1
|
Zhou H, Zhang S, Chen Y, Zhang S, Xu Z, Cui D, Guo W. Research on Pine Wilt Disease Spread Prediction Based on an Improved Light Gradient Boosting Machine Model. PHYTOPATHOLOGY 2025; 115:410-421. [PMID: 39745355 DOI: 10.1094/phyto-07-24-0202-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Pine wilt disease has caused significant damage to China's ecological and financial resources. To prevent its further spread across the country, proactive control measures are necessary. Given the low accuracy of traditional models, we have employed an enhanced light gradient boosting machine (LGBM) model to predict the development trend of pine wilt disease in China, providing a theoretical basis for its monitoring and prevention. We collected and organized data on the occurrence points of pine wilt disease at the county level in China. By incorporating anthropogenic factors such as the volume of pine wood imports from 2017 to 2022, the density of graded roads, the number of adjacent counties, and the presence of wood processing factories, as well as natural factors such as temperature, humidity, and wind speed, we employed Pearson correlation and LGBM model's feature importance analysis to select the 17 most significant influencing factors. Spatial analysis was conducted on the epidemic subcompartments (a divisional unit smaller than a township) of pine wilt disease for 2022 and 2023, revealing the distribution patterns of epidemic subcompartments within 2 km of roads and the spatial relationships between new and old epidemic subcompartments. We improved the LGBM model using a Bayesian algorithm, sparrow search algorithm, and hunter-prey optimization algorithm. By comparison, the enhanced model was validated to outperform in terms of accuracy, precision, recall, sensitivity, and specificity. Based on the results of correlation analysis and spatial analysis, an enhanced model was used to predict the emergence of pine wilt disease in new counties and districts in the future. Currently, pine wilt disease is primarily concentrated in the central-southern and northeastern provinces of China. Predictions indicate that the disease will further spread to the northeastern and southern regions of the country in the future.
Collapse
Affiliation(s)
- Hongwei Zhou
- College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China
| | - Siyan Zhang
- College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China
| | - Yifan Chen
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang 110034, China
| | - Shibo Zhang
- College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China
| | - Zihan Xu
- College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China
| | - Di Cui
- Heilongjiang Forestry Technology Service Center, Harbin 150010, China
| | - Wenhui Guo
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang 110034, China
| |
Collapse
|
2
|
Guo F, Gao G, Sun Q, Guo L, Yang Y. Predicting high-risk zones for pine wood nematodes invasion: Integrating climate suitability, host availability, and vector dominance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178902. [PMID: 40022972 DOI: 10.1016/j.scitotenv.2025.178902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 03/04/2025]
Abstract
Pine wood nematodes (PWN, Bursaphelenchus xylophilus) cause widespread mortality in pine forests via pine wilt disease (PWD). The rapid death of diseased trees, which destroys biodiversity and significantly affects forest carbon storage, leading to negative environmental and economic consequences, as forests are crucial to the global carbon cycle. The interactions among PWN, hosts, and vector insects are closely linked to climate change. Climate warming has exacerbated changes in the geographic distribution of host tree species and vector insects, thereby increasing the rate and extent of PWD transmission. These interactions increase the risk of pine infection and can have far-reaching consequences for the health and stability of entire forest ecosystems. However, the global effects of climate change on these interactions are poorly understood. To fill this research gap and predict the potential impacts of climate change on the distribution of PWNs and vector insects in pine forests, we used the biomod2 integrated model to forecast their potential geographic distributions by 2050, 2070, and 2090 under three greenhouse gas emission scenarios (SSP126, SSP245, and SSP585). We analysed vector dominance and risk zones and found that potentially suitable areas for PWNs could migrate to higher latitudes in the future. The dominant vector insects, Monochamus alternatus, Monochamus carolinensis, and Monochamus saltuarius, exhibited a high ecological niche similarity to PWNs and their populations should be controlled. Additionally, high-risk areas for abiotic factors (environmental similarity) and biotic factors (hosts and vectors) will greatly expand in North America and Europe. Areas already infested by PWN will become high-risk zones for the conversion of carbon sinks to carbon sources. The modeled changes in the spatial and temporal patterns of PWN, hosts, and vector insects in this study provide a reference for developing management and conservation strategies for ensuring PWN control and improving future forest health.
Collapse
Affiliation(s)
- Facheng Guo
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Guizhen Gao
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi 830052, China.
| | - Qian Sun
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Liang Guo
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yaru Yang
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
3
|
Akami A, Fukuda K. Relationship Between the Distribution of the Pinewood Nematode ( Bursaphelenchus xylophilus) and the Development of Xylem Embolism in the Stems of Japanese Black Pine ( Pinus thunbergii) Seedlings Monitored by Magnetic Resonance Imaging. PHYTOPATHOLOGY 2025; 115:172-180. [PMID: 39373566 DOI: 10.1094/phyto-06-24-0191-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The development of xylem embolism in 1-year-old stems of Japanese black pine (Pinus thunbergii) seedlings was monitored by compact magnetic resonance imaging (MRI) after inoculation with the pinewood nematode (Bursaphelenchus xylophilus). In parallel, the nematode distribution and population structure in the stems were examined by isolating the nematodes using the Baermann funnel technique. The vertical length and volume of massive embolisms in each seedling were strongly correlated with the maximum relative embolized area (REA) in stem cross-sections. Embolism development and nematode reproduction were not restricted to the inoculation site, as any portion of the stem could be the initial point of a population burst. The nematode population in the stem xylem was strongly correlated with the REA and with the circumferential proportion of cambial death in cross-sections monitored by MRI. The proportion of second-stage juveniles was also correlated with the REA in the xylem. In contrast, the nematode population in bark tissue was not correlated with either the REA or cambial death. These results suggested that nematode reproduction in the cambial zone is the key step in pine wilt disease, and second-stage juveniles were suggested to induce massive embolisms in the advanced stage of the disease.
Collapse
Affiliation(s)
- Ai Akami
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Kenji Fukuda
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Pires D, Vicente CSL, Mota M, Inácio ML. Polyphasic approach to the selection of Esteya isolates for the control of the pinewood nematode, Bursaphelenchus xylophilus. Fungal Biol 2024; 128:2242-2249. [PMID: 39643391 DOI: 10.1016/j.funbio.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 12/09/2024]
Abstract
Pine wilt disease, caused by the pinewood nematode, Bursaphelenchus xylophilus, is a major phytosanitary concern to pine forests worldwide. Managing pine wilt disease involves a complex logistical undertaking, with limited effectiveness and significant ecological repercussions. An increasing demand for biosolutions has sparked an interest in microbial antagonists capable of controlling the nematode. Esteya spp. are promising fungal biocontrol agents of the pinewood nematode. Here, we carry out an integrative characterization of Esteya vermicola and Esteya floridanum isolates, through biological, biochemical, and molecular methods, and provide insights into the selection of these isolates for the biological control of the pinewood nematode. Dual culture assays revealed that Esteya spp. can compete with ophiostomatoid fungi (Leptographium terebrantis and Ophiostoma ips) occurring in the pathosystem of pine wilt disease, an often-neglected ecological perspective that could hinder their success as biocontrol agents. Moreover, E. vermicola can metabolize more carbon sources than E. floridanum, which can have implications on their successful establishment in pine trees. Our experimental approach further shows that both Esteya spp. are equally competent in suppressing the pinewood nematode in vitro. Overall, our results suggest that a prophylactic application of Esteya in pine trees may be preferable for optimal bioprotective effects against the pinewood nematode and fungal pathogens.
Collapse
Affiliation(s)
- David Pires
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), Av. da República, 2780-159, Oeiras, Portugal; Mediterranean Institute for Agriculture, Environment and Development (MED) & Global Change and Sustainability Institute (CHANGE), Institute for Advanced Studies and Research, University of Évora, Pólo da Mitra, Apartado 94, 7006-554, Évora, Portugal
| | - Cláudia S L Vicente
- Mediterranean Institute for Agriculture, Environment and Development (MED) & Global Change and Sustainability Institute (CHANGE), Institute for Advanced Studies and Research, University of Évora, Pólo da Mitra, Apartado 94, 7006-554, Évora, Portugal.
| | - Manuel Mota
- Mediterranean Institute for Agriculture, Environment and Development (MED) & Global Change and Sustainability Institute (CHANGE), Institute for Advanced Studies and Research, University of Évora, Pólo da Mitra, Apartado 94, 7006-554, Évora, Portugal
| | - Maria L Inácio
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), Av. da República, 2780-159, Oeiras, Portugal; GREEN-IT Bioresources for Sustainability, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157, Oeiras, Portugal
| |
Collapse
|
5
|
Chen L, Lu W, Lamont BB, Liu Y, Wei P, Xue W, Xiong Z, Tang L, Wang Y, Wang P, Yan Z. Modeling the distribution of pine wilt disease in China using the ensemble models MaxEnt and CLIMEX. Ecol Evol 2024; 14:e70277. [PMID: 39301297 PMCID: PMC11412742 DOI: 10.1002/ece3.70277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/02/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024] Open
Abstract
Pine wilt disease (PWD) is a devastating plant disease caused by the pinewood nematode (PWN, Bursaphelenchus xylophilus) that is transmitted by several beetle species in the genus, Monochamus. Once present, the disease is difficult to control. Prevention rather than control is regarded as an effective strategy for PWD management. Central to this prevention strategy is the ability to predict the potential distribution of the disease. Here, we employed an integrated MaxEnt and CLIMEX approach to model the potential distribution of PWD under various climate-change scenarios. Our results indicate that rising temperatures and lower humidity under climate change will render some of the northern regions of China more suitable for the nematode and these beetles, causing the gradual northward movement of PWD. Furthermore, suitable habitats for three pine species, Pinus massoniana, P. taiwanensis and P. shurbergia, overlap with PWN and Monochamus, suggesting that these three species are potentially at high risk of PWD. Thus, PWD management should target the northern regions of China and the three pine species that are most susceptible to PWD.
Collapse
Affiliation(s)
- Lin Chen
- College of Horticulture and Forestry Sciences/Hubei Engineering Technology Research Center for Forestry InformationHuazhong Agricultural UniversityWuhanChina
| | - Wenxiong Lu
- College of Horticulture and Forestry Sciences/Hubei Engineering Technology Research Center for Forestry InformationHuazhong Agricultural UniversityWuhanChina
| | - Byron B. Lamont
- Ecology Section, School of Molecular and Life SciencesCurtin UniversityPerthWestern AustraliaAustralia
| | - Yu Liu
- College of Agriculture and Animal HusbandryQinghai UniversityXiningChina
| | - Pujie Wei
- College of Horticulture and Forestry Sciences/Hubei Engineering Technology Research Center for Forestry InformationHuazhong Agricultural UniversityWuhanChina
| | - Weixing Xue
- College of Horticulture and Forestry Sciences/Hubei Engineering Technology Research Center for Forestry InformationHuazhong Agricultural UniversityWuhanChina
| | - Zixuan Xiong
- College of Horticulture and Forestry Sciences/Hubei Engineering Technology Research Center for Forestry InformationHuazhong Agricultural UniversityWuhanChina
| | - Li Tang
- College of Horticulture and Forestry Sciences/Hubei Engineering Technology Research Center for Forestry InformationHuazhong Agricultural UniversityWuhanChina
| | - Yongjian Wang
- College of Horticulture and Forestry Sciences/Hubei Engineering Technology Research Center for Forestry InformationHuazhong Agricultural UniversityWuhanChina
| | - Pengcheng Wang
- College of Horticulture and Forestry Sciences/Hubei Engineering Technology Research Center for Forestry InformationHuazhong Agricultural UniversityWuhanChina
| | - Zhaogui Yan
- College of Horticulture and Forestry Sciences/Hubei Engineering Technology Research Center for Forestry InformationHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
6
|
Ma Y, Yu M, Sun Z, Pan S, Wang Y, Li F, Guo X, Zhao R, Xu Y, Wu X. Biomass-Based, Dual Enzyme-Responsive Nanopesticides: Eco-friendly and Efficient Control of Pine Wood Nematode Disease. ACS NANO 2024; 18:13781-13793. [PMID: 38752333 DOI: 10.1021/acsnano.4c02031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Pine wood nematode (PWN) disease is a globally devastating forest disease caused by infestation with PWN, Bursaphelenchus xylophilus, which mainly occurs through the vector insect Japanese pine sawyer (JPS), Monochamus alternatus. PWN disease is notoriously difficult to manage effectively and is known as the "cancer of pine trees." In this study, dual enzyme-responsive nanopesticides (AVM@EC@Pectin) were prepared using nanocoating avermectin (AVM) after modification with natural polymers. The proposed treatment can respond to the cell wall-degrading enzymes secreted by PWNs and vector insects during pine tree infestation to intelligently release pesticides to cut off the transmission and infestation pathways and realize the integrated control of PWN disease. The LC50 value of AVM@EC@Pectin was 11.19 mg/L for PWN and 26.31 mg/L for JPS. The insecticidal activity of AVM@EC@Pectin was higher than that of the commercial emulsifiable concentrate (AVM-EC), and the photostability, adhesion, and target penetration were improved. The half-life (t1/2) of AVM@EC@Pectin was 133.7 min, which is approximately twice that of AVM-EC (68.2 min). Sprayed and injected applications showed that nanopesticides had superior bidirectional transportation, with five-times higher AVM contents detected in the roots relative to those of AVM-EC when sprayed at the top. The safety experiment showed that the proposed treatment had lower toxicity and higher safety for nontarget organisms in the application environment and human cells. This study presents a green, safe, and effective strategy for the integrated management of PWN disease.
Collapse
Affiliation(s)
- Yingjian Ma
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Meng Yu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Zhe Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Shouhe Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Yinmin Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Fengyu Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Xinyu Guo
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Rui Zhao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Yong Xu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Xuemin Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| |
Collapse
|
7
|
Peng Y, Tang Y, Li D, Ye J. The Growth-Promoting and Colonization of the Pine Endophytic Pseudomonas abietaniphila for Pine Wilt Disease Control. Microorganisms 2024; 12:1089. [PMID: 38930471 PMCID: PMC11206076 DOI: 10.3390/microorganisms12061089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
In this study, we focused on evaluating the impact of Pseudomonas abietaniphila BHJ04 on the growth of Pinus massoniana seedlings and its biocontrol efficacy against pine wilt disease (PWD). Additionally, the colonization dynamics of P. abietaniphila BHJ04 on P. massoniana were examined. The growth promotion experiment showed that P. abietaniphila BHJ04 significantly promoted the growth of the branches and roots of P. massoniana. Pot control experiments indicated that strain BHJ04 significantly inhibited the spread of PWD. There were significant changes in the expression of several genes related to pine wood nematode defense in P. massoniana, including chitinase, nicotinamide synthetase, and triangular tetrapeptide-like superfamily protein isoform 9. Furthermore, our results revealed significant upregulation of genes associated with the water stress response (dehydration-responsive proteins), genetic material replication (DNA/RNA polymerase superfamily proteins), cell wall hydrolase, and detoxification (cytochrome P450 and cytochrome P450 monooxygenase superfamily genes) in the self-regulation of P. massoniana. Colonization experiments demonstrated that strain BHJ04 can colonize the roots, shoots, and leaves of P. massoniana, and the colonization amount on the leaves was the greatest, reaching 160,000 on the 15th day. However, colonization of the stems lasted longer, with the highest level of colonization observed after 45 d. This study provides a preliminary exploration of the growth-promoting and disease-preventing mechanisms of P. abietaniphila BHJ04 and its ability to colonize pines, thus providing a new biocontrol microbial resource for the biological control of plant diseases.
Collapse
Affiliation(s)
- Yueyuan Peng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.P.); (Y.T.); (D.L.)
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| | - Yuwei Tang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.P.); (Y.T.); (D.L.)
| | - Da Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.P.); (Y.T.); (D.L.)
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| | - Jianren Ye
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.P.); (Y.T.); (D.L.)
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
8
|
Xiao Y, Guo Q, Xie N, Yuan G, Liao M, Gui Q, Ding G. Predicting the global potential distribution of Bursaphelenchus xylophilus using an ecological niche model: expansion trend and the main driving factors. BMC Ecol Evol 2024; 24:48. [PMID: 38632522 PMCID: PMC11022495 DOI: 10.1186/s12862-024-02234-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 04/01/2024] [Indexed: 04/19/2024] Open
Abstract
Bursaphelenchus xylophilus (Steiner&Buhrer) Nickle is a global quarantine pest that causes devastating mortality in pine species. The rapid and uncontrollable parasitic spread of this organism results in substantial economic losses to pine forests annually. In this study, we used the MaxEnt model and GIS software ArcGIS10.8 to predict the distribution of B. xylophilus based on collected distribution points and 19 environmental variables (with a correlation coefficient of|R| > 0.8) for the contemporary period (1970-2000), 2041-2060 (2050s), 2061-2080 (2070s), and 2081-2100 (2090s) under four shared socioeconomic pathways (SSPs). We conducted a comprehensive analysis of the key environmental factors affecting the geographical distribution of B. xylophilus and suitable distribution areas. Our results indicate that in current prediction maps B. xylophilus had potential suitable habitats in all continents except Antarctica, with East Asia being the region with the most highly suitable areas and the most serious epidemic area currently. Precipitation of the warmest quarter, temperature seasonality, precipitation of the wettest month, and maximum temperature of the warmest month were identified as key environmental variables that determine the distribution of B. xylophilus. Under future climatic conditions, the potential geographic distribution of B. xylophilus will expand relative to current conditions. In particular, under the SSP5-8.5 scenario in 2081-2100, suitable areas will expand to higher latitudes, and there will be significant changes in suitable areas in Europe, East Asia, and North America. These findings are crucial for future prevention and control management and monitoring.
Collapse
Affiliation(s)
- Yang Xiao
- Institute for Forest Resources & Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, 550025, Guiyang, PR China
| | - Qiqiang Guo
- Institute for Forest Resources & Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, 550025, Guiyang, PR China.
| | - Na Xie
- Institute for Forest Resources & Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, 550025, Guiyang, PR China
| | - Gangyi Yuan
- Institute for Forest Resources & Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, 550025, Guiyang, PR China
| | - Mengyun Liao
- Institute for Forest Resources & Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, 550025, Guiyang, PR China
| | - Qin Gui
- Institute for Forest Resources & Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, 550025, Guiyang, PR China
| | - Guijie Ding
- Institute for Forest Resources & Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, 550025, Guiyang, PR China
| |
Collapse
|
9
|
Chen C, Hu Z, Zheng X, Yuan J, Zou R, Wang Y, Peng X, Xie C. The essential role of arginine biosynthetic genes in lunate conidia formation, conidiation, mycelial growth, and virulence of nematophagous fungus, Esteya vermicola CBS115803. PEST MANAGEMENT SCIENCE 2024; 80:786-796. [PMID: 37781870 DOI: 10.1002/ps.7809] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND The pinewood nematode (Bursaphelenchus xylophilus) causes severe damage to pine trees. The nematophagous fungus, Esteya vermicola, exhibits considerable promise in the biological control of Bursaphelenchus xylophilus due to its infectivity. Notably, the lunate conidia produced by E. vermicola can infect Bursaphelenchus xylophilus. In the study, we aim to investigate the genes involved in the formation of the lunate conidia of E. vermicola CBS115803. RESULTS Esteya vermicola CBS115803 yielded 95% lunate conidia on the complete medium (CM) and 86% bacilloid conidia on the minimal medium (MM). Transcriptomic analysis of conidia from both media revealed a significant enrichment of differentially expressed genes in the pathway related to 'cellular amino acid biosynthesis and metabolism'. Functional assessment showed that the knockout of two arginine biosynthesis genes (EV232 and EV289) resulted in defects in conidia germination, mycelial growth, lunate conidia formation, and virulence of E. vermicola CBS115803 in Bursaphelenchus xylophilus. Remarkably, the addition of arginine to the MM improved mycelial growth, conidiation and lunate conidia formation in the mutants and notably increased conidia yield and the lunate conidia ratio in the wild-type E. vermicola CBS115803. CONCLUSION This investigation confirms the essential role of two arginine biosynthesis genes in lunate conidia formation in E. vermicola CBS115803. The findings also suggest that the supplementation of arginine to the culture medium can enhance the lunate conidia yield. These insights contribute significantly to the application of E. vermicola CBS115803 in managing Bursaphelenchus xylophilus infections. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chi Chen
- Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, China
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, China
| | - Zhijuan Hu
- Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, China
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, China
| | - Xinyao Zheng
- Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, China
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, China
| | - Jingjie Yuan
- Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, China
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, China
| | - Run Zou
- Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, China
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, China
| | - Yilan Wang
- Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, China
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, China
| | - Xuan Peng
- Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, China
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, China
| | - Chengjian Xie
- Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, China
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, China
| |
Collapse
|
10
|
Kim YR, Han JY, Choi YE. A Pinus strobus transcription factor PsbHLH1 activates the production of pinosylvin stilbenoids in transgenic Pinus koraiensis calli and tobacco leaves. FRONTIERS IN PLANT SCIENCE 2024; 15:1342626. [PMID: 38304739 PMCID: PMC10830828 DOI: 10.3389/fpls.2024.1342626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024]
Abstract
Transcription factors (TFs) play an important role in regulating the biosynthesis of secondary metabolites. In Pinus strobus, the level of methylated derivatives of pinosylvin is significantly increased upon pine wood nematode (PWN) infection, and these compounds are highly toxic to PWNs. In a previous study, we found that the expression of a basic helix-loop-helix TF gene, PsbHLH1, strongly increased in P. strobus plants after infection with PWNs. In this study, we elucidated the regulatory role of the PsbHLH1 gene in the production of methylated derivatives of pinosylvin such as pinosylvin monomethyl ether (PME) and dihydropinoylvin monomethyl ether (DPME). When PsbHLH1 was overexpressed in Pinus koraiensis calli, the production of PME and DPME was significantly increased. Overexpression of the stilbene synthase (PsSTS) and pinosylvin methyl transferase (PsPMT) genes, known as key enzymes for the biosynthesis of methylated pinosylvins, did not change PME or DPME production. Moreover, PME and DPME were not produced in tobacco leaves when the PsSTS and PsPMT genes were transiently coexpressed. However, the transient expression of three genes, PsSTS, PsPMT, and PsbHLH1, resulted in the production of PME and DPME in tobacco leaves. These results prove that PsbHLH1 is an important TF for the pinosylvin stilbene biosynthesis in pine plants and plays a regulatory role in the engineered production of PME and DPME in tobacco plants.
Collapse
Affiliation(s)
| | | | - Yong Eui Choi
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
11
|
Liu F, Su S, Chen J, Xu Q, Song G, Dong Y, Jiang X, Chen D, Fang Y, Li J, Lin C, Su J, Cai S. The nematicide emamectin benzoate increases ROS accumulation in Pinus massoniana and poison Monochamus alternatus. PLoS One 2023; 18:e0295945. [PMID: 38127873 PMCID: PMC10735008 DOI: 10.1371/journal.pone.0295945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
Pine wilt disease (PWD) is caused by the pine wood nematode (PWN, Bursaphelenchus xylophilus) and transmitted by a vector insect, the Monochamus alternatus. The PWN has caused much extensive damage to pine-dominated forest ecosystems. Trunk injection of emamectin benzoate (EB) has been found to be the most useful protective measure against the PWN, due to its low effective dose and long residence time in the field. However, the interactions between EB and the host or the environment remain largely unknown, which limits the efficacy and stability of EB in practical field settings. In this study, we investigated the impact on PWN from EB injection for both adult and young host plants (Pinus massoniana) by taking a multi-omics (phenomics, transcriptomics, microbiome, and metabolomics) approach. We found that EB injection can significantly reduce the amount of PWN in both living adult and young pine trees. Additionally, EB was able to activate the genetic response of P. massoniana against PWN, promotes P. massoniana growth and development and resistance to Pine wilt disease, which requires the presence of PWN. Further, the presence of EB greatly increased the accumulation of reactive oxygen species (ROS) in the host plant in a PWN-dependent manner, possibly by affecting ROS-related microbes and metabolites. Moreover, we uncovered the function of EB limiting the consumption of P. massoniana by the JPS. Based on biochemical and gut microbial data, we found that EB can significantly reduces cellulase activity in JPS, whose transcription factors, sugar metabolism, and the phosphotransferase system are also affected. These results document the impact of EB on the entire PWD transmission chain through multi-omics regarding the dominant pine (P. massoniana) in China and provide a novel perspective for controlling PWD outbreaks in the field.
Collapse
Affiliation(s)
- Fengzhu Liu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shunde Su
- Fujian Academy of Forestry, Key Laboratory of National Forestry and Grassland Administration on Timber Forest Breeding and Cultivation for Mountainous Areas in Southern China, Fuzhou, China
| | - Jie Chen
- Fujian Academy of Forestry, Key Laboratory of National Forestry and Grassland Administration on Timber Forest Breeding and Cultivation for Mountainous Areas in Southern China, Fuzhou, China
| | - Qinghua Xu
- Syngenta (China) Investment Co. Ltd., Shanghai, China
| | - Gaofei Song
- Syngenta (China) Investment Co. Ltd., Shanghai, China
| | - Yuguang Dong
- Syngenta (China) Investment Co. Ltd., Shanghai, China
| | | | - Daoshun Chen
- Shaxian Guanzhuang State-Owned Forest Farm, Sanming, China
| | - Yu Fang
- Institute of Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Jian Li
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chentao Lin
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jun Su
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shouping Cai
- Fujian Academy of Forestry, Key Laboratory of National Forestry and Grassland Administration on Timber Forest Breeding and Cultivation for Mountainous Areas in Southern China, Fuzhou, China
| |
Collapse
|
12
|
Jia J, Chen L, Yu W, Cai S, Su S, Xiao X, Tang X, Jiang X, Chen D, Fang Y, Wang J, Luo X, Li J, Huang Y, Su J. The novel nematicide chiricanine A suppresses Bursaphelenchus xylophilus pathogenicity in Pinus massoniana by inhibiting Aspergillus and its secondary metabolite, sterigmatocystin. FRONTIERS IN PLANT SCIENCE 2023; 14:1257744. [PMID: 38023855 PMCID: PMC10663349 DOI: 10.3389/fpls.2023.1257744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
Introduction Pine wilt disease (PWD) is responsible for extensive economic and ecological damage to Pinus spp. forests and plantations worldwide. PWD is caused by the pine wood nematode (PWN, Bursaphelenchus xylophilus) and transmitted into pine trees by a vector insect, the Japanese pine sawyer (JPS, Monochamus alternatus). Host infection by PWN will attract JPS to spawn, which leads to the co-existence of PWN and JPS within the host tree, an essential precondition for PWD outbreaks. Through the action of their metabolites, microbes can manipulate the co-existence of PWN and JPS, but our understanding on how key microorganisms engage in this process remains limited, which severely hinders the exploration and utilization of promising microbial resources in the prevention and control of PWD. Methods In this study we investigated how the PWN-associated fungus Aspergillus promotes the co-existence of PWN and JPS in the host trees (Pinus massoniana) via its secondary metabolite, sterigmatocystin (ST), by taking a multi-omics approach (phenomics, transcriptomics, microbiome, and metabolomics). Results We found that Aspergillus was able to promote PWN invasion and pathogenicity by increasing ST biosynthesis in the host plant, mainly by suppressing the accumulation of ROS (reactive oxygen species) in plant tissues that could counter PWN. Further, ST accumulation triggered the biosynthesis of VOC (volatile organic compounds) that attracts JPS and drives the coexistence of PWN and JPS in the host plant, thereby encouraging the local transmission of PWD. Meanwhile, we show that application of an Aspergillus inhibitor (chiricanine A treatment) results in the absence of Aspergillus and decreases the in vivo ST amount, thereby sharply restricting the PWN development in host. This further proved that Aspergillus is vital and sufficient for promoting PWD transmission. Discussion Altogether, these results document, for the first time, how the function of Aspergillus and its metabolite ST is involved in the entire PWD transmission chain, in addition to providing a novel and long-term effective nematicide for better PWD control in the field.
Collapse
Affiliation(s)
- Jiayu Jia
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Long Chen
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenjing Yu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shouping Cai
- Fujian Academy of Forestry, Key Laboratory of National Forestry and Grassland Administration on Timber Forest Breeding and Cultivation for Mountainous Areas in Southern China, Fuzhou, China
| | - Shunde Su
- Fujian Academy of Forestry, Key Laboratory of National Forestry and Grassland Administration on Timber Forest Breeding and Cultivation for Mountainous Areas in Southern China, Fuzhou, China
| | - Xiangxi Xiao
- Fujian Academy of Forestry, Key Laboratory of National Forestry and Grassland Administration on Timber Forest Breeding and Cultivation for Mountainous Areas in Southern China, Fuzhou, China
| | - Xinghao Tang
- Fujian Academy of Forestry, Key Laboratory of National Forestry and Grassland Administration on Timber Forest Breeding and Cultivation for Mountainous Areas in Southern China, Fuzhou, China
| | - Xiangqing Jiang
- Silviculture Department, Shaxian Guanzhuang State-Owned Forest Farm, Sanming, China
| | - Daoshun Chen
- Silviculture Department, Shaxian Guanzhuang State-Owned Forest Farm, Sanming, China
| | - Yu Fang
- Institute of Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Jinjin Wang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaohua Luo
- Forest Fire Prevention Office, Forestry Bureau of Yuoxi County, Sanming, China
| | - Jian Li
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yunpeng Huang
- Fujian Academy of Forestry, Key Laboratory of National Forestry and Grassland Administration on Timber Forest Breeding and Cultivation for Mountainous Areas in Southern China, Fuzhou, China
| | - Jun Su
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
13
|
Lee Y, Muthukrishnan S, Kramer KJ, Sakamoto T, Tabunoki H, Arakane Y, Noh MY. Functional importance of groups I and II chitinases in cuticle chitin turnover during molting in a wood-boring beetle, Monochamus alternatus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105496. [PMID: 37532355 DOI: 10.1016/j.pestbp.2023.105496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 08/04/2023]
Abstract
Insects must periodically replace their old cuticle/exoskeleton with a new one in a process called molting or ecdysis to allow for continuous growth through sequential developmental stages. Many RNA interference (RNAi) studies have demonstrated that certain chitinases (CHTs) play roles in this vital physiological event because knockdown of these CHT genes resulted in developmental arrest during the ensuing molting period in several insect species. In this research we analyzed the functions of group I (MaCHT5) and group II (MaCHT10) CHT genes in molting of the Japanese pine sawyer, Monochamus alternatus, an important forest pest known as a major vector of the pinewood nematode. Real-time qPCR revealed that these two CHT genes differ in their expression patterns during late stages of development. Depletion of either MaCHT5 or MaCHT10 transcripts by RNAi resulted in lethal larval-pupal and pupal-adult molting defects depending on the double-stranded RNA (dsRNA) injection timing during development. The insects were unable to shed their old cuticle and died. Furthermore, transmission electron microscopic analysis revealed that, unlike dsEGFP-treated controls, dsMaCHT5- and dsMaCHT10-treated pharate adults exhibited a failure of degradation of the endocuticular layer of their old pupal cuticle, retaining nearly intact horizontal chitinous laminae and vertical pore canal fibers. Both enzymes were indispensable for complete turnover of the chitinous old endocuticle, which is critical for insect molting. The possible functions of two spliced variants of MaCHT10, namely, MaCHT10a and MaCHT10b, are also discussed. Our results add to the knowledge base for further functional studies of insect chitin catabolism by revealing the relative importance of both MaCHT5 and MaCHT10 in chitin turnover with subtle differences in their action. These essential genes and their encoded proteins are potential targets to manipulate for controlling populations of M. alternatus and other pest insects.
Collapse
Affiliation(s)
- Youngseo Lee
- Department of Forest Resources, AgriBio Institute of Climate Change Management, Chonnam National University, Gwangju 61186, South Korea
| | - Subbaratnam Muthukrishnan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Chalmers Hall, Manhattan, Kansas 66506, USA
| | - Karl J Kramer
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Chalmers Hall, Manhattan, Kansas 66506, USA
| | - Takuma Sakamoto
- Department of Science of Biological Production, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Hiroko Tabunoki
- Department of Science of Biological Production, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Yasuyuki Arakane
- Department of Applied Biology, Chonnam National University, Gwangju 61186, South Korea.
| | - Mi Young Noh
- Department of Forest Resources, AgriBio Institute of Climate Change Management, Chonnam National University, Gwangju 61186, South Korea.
| |
Collapse
|
14
|
Tang C, Wu J, Chen Q, Wang Y. CRISPR-Cas Detection Coupled with Isothermal Amplification of Bursaphelenchus xylophilus. PLANT DISEASE 2023:PDIS07221648SR. [PMID: 36383999 DOI: 10.1094/pdis-07-22-1648-sr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The pine wood nematode (PWN), Bursaphelenchus xylophilus, causes significant damage to pine trees and, thus, poses a serious threat to pine forests worldwide, particularly in China, Korea, and Japan. A fast, affordable, and ultrasensitive detection of B. xylophilus is urgently needed for disease diagnosis. Recently, clustered regularly interspaced short palindromic repeats (CRISPR)-based diagnostics have reshaped molecular diagnosis, with high speed, precision, specificity, strength, efficiency, and versatility. Herein, we established two isothermal diagnostics methods based on CRISPR-based platforms (CRISPR/Cas12a and CRISPR/Cas13a) for B. xylophilus-specific detection via fluorescence or lateral-flow strip readout. The guide RNA and CRISPR RNA were designed to target the 5S ribosomal DNA intergenic spacer sequences region of B. xylophilus. Recombinase-aided amplification was used for preamplification whose reaction condition was 37°C for 15 min. The sensitivity of CRISPR/Cas12a could reach 94 copies/µl of plasmid DNA, or 2.37 copies/µl of purified genomic DNA (gDNA) within 45 min at 37°C, while the sensitivity of CRISPR/Cas13a was 1,000 times higher than that of CRISPR/Cas12a of plasmid DNA in 15 min or 100 times higher of purified gDNA at the minimum reaction time of 4 min via fluorescence measurement. The CRISPR/Cas12a assay enabled the detection of 0.01 PWNs per 100 mg of pine wood, 10 times higher than that of the CRISPR/Cas13a assay. This work enriches molecular detection approaches for B. xylophilus and provides huge potential for ultrasensitive and rapid methods to detect B. xylophilus in pine wood, facilitating point-of-sample diagnostic processing for pine wilt disease management.
Collapse
Affiliation(s)
- Chen Tang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China 100089
| | - Jin Wu
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China 100089
| | - Qi Chen
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China 100089
| | - Yonglin Wang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China 100089
| |
Collapse
|
15
|
Guo Y, Ma J, Sun Y, Carballar-Lejarazú R, Weng M, Shi W, Wu J, Hu X, Wang R, Zhang F, Wu S. Spatiotemporal dynamics of fluopyram trunk-injection in Pinus massoniana and its efficacy against pine wilt disease. PEST MANAGEMENT SCIENCE 2023; 79:2230-2238. [PMID: 36756723 DOI: 10.1002/ps.7402] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Pine wilt disease (PWD) is a destructive disease of pine trees caused by the pinewood nematode, Bursaphelenchus xylophilus. Fluopyram, a novel nematicide compound with systemic activity, is a prospective trunk-injection agent against pinewood nematodes. The disadvantage of current trunk-injection agents is that they were not evenly distributed in tree tissues and were poor in the persistence of effect and efficiency. Therefore, we investigated the spatiotemporal transport pattern and residue behavior of fluopyram following its injection into the trunk of Pinus massoniana. RESULTS Fluopyram transport in the trunk occurred through radial diffusion and vertical uptake within 1 week of the injection, reaching all tissues of P. massoniana, including apical branches and needles. Three years after the field test, the infection of PWD declined substantially with treatment using the fluopyram trunk-injection agent, which demonstrated 100% efficacy in both the mild and moderate occurrence areas, and 71.1% efficacy in the severe occurrence area. Fluopyram as trunk-injection agent exerted substantial control over PWD, with its efficacy being influenced by the infection time of PWD. The half-life of 10% fluopyram in treated pine trees was 346.6 days with 3-year persistence. CONCLUSION The advantages of overall distribution and long persistence of fluopyram in the tree after injection help explain its evident efficacy against PWN. Overall, fluopyram trunk-injection has potential to prevent PWD. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yajie Guo
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, China
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Jiayi Ma
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, China
- Pharmaceutical and Medical Technology College, Putian University, Fuzhou, China
| | - Yunzhu Sun
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rebeca Carballar-Lejarazú
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California, USA
| | - Mingqing Weng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenchao Shi
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jieqin Wu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xia Hu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rong Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Feiping Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Songqing Wu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
16
|
Dutta TK, Phani V. The pervasive impact of global climate change on plant-nematode interaction continuum. FRONTIERS IN PLANT SCIENCE 2023; 14:1143889. [PMID: 37089646 PMCID: PMC10118019 DOI: 10.3389/fpls.2023.1143889] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Pest profiles in today's global food production system are continually affected by climate change and extreme weather. Under varying climatic conditions, plant-parasitic nematodes (PPNs) cause substantial economic damage to a wide variety of agricultural and horticultural commodities. In parallel, their herbivory also accredit to diverse ecosystem services such as nutrient cycling, allocation and turnover of plant biomass, shaping of vegetation community, and alteration of rhizospheric microorganism consortium by modifying the root exudation pattern. Thus PPNs, together with the vast majority of free-living nematodes, act as ecological drivers. Because of direct exposure to the open environment, PPN biology and physiology are largely governed by environmental factors including temperature, precipitation, humidity, atmospheric and soil carbon dioxide level, and weather extremes. The negative effects of climate change such as global warming, elevated CO2, altered precipitation and the weather extremes including heat waves, droughts, floods, wildfires and storms greatly influence the biogeographic range, distribution, abundance, survival, fitness, reproduction, and parasitic potential of the PPNs. Changes in these biological and ecological parameters associated to the PPNs exert huge impact on agriculture. Yet, depending on how adaptable the species are according to their geo-spatial distribution, the consequences of climate change include both positive and negative effects on the PPN communities. While assorting the effects of climate change as a whole, it can be estimated that the changing environmental factors, on one hand, will aggravate the PPN damage by aiding to abundance, distribution, reproduction, generation, plant growth and reduced plant defense, but the phenomena like sex reversal, entering cryptobiosis, and reduced survival should act in counter direction. This seemingly creates a contraposition effect, where assessing any confluent trend is difficult. However, as the climate change effects will differ according to space and time it is apprehensible that the PPNs will react and adapt according to their location and species specificity. Nevertheless, the bio-ecological shifts in the PPNs will necessitate tweaking their management practices from the agri-horticultural perspective. In this regard, we must aim for a 'climate-smart' package that will take care of the food production, pest prevention and environment protection. Integrated nematode management involving precise monitoring and modeling-based studies of population dynamics in relation to climatic fluctuations with escalated reliance on biocontrol, host resistance, and other safer approaches like crop rotation, crop scheduling, cover cropping, biofumigation, use of farmyard manure (FYM) would surely prove to be viable options. Although the novel nematicidal molecules are target-specific and relatively less harmful to the environment, their application should not be promoted following the global aim to reduce pesticide usage in future agriculture. Thus, having a reliable risk assessment with scenario planning, the adaptive management strategies must be designed to cope with the impending situation and satisfy the farmers' need.
Collapse
Affiliation(s)
- Tushar K. Dutta
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Victor Phani
- Department of Agricultural Entomology, College of Agriculture, Uttar Banga Krishi Viswavidyalaya, West Bengal, India
| |
Collapse
|
17
|
Kim YR, Han JY, Choi YE. Production of Nematicidal Pinosylvin Stilbenes in Cell Suspension Cultures of Pinus koraiensis by Fungal Elicitation. PLANTS (BASEL, SWITZERLAND) 2022; 11:2933. [PMID: 36365388 PMCID: PMC9658687 DOI: 10.3390/plants11212933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Pinosylvin stilbenes are natural phenolic compounds found in the Pinaceae family and act as phytoalexins. Some pinosylvin stilbenes have strong nematicidal activity against pine wood nematodes (PWNs: Bursaphelenchus xylophilus). Here, we established the efficient production of two pinosylvin stilbenes, dihydropinosylvin monomethylether (DPME) and pinosylvin monomethylether (PME), by cell suspension culture of Pinus koraiensis after fungal elicitation. DPME and PME were found in small amounts (less than 40 µg/g DW) in the stem bark and leaves of P. koraiensis plants. Cell suspension cultures were established from the cultures of calli derived from mature zygotic embryos of P. koraiensis in 1/2 Litvay medium containing 2.2 μM 2,4-D and 2.2 μM BA. Two types of fungal elicitors, fungal cell extract (CE) and fungal medium filtrate (MF), were prepared from three species of fungi (Penicillium chrysogenum, P. pinophilum, and P. roquefortii). CE and MF treatments strongly stimulated the production of PME and DPME in cultured cells. The production of PME in suspension cells of P. chrysogenum, P. pinophilum, and P. roquefortii MF treatments after 3 days was 5734 µg/g DW, 4051 µg/g DW, and 6724 µg/g DW, respectively. Pinosylvin synthase (PkSTS) and pinosylvin O-methyltransferase (PkPMT) are key genes in DPME and PME biosynthesis. qPCR analysis revealed that the expression of the PkSTS and PkPMT in cultured cells was highly enhanced after fungal elicitor treatment. The cell extracts after MF treatment resulted in 92.5 ± 7.8% immobilization of the adult PWNs and 63.7 ± 3.5% immobilization of the juvenile PWNs within 24 h. However, control cell extracts without MF treatment showed 11.3 ± 1.4% nematicidal activity against adult PWNs. Our results suggest that pinosylvin stilbenes can be produced from the cell culture of P. koraiensis after fungal elicitor treatment and can be used as nematicidal compounds against PWNs.
Collapse
|
18
|
Kim JC, Lee MR, Yu JS, Park SE, Ha P, Kim JS. Management of overwintering pine sawyer beetle, Monochamus alternatus with colonized Beauveria bassiana ERL836. PLoS One 2022; 17:e0274086. [PMID: 36054240 PMCID: PMC9439257 DOI: 10.1371/journal.pone.0274086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
Monochamus alternatus is a major forest pest that spreads pine wilt disease in pine trees as a vector of pine wilt nematodes. Chemical insecticides used as fumigants to control overwintering M. alternatus in forests are highly toxic to the environment, so we investigated entomopathogenic fungus Beauveria bassiana ERL836 as an eco-friendly and alternative material to control overwintering M. alternatus. In this work, we evaluated the insecticidal activity of B. bassiana ERL836 against M. alternatus adults, the possibility of fungal colonization on pine tree bark, and finally the control efficacy of fungal pre-treatment on pine tree logs against emerging M. alternatus adults in semi-field and field conditions. M. alternatus adults were killed on the pine tree logs pre-treated with the B. bassiana ERL836. White conidia were observed not only on the surface of the dead adults but also on the pine tree logs, suggesting that the adults were killed by the fungus on the pine. A formulated ERL836 powder treatment on larvae-infested pine logs showed high insecticidal activity against adults, similar to that with the fungal powder suspension treatment, but we demonstrated that using the fungal powder was simpler than using the suspension in field conditions. Even in the field condition, the fungal powder treatment showed high insecticidal activity against M. alternatus adults, which we attribute to its ability to maintain fungal activity for a long time in field conditions by covering the pine tree logs with a film during overwintering. We confirmed that the risk that fungus-infected M. alternatus adults would spread the fungus to other non-target forest insects was low. Thus, even a high-concentration treatment in a specific area is unlikely to transmit the fungus outside that area, so it can be safely used to control this pine wilt nematode vector in forest ecosystems.
Collapse
Affiliation(s)
- Jong-Cheol Kim
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju, Korea
| | - Mi Rong Lee
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju, Korea
| | - Jeong Seon Yu
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju, Korea
| | - So Eun Park
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju, Korea
| | - Panjung Ha
- Crop Protection R&D Center, Farm Hannong (LG Affiliated Co.), Nonsan, Korea
| | - Jae Su Kim
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju, Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Korea
- * E-mail:
| |
Collapse
|
19
|
Detection of Tree Decline (Pinus pinaster Aiton) in European Forests Using Sentinel-2 Data. REMOTE SENSING 2022. [DOI: 10.3390/rs14092028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Moderate-resolution satellite imagery is essential to detect conifer tree decline on a regional scale and address the threat caused by pinewood nematode (PWN), (Bursaphelenchus xylophilus. This is a quarantine organism responsible for pine wilt disease (PWD), which has caused substantial ecological and economic losses in the maritime pine (Pinus pinaster) forests of Portugal. This study describes the first instance of a pre-operational algorithm applied to Sentinel-2 imagery to detect PWD-compatible decline in maritime pine. The Random Forest model relied on a pre-wilting and an in-season image, calibrated with data from a 24-month long field campaign enhanced with Worldview-3 data and the analysis of biological samples (hyperspectral reflectance, pigment quantification in needles, and PWN identification). Independent validation results attested to the good performance of the model with an overall accuracy of 95%, particularly when decline affects more than 30% of the 100 m2 pixel of Sentinel-2. Spectral angle mapper applied to hyperspectral measurements suggested that PWN infection cannot be separated from other drivers of decline in the visible-near infrared domain. Our algorithm can be employed to detect regional decline trends and inform subsequent aerial and field surveys, to further investigate decline hotspots.
Collapse
|
20
|
Lee S, Cho H, Choi Y, Choi WI, Chung HI, Lim N, Nam Y, Jeon S. Path‐finding algorithm as a dispersal assessment method for invasive species with human‐vectored long‐distance dispersal event. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Sung‐Joo Lee
- Division of Environmental Science & Ecological Engineering Korea University Seoul Korea
- Environmental Assessment Group Korea Environment Institute Sejong Korea
| | - Hyojin Cho
- Division of Environmental Science & Ecological Engineering Korea University Seoul Korea
| | - Yuyoung Choi
- OJEONG Resilience Institute Korea University Seoul Korea
| | - Won Il Choi
- Forest Ecology Division National Institute of Forest Science Seoul Korea
| | - Hye In Chung
- OJEONG Resilience Institute Korea University Seoul Korea
| | - No Ol Lim
- Division of Environmental Science & Ecological Engineering Korea University Seoul Korea
| | - Youngwoo Nam
- Division of Forest Diseases and Insect Pests National Institute of Forest Science Seoul Korea
| | - Seongwoo Jeon
- Division of Environmental Science & Ecological Engineering Korea University Seoul Korea
| |
Collapse
|
21
|
Risk Prediction and Variable Analysis of Pine Wilt Disease by a Maximum Entropy Model. FORESTS 2022. [DOI: 10.3390/f13020342] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Pine wilt disease (PWD) has caused a huge damage to pine forests. PWD is mainly transmitted by jumping diffusion, affected by insect vectors and human activities. Since the results of climate change, pine wood nematode (PWN—Bursaphelenchus xylophilus) has begun invading the temperate zones and higher elevation area. In this situation, predicting the distribution of PWD is an important part of the prevention and control of the epidemic situation. The research established the Maxent model to conduct a multi-angle, fine-scale prediction on the risk distribution of PWD. We adjusted two parameters, regularization multiplier (RM) and feature combination (FC), to optimize the model. Influence factors were selected and divided into natural, landscape, and human variables, according to the physical characteristics and spread rules of PWD. The middle-suitability regions and high-suitability regions are distributed in a Y-shape, and divided the study area into three parts. The high-suitability areas are concentrated in the region with high temperature, low elevation, and intensive precipitation. Among the selected variables, natural factors still play the most important role in the distribution of the disease, and human factors and landscape factors are also worked well. The permutation importance of factors is different due to differences in climate and other conditions in different regions. The multi-angle, fine-scale model can help provide useful information for effective control and tactical management of PWD.
Collapse
|
22
|
Nematodes in the Pine Forests of Northern and Central Greece. INSECTS 2022; 13:insects13020194. [PMID: 35206767 PMCID: PMC8879052 DOI: 10.3390/insects13020194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Pine wood nematode Bursaphelenchus xylophilus is the agent of pine wilt disease and one of the most important forest tree pathogens worldwide, transmitted through beetles of the Monochamus genus. As an invasive species, it has spread beyond its natural range by human activity mainly wood trade. The devastating impact it has on pine forests has led to severe environmental and economic damages in its introduced countries. The wide distribution of Monochamus spp. beetles in many parts of the world along with favourable climatic conditions, which are both important factors for the establishment of pine wilt disease, have raised awareness over its continuous expansion. Therefore, in an attempt to control and even inhibit its further spread and consequently its severely adverse impacts, appropriate measures have already been taken and implemented from countries across the globe. Abstract In the context of plants or plant products protection by harmful organisms, measures have been taken by EU countries in order to prevent their introduction and establishment into the EU, and also limit their expansion in case they do enter. Such a case is Bursaphelenchus xylophilus (Parasitaphelenchidae, Nematoda), already recorded in Portugal and Spain. So, Member States should take all the appropriate steps in order to monitor and confine if necessary susceptible plants and/or plant products. Such measures include annual surveys even in countries where pine wilt disease does not occur yet. Therefore, national survey programs are widely established, sampling and examining samples from pine trees showing suspicious symptoms that could potentially be attributed to B. xylophilus. In this direction, such a network has also been established in Greece collecting and examining wood samples nationwide. In total, 123 wood samples were collected from conifer trees of Northern and Central Greece. Though B. xylophilus was absent from all samples examined, four other Bursaphelenchus species were identified. In addition, other nematode taxa were also recorded, including several phytophagous, microbivorous as well as predatory nematode species. This highlights the fact that besides preventing the introduction of B. xylophilus in Greece, national survey programs can significantly contribute to and enhance our knowledge of the indigenous nematode species.
Collapse
|
23
|
Spatiotemporal Dynamics and Factors Driving the Distributions of Pine Wilt Disease-Damaged Forests in China. FORESTS 2022. [DOI: 10.3390/f13020261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Many forests have suffered serious economic losses and ecological consequences of pine wilt disease (PWD) outbreaks. Climate change and human activities could accelerate the distribution of PWD, causing the exponential expansion of damaged forest areas in China. However, few studies have analyzed the spatiotemporal dynamics and the factors driving the distribution of PWD-damaged forests using continuous records of long-term damage, focusing on short-term environmental factors that influence multiple PWD outbreaks. We used a maximum entropy (MaxEnt) model that incorporated annual meteorological and human activity factors, as well as temporal dependence (the PWD distribution in the previous year), to determine the contributions of environmental factors to the annual distribution of PWD-damaged forests in the period 1982–2020. Overall, the MaxEnt showed good performance in modeling the PWD-damaged forest distributions between 1982 and 2020. Our results indicate that (i) the temporal lag dependence term for the presence/absence of PWD was the best predictor of the distribution of PWD-damaged forests; and (ii) Bio14 (precipitation in the driest month) was the most important meteorological factor for affecting the PWD-damaged forests. These results are essential to understanding the factors governing the distribution of PWD-damaged forests, which is important for forest management and pest control worldwide.
Collapse
|
24
|
The Role of Serratomolide-like Amino Lipids Produced by Bacteria of Genus Serratia in Nematicidal Activity. Pathogens 2022; 11:pathogens11020198. [PMID: 35215141 PMCID: PMC8880026 DOI: 10.3390/pathogens11020198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/13/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
Bursaphelenchus xylophilus, also known as pinewood nematode (PWN), is the pathogenic agent of pine wilt disease (PWD), which affects pine trees around the world. Infection spread globally through international wood commerce and locally by vector beetles, threatening the wood world economy. As climate changes, more countries are becoming susceptible to PWD and, to prevent disease spread and limit economic and ecological losses, better knowledge about this pathogenic agent is needed. Serratia strains, present in the endophytic community of pine trees and carried by PWN, may play an important role in PWD. This work aimed to better understand the interaction between Serratia strains and B. xylophilus and to assess the nematicidal potential of serratomolide-like molecules produced by Serratia strains. Serrawettin gene presence was evaluated in selected Serratia strains. Mortality tests were performed with bacteria supernatants, and extracted amino lipids, against Caenorhabditis elegans (model organism) and B. xylophilus to determine their nematicidal potential. Attraction tests were performed with C. elegans. Concentrated supernatants of Serratia strains with serratamolide-like lipopeptides were able to kill more than 77% of B. xylophilus after 72 h. Eight specific amino lipids showed a high nematicidal activity against B. xylophilus. We conclude that, for some Serratia strains, their supernatants and specific amino lipids showed nematicidal activity against B. xylophilus.
Collapse
|
25
|
Koo HB, Hwang HS, Han JY, Cheong EJ, Kwon YS, Choi YE. Enhanced production of pinosylvin stilbene with aging of Pinus strobus callus and nematicidal activity of callus extracts against pinewood nematodes. Sci Rep 2022; 12:770. [PMID: 35031682 PMCID: PMC8760238 DOI: 10.1038/s41598-022-04843-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/23/2021] [Indexed: 12/15/2022] Open
Abstract
Pinosylvin stilbenes are phenolic compounds mainly occurring in the Pinaceae family. We previously reported that the accumulation of two pinosylvin stilbene compounds, dihydropinosylvin methyl ether (DPME) and pinosylvin monomethyl ether (PME), in Pinus strobus trees was highly enhanced by infection with pine wood nematodes (PWNs: Bursaphelenchus xylophilus), and these two compounds showed strong nematicidal activity against PWNs. In this work, we established a system of pinosylvin stilbene (DPME and PME) production via the in vitro culture of P. strobus calli, and we examined the nematicidal activity of callus extracts. Calli were induced from the culture of mature zygotic embryos of P. strobus. Optimized growth of calli was obtained in 1/2 Litvay medium with 1.0 mg/L 2,4-D and 0.5 mg/L BA. DPME and PME accumulation did not occur in nonaged (one-month-old) calli but increased greatly with prolonged callus culture. The concentrations of DPME and PME in three-month-old dark-brown calli were 6.4 mg/g DW and 0.28 mg/g DW, respectively. The effect of methyl jasmonate treatment on the accumulation of DPME and PME was evaluated in cell suspension culture of P. strobus. However, the treatment appeared to show slight increase of DPME accumulation compared to callus browning. A test solution prepared from crude ethanol extracts from aged calli (three months old) containing 120 µg/ml DPME and 5.16 µg/ml PME treated with PWNs resulted in 100% immobilization of the adult PWNs and 66.7% immobilization of the juvenile PWNs within 24 h. However, nonaged callus extracts did not show any nematicidal activity against juvenile PWNs and showed less than 20% nematicidal activity against adult PWNs. These results indicate that pinosylvin stilbenes can be effectively produced by prolonged culture of P. strobus calli, can be isolated using simple ethanolic extraction, and are applicable as beneficial eco-friendly compounds with nematicidal activity against PWNs.
Collapse
Affiliation(s)
- Hyo Bin Koo
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 200-701, Republic of Korea
| | - Hwan-Su Hwang
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 200-701, Republic of Korea
| | - Jung Yeon Han
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 200-701, Republic of Korea
| | - Eun Ju Cheong
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 200-701, Republic of Korea
| | - Yong-Soo Kwon
- College of Pharmacy, Kangwon National University, Chunchon, 200-701, Republic of Korea
| | - Yong Eui Choi
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 200-701, Republic of Korea.
| |
Collapse
|
26
|
Pires D, Vicente CSL, Inácio ML, Mota M. The Potential of Esteya spp. for the Biocontrol of the Pinewood Nematode, Bursaphelenchus xylophilus. Microorganisms 2022; 10:microorganisms10010168. [PMID: 35056617 PMCID: PMC8781088 DOI: 10.3390/microorganisms10010168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 01/21/2023] Open
Abstract
The pinewood nematode (PWN), Bursaphelenchus xylophilus, is the causal agent of pine wilt disease (PWD) and a quarantine organism in many countries. Managing PWD involves strict regulations and heavy contingency plans, and present climate change scenarios predict a spread of the disease. The urgent need for sustainable management strategies has led to an increasing interest in promising biocontrol agents capable of suppressing the PWN, like endoparasitic nematophagous fungi of the Esteya genus. Here, we review different aspects of the biology and ecology of these nematophagous fungi and provide future prospects.
Collapse
Affiliation(s)
- David Pires
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), 2780-159 Oeiras, Portugal;
- Mediterranean Institute for Agriculture, Environment and Development (MED), University of Évora, Pólo da Mitra, Apartado 94, 7006-554 Evora, Portugal;
| | - Cláudia S. L. Vicente
- Mediterranean Institute for Agriculture, Environment and Development (MED), University of Évora, Pólo da Mitra, Apartado 94, 7006-554 Evora, Portugal;
- Correspondence: (C.S.L.V.); (M.L.I.)
| | - Maria L. Inácio
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), 2780-159 Oeiras, Portugal;
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, Av. da República, 2780-157 Oeiras, Portugal
- Correspondence: (C.S.L.V.); (M.L.I.)
| | - Manuel Mota
- Mediterranean Institute for Agriculture, Environment and Development (MED), University of Évora, Pólo da Mitra, Apartado 94, 7006-554 Evora, Portugal;
| |
Collapse
|
27
|
Espada M, Filipiak A, Li H, Shinya R, Vicente CSL. Editorial: Global occurrence of pine wilt disease: Biological interactions and integrated management. FRONTIERS IN PLANT SCIENCE 2022; 13:993482. [PMID: 35958210 PMCID: PMC9361282 DOI: 10.3389/fpls.2022.993482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 05/09/2023]
Affiliation(s)
- Margarida Espada
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Évora, Portugal
- *Correspondence: Margarida Espada
| | - Anna Filipiak
- Institute of Plant Protection—National Research Institute, Poznań, Poland
| | - Hongmei Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Ryoji Shinya
- School of Agriculture, Meiji University, Kawasaki, Japan
| | - Claudia S. L. Vicente
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Évora, Portugal
| |
Collapse
|
28
|
A Deep Learning-Based Generalized System for Detecting Pine Wilt Disease Using RGB-Based UAV Images. REMOTE SENSING 2021. [DOI: 10.3390/rs14010150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pine wilt is a devastating disease that typically kills affected pine trees within a few months. In this paper, we confront the problem of detecting pine wilt disease. In the image samples that have been used for pine wilt disease detection, there is high ambiguity due to poor image resolution and the presence of “disease-like” objects. We therefore created a new dataset using large-sized orthophotographs collected from 32 cities, 167 regions, and 6121 pine wilt disease hotspots in South Korea. In our system, pine wilt disease was detected in two stages: n the first stage, the disease and hard negative samples were collected using a convolutional neural network. Because the diseased areas varied in size and color, and as the disease manifests differently from the early stage to the late stage, hard negative samples were further categorized into six different classes to simplify the complexity of the dataset. Then, in the second stage, we used an object detection model to localize the disease and “disease-like” hard negative samples. We used several image augmentation methods to boost system performance and avoid overfitting. The test process was divided into two phases: a patch-based test and a real-world test. During the patch-based test, we used the test-time augmentation method to obtain the average prediction of our system across multiple augmented samples of data, and the prediction results showed a mean average precision of 89.44% in five-fold cross validation, thus representing an increase of around 5% over the alternative system. In the real-world test, we collected 10 orthophotographs in various resolutions and areas, and our system successfully detected 711 out of 730 potential disease spots.
Collapse
|
29
|
Jung SK, Park SB, Shim BS. Diagnosis of pine wilt disease using remote wireless sensing. PLoS One 2021; 16:e0257900. [PMID: 34559856 PMCID: PMC8462718 DOI: 10.1371/journal.pone.0257900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/13/2021] [Indexed: 11/18/2022] Open
Abstract
Pine wilt disease caused by Bursaphelenchus xylophilus is a major tree disease that threatens pine forests worldwide. To diagnose this disease, we developed battery-powered remote sensing devices capable of long-range (LoRa) communication and installed them in pine trees (Pinus densiflora) in Gyeongju and Ulsan, South Korea. Upon analyzing the collected tree sensing signals, which represented stem resistance, we found that the mean absolute deviation (MAD) of the sensing signals was useful for distinguishing between uninfected and infected trees. The MAD of infected trees was greater than that of uninfected trees from August of the year, and in the two-dimensional plane, consisting of the MAD value in July and that in October, the infected and uninfected trees were separated by the first-order boundary line generated using linear discriminant analysis. It was also observed that wood moisture content and precipitation affected MAD. This is the first study to diagnose pine wilt disease using remote sensors attached to trees.
Collapse
Affiliation(s)
- Sang-Kyu Jung
- Bio. & Chemical Engineering, Hongik University, Sejong, S. Korea
- * E-mail:
| | | | | |
Collapse
|
30
|
Vicente CSL, Soares M, Faria JMS, Ramos AP, Inácio ML. Insights into the Role of Fungi in Pine Wilt Disease. J Fungi (Basel) 2021; 7:jof7090780. [PMID: 34575818 PMCID: PMC8469835 DOI: 10.3390/jof7090780] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
Pine wilt disease (PWD) is a complex disease that severely affects the biodiversity and economy of Eurasian coniferous forests. Three factors are described as the main elements of the disease: the pinewood nematode (PWN) Bursaphelenchus xylophilus, the insect-vector Monochamus spp., and the host tree, mainly Pinus spp. Nonetheless, other microbial interactors have also been considered. The study of mycoflora in PWD dates back the late seventies. Culturomic studies have revealed diverse fungal communities associated with all PWD key players, composed frequently of saprophytic fungi (i.e., Aspergillus, Fusarium, Trichoderma) but also of necrotrophic pathogens associated with bark beetles, such as ophiostomatoid or blue-stain fungi. In particular, the ophiostomatoid fungi often recovered from wilted pine trees or insect pupal chambers/tunnels, are considered crucial for nematode multiplication and distribution in the host tree. Naturally occurring mycoflora, reported as possible biocontrol agents of the nematode, are also discussed in this review. This review discloses the contrasting effects of fungal communities in PWD and highlights promising fungal species as sources of PWD biocontrol in the framework of sustainable pest management actions.
Collapse
Affiliation(s)
- Cláudia S. L. Vicente
- Mediterranean Institute for Agriculture, Environment and Development (MED), Institute for Advanced Studies and Research, Universidade de Évora, 7006-554 Évora, Portugal;
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), 2780-159 Oeiras, Portugal
- Correspondence: (C.S.L.V.); (M.L.I.)
| | - Miguel Soares
- Laboratório de Patologia Vegetal “Veríssimo de Almeida” (LPVVA), Instituto Superior de Agronomia (ISA), University of Lisbon, 1349-017 Lisboa, Portugal; (M.S.); (A.P.R.)
| | - Jorge M. S. Faria
- Mediterranean Institute for Agriculture, Environment and Development (MED), Institute for Advanced Studies and Research, Universidade de Évora, 7006-554 Évora, Portugal;
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), 2780-159 Oeiras, Portugal
| | - Ana P. Ramos
- Laboratório de Patologia Vegetal “Veríssimo de Almeida” (LPVVA), Instituto Superior de Agronomia (ISA), University of Lisbon, 1349-017 Lisboa, Portugal; (M.S.); (A.P.R.)
- Linking Environment Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), University of Lisbon, 1349-017 Lisboa, Portugal
| | - Maria L. Inácio
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), 2780-159 Oeiras, Portugal
- GREEN-IT Bioresources for Sustainability, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
- Correspondence: (C.S.L.V.); (M.L.I.)
| |
Collapse
|
31
|
Evaluation of Deep Learning Segmentation Models for Detection of Pine Wilt Disease in Unmanned Aerial Vehicle Images. REMOTE SENSING 2021. [DOI: 10.3390/rs13183594] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pine wilt disease (PWD) is a serious threat to pine forests. Combining unmanned aerial vehicle (UAV) images and deep learning (DL) techniques to identify infected pines is the most efficient method to determine the potential spread of PWD over a large area. In particular, image segmentation using DL obtains the detailed shape and size of infected pines to assess the disease’s degree of damage. However, the performance of such segmentation models has not been thoroughly studied. We used a fixed-wing UAV to collect images from a pine forest in Laoshan, Qingdao, China, and conducted a ground survey to collect samples of infected pines and construct prior knowledge to interpret the images. Then, training and test sets were annotated on selected images, and we obtained 2352 samples of infected pines annotated over different backgrounds. Finally, high-performance DL models (e.g., fully convolutional networks for semantic segmentation, DeepLabv3+, and PSPNet) were trained and evaluated. The results demonstrated that focal loss provided a higher accuracy and a finer boundary than Dice loss, with the average intersection over union (IoU) for all models increasing from 0.656 to 0.701. From the evaluated models, DeepLLabv3+ achieved the highest IoU and an F1 score of 0.720 and 0.832, respectively. Also, an atrous spatial pyramid pooling module encoded multiscale context information, and the encoder–decoder architecture recovered location/spatial information, being the best architecture for segmenting trees infected by the PWD. Furthermore, segmentation accuracy did not improve as the depth of the backbone network increased, and neither ResNet34 nor ResNet50 was the appropriate backbone for most segmentation models.
Collapse
|
32
|
Lee DS, Choi WI, Nam Y, Park YS. Predicting potential occurrence of pine wilt disease based on environmental factors in South Korea using machine learning algorithms. ECOL INFORM 2021. [DOI: 10.1016/j.ecoinf.2021.101378] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Rodrigues AM, Miguel C, Chaves I, António C. Mass spectrometry-based forest tree metabolomics. MASS SPECTROMETRY REVIEWS 2021; 40:126-157. [PMID: 31498921 DOI: 10.1002/mas.21603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/05/2019] [Indexed: 05/24/2023]
Abstract
Research in forest tree species has advanced slowly when compared with other agricultural crops and model organisms, mainly due to the long-life cycles, large genome sizes, and lack of genomic tools. Additionally, trees are complex matrices, and the presence of interferents (e.g., oleoresins and cellulose) challenges the analysis of tree tissues with mass spectrometry (MS)-based analytical platforms. In this review, advances in MS-based forest tree metabolomics are discussed. Given their economic and ecological significance, particular focus is given to Pinus, Quercus, and Eucalyptus forest tree species to better understand their metabolite responses to abiotic and biotic stresses in the current climate change scenario. Furthermore, MS-based metabolomics technologies produce large and complex datasets that require expertize to adequately manage, process, analyze, and store the data in dedicated repositories. To ensure that the full potential of forest tree metabolomics data are translated into new knowledge, these data should comply with the FAIR principles (i.e., Findable, Accessible, Interoperable, and Re-usable). It is essential that adequate standards are implemented to annotate metadata from forest tree metabolomics studies as is already required by many science and governmental agencies and some major scientific publishers. © 2019 John Wiley & Sons Ltd. Mass Spec Rev 40:126-157, 2021.
Collapse
Affiliation(s)
- Ana Margarida Rodrigues
- Plant Metabolomics Laboratory, GreenIT-Bioresources for Sustainability, Instituto de Tecnologia Química e Biológica António Xavie, Universidade Nova de Lisboa (ITQB NOVA) Avenida da República, Oeiras, 2780-157, Portugal
| | - Célia Miguel
- Forest Genomics & Molecular Genetics Lab, BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016, Lisboa, Portugal
- Instituto de Biologia Experimental e Tecnológica (iBET), 2780-157, Oeiras, Portugal
| | - Inês Chaves
- Forest Genomics & Molecular Genetics Lab, BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016, Lisboa, Portugal
- Instituto de Biologia Experimental e Tecnológica (iBET), 2780-157, Oeiras, Portugal
| | - Carla António
- Plant Metabolomics Laboratory, GreenIT-Bioresources for Sustainability, Instituto de Tecnologia Química e Biológica António Xavie, Universidade Nova de Lisboa (ITQB NOVA) Avenida da República, Oeiras, 2780-157, Portugal
| |
Collapse
|
34
|
Nunes da Silva M, Santos CS, Cruz A, López-Villamor A, Vasconcelos MW. Chitosan increases Pinus pinaster tolerance to the pinewood nematode (Bursaphelenchus xylophilus) by promoting plant antioxidative metabolism. Sci Rep 2021; 11:3781. [PMID: 33580134 PMCID: PMC7881030 DOI: 10.1038/s41598-021-83445-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/01/2021] [Indexed: 11/09/2022] Open
Abstract
The pine wilt disease (PWD), for which no effective treatment is available at the moment, is a constant threat to Pinus spp. plantations worldwide, being responsible for significant economic and environmental losses every year. It has been demonstrated that elicitation with chitosan increases plant tolerance to the pinewood nematode (PWN) Bursaphelenchus xylophilus, the causal agent of the PWD, but the biochemical and genetic aspects underlying this response have not been explored. To understand the influence of chitosan in Pinus pinaster tolerance against PWN, a low-molecular-weight (327 kDa) chitosan was applied to mock- and PWN-inoculated plants. Nematode population, malondialdehyde (MDA), catalase, carotenoids, anthocyanins, phenolic compounds, lignin and gene expression related to oxidative stress (thioredoxin 1, TRX) and plant defence (defensin, DEF, and a-farnesene synthase, AFS), were analysed at 1, 7, 14, 21 and 28 days post-inoculation (dpi). At 28 dpi, PWN-infected plants elicited with chitosan showed a sixfold lower nematode population when compared to non-elicited plants. Higher levels of MDA, catalase, carotenoids, anthocyanins, phenolic compounds, and lignin were detected in chitosan-elicited plants following infection. The expression levels of DEF gene were higher in elicited plants, while TRX and AFS expression was lower, possibly due to the disease containment-effect of chitosan. Combined, we conclude that chitosan induces pine defences against PWD via modulation of metabolic and transcriptomic mechanisms related with plant antioxidant system.
Collapse
Affiliation(s)
- Marta Nunes da Silva
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005, Porto, Portugal.
| | - Carla S Santos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Ana Cruz
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Adrián López-Villamor
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005, Porto, Portugal
- Misión Biológica de Galicia (MBG-CSIC), Carballeira 8, Salcedo, 36143, Pontevedra, Spain
| | - Marta W Vasconcelos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005, Porto, Portugal
| |
Collapse
|
35
|
Reforestation or Genetic Disturbance: A Case Study of Pinus thunbergii in the Iki-no-Matsubara Coastal Forest (Japan). FORESTS 2021. [DOI: 10.3390/f12010072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the twentieth century, a substantial decline in Pinus thunbergii populations in Japan occurred due to the outbreak of pine wood nematode (PWN), Burshaphelencus xylophilus. A PWN-P. thunbergii resistant trees-breeding project was developed in the 1980s to provide reforestation materials to minimalize the pest damage within the population. Since climate change can also contribute to PWN outbreaks, an intensive reforestation plan instated without much consideration can impact on the genetic diversity of P. thunbergii populations. The usage and deployment of PWN-P. thunbergii resistant trees to a given site without genetic management can lead to a genetic disturbance. The Iki-no-Matsubara population was used as a model to design an approach for the deployment management. This research aimed to preserve local genetic diversity, genetic structure, and relatedness by developing a method for deploying Kyushu PWN-P. thunbergii resistant trees as reforestation-material plants into Iki-no-Matsubara. The local genotypes of the Iki-no-Matsubara population and the Kyushu PWN-P. thunbergii resistant trees were analyzed using six microsatellite markers. Genotype origins, relatedness, diversity, and structure of both were investigated and compared with the genetic results previously obtained for old populations of P. thunbergii throughout Japan. A sufficient number of Kyushu PWN-P. thunbergii resistant trees, as mother trees, within seed orchards and sufficient status number of the seedlings to deploy are needed when deploying the Kyushu PWN-P. thunbergii resistant trees as reforestation material planting into Iki-no-Matsubara population. This approach not only be used to preserve Iki-no-Matsubara population (genetic diversity, genetic structure, relatedness, and resilience of the forests) but can also be applied to minimize PWN damage. These results provide a baseline for further seed sourcing as well as develop genetic management strategies within P. thunbergii populations, including Kyushu PWN-P. thunbergii resistant trees.
Collapse
|
36
|
Identifying Pine Wood Nematode Disease Using UAV Images and Deep Learning Algorithms. REMOTE SENSING 2021. [DOI: 10.3390/rs13020162] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pine nematode is a highly contagious disease that causes great damage to the world’s pine forest resources. Timely and accurate identification of pine nematode disease can help to control it. At present, there are few research on pine nematode disease identification, and it is difficult to accurately identify and locate nematode disease in a single pine by existing methods. This paper proposes a new network, SCANet (spatial-context-attention network), to identify pine nematode disease based on unmanned aerial vehicle (UAV) multi-spectral remote sensing images. In this method, a spatial information retention module is designed to reduce the loss of spatial information; it preserves the shallow features of pine nematode disease and expands the receptive field to enhance the extraction of deep features through a context information module. SCANet reached an overall accuracy of 79% and a precision and recall of around 0.86, and 0.91, respectively. In addition, 55 disease points among 59 known disease points were identified, which is better than other methods (DeepLab V3+, DenseNet, and HRNet). This paper presents a fast, precise, and practical method for identifying nematode disease and provides reliable technical support for the surveillance and control of pine wood nematode disease.
Collapse
|
37
|
Rodrigues AM, Carrasquinho I, António C. Primary Metabolite Adjustments Associated With Pinewood Nematode Resistance in Pinus pinaster. FRONTIERS IN PLANT SCIENCE 2021; 12:777681. [PMID: 34950168 PMCID: PMC8691400 DOI: 10.3389/fpls.2021.777681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/01/2021] [Indexed: 05/14/2023]
Abstract
The pinewood nematode (PWN) Bursaphelenchus xylophilus is the causal agent of the pine wilt disease (PWD) and represents one of the major threats to conifer forests. The detection of the PWN in Portugal, associated with Pinus pinaster, increased the concern of its spread to European forests. Despite its susceptibility to PWD, genetic variability found among P. pinaster populations has been associated with heritable PWD resistance. Understanding the mechanisms underlying tree resistance constitutes a valuable resource for breeding programs toward more resilient forest plantations. This study investigated changes in anatomy, chlorophyll a fluorescence (ChlF), and primary metabolism in susceptible and resistant P. pinaster half-sib plants, after PWN inoculation. Susceptible plants showed a general shutdown of central metabolism, osmolyte accumulation, photosynthetic inhibition, and a decrease in the plant water status. The ChlF transient rise (OJIP curve) revealed the appearance of L- and K-bands, indicators of environmental stress. In contrast, resistant plants revealed a regulated defense response and were able to restrict PWN migration and cellular damage. Furthermore, the accumulation of γ-aminobutyric acid (GABA) and succinate suggested a role of these metabolites in PWD resistance and the possible activation of the GABA shunt. Altogether, these results provide new insights to the role of primary metabolism in PWD resistance and in the selection of resistant phenotypes for disease mitigation.
Collapse
Affiliation(s)
- Ana M. Rodrigues
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Isabel Carrasquinho
- Instituto Nacional Investigação Agrária e Veterinária I.P., Oeiras, Portugal
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Carla António
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- *Correspondence: Carla António,
| |
Collapse
|
38
|
|
39
|
Self-assembled bovine serum albumin nanoparticles as pesticide delivery vectors for controlling trunk-boring pests. J Nanobiotechnology 2020; 18:165. [PMID: 33168011 PMCID: PMC7653776 DOI: 10.1186/s12951-020-00725-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/27/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trunk-boring pests (TBPs) are an important type of forest pest, TBPs not only feed on the branches and trunks of trees, but also spread quarantine diseases in forests. However, because the larvae of TBPs live inside the trunk and are well concealed, prevention and control are difficult. The lack of effective control methods leads to the death of many trees in forests. In this study, a novel nanopesticide featuring high bioactivity and slow-release properties was developed to control TBPs. Thiacloprid (THI), which is commonly used to control Coleoptera species, was used as a model pesticide. RESULTS The oleophobic properties of bovine serum albumin (BSA) were exploited to encapsulate the hydrophobic pesticide THI by self-assembly, and the size of the obtained nanoparticles, THI@BSA·NPs, was approximately 23 nm. The loading efficiency reached 70.4%, and THI@BSA·NPs could be released continuously for over 15 days, with the cumulative release reaching 93.5%. The fluorescein isothiocyanate (FITC)-labeled nanoparticles were evenly distributed in the digestive tract and body surface of a typical TBPs, M. alternatus, and the stomach and contact toxicities increased by 33.7% and 25.9%, respectively, compared with those of free THI. Furthermore, the results showed that the transport efficiency of THI@BSA·NPs was highest at a concentration of 50 μg/mL, and the THI@BSA·NPs content in the trunk, from to lower to higher layers, was 8.8, 8.2, 7.6, and 5.8 μg/g. At the same time, THI@BSA·NPs also exhibited high transport efficiency in dead trees. CONCLUSION The transport efficiency and toxicity of the active ingredients are the key factors for the control of TBPs. This work provided idea for the application of biological delivery system encapsulated hydrophobic pesticides. The novel self-assembled THI@BSA·NPs have promising potential for sustainable control of TBPs.
Collapse
|
40
|
Do Seedlings Derived from Pinewood Nematode-Resistant Pinus thunbergii Parl. Clones Selected in Southwestern Region Perform Well in Northern Regions in Japan? Inferences from Nursery Inoculation Tests. FORESTS 2020. [DOI: 10.3390/f11090955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Objectives: To determine whether the progeny of pinewood nematode-resistant Pinus thunbergii Parl. clones selected in the southwestern region of Japan could be successful in reforestation in the northern region, we investigated the magnitude of the genotype–environment interaction effect on the resistance against Bursaphelenchus xylophilus (Steiner and Buhrer) Nickle in P. thunbergii. Materials and Methods: We inoculated P. thunbergii seedlings of six full-sib families, with various resistance levels, with B. xylophilus in nurseries at three experimental sites in the northern and southern regions of Japan. All parental clones of the tested families originated from southwestern Japan, and selection of parental clones for resistance was performed in the same region. Sound rates after nematode inoculation were calculated, and survival analysis, correlation analysis and variance component analysis were performed. Results and Conclusions: Families with high sound rate in the southern region also showed a high sound rate in the northern region. In almost all cases, Spearman’s correlation coefficients for sound rates were more than 0.698 among sites. The variance component of the interaction between site and family was small compared to that of site and family separately. Thus, we conclude that the resistant clones selected in the southern region would retain their genetic resistance in the northern regions.
Collapse
|
41
|
Effects of Temperature Factors on Resistance against Pine Wood Nematodes in Pinus thunbergii, Based on Multiple Location Sites Nematode Inoculation Tests. FORESTS 2020. [DOI: 10.3390/f11090922] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pine wilt disease (PWD) caused by the pinewood nematode (PWN) (Bursaphelenchus xylophilus (Steiner and Buhrer) Nickle) is a worldwide issue. Infection is considered to be promoted mainly by the increased air temperature, but it is important to investigate whether the effect of high temperature similarly influences the different ranks of resistant clone. In the present study, we conducted PWN inoculation tests using six common open-pollinated families of resistant Pinus thunbergii Parl. The tests were conducted at nurseries of five test sites across Japanese archipelago between 2015 and 2017. Our analysis focused specifically on temperature. Firstly, we examined the effects of test sites, inoculation year, and their interaction on unaffected seedling rate and found that the unaffected seedling rate of all tested pine families decreased as the cumulative temperature increased. We found that the unaffected seedling rate decreased as the cumulative temperature increased for all tested pine families. In general, higher cumulative temperatures were required for having an effect on the unaffected seedling rates of higher PWN-resistant families. Typically, early cumulative temperatures, i.e., 19 days after inoculation, had the greatest effect on the unaffected seedling rates of PWN-resistant pines. However, the relationship between cumulative temperature and predicted unaffected seedling rate follow similar rate for all families. Thus, the order of resistance level is maintained in terms of the cumulative temperature required for having an effect.
Collapse
|
42
|
Cha D, Kim D, Choi W, Park S, Han H. Point-of-care diagnostic (POCD) method for detecting Bursaphelenchus xylophilus in pinewood using recombinase polymerase amplification (RPA) with the portable optical isothermal device (POID). PLoS One 2020; 15:e0227476. [PMID: 31935232 PMCID: PMC6959569 DOI: 10.1371/journal.pone.0227476] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/19/2019] [Indexed: 12/02/2022] Open
Abstract
The pinewood nematode (PWN), Bursaphelenchus xylophilus, is a causative agent of pine wilt disease (PWD). To date, although several molecular diagnostic methods have been developed, rapid on-site diagnostic tools for detecting PWN in pinewood are limited. In this study, a point of care diagnostic (POCD) method for detecting PWN in pinewood using recombinase polymerase amplification (RPA) assay was developed. This method comprises quick gDNA extraction buffer (DAP buffer) for the direct extraction of gDNA of PWN from pinewood and a battery-mounted portable optical isothermal device (POID) for the detection of PWD in the field. The RPA assay can distinguish between the PWN and its conspecies which exist in pinewood and can complete diagnostic procedures within 25 min in the field. Moreover, the RPA assay can detect PWN in old wood samples in both natural and stored conditions. The POCD-RPA assay to detect PWN will be useful for epidemiological investigations in the field as well as for quarantine processes in the wood trade.
Collapse
Affiliation(s)
- Deokjea Cha
- Division of Forest Insect Pests & Diseases, National Institute of Forest Science, Dongdaemun, Seoul, Korea
| | - Dongsoo Kim
- Division of Forest Insect Pests & Diseases, National Institute of Forest Science, Dongdaemun, Seoul, Korea
| | - Wonil Choi
- Division of Forest Ecology & Climate Change, National Institute of Forest Science, Dongdaemun, Seoul, Korea
| | | | - Hyerim Han
- Division of Forest Insect Pests & Diseases, National Institute of Forest Science, Dongdaemun, Seoul, Korea
- * E-mail:
| |
Collapse
|
43
|
Hirao T, Matsunaga K, Hirakawa H, Shirasawa K, Isoda K, Mishima K, Tamura M, Watanabe A. Construction of genetic linkage map and identification of a novel major locus for resistance to pine wood nematode in Japanese black pine (Pinus thunbergii). BMC PLANT BIOLOGY 2019; 19:424. [PMID: 31615405 PMCID: PMC6792208 DOI: 10.1186/s12870-019-2045-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/20/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Pine wilt disease (PWD), which is caused by the pine wood nematode (PWN) Bursaphelenchus xylophilus, is currently the greatest threat to pine forests in Europe and East Asian countries including Japan. Constructing a detailed linkage map of DNA markers and identifying PWD resistance genes/loci lead to improved resistance in Pinus thunbergii, as well as other Pinus species that are also susceptible to PWD. RESULTS A total F1 mapping population of 188 individuals derived from a cross between the PWD-resistant P. thunbergii varieties 'Tanabe 54' (resistant rank 2 to PWD) and 'Tosashimizu 63' (resistant rank 4 to PWD) was inoculated with PWN, and was evaluated for disease symptoms. To perform linkage analysis for PWN resistance, a set of three maps was constructed; two parental maps generated using the integrated two-way pseudo-testcross method, and a consensus map with population-type cross-pollination. The linkage map of 'Tanabe 54' consisted of 167 loci, and covered 14 linkage groups (LGs), with a total genetic distance of 1214.6 cM. The linkage map of 'Tosashimizu 63' consisted of 252 loci, and covered 14 LGs, with a total genetic distance of 1422.1 cM. The integrated consensus map comprised 12 LGs with the basic chromosome number of P. thunbergii, and a total genetic distance of 1403.6 cM. Results from quantitative trait loci (QTL) analysis using phenotype data and linkage maps indicated that PWN resistance is controlled by a single dominant allele, which was derived from the 'Tanabe 54' female parent. This major QTL was located on linkage group 3 and was designated PWD1 for PINE WILT DISEASE 1. CONCLUSIONS The PWD1 locus is a major resistance QTL located on the Pinus consensus LG03 that acts in a dominant manner to confer pine wood nematode resistance. Information from the present study will be useful for P. thunbergii breeding programs to improve resistance to PWD, and also to help identify susceptibility genes in Pinus species.
Collapse
Affiliation(s)
- Tomonori Hirao
- Forest Bio-research Center, Forestry and Forest Products Research Institute, 3809-1 Ishi, Juo, Hitachi, Ibaraki 319-1301 Japan
| | - Koji Matsunaga
- Kyushu Regional Breeding Office, Forest Tree Breeding Center, Forestry and Forest Products Research Institute, 2320-5 Suya, Goshi, Kumamoto, 860-0081 Japan
| | - Hideki Hirakawa
- Department of Frontier Research, Kazusa DNA Research Institute, Chiba, 292-0818 Japan
| | - Kenta Shirasawa
- Department of Frontier Research, Kazusa DNA Research Institute, Chiba, 292-0818 Japan
| | - Keiya Isoda
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, 3809-1 Ishi, Juo, Hitachi, Ibaraki 319-1301 Japan
| | - Kentaro Mishima
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, 3809-1 Ishi, Juo, Hitachi, Ibaraki 319-1301 Japan
| | - Miho Tamura
- Department of Forest Environmental Sciences, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581 Japan
| | - Atsushi Watanabe
- Department of Forest Environmental Sciences, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581 Japan
| |
Collapse
|
44
|
Relationship between Pine Wilt Disease Outbreaks and Climatic Variables in the Three Gorges Reservoir Region. FORESTS 2019. [DOI: 10.3390/f10090816] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Outbreaks of pine wilt disease (PWD, caused by the pinewood nematode Bursaphelenchus xylophilus), have caused mass mortality of the genus Pinus in Eurasia. Climate change may greatly influence the distribution and population dynamics of longhorn beetles of the genus Monochamus (the main vector of B. xylophilus), the survival and development of B. xylophilus, and the resistance of pines. The aim of this study was to investigate the effect of climatic variables associated with extensive PWD outbreaks in Masson pine (Pinus massoniana Lamb.) forest across the eastern part of the Three Gorges Reservoir region. Since its discovery in 2006, the most serious PWD outbreak occurred from 2014 to 2018; the most striking characteristic of this outbreak is the consistent increase in Masson pine mortality and extent of the affected areas. Moreover, 28 out of 46 PWD biological relevant climatic variables were selected and used for redundancy analysis. The ordination biplots reflect the complicated quantitative relationship between the PWD epidemic variables and the biologically relevant climatic variables of temperature, precipitation, relative humidity, and wind speed. The results will be useful for understanding the role climatic variables play in PWD outbreaks, for predicting the spread and pattern of PWD outbreaks, and for the advance preparation of management strategies with the purpose of preventing future PWD outbreaks.
Collapse
|
45
|
Changes in Major Insect Pests of Pine Forests in Korea Over the Last 50 Years. FORESTS 2019. [DOI: 10.3390/f10080692] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Understanding the occurrence patterns of forest pests is fundamental for effective forest management from both economic and ecological perspectives. Here, we review the history of the occurrence patterns and causes of outbreaks and declines of pests in Korean pine forests over the last 50 years. During this period, the major pests of pine forests in Korea have shifted from pine caterpillar (Dendrolimus spectabilis Butler) to the pine needle gall midge (PNGM, Thecodiplosis japonensis (Uchida and Inouye)) and finally to pine wilt disease (PWD) caused by the pine wood nematode (Bursaphelenchus xylophilus (Steiner and Buhrer) Nickle). Outbreaks of pine caterpillar, a native species in Korea, have been recorded as far back as 900 years, and it was the most relevant forest pest in Korea until the 1970s. The decline of its importance has been attributed to reforestation and higher levels of subsequent natural enemy activity. The PNGM is an invasive species, first discovered in Korea in 1929, that became widely distributed by 1992 and the major forest pest in the 1980s and 1990s. A suite of parasitic wasps attacking the PNGM contributed at least partially to the decline of PNGM densities. Following the decline of the PNGM, damage from PWD has increased since 2003. These shifts in major forest pests might be related to changes in forest composition and interactions among forest pests. Therefore, a new management strategy for controlling forest pests is required to mitigate the decline of pine forests in Korea.
Collapse
|