Affiliated Hospital of Hunan Traditional Chinese Medical College (Hunan Province Directly Affiliated TCM Hospital), Zhuzhou, China
| | - Youde Cao
- Department of Clinical Laboratory, Hunan Provincial People’s Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Ranhui Li
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, China
| | - Kang Zheng
- Department of Clinical Laboratory, Affiliated Hengyang Hospital of Hunan Normal University & Hengyang Central Hospital, Hengyang, China
| | - Xian Wu
- The First Affiliated Hospital of Hunan Traditional Chinese Medical College (Hunan Province Directly Affiliated TCM Hospital), Zhuzhou, China
| |
Collapse
|
2
|
Wang XT, Xie L, Hu YT, Zhao YY, Wang RY, Yan Y, Zhu XZ, Liu LL. T. pallidum achieves immune evasion by blocking autophagic flux in microglia through hexokinase 2. Microb Pathog 2025; 199:107216. [PMID: 39662785 DOI: 10.1016/j.micpath.2024.107216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/30/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
Increasing evidence suggests that immune cell clearance is closely linked to cellular metabolism. Neurosyphilis, a severe neurological disorder caused by Treponema pallidum (T. pallidum) infection, significantly impacts the brain. Microglia, the innate immune cells of the central nervous system, play a critical role in neuroinflammation and immune surveillance. However, the inability of the nervous system to fully eliminate T. pallidum points to a compromised clearance function of microglia. This study investigates how T. pallidum alters the immune clearance ability of microglia and explores the underlying metabolic mechanisms. RNA sequencing (RNA seq), LC-MS metabolomics, and XFe96 Seahorse assays were employed to assess metabolic activity in microglial cells. Western blotting, qPCR, and immunofluorescence imaging were utilized to evaluate autophagy flux and extent of T. pallidum infections. Transcriptomic analysis revealed that T. pallidum alters the transcription expression of key glycolytic enzymes, including hexokinase 1 (HK1), hexokinase 2 (HK2), and lactate dehydrogenase A (LDHA), leading to significant metabolic dysregulation. Specifically, metabolomic analysis showed reduced levels of phosphoenolpyruvate and citrate, while lactate production was notably increased. Functional assays confirmed that T. pallidum impairs glycolytic activity in microglial, as evidenced by decreased glycolytic flux, glycolytic reserve capacity, and maximum glycolytic capacity. Moreover, our results indicate that HK2, a crucial glycolytic enzyme, is closely associated with the autophagy. T. pallidum infection inhibits HK2 expression, which in turn suppresses autophagic flux by reducing the formation of lysosome-associated membrane protein 2 (LAMP2) and disrupting autophagosome-lysosome fusion. These findings suggest that T. pallidum hijacks microglial metabolic pathways, specifically glycolysis, to evade immune clearance. By inhibiting the glycolytic enzyme HK2, T. pallidum modulates autophagy and enhances immune evasion, providing a novel insight into the pathogenesis of neurosyphilis. This study paves the way for further investigations into the role of metabolic reprogramming in the immune escape mechanisms of T. pallidum.
Collapse
Affiliation(s)
- Xiao-Tong Wang
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin Key Laboratory of Digestive Cancer, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lin Xie
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yun-Ting Hu
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yuan-Yi Zhao
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Ruo-Ying Wang
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Ya Yan
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiao-Zhen Zhu
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, 361004, China; Xiamen Clinical Laboratory Quality Control Center, Xiamen, Fujian, China
| | - Li-Li Liu
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, 361004, China; Xiamen Clinical Laboratory Quality Control Center, Xiamen, Fujian, China.
| |
Collapse
|
3
|
Yang L, Zhang X, Chen W, Seña AC, Zheng H, Jiang Y, Zhao P, Chen R, Wang L, Ke W, Salazar JC, Parr JB, Tucker JD, Hawley KL, Caimano MJ, Hennelly CM, Aghakanian F, Bettin EB, Zhang F, Chen JS, Moody MA, Radolf JD, Yang B. Clinical Presentation of Early Syphilis and Genomic Sequences of Treponema pallidum Strains in Patient Specimens and Isolates Obtained by Rabbit Inoculation. J Infect Dis 2024; 230:e1322-e1333. [PMID: 38884588 PMCID: PMC11646597 DOI: 10.1093/infdis/jiae322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND The global resurgence of syphilis necessitates vaccine development. METHODS We collected ulcer exudates and blood from 17 participants with primary syphilis (PS) and skin biopsies and blood from 51 patients with secondary syphilis (SS) in Guangzhou, China, for Treponema pallidum subsp pallidum (TPA) quantitative polymerase chain reaction, whole genome sequencing (WGS), and isolation of TPA in rabbits. RESULTS TPA DNA was detected in 15 of 17 ulcer exudates and 3 of 17 blood PS specimens. TPA DNA was detected in 50 of 51 SS skin biopsies and 27 of 51 blood specimens. TPA was isolated from 47 rabbits with success rates of 71% (12/17) and 69% (35/51), respectively, from ulcer exudates and SS bloods. We obtained paired genomic sequences from 24 clinical samples and corresponding rabbit isolates. Six SS14- and 2 Nichols-clade genome pairs contained rare discordances. Forty-one of the 51 unique TPA genomes clustered within SS14 subgroups largely from East Asia, while 10 fell into Nichols C and E subgroups. CONCLUSIONS Our TPA detection rate was high from PS ulcer exudates and SS skin biopsies and over 50% from SS blood, with TPA isolation in more than two-thirds of samples. Our results support the use of WGS from rabbit isolates to inform vaccine development.
Collapse
Affiliation(s)
- Ligang Yang
- Dermatology Hospital, Southern Medical University
| | | | - Wentao Chen
- Dermatology Hospital, Southern Medical University
- Guangzhou Key Laboratory for Sexually Transmitted Diseases Control, Guangzhou, China
| | - Arlene C Seña
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill
| | - Heping Zheng
- Dermatology Hospital, Southern Medical University
- Guangzhou Key Laboratory for Sexually Transmitted Diseases Control, Guangzhou, China
| | - Yinbo Jiang
- Dermatology Hospital, Southern Medical University
- Guangzhou Key Laboratory for Sexually Transmitted Diseases Control, Guangzhou, China
| | - Peizhen Zhao
- Dermatology Hospital, Southern Medical University
| | - Rongyi Chen
- Dermatology Hospital, Southern Medical University
| | - Liuyuan Wang
- Dermatology Hospital, Southern Medical University
| | - Wujian Ke
- Dermatology Hospital, Southern Medical University
- Guangzhou Key Laboratory for Sexually Transmitted Diseases Control, Guangzhou, China
| | - Juan C Salazar
- Department of Pediatrics, UConn School of Medicine, Farmington
- Connecticut Children’s Research Institute, Connecticut Children's, Hartford
| | - Jonathan B Parr
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill
| | - Joseph D Tucker
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill
| | - Kelly L Hawley
- Department of Pediatrics, UConn School of Medicine, Farmington
- Connecticut Children’s Research Institute, Connecticut Children's, Hartford
- Department of Medicine, UConn School of Medicine, Farmington
| | - Melissa J Caimano
- Department of Pediatrics, UConn School of Medicine, Farmington
- Connecticut Children’s Research Institute, Connecticut Children's, Hartford
- Department of Medicine, UConn School of Medicine, Farmington
| | - Christopher M Hennelly
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill
| | - Farhang Aghakanian
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill
| | | | - Feifei Zhang
- Dermatology Hospital, Southern Medical University
| | - Jane S Chen
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill
| | - M Anthony Moody
- Departments of Pediatrics and Integrative Immunobiology, Duke University, Durham, North Carolina
| | - Justin D Radolf
- Department of Pediatrics, UConn School of Medicine, Farmington
- Connecticut Children’s Research Institute, Connecticut Children's, Hartford
- Department of Medicine, UConn School of Medicine, Farmington
| | - Bin Yang
- Dermatology Hospital, Southern Medical University
| |
Collapse
|
4
|
Li W, Luo X, Zheng XQ, Li QL, Li Z, Meng QQ, Zeng YL, Lin Y, Yang TC. Treponema pallidum protein Tp0136 promotes angiogenesis to facilitate the dissemination of Treponema pallidum. Emerg Microbes Infect 2024; 13:2382236. [PMID: 39017656 PMCID: PMC11299452 DOI: 10.1080/22221751.2024.2382236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/18/2024]
Abstract
The incompletely eliminated Treponema pallidum (T. pallidum) during primary syphilis chancre infection can result in the progression of secondary, tertiary, or latent syphilis in individuals, suggesting that T. pallidum has successfully evaded the immune response and spread to distant sites. The mechanism underlying the dissemination of T. pallidum is unclear. Here, a syphilitic rabbit model dorsal-injected with recombinant Tp0136 protein or Tp0136 antibody subcutaneously was used to demonstrate the role of Tp0136 protein in promoting the dissemination of T. pallidum to the testis and angiogenesis in vivo; vascular endothelial cell line HMEC-1 was employed to display that Tp0136 protein enhances the angiogenesis. Furthermore, the three-dimensional microfluidic angiogenesis system showed that the angiogenesis would heighten vascular permeability. Then transcriptome sequencing analysis, in conjunction with cell-level validation, elucidated the critical role of the PI3K-AKT signaling pathway in the promotion of angiogenesis by Tp0136 protein, resulting in heightened permeability. These findings elucidate the strategy employed by T. pallidum in evading immune clearance.
Collapse
Affiliation(s)
- Wei Li
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Xi Luo
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Xin-Qi Zheng
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Qiu-Ling Li
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Ze Li
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Qing-Qi Meng
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Yan-Li Zeng
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Yu Lin
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
- Xiamen Clinical Laboratory Quality Control Center, Xiamen, People’s Republic of China
| | - Tian-Ci Yang
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
- Xiamen Clinical Laboratory Quality Control Center, Xiamen, People’s Republic of China
| |
Collapse
|
5
|
He Y, Yi DY, Pan L, Ye WM, Xie L, Zheng XQ, Liu D, Yang TC, Lin Y. Treponema pallidum-induced prostaglandin E2 secretion in skin fibroblasts leads to neuronal hyperpolarization: A cause of painless ulcers. J Eur Acad Dermatol Venereol 2024; 38:1179-1190. [PMID: 38376245 DOI: 10.1111/jdv.19902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/25/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Primary syphilis is characterized by painless ulcerative lesions in the genitalia, the aetiology of painless remains elusive. OBJECTIVES To investigate the role of Treponema pallidum in painless ulcer of primary syphilis, and the mechanisms underlying painless ulcers caused by T. pallidum. METHODS An experimental rabbit model of primary syphilis was established to investigate its effects on peripheral nerve tissues. Human skin fibroblasts were used to examine the role of T. pallidum in modulating neurotransmitters associated with pain and to explore the signalling pathways related to neurotransmitter secretion by T. pallidum in vitro. RESULTS Treponema pallidum infection did not directly lead to neuronal damage or interfere with the neuronal resting potential. Instead, it facilitated the secretion of prostaglandin E2 (PGE2) through endoplasmic reticulum stress in both rabbit and human skin fibroblasts, and upregulation of PGE2 induced the hyperpolarization of neurones. Moreover, the IRE1α/COX-2 signalling pathway was identified as the underlying mechanism by which T. pallidum induced the production of PGE2 in human skin fibroblasts. CONCLUSION Treponema pallidum promotes PGE2 secretion in skin fibroblasts, leading to the excitation of neuronal hyperpolarization and potentially contributing to the pathogenesis of painless ulcers in syphilis.
Collapse
Affiliation(s)
- Y He
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Department of Medical Laboratory, The Second Affiliated Hospital of Xiamen Medical College, Xiamen Medical College, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - D-Y Yi
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - L Pan
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - W-M Ye
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - L Xie
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - X-Q Zheng
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - D Liu
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - T-C Yang
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Y Lin
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
6
|
Zvenigorosky V, Gonzalez A, Veith G, Close-Koenig T, Cannet C, Fausser JL, Wenger A, Toutous-Trellu L, Keyser C, Bonah C. Evaluation of whole-genome enrichment and sequencing of T. pallidum from FFPE samples after 75 years. iScience 2024; 27:108651. [PMID: 38155769 PMCID: PMC10753063 DOI: 10.1016/j.isci.2023.108651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/13/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023] Open
Abstract
The recent developments in genomic sequencing have permitted the publication of many new complete genome sequences of Treponema pallidum pallidum, the bacterium responsible for syphilis, which has led to a new understanding of its phylogeny and diversity. However, few archived samples are available, because of the degradability of the bacterium and the difficulties in preservation. We present a complete genome obtained from a Formalin-Fixed Paraffin-Embedded (FFPE) organ sample from 1947, kept at the Strasbourg Faculty of Medicine. This is the preliminary, proof-of concept study of this collection/biobank of more than 1.5 million FFPE samples and the evaluation of the feasibility of genomic analyses. We demonstrate here that even degraded DNA from fragile bacteria can be recovered from 75-year-old FFPE samples and therefore propose that such collections as this one can function as sources of biological material for genetic studies of pathogens, cancer, or even the historical human population itself.
Collapse
Affiliation(s)
| | | | - Gilles Veith
- Strasbourg Institute of Legal Medicine, Strasbourg, France
| | | | | | | | - Alexandre Wenger
- Interfaculty Centre for Bioethics and Medical Humanities, University of Geneva, Geneva, Switzerland
| | | | - Christine Keyser
- Strasbourg Institute of Legal Medicine, Strasbourg, France
- BABEL Laboratory, CNRS UMR 8045, Paris, France
| | | |
Collapse
|
7
|
Yang L, Zhang X, Chen W, Seña AC, Zheng H, Jiang Y, Zhao P, Chen R, Wang L, Ke W, Salazar JC, Parr JB, Tucker JD, Hawley KL, Caimano MJ, Hennelly CM, Aghakanian F, Zhang F, Chen JS, Moody MA, Radolf JD, Yang B. Early syphilis in Guangzhou, China: presentation, molecular detection of Treponema pallidum , and genomic sequences in clinical specimens and isolates obtained by rabbit infectivity testing. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.17.23297169. [PMID: 37905017 PMCID: PMC10614984 DOI: 10.1101/2023.10.17.23297169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Background The global resurgence of syphilis requires novel prevention strategies. Whole genome sequencing (WGS) of Treponema pallidum ( TPA ) using different specimen types is essential for vaccine development. Methods Patients with primary (PS) and secondary (SS) syphilis were recruited in Guangzhou, China. We collected ulcer exudates and blood from PS participants, and skin biopsies and blood from SS participants for TPA polA polymerase chain reaction (PCR); ulcer exudates and blood were also used to isolate TPA strains by rabbit infectivity testing (RIT). TPA WGS was performed on 52 ulcer exudates and biopsy specimens and 25 matched rabbit isolates. Results We enrolled 18 PS and 51 SS participants from December 2019 to March 2022. Among PS participants, TPA DNA was detected in 16 (89%) ulcer exudates and three (17%) blood specimens. Among SS participants, TPA DNA was detected in 50 (98%) skin biopsies and 27 (53%) blood specimens. TP A was isolated from 48 rabbits, with a 71% (12/17) success rate from ulcer exudates and 69% (36/52) from SS bloods. Twenty-three matched SS14 clade genomes were virtually identical, while two Nichols clade pairs had discordant tprK sequences. Forty-two of 52 unique TPA genomes clustered in an SS14 East Asia subgroup, while ten fell into two East Asian Nichols subgroups. Conclusions Our TPA detection rate was high from PS ulcer exudates and SS skin biopsies and over 50% from SS whole blood, with RIT isolation in over two-thirds of samples. Our results support the use of WGS from rabbit isolates to inform vaccine development. Summary We performed Treponema pallidum molecular detection and genome sequencing from multiple specimens collected from early syphilis patients and isolates obtained by rabbit inoculation. Our results support the use of whole genome sequencing from rabbit isolates to inform syphilis vaccine development.
Collapse
|
8
|
Liu D, Chen R, He Y, Wang YJ, Lin LR, Liu LL, Yang TC, Tong ML. Longitudinal Variations in the tprK Gene of Treponema pallidum in an Amoy Strain-Infected Rabbit Model. Microbiol Spectr 2023; 11:e0106723. [PMID: 37347187 PMCID: PMC10433980 DOI: 10.1128/spectrum.01067-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Abstract
Heterogeneous tprK sequences have been hypothesized to be an important factor for persistent infection of Treponema pallidum subsp. pallidum (T. pallidum) in humans. Previous research has only explored tprK diversity using a rabbit model infected with almost clonal isolates, which is inconsistent with the fact that infected human isolates contain multiple heterogeneous tprK sequences. Here, we used the T. pallidum Amoy strain with heterogeneous tprK sequences to establish a rabbit infection model and explore longitudinal variations in the tprK gene under normal infection, immunosuppression treatment, and benzathine penicillin G (BPG) treatment using next-generation sequencing. The diversity of the tprK gene was high in all three groups but was highest in the control group and lowest in the BPG group. Interestingly, the overall diversity of tprK in all three groups decreased during infection, exhibiting a "more to less" trend, indicating that survival selection may be an important factor affecting tprK variation in the later infection stage. BPG treatment appeared to reduce the diversity of tprK but increased the frequency of predominant sequence changes, which might facilitate the escape of T. pallidum from the host immune clearance. Furthermore, the original predominant V region sequence did not disappear with disease progression but retained a relatively high proportion within the population, suggesting a new direction for tprK-related vaccine research. This study provides insights into longitudinal variations within the highly heterogeneous tprK gene sequences of T. pallidum and will contribute to further exploration of the pathogenesis of syphilis. IMPORTANCE The tprK variations are an important factor in persistent T. pallidum infection. A nearly clonal isolate has been used previously to investigate the mechanism of tprK gene variations; however, clinical T. pallidum isolates in infected humans exhibit multiple heterogeneous tprK sequences. Here, we use next-generation sequencing to explore longitudinal variations in the tprK gene under normal infection and immunosuppression and benzathine penicillin G treatment in a rabbit model infected with the Amoy strain with heterogeneous tprK sequences. The overall diversity of tprK in all three groups was high and decreased during infection, exhibiting a "more to less" trend. Benzathine penicillin G treatment reduced the diversity of tprK but increased the frequency of predominant sequence changes. Moreover, the original predominant V region sequence did not disappear as the disease progressed but remained at a relatively high proportion within the population. The research results give us a new understanding about tprK variation.
Collapse
Affiliation(s)
- Dan Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Rui Chen
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Yun He
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Yong-jing Wang
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Rong Lin
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Li Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Tian-Ci Yang
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Man-Li Tong
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
9
|
Yang L, Fu Y, Li S, Liu C, Liu D. Analysis of Treponema pallidum DNA and CXCL13 in Cerebrospinal Fluid in HIV-Negative Syphilis Patients. Infect Drug Resist 2022; 15:7791-7798. [PMID: 36600952 PMCID: PMC9807064 DOI: 10.2147/idr.s394581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/16/2022] [Indexed: 12/30/2022] Open
Abstract
Purpose Neurosyphilis (NS) is a chronic infectious disease associated with Treponema pallidum subsp. pallidum (TP) infection of the central nervous system. The purpose of this study was to offer evidence for the diagnosis and treatment of NS by revealing the detection of TP DNA and CXCL13 concentration in the cerebrospinal fluid (CSF) of HIV-negative syphilis patients. Patients and Methods This study included 75 syphilis patients. The frequency of TP invasion into the CSF was detected by nested PCR. ELISA was performed to detect CSF CXCL13 concentrations, and ROC analysis was performed to assess diagnostic accuracy. Sociodemographic data, clinical symptoms, and laboratory indices of patients were collected. CSF CXCL13 levels and clinical characteristics of syphilis patients were investigated retrospectively. Results The detection rate of CSF DNA of TP by nested PCR was 5.3% and 16.7% in HIV-negative syphilis patients and NS patients, respectively. There was a significant difference between the NS and non-NS groups in terms of neurological symptoms, CSF TPPA, CSF TRUST, CSF nucleated cells, CSF protein, and CSF CXCL13 levels (P<0.05). ROC curve analysis showed that the AUC for CSF CXCL13 levels was 0.906 (95% CI 0.832-0.981, P <0.0001), with an optimal critical value of 57.85 pg/mL and sensitivity and specificity of 88.89% and 78.95%, respectively. Conclusion Nested PCR can be used as an auxiliary diagnosis of NS, and CSF CXCL13 >60 pg/mL has high sensitivity and specificity for NS patients and non-NS patients. CXCL13 may be a useful marker to distinguish NS from non-NS syphilis in HIV-negative patients.
Collapse
Affiliation(s)
- Ling Yang
- Department of Dermatology and Venereology, First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Yu Fu
- Department of Dermatology and Venereology, First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Si Li
- Department of Dermatology and Venereology, First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Chang Liu
- Department of Dermatology and Venereology, First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Donghua Liu
- Department of Dermatology and Venereology, First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China,Correspondence: Donghua Liu, Department of Dermatology and Venereology, First Affiliated Hospital of Guangxi Medical University, No. 6, Shuang Yong Road, Nanning, 530021, People’s Republic of China, Tel +86 13877113417, Email
| |
Collapse
|
10
|
Li QL, Xu QY, Gao K, Zhang HL, Liu LL, Lin LR, Niu JJ, Yang TC. Membrane location of cardiolipin antigen in Treponema pallidum: further study on the origin of nontreponemal antibodies. Future Microbiol 2022; 17:873-886. [PMID: 35833787 DOI: 10.2217/fmb-2021-0245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The present study examined the membrane location of cardiolipin antigen in treponemes. Materials & methods: The authors used different methods to disrupt the outer membrane of treponemes, detected the location of the cardiolipin antigen and analyzed the immune response in rabbits immunized with various antigens. Results: All organisms were labeled with nontreponemal antibodies on immunoelectron and fluorescence microscopy, except the citrate buffer-treated group, which is a method leading to relatively complete removal. Except for citrate buffer-treated spirochetes, all treponemes produced low-titer, nontreponemal antibodies in immunized rabbits. Conclusion: These findings indicated that the cardiolipin antigen was localized in the outer membrane of spirochetes. This study provided further evidence of the origin of nontreponemal antibodies during Treponema pallidum infection.
Collapse
Affiliation(s)
- Qiu-Ling Li
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Qiu-Yan Xu
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Kun Gao
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Hui-Lin Zhang
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Li Liu
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Rong Lin
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Jian-Jun Niu
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Tian-Ci Yang
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
11
|
Chen H, Tong ML, Liu LL, Lin LR, Yang TC. The whole process of macrophage-Treponema pallidum interactions: Opsonic phagocytosis, nonopsonic phagocytosis and active invasion. Int Immunopharmacol 2022; 107:108657. [PMID: 35240382 DOI: 10.1016/j.intimp.2022.108657] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 11/05/2022]
Abstract
Despite the acknowledged central role of opsonophagocytosis in the process of syphilis, the interaction between Treponema pallidum and human macrophages during nonopsonophagocytosis and active invasion remains controversial. To investigate whether nonopsonic phagocytosis and active invasion, similar to opsonic phagocytosis, also participate in the process of macrophage-T. pallidum interactions, monocyte-derived macrophages were used to study the interactions of T. pallidum and macrophages in the presence of nonsyphytic or syphilitic serum and in the absence of serum in vitro using indirect immunofluorescence and flow cytometry to quantitate treponeme-macrophage interactions. The results showed that macrophages phagocytose T. pallidum under both nonopsonizing conditions (no serum or normal human serum (NHS)) and in the presence of opsonizing serum (secondary syphilitic serum (SSS)) in a time-dependent manner. The percentages of spirochete-positive macrophages in the SSS group were higher than those in the NHS and no-serum groups. Blocking FcγR or inactivating complement caused a significant decrease in the percentage of spirochete-positive macrophages in the SSS group but did not cause a decrease in the percentages of spirochete-positive macrophages in the NHS and no-serum groups. In addition, after inhibiting macrophage phagocytosis, approximately 30% of macrophages internalized spirochetes, verifying that T. pallidum actively penetrated macrophages rather than was ingested by them. This study provides evidence that opsonic phagocytosis, nonopsonic phagocytosis and active invasion are all active during T. pallidum-macrophage interactions and reveals a process of treponeme-macrophage interactions in T. pallidum pathogenesis.
Collapse
Affiliation(s)
- Hong Chen
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Man-Li Tong
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Li Liu
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Rong Lin
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China.
| | - Tian-Ci Yang
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
12
|
Beale MA, Marks M, Cole MJ, Lee MK, Pitt R, Ruis C, Balla E, Crucitti T, Ewens M, Fernández-Naval C, Grankvist A, Guiver M, Kenyon CR, Khairullin R, Kularatne R, Arando M, Molini BJ, Obukhov A, Page EE, Petrovay F, Rietmeijer C, Rowley D, Shokoples S, Smit E, Sweeney EL, Taiaroa G, Vera JH, Wennerås C, Whiley DM, Williamson DA, Hughes G, Naidu P, Unemo M, Krajden M, Lukehart SA, Morshed MG, Fifer H, Thomson NR. Global phylogeny of Treponema pallidum lineages reveals recent expansion and spread of contemporary syphilis. Nat Microbiol 2021; 6:1549-1560. [PMID: 34819643 PMCID: PMC8612932 DOI: 10.1038/s41564-021-01000-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 10/20/2021] [Indexed: 12/26/2022]
Abstract
Syphilis, which is caused by the sexually transmitted bacterium Treponema pallidum subsp. pallidum, has an estimated 6.3 million cases worldwide per annum. In the past ten years, the incidence of syphilis has increased by more than 150% in some high-income countries, but the evolution and epidemiology of the epidemic are poorly understood. To characterize the global population structure of T. pallidum, we assembled a geographically and temporally diverse collection of 726 genomes from 626 clinical and 100 laboratory samples collected in 23 countries. We applied phylogenetic analyses and clustering, and found that the global syphilis population comprises just two deeply branching lineages, Nichols and SS14. Both lineages are currently circulating in 12 of the 23 countries sampled. We subdivided T. p. pallidum into 17 distinct sublineages to provide further phylodynamic resolution. Importantly, two Nichols sublineages have expanded clonally across 9 countries contemporaneously with SS14. Moreover, pairwise genome analyses revealed examples of isolates collected within the last 20 years from 14 different countries that had genetically identical core genomes, which might indicate frequent exchange through international transmission. It is striking that most samples collected before 1983 are phylogenetically distinct from more recently isolated sublineages. Using Bayesian temporal analysis, we detected a population bottleneck occurring during the late 1990s, followed by rapid population expansion in the 2000s that was driven by the dominant T. pallidum sublineages circulating today. This expansion may be linked to changing epidemiology, immune evasion or fitness under antimicrobial selection pressure, since many of the contemporary syphilis lineages we have characterized are resistant to macrolides.
Collapse
Affiliation(s)
- Mathew A Beale
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, UK.
| | - Michael Marks
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Hospital for Tropical Diseases, University College London Hospitals NHS Foundation Trust, London, UK
| | - Michelle J Cole
- HCAI, Fungal, AMR, AMU and Sepsis Division, UK Health Security Agency, London, UK
| | - Min-Kuang Lee
- British Columbia Centre for Disease Control, Public Health Laboratory, Vancouver, British Columbia, Canada
| | - Rachel Pitt
- HCAI, Fungal, AMR, AMU and Sepsis Division, UK Health Security Agency, London, UK
| | - Christopher Ruis
- Molecular Immunity Unit, MRC-Laboratory of Molecular Biology, Department of Medicine, University of Cambridge, Cambridge, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Eszter Balla
- Bacterial STIs Reference Laboratory, Department of Bacteriology, National Public Health Centre, Budapest, Hungary
| | - Tania Crucitti
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Michael Ewens
- Brotherton Wing Clinic, Brotherton Wing, Leeds General Infirmary, Leeds, UK
| | - Candela Fernández-Naval
- Microbiology Department, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Grankvist
- National Reference Laboratory for STIs, Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Malcolm Guiver
- Laboratory Network, Manchester, UK Health Security Agency, Manchester Royal Infirmary, Manchester, UK
| | - Chris R Kenyon
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Rafil Khairullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Ranmini Kularatne
- Centre for HIV and STI, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Maider Arando
- STI Unit Vall d'Hebron-Drassanes, Infectious Diseases Department, Hospital Vall d'Hebron, Barcelona, Spain
| | - Barbara J Molini
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Andrey Obukhov
- Tuvan Republican Skin and Venereal Diseases Dispensary, Ministry of Health of Tuva Republic, Kyzyl, Russia
| | - Emma E Page
- Virology Department, Old Medical School, Leeds Teaching Hospitals Trust, Leeds, UK
| | - Fruzsina Petrovay
- Bacterial STIs Reference Laboratory, Department of Bacteriology, National Public Health Centre, Budapest, Hungary
| | | | | | | | - Erasmus Smit
- Clinical Microbiology Department, Queen Elizabeth Hospital, Birmingham, UK
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Emma L Sweeney
- The University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - George Taiaroa
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jaime H Vera
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Christine Wennerås
- National Reference Laboratory for STIs, Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - David M Whiley
- The University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Pathology Queensland Central Laboratory, Brisbane, Queensland, Australia
| | - Deborah A Williamson
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Gwenda Hughes
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Prenilla Naidu
- Alberta Precision Laboratories, Edmonton, Alberta, Canada
- Department of Laboratory Medicine and Pathology, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and other Sexually Transmitted Infections, National Reference Laboratory for STIs, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Mel Krajden
- British Columbia Centre for Disease Control, Public Health Laboratory, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sheila A Lukehart
- Departments of Medicine/Infectious Diseases and Global Health, University of Washington, Seattle, WA, USA
| | - Muhammad G Morshed
- British Columbia Centre for Disease Control, Public Health Laboratory, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Helen Fifer
- Blood Safety, Hepatitis, STI and HIV Division, UK Health Security Agency, London, UK
| | - Nicholas R Thomson
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, UK.
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
13
|
Pla-Díaz M, Sánchez-Busó L, Giacani L, Šmajs D, Bosshard PP, Bagheri HC, Schuenemann VJ, Nieselt K, Arora N, González-Candelas F. Evolutionary processes in the emergence and recent spread of the syphilis agent, Treponema pallidum. Mol Biol Evol 2021; 39:6427636. [PMID: 34791386 PMCID: PMC8789261 DOI: 10.1093/molbev/msab318] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The incidence of syphilis has risen worldwide in the last decade in spite of being an easily treated infection. The causative agent of this sexually transmitted disease is the bacterium Treponema pallidum subspecies pallidum (TPA), very closely related to subsp. pertenue (TPE) and endemicum (TEN), responsible for the human treponematoses yaws and bejel, respectively. Although much focus has been placed on the question of the spatial and temporary origins of TPA, the processes driving the evolution and epidemiological spread of TPA since its divergence from TPE and TEN are not well understood. Here, we investigate the effects of recombination and selection as forces of genetic diversity and differentiation acting during the evolution of T. pallidum subspecies. Using a custom-tailored procedure, named phylogenetic incongruence method, with 75 complete genome sequences, we found strong evidence for recombination among the T. pallidum subspecies, involving 12 genes and 21 events. In most cases, only one recombination event per gene was detected and all but one event corresponded to intersubspecies transfers, from TPE/TEN to TPA. We found a clear signal of natural selection acting on the recombinant genes, which is more intense in their recombinant regions. The phylogenetic location of the recombination events detected and the functional role of the genes with signals of positive selection suggest that these evolutionary processes had a key role in the evolution and recent expansion of the syphilis bacteria and significant implications for the selection of vaccine candidates and the design of a broadly protective syphilis vaccine.
Collapse
Affiliation(s)
- Marta Pla-Díaz
- Unidad Mixta Infección y Salud Pública FISABIO/Universidad de Valencia-I2SysBio, Spain.,CIBER in Epidemiology and Public Health, Spain
| | - Leonor Sánchez-Busó
- Genomics and Health Area, Foundation for the Promotion of Health and Biomedical Research in the Valencian Community (FISABIO-Public Health), Valencia, Spain
| | - Lorenzo Giacani
- Department of Medicine, Division of Allergy and Infectious Diseases, and Department of Global Health, University of Washington, Seattle, WA, USA
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Czech Republic
| | - Philipp P Bosshard
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | | | - Kay Nieselt
- Center for Bioinformatics, University of Tübingen, Germany
| | - Natasha Arora
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Switzerland.,Zurich Institute of Forensic Medicine, University of Zurich, Switzerland
| | - Fernando González-Candelas
- Unidad Mixta Infección y Salud Pública FISABIO/Universidad de Valencia-I2SysBio, Spain.,CIBER in Epidemiology and Public Health, Spain.,Genomics and Health Area, Foundation for the Promotion of Health and Biomedical Research in the Valencian Community (FISABIO-Public Health), Valencia, Spain
| |
Collapse
|
14
|
Lin MJ, Haynes AM, Addetia A, Lieberman NAP, Phung Q, Xie H, Nguyen TV, Molini BJ, Lukehart SA, Giacani L, Greninger AL. Longitudinal TprK profiling of in vivo and in vitro-propagated Treponema pallidum subsp. pallidum reveals accumulation of antigenic variants in absence of immune pressure. PLoS Negl Trop Dis 2021; 15:e0009753. [PMID: 34492041 PMCID: PMC8480903 DOI: 10.1371/journal.pntd.0009753] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/29/2021] [Accepted: 08/23/2021] [Indexed: 11/25/2022] Open
Abstract
Immune evasion by Treponema pallidum subspecies pallidum (T. pallidum) has been attributed to antigenic variation of its putative outer-membrane protein TprK. In TprK, amino acid diversity is confined to seven variable (V) regions, and generation of sequence diversity within the V regions occurs via a non-reciprocal segmental gene conversion mechanism where donor cassettes recombine into the tprK expression site. Although previous studies have shown the significant role of immune selection in driving accumulation of TprK variants, the contribution of baseline gene conversion activity to variant diversity is less clear. Here, combining longitudinal tprK deep sequencing of near clonal Chicago C from immunocompetent and immunosuppressed rabbits along with the newly developed in vitro cultivation system for T. pallidum, we directly characterized TprK alleles in the presence and absence of immune selection. Our data confirm significantly greater sequence diversity over time within the V6 region during syphilis infection in immunocompetent rabbits compared to immunosuppressed rabbits, consistent with previous studies on the role of TprK in evasion of the host immune response. Compared to strains grown in immunocompetent rabbits, strains passaged in vitro displayed low level changes in allele frequencies of TprK variable region sequences similar to that of strains passaged in immunosuppressed rabbits. Notably, we found significantly increased rates of V6 allele generation relative to other variable regions in in vitro cultivated T, pallidum strains, illustrating that the diversity within these hypervariable regions occurs in the complete absence of immune selection. Together, our results demonstrate antigenic variation in T. pallidum can be studied in vitro and occurs even in the complete absence of immune pressure, allowing the T. pallidum population to continuously evade the immune system of the infected host.
Collapse
Affiliation(s)
- Michelle J. Lin
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Austin M. Haynes
- Pathobiology Graduate Program, University of Washington, Seattle, Washington, United States of America
| | - Amin Addetia
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
| | - Nicole A. P. Lieberman
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Quynh Phung
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Hong Xie
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Tien V. Nguyen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Barbara J. Molini
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Sheila A. Lukehart
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Lorenzo Giacani
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Alexander L. Greninger
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
15
|
Liu D, He SM, Zhu XZ, Liu LL, Lin LR, Niu JJ, Yang TC. Molecular Characterization Based on MLST and ECDC Typing Schemes and Antibiotic Resistance Analyses of Treponema pallidum subsp. pallidum in Xiamen, China. Front Cell Infect Microbiol 2021; 10:618747. [PMID: 33680984 PMCID: PMC7935548 DOI: 10.3389/fcimb.2020.618747] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/31/2020] [Indexed: 12/12/2022] Open
Abstract
In total, 49 clinical samples were analyzed using two typing schemes, Enhanced Centers for Disease Control and Prevention (ECDC) and multilocus sequence typing (MLST), to describe the molecular characteristics of circulating Treponema pallidum isolates in Xiamen between 2016 and 2017. In addition, genetic mutations potentially related to antibiotic resistance of T. pallidum were also analyzed. Forty five samples were fully typed by ECDC, and 14 different subtypes were detected. The most common subtype was 16d/f (24.4%), followed by 14d/f (20.0%). All forty nine samples were successfully typed by MLST, while only four allelic profiles were identified, including three SS14-like profiles and one Nichols-like profile. Among them, the major allelic profile was 1.1.8 (85.7%). Interestingly, the allelic profile 1.3.1 widespread in Europe and North America was not detected in this region. Additionally, A2058G mutation in 23S rRNA was found in all detectable samples (38/38), and no mutation in 16S rRNA was observed (36/36). Four non-synonymous single-nucleotide polymorphisms in penicillin-binding protein genes were found in the 35 samples eligible for Sanger sequencing. Among them, the variant in tp0500 (P564I) can only be found in the SS14-like isolates. Homoplastic changes in tp0760 (I415F/I415M) and tp0705 (A506V/A506T) were found. Moreover, the variant tp0705 A506V and the variant tp0705 A506T separately appeared in the SS14-like isolates and Nichols-like isolates, respectively. This study showed that the genotypes of T. pallidum isolates in Xiamen between 2016 and 2017 were different from those in other geographic areas. The resistance-related variants of T. pallidum isolates identified in this study could provide awareness for clinicians in the treatment of syphilis.
Collapse
Affiliation(s)
- Dan Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China.,Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Shu-Min He
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China.,Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Xiao-Zhen Zhu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Li Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Rong Lin
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Jian-Jun Niu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Tian-Ci Yang
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China.,Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
16
|
Nishiki S, Lee K, Kanai M, Nakayama SI, Ohnishi M. Phylogenetic and genetic characterization of Treponema pallidum strains from syphilis patients in Japan by whole-genome sequence analysis from global perspectives. Sci Rep 2021; 11:3154. [PMID: 33542273 PMCID: PMC7862685 DOI: 10.1038/s41598-021-82337-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
Japan has had a substantial increase in syphilis cases since 2013. However, research on the genomic features of the Treponema pallidum subspecies pallidum (TPA) strains from these cases has been limited. Here, we elucidated the genetic variations and relationships between TPA strains in Japan (detected between 2014 and 2018) and other countries by whole-genome sequencing and phylogenetic analyses, including syphilis epidemiological surveillance data and information on patient sexual orientation. Seventeen of the 20 strains in Japan were SS14- and the remaining 3 were Nichols-lineage. Sixteen of the 17 SS14-lineage strains were classified into previously reported Sub-lineage 1B. Sub-lineage 1B strains in Japan have formed distinct sub-clusters of strains from heterosexuals and strains from men who have sex with men. These strains were closely related to reported TPA strains in China, forming an East-Asian cluster. However, those strains in these countries evolved independently after diverging from their most recent common ancestor and expanded their genetic diversity during the time of syphilis outbreak in each country. The genetic difference between the TPA strains in these countries was characterized by single-nucleotide-polymorphism analyses of their penicillin binding protein genes. Taken together, our results elucidated the detailed phylogenetic features and transmission networks of syphilis.
Collapse
Affiliation(s)
- Shingo Nishiki
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.,Division of Environmental and Preventive Medicine, Department of Social Medicine, Graduate School of Medicine, Tottori University, 86 Nishi-machi, Yonago, Tottori, 683-8503, Japan
| | - Kenichi Lee
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Mizue Kanai
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.,Osaka City Public Health Office, 1-2-7-1,000 Asahi-cho, Abeno-ku, Osaka, Osaka, 545-0051, Japan
| | - Shu-Ichi Nakayama
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| |
Collapse
|
17
|
Liu D, Tong ML, Liu LL, Lin LR, Zhang HL, Yang TC. Characterisation of the novel clinical isolate X-4 containing a new tp0548 sequence-type. Sex Transm Infect 2020; 97:120-125. [PMID: 33214321 DOI: 10.1136/sextrans-2020-054687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/10/2020] [Accepted: 10/25/2020] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVES A novel tp0548 sequence-type was identified in one clinical isolate (X-4) from a patient diagnosed with primary syphilis in Xiamen, China. To precisely define and characterise a new clinical isolate, we performed further genome-scale molecular analysis. METHODS The pooled segment genome sequencing method followed by Illumina sequencing was performed. RESULTS This novel sequence-type contained a unique nucleotide substitution 'T' at position 167 and belonged to the SS14-like clade of TPA strains, as determined by phylogenetic analysis. Multi-locus sequence analysis of nine chromosomal loci demonstrated that the X-4 isolate was clustered within a monophyletic group of TPA strains. Whole-genome phylogenetic analysis subsequently corroborated the TPA strain classification of the X-4 isolate and revealed that the isolate was closely related to the SS14 strain, with 42 single-nucleotide variations and 12 insertions/deletions. In addition, high intrastrain heterogeneity in the length of the poly G/C tracts was found in the TPAChi_0347 locus, which might indicate that this gene of the X-4 isolate is likely involved in phase variation events. The length heterogeneity of the poly A/T tracts was lower than the genetic variability of the poly G/C tracts, and all the observed intrastrain variations fell within coding regions. CONCLUSION The novel tp0548 sequence-type was determined to belong to a new TPA isolate, X-4. The identification of variable length in homopolymetic tracts (G/C and A/T) could provide a snapshot of the genes that potentially involved in genotype-phenotype variations. These findings provide an unequivocal characterisation for better understanding the molecular variation of this emerging isolate.
Collapse
Affiliation(s)
- Dan Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China.,Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Man-Li Tong
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China.,Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Li Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Rong Lin
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Hui-Lin Zhang
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China .,Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Tian-Ci Yang
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China .,Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
18
|
Luo X, Lin SW, Xu QY, Ke WJ, Gao ZX, Tong ML, Liu LL, Lin LR, Zhang HL, Yang TC. Tp0136 targets fibronectin (RGD)/Integrin β1 interactions promoting human microvascular endothelial cell migration. Exp Cell Res 2020; 396:112289. [DOI: 10.1016/j.yexcr.2020.112289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022]
|
19
|
Gao K, Xu DM, Lin XR, Zhu XZ, Zhang HL, Tong ML. Immunization with nontreponemal antigen alters the course of experimental syphilis in the rabbit model. Int Immunopharmacol 2020; 89:107100. [PMID: 33091812 DOI: 10.1016/j.intimp.2020.107100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/03/2020] [Accepted: 10/10/2020] [Indexed: 11/16/2022]
Abstract
The role of nontreponemal antibodies in the Treponema pallidum infection course is unclear. We investigated the effect of immunization with nontreponemal antigen on T. pallidum-challenged rabbits. Nontreponemal antigen was injected intravenously into rabbits in the nontreponemal group (n = 12) to elicit antibodies (≥1:64), and normal saline-injected rabbits were used as controls (n = 12). Then, rabbits were challenged with 106T. pallidum per site along their back. Lesion development was observed, and the injection sites were biopsied for mRNA analysis every week. Six rabbits from both groups were euthanized at 14 d and 28 d. The popliteal lymph nodes were extracted to assess infectivity using a rabbit infectivity test. The maximum lesion diameters were not different between the two groups (12.4 ± 0.9 mm in the nontreponemal group vs. 12.5 ± 1.0 mm in the control group, P = 0.386), but the time to maximum diameter appearance was delayed by approximately 4 d in the nontreponemal group (14.4 ± 1.6 d vs. 10.8 ± 1.9 d, P = 0.000). There were no significant differences in the proportions of lesions (58/60 (96.7%) vs. 59/60 (98.3%), P = 0.500) or ulcers (55/60 (91.7%) vs. 57/60 (95.0%), P = 0.359) between the two groups. An ulcer development delay of 5 d was observed in the nontreponemal group (19.3 ± 2.0 d vs. 14.0 ± 1.8 d, P = 0.000). IL-2 and IFN-γ mRNA expression in the nontreponemal group was significantly higher than that in the control group at 7 d and 14 d post-challenge. flaA mRNA expression and the rabbit infectivity test positive rate were not different between the two groups. Immunization with nontreponemal antigen altered the syphilis course in rabbits, resulting in delayed maximal lesion diameter and ulcer development, but it could not inhibit the spread of T. pallidum from primary lesion sites to viscera.
Collapse
Affiliation(s)
- Kun Gao
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China.
| | - Dong-Mei Xu
- Department of Neurology, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
| | - Xiao-Rong Lin
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.
| | - Xiao-Zhen Zhu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China.
| | - Hui-Lin Zhang
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China.
| | - Man-Li Tong
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
20
|
Chen W, Šmajs D, Hu Y, Ke W, Pospíšilová P, Hawley KL, Caimano MJ, Radolf JD, Sena A, Tucker JD, Yang B, Juliano JJ, Zheng H, Parr JB. Analysis of Treponema pallidum Strains From China Using Improved Methods for Whole-Genome Sequencing From Primary Syphilis Chancres. J Infect Dis 2020; 223:848-853. [PMID: 32710788 DOI: 10.1093/infdis/jiaa449] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Whole-genome sequencing (WGS) of Treponema pallidum subspecies pallidum (TPA) has been constrained by the lack of in vitro cultivation methods for isolating spirochetes from patient samples. METHODS We built upon recently developed enrichment methods to sequence TPA directly from primary syphilis chancre swabs collected in Guangzhou, China. RESULTS By combining parallel, pooled whole-genome amplification with hybrid selection, we generated high-quality genomes from 4 of 8 chancre-swab samples and 2 of 2 rabbit-passaged isolates, all subjected to challenging storage conditions. CONCLUSIONS This approach enabled the first WGS of Chinese samples without rabbit passage and provided insights into TPA genetic diversity in China.
Collapse
Affiliation(s)
- Wentao Chen
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Yongfei Hu
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Wujian Ke
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Petra Pospíšilová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Kelly L Hawley
- Division of Infectious Diseases and Department of Pediatrics, Connecticut Children's Medical Center, Hartford, Connecticut, USA
| | - Melissa J Caimano
- Departments of Medicine, Pediatrics, and Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Justin D Radolf
- Departments of Medicine, Pediatrics, and Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA.,Departments of Genetics and Genome Sciences, and Immunology, UConn Health, Farmington, Connecticut, USA
| | - Arlene Sena
- Division of Infectious Diseases, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Joseph D Tucker
- Division of Infectious Diseases, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA.,Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Bin Yang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Jonathan J Juliano
- Division of Infectious Diseases, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA.,Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Heping Zheng
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Jonathan B Parr
- Division of Infectious Diseases, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA.,Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
21
|
Xu S, Lin Y, Zhu X, Liu D, Tong M, Liu L, Yang T, Lin L. Autophagy promotes phagocytosis and clearance of
Treponema pallidum
via the NLRP3 inflammasome in macrophages. J Eur Acad Dermatol Venereol 2020; 34:2111-2119. [PMID: 32294266 DOI: 10.1111/jdv.16463] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/10/2020] [Indexed: 12/17/2022]
Affiliation(s)
- S.‐L. Xu
- Center of Clinical Laboratory Zhongshan Hospital School of Medicine Xiamen University Xiamen China
- Institute of Infectious Disease School of Medicine Xiamen University Xiamen China
| | - Y. Lin
- Center of Clinical Laboratory Zhongshan Hospital School of Medicine Xiamen University Xiamen China
- Institute of Infectious Disease School of Medicine Xiamen University Xiamen China
| | - X.‐Z. Zhu
- Center of Clinical Laboratory Zhongshan Hospital School of Medicine Xiamen University Xiamen China
- Institute of Infectious Disease School of Medicine Xiamen University Xiamen China
| | - D. Liu
- Center of Clinical Laboratory Zhongshan Hospital School of Medicine Xiamen University Xiamen China
- Institute of Infectious Disease School of Medicine Xiamen University Xiamen China
| | - M.‐L. Tong
- Center of Clinical Laboratory Zhongshan Hospital School of Medicine Xiamen University Xiamen China
- Institute of Infectious Disease School of Medicine Xiamen University Xiamen China
| | - L.‐L. Liu
- Center of Clinical Laboratory Zhongshan Hospital School of Medicine Xiamen University Xiamen China
- Institute of Infectious Disease School of Medicine Xiamen University Xiamen China
| | - T.‐C. Yang
- Center of Clinical Laboratory Zhongshan Hospital School of Medicine Xiamen University Xiamen China
- Institute of Infectious Disease School of Medicine Xiamen University Xiamen China
| | - L.‐R. Lin
- Center of Clinical Laboratory Zhongshan Hospital School of Medicine Xiamen University Xiamen China
- Institute of Infectious Disease School of Medicine Xiamen University Xiamen China
| |
Collapse
|
22
|
Xu SL, Lin Y, Liu W, Zhu XZ, Liu D, Tong ML, Liu LL, Lin LR. The P2X7 receptor mediates NLRP3-dependent IL-1β secretion and promotes phagocytosis in the macrophage response to Treponema pallidum. Int Immunopharmacol 2020; 82:106344. [PMID: 32151957 DOI: 10.1016/j.intimp.2020.106344] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/22/2020] [Accepted: 02/22/2020] [Indexed: 10/24/2022]
Abstract
It is unclear whether P2X7 receptor (P2X7R) mediates NOD-like receptor family protein 3 (NLRP3)-dependent IL-1β secretion and spirochete phagocytosis in syphilis. This study was conducted to investigate the role of P2X7R in modifying NLRP3-dependent IL-1β secretion and regulating phagocytosis by Treponema pallidum (T. pallidum)-induced macrophages. Macrophages derived from a human acute monocytic leukemia cell line were cultured with T. pallidum. The activation of P2X7R in T. pallidum-treated macrophages occurred in a dose- and time-dependent manner. The P2X7R silencing group showed significantly decreased NLRP3 mRNA and protein levels (vs. the Tp group, P < 0.001). Similar results were observed for IL-1β secretion using ELISA (vs. the Tp group, P < 0.001). Furthermore, P2X7R siRNA transfection significantly decreased the percentage of spirochete-positive macrophages (29.73% vs. 70.83%, P < 0.001) and spirochete internalization (mean fluorescence intensity (MFI), 9.20 vs. 19.39, P < 0.001). This finding revealed that P2X7R played a role in the induction of NLRP3-dependent IL-1β secretion by T. pallidum-induced macrophages. Furthermore, we found that P2X7R plays an important role in IL-1β secretion and in the promotion of T. pallidum phagocytosis by macrophages. These results may not only contribute to our understanding of the immune mechanism that is active during T. pallidum infection but may also lay the groundwork for strategies to combat syphilis.
Collapse
Affiliation(s)
- Shi-Lan Xu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Yu Lin
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Wei Liu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiao-Zhen Zhu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China.
| | - Dan Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Man-Li Tong
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China.
| | - Li-Li Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China.
| | - Li-Rong Lin
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
23
|
Pereira LE, Katz SS, Sun Y, Mills P, Taylor W, Atkins P, Thurlow CM, Chi KH, Danavall D, Cook N, Ahmed T, Debra A, Philip S, Cohen S, Workowski KA, Kersh E, Fakile Y, Chen CY, Pillay A. Successful isolation of Treponema pallidum strains from patients' cryopreserved ulcer exudate using the rabbit model. PLoS One 2020; 15:e0227769. [PMID: 31929602 PMCID: PMC6957173 DOI: 10.1371/journal.pone.0227769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023] Open
Abstract
Clinical isolates of Treponema pallidum subspecies pallidum (T. pallidum) would facilitate study of prevalent strains. We describe the first successful rabbit propagation of T. pallidum from cryopreserved ulcer specimens. Fresh ulcer exudates were collected and cryopreserved with consent from syphilis-diagnosed patients (N = 8). Each of eight age-matched adult male rabbits were later inoculated with a thawed specimen, with two rabbits receiving 1.3 ml intratesticularly (IT), and six receiving 0.6 ml intravenously (IV) and IT. Monitoring of serology, blood PCR and orchitis showed that T. pallidum grew in 2/8 rabbits that were inoculated IV and IT with either a penile primary lesion specimen (CDC-SF003) or a perianal secondary lesion specimen (CDC-SF007). Rabbit CDC-SF003 was seroreactive by T. pallidum Particle Agglutination (TP-PA) and Rapid Plasma Reagin (RPR) testing, PCR+, and showed orchitis by week 6. Euthanasia was performed in week 7, with treponemal growth in the testes confirmed and quantified by qPCR and darkfield microscopy (DF). Serial passage of the extract in a second age-matched rabbit also yielded treponemes. Similarly, rabbit CDC-SF007 showed negligible orchitis, but was seroreactive and PCR+ by week 4 and euthanized in week 6 to yield T. pallidum, which was further propagated by second passage. Using the 4-component molecular typing system for syphilis, 3 propagated strains (CDC-SF003, CDC-SF007, CDC-SF008) were typed as 14d9f, 14d9g, and 14d10c, respectively. All 3 isolates including strain CDC-SF011, which was not successfully propagated, had the A2058G mutation associated with azithromycin resistance. Our results show that immediate cryopreservation of syphilitic ulcer exudate can maintain T. pallidum viability for rabbit propagation.
Collapse
Affiliation(s)
- Lara E. Pereira
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
- * E-mail:
| | - Samantha S. Katz
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Yongcheng Sun
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Patrick Mills
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Willie Taylor
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Patricia Atkins
- Charles River Laboratories, Wilmington, MA, United States of America
| | - Charles M. Thurlow
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States of America
| | - Kai-Hua Chi
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Damien Danavall
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Nicholas Cook
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States of America
| | - Tamanna Ahmed
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States of America
| | - Alyssa Debra
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States of America
| | - Susan Philip
- San Francisco Department of Public Health, San Francisco, CA, United States of America
| | - Stephanie Cohen
- San Francisco Department of Public Health, San Francisco, CA, United States of America
| | - Kimberly A. Workowski
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
- Emory University Department of Medicine, Atlanta, GA, United States of America
| | - Ellen Kersh
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Yetunde Fakile
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Cheng Y. Chen
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Allan Pillay
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| |
Collapse
|
24
|
Gao K, Shen X, Lin Y, Zhu XZ, Lin LR, Tong ML, Xiao Y, Zhang HL, Liang XM, Niu JJ, Liu LL, Yang TC. Origin of Nontreponemal Antibodies During Treponema pallidum Infection: Evidence From a Rabbit Model. J Infect Dis 2019; 218:835-843. [PMID: 29701849 DOI: 10.1093/infdis/jiy241] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/21/2018] [Indexed: 11/13/2022] Open
Abstract
The origin of nontreponemal antibodies during syphilis infection is hotly debated. Here, we analyzed the immune response in rabbits immunized with various antigens. Inactivated treponemes elicited the production of low-titer nontreponemal antibodies in some rabbits. Cardiolipin combined with bovine serum albumin also induced anticardiolipin antibody production. These findings indicate that Treponema pallidum contained a cardiolipin antigen with weak immunogenicity. However, active T. pallidum induced higher nontreponemal antibody production with strong immunogenicity at an earlier time point, and the antibody titer was consecutive, suggesting the high nontreponemal antibody titer resulted from the combined effects of both the T. pallidum cardiolipin antigen and the damaged host-cell cardiolipin antigen during syphilis infection, the latter of which plays a major role in the induction of nontreponemal antibody production. Our study provides direct animal evidence of the origin of nontreponemal antibodies during T. pallidum infection.
Collapse
Affiliation(s)
- Kun Gao
- Zhongshan Hospital, Institute of Infectious Disease, Medical College of Xiamen University.,Institute of Infectious Disease, Medical College of Xiamen University
| | - Xu Shen
- Zhongshan Hospital, Institute of Infectious Disease, Medical College of Xiamen University.,Fujian Medical University, Fujian Province, China
| | - Yong Lin
- Zhongshan Hospital, Institute of Infectious Disease, Medical College of Xiamen University.,Institute of Infectious Disease, Medical College of Xiamen University
| | - Xiao-Zhen Zhu
- Zhongshan Hospital, Institute of Infectious Disease, Medical College of Xiamen University.,Institute of Infectious Disease, Medical College of Xiamen University
| | - Li-Rong Lin
- Zhongshan Hospital, Institute of Infectious Disease, Medical College of Xiamen University.,Institute of Infectious Disease, Medical College of Xiamen University
| | - Man-Li Tong
- Zhongshan Hospital, Institute of Infectious Disease, Medical College of Xiamen University.,Institute of Infectious Disease, Medical College of Xiamen University
| | - Yao Xiao
- Zhongshan Hospital, Institute of Infectious Disease, Medical College of Xiamen University.,Xiamen Hospital of Traditional Chinese Medicine, Fujian Province, China
| | - Hui-Lin Zhang
- Zhongshan Hospital, Institute of Infectious Disease, Medical College of Xiamen University.,Institute of Infectious Disease, Medical College of Xiamen University
| | - Xian-Ming Liang
- Zhongshan Hospital, Institute of Infectious Disease, Medical College of Xiamen University.,Institute of Infectious Disease, Medical College of Xiamen University
| | - Jian-Jun Niu
- Zhongshan Hospital, Institute of Infectious Disease, Medical College of Xiamen University.,Institute of Infectious Disease, Medical College of Xiamen University
| | - Li-Li Liu
- Zhongshan Hospital, Institute of Infectious Disease, Medical College of Xiamen University.,Institute of Infectious Disease, Medical College of Xiamen University
| | - Tian-Ci Yang
- Zhongshan Hospital, Institute of Infectious Disease, Medical College of Xiamen University.,Institute of Infectious Disease, Medical College of Xiamen University
| |
Collapse
|
25
|
Grillová L, Oppelt J, Mikalová L, Nováková M, Giacani L, Niesnerová A, Noda AA, Mechaly AE, Pospíšilová P, Čejková D, Grange PA, Dupin N, Strnadel R, Chen M, Denham I, Arora N, Picardeau M, Weston C, Forsyth RA, Šmajs D. Directly Sequenced Genomes of Contemporary Strains of Syphilis Reveal Recombination-Driven Diversity in Genes Encoding Predicted Surface-Exposed Antigens. Front Microbiol 2019; 10:1691. [PMID: 31417509 PMCID: PMC6685089 DOI: 10.3389/fmicb.2019.01691] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/09/2019] [Indexed: 11/13/2022] Open
Abstract
Syphilis, caused by Treponema pallidum subsp. pallidum (TPA), remains an important public health problem with an increasing worldwide prevalence. Despite recent advances in in vitro cultivation, genetic variability of this pathogen during infection is poorly understood. Here, we present contemporary and geographically diverse complete treponemal genome sequences isolated directly from patients using a methyl-directed enrichment prior to sequencing. This approach reveals that approximately 50% of the genetic diversity found in TPA is driven by inter- and/or intra-strain recombination events, particularly in strains belonging to one of the defined genetic groups of syphilis treponemes: Nichols-like strains. Recombinant loci were found to encode putative outer-membrane proteins and the recombination variability was almost exclusively found in regions predicted to be at the host-pathogen interface. Genetic recombination has been considered to be a rare event in treponemes, yet our study unexpectedly showed that it occurs at a significant level and may have important impacts in the biology of this pathogen, especially as these events occur primarily in the outer membrane proteins. This study reveals the existence of strains with different repertoires of surface-exposed antigens circulating in the current human population, which should be taken into account during syphilis vaccine development.
Collapse
Affiliation(s)
- Linda Grillová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia.,Biology of Spirochetes Unit, Institut Pasteur, Paris, France
| | - Jan Oppelt
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czechia.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | - Lenka Mikalová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Markéta Nováková
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Lorenzo Giacani
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, United States.,Department of Global Health, Harborview Medical Center, University of Washington, Seattle, WA, United States
| | - Anežka Niesnerová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Angel A Noda
- Department of Mycology-Bacteriology, Instituto de Medicina Tropical "Pedro Kourí", Havana, Cuba
| | - Ariel E Mechaly
- Plateforme de Cristallographie, Institut Pasteur, Paris, France
| | - Petra Pospíšilová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Darina Čejková
- Department of Immunology, Veterinary Research Institute, Brno, Czechia
| | - Philippe A Grange
- Faculté de Médecine, Laboratoire de Dermatologie-CNR IST Bactériennes, Institut Cochin U1016, Université Sorbonne Paris Descartes, Paris, France
| | - Nicolas Dupin
- Faculté de Médecine, Laboratoire de Dermatologie-CNR IST Bactériennes, Institut Cochin U1016, Université Sorbonne Paris Descartes, Paris, France.,AP-HP, Service de Dermatologie et Vénéréologie, Groupe Hospitalier Paris Centre Cochin-Hôtel Dieu-Broca, Paris, France
| | - Radim Strnadel
- Department of Dermatovenerology, University Hospital Brno, Brno, Czechia
| | - Marcus Chen
- Melbourne Sexual Health Centre, Alfred Health, Melbourne, VIC, Australia.,Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Ian Denham
- Melbourne Sexual Health Centre, Alfred Health, Melbourne, VIC, Australia
| | - Natasha Arora
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | | | | | - R Allyn Forsyth
- GeneticPrime Dx, Inc., La Jolla, CA, United States.,Department of Biology, San Diego State University, San Diego, CA, United States
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
26
|
Liu D, Tong ML, Lin Y, Liu LL, Lin LR, Yang TC. Insights into the genetic variation profile of tprK in Treponema pallidum during the development of natural human syphilis infection. PLoS Negl Trop Dis 2019; 13:e0007621. [PMID: 31329597 PMCID: PMC6675121 DOI: 10.1371/journal.pntd.0007621] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 08/01/2019] [Accepted: 07/09/2019] [Indexed: 01/25/2023] Open
Abstract
Background Although the tprK gene of Treponema pallidum are thought to play a critical role in the pathogenesis of syphilis, the profile of variations in tprK during the development of human syphilis infection have remained unclear. Methods/Principal findings Through next-generation sequencing, we compared the tprK gene of 14 secondary syphilis patients with that of 14 primary syphilis patients, and the results showed an increased number of variants within the seven V regions of the tprK gene in the secondary syphilis samples. The length of the sequences within each V region also presented a 3-bp changing pattern. Interestingly, the frequencies of predominant sequences within the V regions in the secondary syphilis samples were generally decreased compared with those found in the primary syphilis samples, particularly in the V7 region, where a frequency below 60% was found in up to 57% (8/14) of all secondary samples compared with 7% (1/14) of all primary samples. Moreover, the number of minor variants distributed between frequencies of 10 and 49.9% was increased. The alignment of all amino acid sequences within each V region of the primary and secondary syphilis samples revealed that some amino acid sequences, particularly the amino acid sequences IASDGGAIKH and IASEDGSAGNLKH in V1, were highly stable. Additionally, the amino acid sequences in V6 also exhibited notable intrastrain heterogeneity and were likely to form a strain-specific pattern at the interstrain level. Conclusions The identification of different profiles of the tprK gene in primary and secondary syphilis patients indicated that the tprK gene of T. pallidum undergoes constant variation to result in the best adaptation to the host. The highly stable peptides found in V1 are likely promising potential vaccine components. The highly heterogenetic regions (e.g., V6) could help to understand the role of tprK in immune evasion. Antigenic variation of the TprK antigen has been acknowledged to explain the persistence of Treponema pallidum in the host, however, the profile of variations in tprK during the development of human syphilis infection has not been well characterized. Here, we performed next-generation sequencing to compare the variations in tprK between primary and secondary syphilis samples. The profiles of tprK in the samples at different stages showed differences. A higher amount of pool variants within seven V regions was found in the secondary syphilis samples, and the frequencies of their predominant sequences generally decreased with increases in the number of minor variants with frequencies in the range of 10 to 49.9%. However, the length of variable sequences within the V regions of tprK in the secondary syphilis samples also presented a 3-bp changing pattern. Notably, the amino acid sequences IASDGGAIKH and IASEDGSAGNLKH in V1 not only presented a high proportion of interstrain sharing but also were found at a relatively high frequency (above 80%) in the populations. The sequences in V6 of the samples demonstrated substantial variability at the intra- and interstrain levels. These findings could provide insights into the potential syphilis vaccine components and the role of TprK in immune evasion.
Collapse
Affiliation(s)
- Dan Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Man-Li Tong
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Yong Lin
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Li Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Rong Lin
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Tian-Ci Yang
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
- * E-mail:
| |
Collapse
|
27
|
Beale MA, Marks M, Sahi SK, Tantalo LC, Nori AV, French P, Lukehart SA, Marra CM, Thomson NR. Genomic epidemiology of syphilis reveals independent emergence of macrolide resistance across multiple circulating lineages. Nat Commun 2019; 10:3255. [PMID: 31332179 PMCID: PMC6646400 DOI: 10.1038/s41467-019-11216-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 07/01/2019] [Indexed: 11/09/2022] Open
Abstract
Syphilis is a sexually transmitted infection caused by Treponema pallidum subspecies pallidum and may lead to severe complications. Recent years have seen striking increases in syphilis in many countries. Previous analyses have suggested one lineage of syphilis, SS14, may have expanded recently, indicating emergence of a single pandemic azithromycin-resistant cluster. Here we use direct sequencing of T. pallidum combined with phylogenomic analyses to show that both SS14- and Nichols-lineages are simultaneously circulating in clinically relevant populations in multiple countries. We correlate the appearance of genotypic macrolide resistance with multiple independently evolved SS14 sub-lineages and show that genotypically resistant and sensitive sub-lineages are spreading contemporaneously. These findings inform our understanding of the current syphilis epidemic by demonstrating how macrolide resistance evolves in Treponema subspecies and provide a warning on broader issues of antimicrobial resistance.
Collapse
Affiliation(s)
- Mathew A Beale
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK.
| | - Michael Marks
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Hospital for Tropical Diseases, London, UK
| | - Sharon K Sahi
- Department of Neurology, University of Washington, Seattle, WA, 98195, USA
| | - Lauren C Tantalo
- Department of Neurology, University of Washington, Seattle, WA, 98195, USA
| | | | - Patrick French
- The Mortimer Market Centre CNWL, Camden Provider Services, London, UK
| | - Sheila A Lukehart
- Departments of Medicine and Global Health, University of Washington, Seattle, WA, 98195, USA
| | - Christina M Marra
- Department of Neurology, University of Washington, Seattle, WA, 98195, USA
| | - Nicholas R Thomson
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK.
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| |
Collapse
|
28
|
Lin SW, Gao ZX, Lin LR, Luo X, Liu LL, Yang TC. Treponema pallidum enhances human monocyte migration and invasion by dysregulating the MMP/TIMP balance. Int Immunopharmacol 2019; 75:105744. [PMID: 31319358 DOI: 10.1016/j.intimp.2019.105744] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/24/2019] [Accepted: 07/05/2019] [Indexed: 12/26/2022]
Abstract
Although the infiltration of monocytes into local lesions is an obvious pathological manifestation in the pathogenesis of syphilis, little is known about the role of metalloproteinase (MMP)/tissue inhibitor of metalloproteinases (TIMP) imbalance in the migration/invasion of THP-1 cells induced by Treponema pallidum (T. pallidum). The influence of T. pallidum on the invasion and migration of THP-1 cells was evaluated. Changes in the MMP/TIMP balance and the mechanisms underlying the involvement of the MAPK and NF-κB signaling pathways in this process were explored. T. pallidum induced the migration/invasion of THP-1 cells and the mRNA and protein expression of MMP-1, MMP-9 and TIMP-1. The mRNA expression of TIMP-2 was reduced, and the protein expression of TIMP-2 was not changed. The MMP-1/TIMP-1, MMP-1/TIMP-2, MMP-9/TIMP-1 and MMP-9/TIMP-2 ratios were increased. Inhibition of JNK, MEK/ERK, p38 MAPK and NF-κB significantly decreased the MMP/TIMP ratio and ultimately suppressed the migration/invasion of THP-1 cells. These findings revealed that MMP/TIMP imbalances induced by T. pallidum enhanced THP-1 cell migration and invasion via MAPK and NF-κB signaling pathway activation, which revealed a novel step in syphilis pathophysiology.
Collapse
Affiliation(s)
- Shu-Wen Lin
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Zheng-Xiang Gao
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Rong Lin
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Xi Luo
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Li Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China.
| | - Tian-Ci Yang
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
29
|
Gao ZX, Liu LL, Lin LR, Tong ML, Liu F, Yang TC. Treponema pallidum Induces the Secretion of HDVSMC Inflammatory Cytokines to Promote the Migration and Adhesion of THP-1 Cells. Front Cell Infect Microbiol 2019; 9:220. [PMID: 31293985 PMCID: PMC6598120 DOI: 10.3389/fcimb.2019.00220] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/07/2019] [Indexed: 12/13/2022] Open
Abstract
The pathological features of syphilis, a disease caused by Treponema pallidum (T. pallidum), are characterized by vascular involvement with endarteritis and periarteritis. Little is known about the interactions of infiltrating immunocytes with human dermal vascular smooth muscle cells (HDVSMCs) in arterioles during the immunopathogenesis of syphilis. In the present study, we demonstrated that stimulation of HDVSMCs with T. pallidum resulted in the upregulated gene transcription and protein expression of interleukin (IL)-6, monocyte chemoattractant protein-1 (MCP-1), and intercellular adhesion molecule-1 (ICAM-1) in a dose- and time-dependent manner. Moreover, the migration and adhesion of THP-1 cells to HDVSMCs were significantly suppressed by anti-MCP-1 and anti-ICAM-1 neutralizing antibodies, respectively. Further studies revealed that T. pallidum activated the NF-κB signaling pathway in HDVSMCs. Inhibition of NF-κB suppressed T. pallidum-induced IL-6, MCP-1, and ICAM-1 expression. In addition, the migration and adhesion of THP-1 cells to T. pallidum-treated HDVSMCs were significantly decreased by pretreatment with an NF-κB inhibitor. These findings demonstrate that T. pallidum induces the production of IL-6, MCP-1, and ICAM-1 in HDVSMCs and promotes the adherence and migration of THP-1 cells to HDVSMCs through the NF-κB signaling pathway, which may provide new insight into the pathogenesis of T. pallidum infection.
Collapse
Affiliation(s)
- Zheng-Xiang Gao
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Li Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China.,Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Rong Lin
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China.,Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Man-Li Tong
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China.,Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Fan Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China.,Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Tian-Ci Yang
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China.,Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
30
|
Lin LR, Zhu XZ, Liu D, Liu LL, Tong ML, Yang TC. Are nontreponemal tests suitable for monitoring syphilis treatment efficacy? Evidence from rabbit infection models. Clin Microbiol Infect 2019; 26:240-246. [PMID: 31212076 DOI: 10.1016/j.cmi.2019.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/29/2019] [Accepted: 06/05/2019] [Indexed: 01/26/2023]
Abstract
OBJECTIVES We aimed to characterize kinetics of non-treponamal antibody titres during the natural course of syphilis and explore their roles in monitoring syphilis treatment efficacy. METHODS Sixty New Zealand white male rabbits were challenged with Nichols or Amoy Treponema pallidum strains, and the rapid plasma reagin (RPR) test was performed to quantify non-treponemal antibody titres during the infection course. Viable T. pallidum in the challenged rabbits was assessed with rabbit infectivity tests. RESULTS The RPR titres of the Nichols or Amoy strain between no benzathine penicillin G (BPG) and BPG treatment subgroups displayed a similar trend: first ascending and then descending. Compared with baseline, the proportions of fourfold decline in RPR titres in the Nichols or Amoy group presented a similar result on days 30, 60 and 180 between the no BPG and BPG treatment subgroups (0%, 0/5; 80%, 4/5; 100%, 5/5; vs. 0%, 0/5; 80%, 4/5; 100%, 5/5; p 0.999; 0%, 0/5; 80%, 4/5; 80%, 4/5; vs. 40%, 2/5; 100%, 5/5; 100%, 5/5; p 0.098, respectively). Compared with the maximum baseline titre, the proportion of fourfold decline in PRR titre also showed a similar result in the two groups on days 30, 60 and 180 between the no BPG and the BPG treatment subgroups (0%, 0/5; 100%, 5/5; 100%, 5/5, vs. 40%, 2/5; 100%, 5/5; 100%, 5/5; p 0.129; 0%, 0/5; 100%, 5/5; 100%, 5/5, vs. 80%, 4/5; 100%, 5/5; 100%, 5/5; p 0.091, respectively. Moreover, regardless of whether the RPR titres presented a fourfold decline, viable T. pallidum could be detected in untreated rabbits' lymph nodes at 30, 60 and 180 days post infection, while viable T. pallidum was not detected in any of the treated rabbits' lymph nodes. CONCLUSIONS The RPR titre increased and then decreased (even became negative) during the natural course of syphilis, similar to that seen after BPG treatment. The RPR tetre is thus a questionable indicator of syphilis treatment efficacy.
Collapse
Affiliation(s)
- L-R Lin
- Centre of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - X-Z Zhu
- Centre of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - D Liu
- Centre of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - L-L Liu
- Centre of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - M-L Tong
- Centre of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - T-C Yang
- Centre of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
31
|
Liu D, Tong ML, Luo X, Liu LL, Lin LR, Zhang HL, Lin Y, Niu JJ, Yang TC. Profile of the tprK gene in primary syphilis patients based on next-generation sequencing. PLoS Negl Trop Dis 2019; 13:e0006855. [PMID: 30789907 PMCID: PMC6400401 DOI: 10.1371/journal.pntd.0006855] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 03/05/2019] [Accepted: 12/07/2018] [Indexed: 12/04/2022] Open
Abstract
Background The highly variable tprK gene of Treponema pallidum has been acknowledged to be one of the mechanisms that causes persistent infection. Previous studies have mainly focused on the heterogeneity in tprK in propagated strains using a clone-based Sanger approach. Few studies have investigated tprK directly from clinical samples using deep sequencing. Methods/Principal findings We conducted a comprehensive analysis of 14 primary syphilis clinical isolates of T. pallidum via next-generation sequencing to gain better insight into the profile of tprK in primary syphilis patients. Our results showed that there was a mixture of distinct sequences within each V region of tprK. Except for the predominant sequence for each V region as previously reported using the clone-based Sanger approach, there were many minor variants of all strains that were mainly observed at a frequency of 1–5%. Interestingly, the identified distinct sequences within the regions were variable in length and differed by only 3 bp or multiples of 3 bp. In addition, amino acid sequence consistency within each V region was found among the 14 strains. Among the regions, the sequence IASDGGAIKH in V1 and the sequence DVGHKKENAANVNGTVGA in V4 showed a high stability of inter-strain redundancy. Conclusions The seven V regions of the tprK gene in primary syphilis infection demonstrated high diversity; they generally contained a high proportion sequence and numerous low-frequency minor variants, most of which are far below the detection limit of Sanger sequencing. The rampant variation in each V region was regulated by a strict gene conversion mechanism that maintained the length difference to 3 bp or multiples of 3 bp. The highly stable sequence of inter-strain redundancy may indicate that the sequences play a critical role in T. pallidum virulence. These highly stable peptides are also likely to be potential targets for vaccine development. Variations in tprK have been acknowledged to be the major contributors to persistent Treponema pallidum infections. Previous studies were based on the clone-based Sanger approach, and most of them were performed in propagated strains using rabbits, which could not reflect the actual heterogeneous characteristics of tprK in the context of human infection. In the present study, we employed next-generation sequencing (NGS) to explore the profile of tprK directly from 14 patients with primary syphilis. Our results showed a mixture of distinct sequences within each V region of tprK in these clinical samples. First, the length of identified distinct sequences within the region was variable, which differed by only 3 bp or multiples of 3 bp. Then, among the mixtures, a predominant sequence was usually observed for each V region, and the remaining minor variants were mainly observed at a frequency of 1–5%. In addition, there was a scenario of amino acid sequence consistency within the regions among the 14 primary syphilis strains. The identification of the profile of tprK in the context of human primary syphilis infection contributes to further exploration of the pathogenesis of syphilis.
Collapse
Affiliation(s)
- Dan Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Man-Li Tong
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Xi Luo
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Li Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Rong Lin
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Hui-Lin Zhang
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Yong Lin
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Jian-Jun Niu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Zhongshan Hospital, Fujian Medical University, Xiamen, China
| | - Tian-Ci Yang
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
- * E-mail:
| |
Collapse
|
32
|
Grillova L, Jolley K, Šmajs D, Picardeau M. A public database for the new MLST scheme for Treponema pallidum subsp. pallidum: surveillance and epidemiology of the causative agent of syphilis. PeerJ 2019; 6:e6182. [PMID: 30643682 PMCID: PMC6330039 DOI: 10.7717/peerj.6182] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/29/2018] [Indexed: 12/27/2022] Open
Abstract
Treponema pallidum subsp. pallidum is the causative agent of syphilis, a sexually transmitted disease with worldwide prevalence. Several different molecular typing schemes are currently available for this pathogen. To enable population biology studies of the syphilis agent and for epidemiological surveillance at the global scale, a harmonized typing tool needs to be introduced. Recently, we published a new multi-locus sequence typing (MLST) with the potential to significantly enhance the epidemiological data in several aspects (e.g., distinguishing genetically different clades of syphilis, subtyping inside these clades, and finally, distinguishing different subspecies of non-cultivable pathogenic treponemes). In this short report, we introduce the PubMLST database for treponemal DNA data storage and for assignments of allelic profiles and sequencing types. Moreover, we have summarized epidemiological data of all treponemal strains (n = 358) with available DNA sequences in typing loci and found several association between genetic groups and characteristics of patients. This study proposes the establishment of a single MLST of T. p. pallidum and encourages researchers and public health communities to use this PubMLST database as a universal tool for molecular typing studies of the syphilis pathogen.
Collapse
Affiliation(s)
- Linda Grillova
- Biology of Spirochetes Unit, Institut Pasteur, Paris, France
| | - Keith Jolley
- Department of Zoology, University of Oxford, Oxford, UK
| | - David Šmajs
- Department of Biology, Masaryk University, Brno, Czech Republic
| | | |
Collapse
|
33
|
Lin LR, Liu W, Zhu XZ, Chen YY, Gao ZX, Gao K, Tong ML, Zhang HL, Xiao Y, Li WD, Li SL, Lin HL, Liu LL, Fang ZX, Niu JJ, Lin Y, Yang TC. Treponema pallidum promotes macrophage polarization and activates the NLRP3 inflammasome pathway to induce interleukin-1β production. BMC Immunol 2018; 19:28. [PMID: 30217146 PMCID: PMC6137923 DOI: 10.1186/s12865-018-0265-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/16/2018] [Indexed: 12/16/2022] Open
Abstract
Background The involvement of inflammasome activation and macrophage polarization during the process of syphilis infection remains unknown. In this study, A series of experiments were performed using human macrophages to research the role of NLRP3 inflammasome regulation in interleukin (IL)-1β production and its influence on macrophage polarization triggered by T. pallidum. Results The results showed that in M0 macrophages treated with T. pallidum, the M1-associated markers inducible nitric oxide synthase (iNOS), IL-1β and TNF-α were upregulated, and the M2-associated markers CD206 and IL-10 were downregulated. In addition, we observed NLRP3 inflammasome activation and IL-1β secretion in T. pallidum-treated macrophages, and the observed production of IL-1β occurred in a dose- and time-dependent manner. Moreover, the secretion of IL-1β by macrophages after T. pallidum treatment was notably reduced by anti-NLRP3 siRNA and caspase-1 inhibitor treatment. NAC, KCl, and CA074-ME treatment also suppressed IL-1β release from T. pallidum-treated macrophages. Conclusions These findings showed that T. pallidum induces M0 macrophages to undergo M1 macrophage polarization and elevate IL-1β secretion through NLRP3. Moreover, the process of NLRP3 inflammasome activation and IL-1β production in macrophages in response to T. pallidum infection involves K+ efflux, mitochondrial ROS production and cathepsin release. This study provides a new insight into the innate immune response to T. pallidum infection.
Collapse
Affiliation(s)
- Li-Rong Lin
- Zhongshan Hospital, Medical College of Xiamen University, Xiamen, Fujian Province, China.,Institute of Infectious Disease, Medical College of Xiamen University, Xiamen, Fujian Province, China
| | - Wei Liu
- Zhongshan Hospital, Medical College of Xiamen University, Xiamen, Fujian Province, China.,Institute of Infectious Disease, Medical College of Xiamen University, Xiamen, Fujian Province, China
| | - Xiao-Zhen Zhu
- Zhongshan Hospital, Medical College of Xiamen University, Xiamen, Fujian Province, China.,Institute of Infectious Disease, Medical College of Xiamen University, Xiamen, Fujian Province, China
| | - Yu-Yan Chen
- Xiamen Fifth Hospital, Xiamen, Fujian Province, China
| | - Zheng-Xiang Gao
- Zhongshan Hospital, Medical College of Xiamen University, Xiamen, Fujian Province, China.,Institute of Infectious Disease, Medical College of Xiamen University, Xiamen, Fujian Province, China
| | - Kun Gao
- Zhongshan Hospital, Medical College of Xiamen University, Xiamen, Fujian Province, China.,Institute of Infectious Disease, Medical College of Xiamen University, Xiamen, Fujian Province, China
| | - Man-Li Tong
- Zhongshan Hospital, Medical College of Xiamen University, Xiamen, Fujian Province, China.,Institute of Infectious Disease, Medical College of Xiamen University, Xiamen, Fujian Province, China
| | - Hui-Lin Zhang
- Zhongshan Hospital, Medical College of Xiamen University, Xiamen, Fujian Province, China.,Institute of Infectious Disease, Medical College of Xiamen University, Xiamen, Fujian Province, China
| | - Yao Xiao
- Xiamen Hospital of Traditional Chinese Medicine, Xiamen, Fujian Province, China
| | - Wen-Dong Li
- Xiamen Huli District Maternity and Child Care Hospital, Xiamen, Fujian Province, China
| | - Shu-Lian Li
- Xiamen Huli District Maternity and Child Care Hospital, Xiamen, Fujian Province, China
| | - Hui-Ling Lin
- Xiamen Huli District Maternity and Child Care Hospital, Xiamen, Fujian Province, China
| | - Li-Li Liu
- Zhongshan Hospital, Medical College of Xiamen University, Xiamen, Fujian Province, China.,Institute of Infectious Disease, Medical College of Xiamen University, Xiamen, Fujian Province, China
| | - Zan-Xi Fang
- Zhongshan Hospital, Medical College of Xiamen University, Xiamen, Fujian Province, China
| | - Jian-Jun Niu
- Zhongshan Hospital, Medical College of Xiamen University, Xiamen, Fujian Province, China. .,Institute of Infectious Disease, Medical College of Xiamen University, Xiamen, Fujian Province, China.
| | - Yong Lin
- Zhongshan Hospital, Medical College of Xiamen University, Xiamen, Fujian Province, China. .,Institute of Infectious Disease, Medical College of Xiamen University, Xiamen, Fujian Province, China.
| | - Tian-Ci Yang
- Zhongshan Hospital, Medical College of Xiamen University, Xiamen, Fujian Province, China. .,Institute of Infectious Disease, Medical College of Xiamen University, Xiamen, Fujian Province, China.
| |
Collapse
|
34
|
Grillová L, Giacani L, Mikalová L, Strouhal M, Strnadel R, Marra C, Centurion-Lara A, Poveda L, Russo G, Čejková D, Vašků V, Oppelt J, Šmajs D. Sequencing of Treponema pallidum subsp. pallidum from isolate UZ1974 using Anti-Treponemal Antibodies Enrichment: First complete whole genome sequence obtained directly from human clinical material. PLoS One 2018; 13:e0202619. [PMID: 30130365 PMCID: PMC6103504 DOI: 10.1371/journal.pone.0202619] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/07/2018] [Indexed: 12/11/2022] Open
Abstract
Treponema pallidum subsp. pallidum (TPA) is the infectious agent of syphilis, a disease that infects more than 5 million people annually. Since TPA is an uncultivable bacterium, most of the information on TPA genetics comes from genome sequencing and molecular typing studies. This study presents the first complete TPA genome (without sequencing gaps) of clinical isolate (UZ1974), which was obtained directly from clinical material, without multiplication in rabbits. Whole genome sequencing was performed using a newly developed Anti-Treponemal Antibody Enrichment technique combined with previously reported Pooled Segment Genome Sequencing. We identified the UW074B genome, isolated from a sample previously propagated in rabbits, to be the closest relative of the UZ1974 genome and calculated the TPA mutation rate as 2.8 x 10(-10) per site per generation.
Collapse
Affiliation(s)
- Linda Grillová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lorenzo Giacani
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, United States of America
| | - Lenka Mikalová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Michal Strouhal
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Radim Strnadel
- Department of Dermatovenerology, University Hospital Brno, Brno, Czech Republic
| | - Christina Marra
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, United States of America
| | - Arturo Centurion-Lara
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, United States of America
| | - Lucy Poveda
- Functional Genomics Center Zurich, University of Zurich, Zurich, Switzerland
| | - Giancarlo Russo
- Functional Genomics Center Zurich, University of Zurich, Zurich, Switzerland
| | - Darina Čejková
- Department of Immunology, Veterinary Research Institute, Brno, Czech Republic
| | - Vladimír Vašků
- 1 Dermatovenereological Clinic St. Anne´s University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jan Oppelt
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
35
|
Šmajs D, Strouhal M, Knauf S. Genetics of human and animal uncultivable treponemal pathogens. INFECTION GENETICS AND EVOLUTION 2018; 61:92-107. [PMID: 29578082 DOI: 10.1016/j.meegid.2018.03.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 10/17/2022]
Abstract
Treponema pallidum is an uncultivable bacterium and the causative agent of syphilis (subsp. pallidum [TPA]), human yaws (subsp. pertenue [TPE]), and bejel (subsp. endemicum). Several species of nonhuman primates in Africa are infected by treponemes genetically undistinguishable from known human TPE strains. Besides Treponema pallidum, the equally uncultivable Treponema carateum causes pinta in humans. In lagomorphs, Treponema paraluisleporidarum ecovar Cuniculus and ecovar Lepus are the causative agents of rabbit and hare syphilis, respectively. All uncultivable pathogenic treponemes harbor a relatively small chromosome (1.1334-1.1405 Mbp) and show gene synteny with minimal genetic differences (>98% identity at the DNA level) between subspecies and species. While uncultivable pathogenic treponemes contain a highly conserved core genome, there are a number of highly variable and/or recombinant chromosomal loci. This is also reflected in the occurrence of intrastrain heterogeneity (genetic diversity within an infecting bacterial population). Molecular differences at several different chromosomal loci identified among TPA strains or isolates have been used for molecular typing and the epidemiological characterization of syphilis isolates. This review summarizes genome structure of uncultivable pathogenic treponemes including genetically variable regions.
Collapse
Affiliation(s)
- David Šmajs
- Department of Biology, Masaryk University, Kamenice 5, Building A6, 625 00 Brno, Czech Republic.
| | - Michal Strouhal
- Department of Biology, Masaryk University, Kamenice 5, Building A6, 625 00 Brno, Czech Republic.
| | - Sascha Knauf
- Work Group Neglected Tropical Diseases, Pathology Unit, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany,.
| |
Collapse
|
36
|
Lin LR, Xiao Y, Liu W, Chen YY, Zhu XZ, Gao ZX, Gao K, Tong ML, Zhang HL, Li SL, Lin HL, Li WD, Liang XM, Lin Y, Liu LL, Yang TC. Development of tissue inflammation accompanied by NLRP3 inflammasome activation in rabbits infected with Treponema pallidum strain Nichols. BMC Infect Dis 2018; 18:101. [PMID: 29490620 PMCID: PMC5831842 DOI: 10.1186/s12879-018-2993-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/13/2018] [Indexed: 12/31/2022] Open
Abstract
Background The inflammasome responses in Treponema pallidum infection have been poorly understood to date. This study aimed to investigate the expression of the nucleotide-binding leucine-rich receptor protein 3 (NLRP3) inflammasome in the development of tissue inflammation in rabbits infected with T. pallidum. Methods Forty-five rabbits were randomly assigned to a blank group or an infection group, and the latter was divided into no benzathine penicillin G (BPG) and BPG treatment subgroups. Rabbits in the infection group were injected intradermally with 0.1 mL of a 107/mL T. pallidum suspension at 10 marked sites along the back, and the blank group was treated with normal saline. The BPG treatment subgroup received 200,000 U of BPG administered intramuscularly twice, at 14 d and 21 d post-infection. The development of lesions was observed, and biopsies of the injection site and various organs, including the kidney, liver, spleen, lung, and testis, were obtained for NLRP3, caspase-1, and interleukin-1β (IL-1β) mRNA analysis during infection. Blood was also collected for the determination of IL-1β concentration. Results Rabbits infected with T. pallidum (both the BPG treatment and no BPG treatment subgroups), exhibited NLRP3 inflammasome activation and IL-1β secretion in cutaneous lesions, showing a trend in elevation to decline; NLRP3 mRNA expression reached a peak at 18 d in the BPG treatment subgroup and 21 d in the no BPG treatment subgroup and returned to “normal” levels [vs. the blank group (P > 0.05)] at 42 d post-infection. The trend was similar to the change in cutaneous lesions in the infected rabbits, which reached a peak at 16 d in the BPG treatment subgroup and 18 d in the no BPG treatment subgroup. NLRP3, caspase-1, and IL-1β mRNA expression levels were slightly different in different organs. NLRP3 inflammasome activation was also observed in the kidney, liver, lung, spleen and testis. IL-1β expression was observed in the kidney, liver, lung and spleen; however, there was no detectable level of IL-1β in the testes of the infected rabbits. Conclusions This study established a clear link between NLRP3 inflammasome activation and the development of tissue inflammation in rabbits infected with T. pallidum. BPG therapy imperceptibly adjusted syphilitic inflammation.
Collapse
Affiliation(s)
- Li-Rong Lin
- Zhongshan Hospital, Medical College of Xiamen University, Xiamen, Fujian Province, China.,Institute of Infectious Disease, Medical College of Xiamen University, Xiamen, Fujian Province, China
| | - Yao Xiao
- Zhongshan Hospital, Medical College of Xiamen University, Xiamen, Fujian Province, China.,Xiamen Hospital of Traditional Chinese Medicine, Xiamen, Fujian Province, China
| | - Wei Liu
- Zhongshan Hospital, Medical College of Xiamen University, Xiamen, Fujian Province, China.,Institute of Infectious Disease, Medical College of Xiamen University, Xiamen, Fujian Province, China
| | - Yu-Yan Chen
- Xiamen Fifth Hospital, Xiamen, Fujian Province, China
| | - Xiao-Zhen Zhu
- Zhongshan Hospital, Medical College of Xiamen University, Xiamen, Fujian Province, China.,Institute of Infectious Disease, Medical College of Xiamen University, Xiamen, Fujian Province, China
| | - Zheng-Xiang Gao
- Zhongshan Hospital, Medical College of Xiamen University, Xiamen, Fujian Province, China.,Institute of Infectious Disease, Medical College of Xiamen University, Xiamen, Fujian Province, China
| | - Kun Gao
- Zhongshan Hospital, Medical College of Xiamen University, Xiamen, Fujian Province, China.,Institute of Infectious Disease, Medical College of Xiamen University, Xiamen, Fujian Province, China
| | - Man-Li Tong
- Zhongshan Hospital, Medical College of Xiamen University, Xiamen, Fujian Province, China.,Institute of Infectious Disease, Medical College of Xiamen University, Xiamen, Fujian Province, China
| | - Hui-Lin Zhang
- Zhongshan Hospital, Medical College of Xiamen University, Xiamen, Fujian Province, China.,Institute of Infectious Disease, Medical College of Xiamen University, Xiamen, Fujian Province, China
| | - Shu-Lian Li
- Xiamen Huli District Maternity and Child Care Hospital, Xiamen, Fujian Province, China
| | - Hui-Ling Lin
- Xiamen Huli District Maternity and Child Care Hospital, Xiamen, Fujian Province, China
| | - Wen-Dong Li
- Xiamen Huli District Maternity and Child Care Hospital, Xiamen, Fujian Province, China
| | - Xian-Ming Liang
- Zhongshan Hospital, Medical College of Xiamen University, Xiamen, Fujian Province, China
| | - Yong Lin
- Zhongshan Hospital, Medical College of Xiamen University, Xiamen, Fujian Province, China. .,Institute of Infectious Disease, Medical College of Xiamen University, Xiamen, Fujian Province, China.
| | - Li-Li Liu
- Zhongshan Hospital, Medical College of Xiamen University, Xiamen, Fujian Province, China. .,Institute of Infectious Disease, Medical College of Xiamen University, Xiamen, Fujian Province, China.
| | - Tian-Ci Yang
- Zhongshan Hospital, Medical College of Xiamen University, Xiamen, Fujian Province, China. .,Institute of Infectious Disease, Medical College of Xiamen University, Xiamen, Fujian Province, China.
| |
Collapse
|