1
|
The European Pregnancy and Paediatric Infections Cohort Collaboration (EPPICC):, Jackson C, Crichton S, Judd A, Bamford A, Goulder P, Klein N, Marques L, Paioni P, Riordan A, Spoulou V, Vieira VA, Ansone S, Chiappini E, Le Coeur S, Ene L, Galli L, Giaquinto C, Goetghebuer T, Fortuny C, Kanjanavanit S, Marczynska M, Navarro M, Naver L, Ngo-Giang-Huong N, Plotnikova YK, Plynskey AA, Ramos JT, Raus I, Rozenberg VY, Samarina AV, Schölvinck EH, Vasylenko N, Volokha A, Collins IJ, Goodall R. Long-term non-progression in children with HIV: estimates from international cohort data. AIDS 2025; 39:746-759. [PMID: 39912745 PMCID: PMC11970603 DOI: 10.1097/qad.0000000000004136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/16/2025] [Accepted: 01/23/2025] [Indexed: 02/07/2025]
Abstract
OBJECTIVES To estimate the probability of long-term nonprogression (LTNP) in the absence of antiretroviral treatment (ART) in children with perinatally acquired HIV, and the impact of LTNP definitions on these estimates. DESIGN Analysis of longitudinal routine care data (follow-up to 2016) collected through a collaboration of cohorts of children in routine HIV care across Europe and Thailand. METHODS LTNP was defined as reaching age 8 years without disease progression (defined as an AIDS diagnosis or immunosuppression based on WHO immunosuppression-for-age thresholds, age-adjusted CD4 +z -scores or CD4 + counts). ART initiation was treated as a competing risk (children initiating ART before age 8 were not considered to have LTNP). We included children born domestically in six national HIV cohorts ( n = 2481). Additional analyses included domestic-born children enrolled in national cohorts in infancy (aged <12 months, n = 1144, six cohorts), or all domestic-born children in national and nonnational cohorts ( n = 4542, 18 cohorts). Results were stratified by birth year. RESULTS Among children born domestically in national cohorts in 2004-2007, the probability [95% confidence interval (CI)] of LTNP at age 8 years was 10% (6-15%) based on WHO immunosuppression-for-age criteria. This was lower for children born earlier when ART use was less frequent. Results were similar using other immunosuppression thresholds. Estimates were lower when restricted to domestic-born children in national cohorts enrolled in infancy, and higher when including all domestic-born children. CONCLUSION Up to 10% of children born during 2004-2007 had LTNP at age 8. Our findings may help identify participants with LTNP for research into posttreatment control and HIV cure.
Collapse
Affiliation(s)
| | | | | | - Ali Judd
- MRC Clinical Trials Unit at UCL, University College London, UK
- Fondazione Penta ETS, Padua, Italy
| | - Alasdair Bamford
- MRC Clinical Trials Unit at UCL, University College London, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London
| | - Philip Goulder
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Nigel Klein
- Great Ormond Street Hospital for Children NHS Foundation Trust, London
| | - Laura Marques
- Centro Materno-infantil do Norte, ULSSA, Porto, Portugal
| | - Paolo Paioni
- Division of Infectious Diseases and Hospital Epidemiology, University Children's Hospital Zurich, Switzerland
| | - Andrew Riordan
- Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Vana Spoulou
- Department of Infectious Diseases, University of Athens, Athens, Greece
| | | | - Santa Ansone
- Riga East University Hospital, Latvian Centre of Infectious Diseases, Riga, Latvia
| | - Elena Chiappini
- Italian Register for HIV Infection in Children
- Department of Health Sciences, University of Florence
- Meyer Children's Hospital IRCCS, Florence, Italy
| | - Sophie Le Coeur
- Institut National d’Etude Demographique (INED), Mortality, Health and Epidemiology Unit, Paris, France
- Institut de Recherche pour le Developpement (IRD), UMI-174/PHPT, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Luminita Ene
- ‘Dr Victor Babes’ Hospital for Infectious and Tropical Diseases, Bucharest, Romania
| | - Luisa Galli
- Italian Register for HIV Infection in Children
- Department of Health Sciences, University of Florence
- Meyer Children's Hospital IRCCS, Florence, Italy
| | - Carlo Giaquinto
- Fondazione Penta ETS, Padua, Italy
- Division of Pediatric Infectious Diseases, Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Tessa Goetghebuer
- Hopital Saint-Pierre, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Claudia Fortuny
- Translational Research Network in Pediatric Infectious Diseases (RITIP)
- Malalties Infeccioses i Resposta Inflamatòria Sistèmica en Pediatria, Unitat d’Infeccions, Servei de Pediatria, Institut de Recerca Pediàtrica Sant Joan de Déu, Barcelona
- CIBER de Enfermedades Infecciosas (CIBERINFECT), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Magda Marczynska
- Medical University of Warsaw, Hospital of Infectious Diseases in Warsaw, Warsaw, Poland
| | - Marisa Navarro
- Hospital General Universitario ‘Gregorio Marañón’, Madrid, Spain
| | - Lars Naver
- Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Nicole Ngo-Giang-Huong
- Thailand-France Research Collaboration, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | | | | | - Jose Tomas Ramos
- Hospital 12 de Octubre
- Complutense University
- Instituto de Investigación Sanitaria (i+12)
- CIBERINFEC, ISCIII, Madrid, Spain
| | - Irina Raus
- Kyiv City Center for HIV/AIDS, Kyiv, Ukraine
| | | | | | | | | | - Alla Volokha
- Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine
| | | | - Ruth Goodall
- MRC Clinical Trials Unit at UCL, University College London, UK
| |
Collapse
|
2
|
Singh K, Sethi P, Datta S, Chaudhary JS, Kumar S, Jain D, Gupta JK, Kumar S, Guru A, Panda SP. Advances in gene therapy approaches targeting neuro-inflammation in neurodegenerative diseases. Ageing Res Rev 2024; 98:102321. [PMID: 38723752 DOI: 10.1016/j.arr.2024.102321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024]
Abstract
Over the last three decades, neurodegenerative diseases (NDs) have increased in frequency. About 15% of the world's population suffers from NDs in some capacity, which causes cognitive and physical impairment. Neurodegenerative diseases, including Amyotrophic Lateral Sclerosis, Parkinson's disease, Alzheimer's disease, and others represent a significant and growing global health challenge. Neuroinflammation is recognized to be related to all NDs, even though NDs are caused by a complex mix of genetic, environmental, and lifestyle factors. Numerous genes and pathways such as NFκB, p38 MAPK, Akt/mTOR, caspase, nitric oxide, and COX are involved in triggering brain immune cells like astrocytes and microglia to secrete inflammatory cytokines such as tumor necrosis factor-α, interleukin (IL)-1β, and IL-6. In AD, the binding of Aβ with CD36, TLR4, and TLR6 receptors results in activation of microglia which start to produce proinflammatory cytokines and chemokines. Consequently, the pro-inflammatory cytokines worsen and spread neuroinflammation, causing the deterioration of healthy neurons and the impairment of brain functions. Gene therapy has emerged as a promising therapeutic approach to modulate the inflammatory response in NDs, offering potential neuroprotective effects and disease-modifying benefits. This review article focuses on recent advances in gene therapy strategies targeting neuroinflammation pathways in NDs. We discussed the molecular pathways involved in neuroinflammation, highlighted key genes and proteins implicated in these processes, and reviewed the latest preclinical and clinical studies utilizing gene therapy to modulate neuroinflammatory responses. Additionally, this review addressed the prospects and challenges in translating gene therapy approaches into effective treatments for NDs.
Collapse
Affiliation(s)
- Kuldeep Singh
- Department of Pharmacology, Institue of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Pranshul Sethi
- Department of Pharmacology, College of Pharmacy, Shri Venkateshwara University, Gajraula, Uttar Pradesh, India
| | - Samaresh Datta
- Department of Pharmaceutical Chemistry, Birbhum Pharmacy School, Sadaipur, Dist-Birbhum, West Bengal, India
| | | | - Sunil Kumar
- Faculty of Pharmacy, P. K. University, Village, Thanra, District, Karera, Shivpuri, Madhya Pradesh, India
| | - Divya Jain
- Department of Microbiology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Jeetendra Kumar Gupta
- Department of Pharmacology, Institue of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Shivendra Kumar
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Siva Prasad Panda
- Department of Pharmacology, Institue of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| |
Collapse
|
3
|
Iwata K, Morishita N, Otani S. A case of human immunodeficiency virus (HIV) infection without increase in HIV RNA level: A rare observation during the modern antiretroviral therapy era. J Gen Fam Med 2022; 23:101-103. [PMID: 35261857 PMCID: PMC8888804 DOI: 10.1002/jgf2.492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/05/2021] [Accepted: 08/12/2021] [Indexed: 11/09/2022] Open
Abstract
It is known that some with human immunodeficiency virus (HIV)-positive patients can remain immunocompetent for long period, maintaining their CD4-positive T lymphocytes (CD4 cells) while suppressing HIV. However, this population became rarely seen recently since potent antiretroviral therapy (ART) became available worldwide, and the latest guidelines recommend initiating ART regardless of the status of immunity of the patients. Herein, we present a rather unusual case of HIV-1 infection, where the patient was hospitalized for 3 years and was accidentally found to have the infection, without increasing his HIV RNA level in serum although his CD4 cells were decreased.
Collapse
Affiliation(s)
- Kentaro Iwata
- Division of Infectious Diseases TherapeuticsKobe University Graduate School of MedicineKobeJapan
| | - Naomi Morishita
- Department of NursingHyogo Prefectural Kakogawa Medical CenterKakogawaJapan
| | - Sachiyo Otani
- Department of Laboratory MedicineHyogo Prefectural Kakogawa Medical CenterKakogawaJapan
| |
Collapse
|
4
|
Viral and Cellular factors leading to the Loss of CD4 Homeostasis in HIV-1 Viremic Nonprogressors. J Virol 2021; 96:e0149921. [PMID: 34668779 PMCID: PMC8754213 DOI: 10.1128/jvi.01499-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) viremic nonprogressors (VNPs) represent a very rare HIV-1 extreme phenotype. VNPs are characterized by persistent high plasma viremia and maintenance of CD4+ T-cell counts in the absence of treatment. However, the causes of nonpathogenic HIV-1 infection in VNPs remain elusive. Here, we identified for the first time two VNPs who experienced the loss of CD4+ homeostasis (LoH) after more than 13 years. We characterized in deep detail viral and host factors associated with the LoH and compared with standard VNPs and healthy controls. The viral factors determined included HIV-1 coreceptor usage and replicative capacity. Changes in CD4+ and CD8+ T-cell activation, maturational phenotype, and expression of CCR5 and CXCR6 in CD4+ T-cells were also evaluated as host-related factors. Consistently, we determined a switch in HIV-1 coreceptor use to CXCR4 concomitant with an increase in replicative capacity at the LoH for the two VNPs. Moreover, we delineated an increase in the frequency of HLA-DR+CD38+ CD4+ and CD8+ T cells and traced the augment of naive T-cells upon polyclonal activation with LoH. Remarkably, very low and stable levels of CCR5 and CXCR6 expression in CD4+ T-cells were measured over time. Overall, our results demonstrated HIV-1 evolution toward highly pathogenic CXCR4 strains in the context of very limited and stable expression of CCR5 and CXCR6 in CD4+ T cells as potential drivers of LoH in VNPs. These data bring novel insights into the correlates of nonpathogenic HIV-1 infection. IMPORTANCE The mechanism behind nonpathogenic human immunodeficiency virus type 1 (HIV-1) infection remains poorly understood, mainly because of the very low frequency of viremic nonprogressors (VNPs). Here, we report two cases of VNPs who experienced the loss of CD4+ T-cell homeostasis (LoH) after more than 13 years of HIV-1 infection. The deep characterization of viral and host factors supports the contribution of viral and host factors to the LoH in VNPs. Thus, HIV-1 evolution toward highly replicative CXCR4 strains together with changes in T-cell activation and maturational phenotypes were found. Moreover, we measured very low and stable levels of CCR5 and CXCR6 in CD4+ T-cells over time. These findings support viral evolution toward X4 strains limited by coreceptor expression to control HIV-1 pathogenesis and demonstrate the potential of host-dependent factors, yet to be fully elucidated in VNPs, to control HIV-1 pathogenesis.
Collapse
|
5
|
Collins DR, Urbach JM, Racenet ZJ, Arshad U, Power KA, Newman RM, Mylvaganam GH, Ly NL, Lian X, Rull A, Rassadkina Y, Yanez AG, Peluso MJ, Deeks SG, Vidal F, Lichterfeld M, Yu XG, Gaiha GD, Allen TM, Walker BD. Functional impairment of HIV-specific CD8 + T cells precedes aborted spontaneous control of viremia. Immunity 2021; 54:2372-2384.e7. [PMID: 34496223 PMCID: PMC8516715 DOI: 10.1016/j.immuni.2021.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/21/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022]
Abstract
Spontaneous control of HIV infection has been repeatedly linked to antiviral CD8+ T cells but is not always permanent. To address mechanisms of durable and aborted control of viremia, we evaluated immunologic and virologic parameters longitudinally among 34 HIV-infected subjects with differential outcomes. Despite sustained recognition of autologous virus, HIV-specific proliferative and cytolytic T cell effector functions became selectively and intrinsically impaired prior to aborted control. Longitudinal transcriptomic profiling of functionally impaired HIV-specific CD8+ T cells revealed altered expression of genes related to activation, cytokine-mediated signaling, and cell cycle regulation, including increased expression of the antiproliferative transcription factor KLF2 but not of genes associated with canonical exhaustion. Lymphoid HIV-specific CD8+ T cells also exhibited poor functionality during aborted control relative to durable control. Our results identify selective functional impairment of HIV-specific CD8+ T cells as prognostic of impending aborted HIV control, with implications for clinical monitoring and immunotherapeutic strategies.
Collapse
Affiliation(s)
- David R Collins
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | | | - Umar Arshad
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Karen A Power
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Ruchi M Newman
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Geetha H Mylvaganam
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Ngoc L Ly
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Xiaodong Lian
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Anna Rull
- Joan XXIII University Hospital, Pere Virgili Institute (IISPV), Rovira i Virgili University, Tarragona, Spain
| | - Yelizaveta Rassadkina
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Adrienne G Yanez
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Michael J Peluso
- Division of HIV, Infectious Diseases and Global Medicine, University of California, San Francisco, CA, USA
| | - Steven G Deeks
- Division of HIV, Infectious Diseases and Global Medicine, University of California, San Francisco, CA, USA
| | - Francesc Vidal
- Joan XXIII University Hospital, Pere Virgili Institute (IISPV), Rovira i Virgili University, Tarragona, Spain
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Xu G Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Gaurav D Gaiha
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Todd M Allen
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA; Institute for Medical Engineering and Sciences and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
6
|
Navarrete-Muñoz MA, Restrepo C, Benito JM, Rallón N. Elite controllers: A heterogeneous group of HIV-infected patients. Virulence 2021; 11:889-897. [PMID: 32698654 PMCID: PMC7549999 DOI: 10.1080/21505594.2020.1788887] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The exceptional group of ECs has been of great help, and will continue to provide invaluable insight with regard to reach a potential functional cure of HIV. However, there is no consensus on the immune correlates associated to this EC phenotype which preclude reaching a potential functional cure of HIV. The existing literature studying this population of individuals has indeed revealed that they are a very heterogeneous group regarding virological, immunological, and even clinical characteristics, and that among ECs only a very small proportion are homogeneous in terms of maintaining virological and immunological control in the long term (the so-called long-term elite controllers, LTECs). Thus, it is of pivotal relevance to identify the LTECs subjects and use them as the right model to redefine immune correlates of a truly functional cure. This review summarizes the evidence of the heterogeneity of HIV elite controllers (ECs) subjects in terms of virological, immunological and clinical outcomes, and the implications of this phenomenon to adequately consider this EC phenotype as the right model of a functional cure.
Collapse
Affiliation(s)
- María A Navarrete-Muñoz
- HIV and Viral Hepatitis Research Laboratory, Instituto De Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma De Madrid (IIS-FJD, UAM) , Madrid, Spain.,Hospital Universitario Rey Juan Carlos , Móstoles, Spain.,Biotechvana, Scientific Park , Madrid, Spain
| | - Clara Restrepo
- HIV and Viral Hepatitis Research Laboratory, Instituto De Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma De Madrid (IIS-FJD, UAM) , Madrid, Spain.,Hospital Universitario Rey Juan Carlos , Móstoles, Spain
| | - José M Benito
- HIV and Viral Hepatitis Research Laboratory, Instituto De Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma De Madrid (IIS-FJD, UAM) , Madrid, Spain.,Hospital Universitario Rey Juan Carlos , Móstoles, Spain
| | - Norma Rallón
- HIV and Viral Hepatitis Research Laboratory, Instituto De Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma De Madrid (IIS-FJD, UAM) , Madrid, Spain.,Hospital Universitario Rey Juan Carlos , Móstoles, Spain
| |
Collapse
|
7
|
Xu L, Liu Y, Song X, Li Y, Han Y, Zhu T, Cao W, Li T. Naïve CD4 + cell counts significantly decay and high HIV RNA levels contribute to immunological progression in long-term non-progressors infected with HIV by blood products: a cohort study. BMC Immunol 2021; 22:36. [PMID: 34082709 PMCID: PMC8173962 DOI: 10.1186/s12865-021-00426-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Some long-term non-progressors (LTNPs) have decreasing CD4+ T cell counts and progress to AIDS. Exploring which subsets of CD4+ T cell decreasing and the determinants associated with the decay in these patients will improve disease progression surveillance and provide further understanding of HIV pathogenesis. METHODS Twenty-five LTNPs infected with HIV by blood products were classified as decreased (DG) if their CD4+ cell count dropped to < 400 cells/μL during follow-up or as non-decreased (non-DG) if their CD4+ cell count was ≥400 cells/μL. Laboratory and clinical assessments were conducted at 6 consecutive visits to identify DG characteristics. RESULTS The LTNPs were infected with HIV for 12 (IQR: 11.5-14) years, and 23 were classified as the B' subtype. Six individuals lost LTNP status 14.5 (IQR: 12.5-17.5) years after infection (DG), and the CD4+ T cell count decreased to 237 (IQR: 213-320) cells/μL at the latest visit. The naïve CD4+ T cell count decrease was greater than that of memory CD4+ T cells [- 128 (IQR: - 196, - 107) vs - 64 (IQR: - 182, - 25) cells/μL)]. Nineteen individuals retained LTNP status (non-DG). At enrolment, the viral load (VL) level (p = 0.03) and CD8+CD38+ percentage (p = 0.03) were higher in DG than non-DG individuals. During follow-up, viral load and CD8+CD38+ percentage were significantly increased and negatively associated with CD4+ cell count [(r = - 0.529, p = 0.008), (r = - 0.476, p = 0.019), respectively]. However, the CD8+CD28+ percentage and B cell count dropped in DG and were positively correlated with CD4+ T cell count [(r = 0.448, p = 0.028), (r = 0.785, p < 0.001)]. CONCLUSION Immunological progression was mainly characterized by the decrease of naïve CD4+ T cell in LTNPs infected with HIV by blood products and it may be associated with high HIV RNA levels.
Collapse
Affiliation(s)
- Ling Xu
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yubin Liu
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaojing Song
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yanling Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yang Han
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ting Zhu
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Cao
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Taisheng Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China. .,Clinical Immunology Center, Chinese Academy of Medical Sciences, Beijing, China. .,Tsinghua University Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China.
| |
Collapse
|
8
|
Magid-Bernstein J, Guo CY, Chow FC, Thakur KT. A rare case of HIV CNS escape in a patient previously considered a viral controller. Int J STD AIDS 2020; 31:694-698. [PMID: 32538333 DOI: 10.1177/0956462420922452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human immunodeficiency virus (HIV) ribonucleic acid (RNA) levels generally remain undetectable in the cerebrospinal fluid of people living with HIV with peripheral viral suppression. Secondary HIV central nervous system (CNS) escape refers to the rare independent replication of HIV RNA in the central nervous system despite peripheral viral suppression that occurs in the setting of a concomitant non-HIV infection. We describe here a young man with perinatal HIV infection considered a viral controller who developed secondary HIV CNS escape in the setting of a presumed fungal CNS infection.
Collapse
Affiliation(s)
| | - Chu-Yueh Guo
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Felicia C Chow
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA.,Department of Medicine, Division of Infectious Diseases, University of California, San Francisco, CA, USA
| | - Kiran T Thakur
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
9
|
Margolis DM, Deeks SG. How Unavoidable Are Analytical Treatment Interruptions in HIV Cure-Related Studies? J Infect Dis 2020; 220:S24-S26. [PMID: 31264691 DOI: 10.1093/infdis/jiz222] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 05/16/2019] [Indexed: 11/14/2022] Open
Abstract
In this discussion, 2 established researchers and clinical trialists debate their opposing views on the utility, benefits, and risks of the use of analytical interruption of antiretroviral therapy as a clinical trial end point and outcome measure in human studies seeking to induce remission of or eradicate human immunodeficiency virus infection.
Collapse
Affiliation(s)
| | - Steven G Deeks
- Department of Medicine, University of California-San Francisco
| |
Collapse
|
10
|
Prabhu VM, Singh AK, Padwal V, Nagar V, Patil P, Patel V. Monocyte Based Correlates of Immune Activation and Viremia in HIV-Infected Long-Term Non-Progressors. Front Immunol 2019; 10:2849. [PMID: 31867010 PMCID: PMC6908494 DOI: 10.3389/fimmu.2019.02849] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/20/2019] [Indexed: 12/14/2022] Open
Abstract
Background: Disease progression monitoring through CD4 counts alone can be inadequate in HIV infection as ongoing immune activation may result in Serious non-AIDS events (SNAEs). SNAEs involve monocyte activation driven chronic inflammation with significant sequelae observed even during HAART. Here, we attempted to delineate functional monocyte based signatures across stages of HIV disease progression. Methods: Participants spanning four cohorts were recruited-pre-ART (PA; <7 years of infection; n = 20), long-term non-progressors (LTNP; >7 years of infection, CD4 > 350 cells/μL, n = 20), individuals on therapy (ART; n = 18) and seronegative controls (SN; n = 15). Immunophenotyping of monocyte subsets and evaluation of expression of HIV-binding receptors-CD4 and CCR5, marker of immune activation- HLA-DR and M2 phenotype-mannose receptor (CD206) was followed by association of monocyte-specific parameters with conventional markers of disease progression such as absolute CD4 count, CD4/CD8 ratio, viral load, and T cell activation. Results: A significant expansion of intermediate monocytes (CD14++CD16+) with a concomitant decline in classical subset (CD14++CD16-) was observed in all infected cohorts compared to seronegative controls. In addition, an expansion of the non-classical subset (CD14+CD16++) was observed in long-term non-progressors. Dysregulation in monocyte subsets associated with CD4 count and CD4/CD8 ratio in PAs but not in LTNPs. We report for the first time that expression of CD206 is most prominent on intermediate monocytes which also have the highest expression of CD4, CCR5, and HLA-DR. Despite preserved CD4 counts, LTNPs had similar immune activation profiles to PAs, as evidenced by elevated HLA-DR expression across monocyte subsets. HLA-DR expression, similar to that in SNs, observed in the ART group indicated partial immune restoration within the monocyte compartment. Increased CD206 expression on monocytes together with frequency of activated CD4+ T lymphocytes (HLA-DR+CD38+) showed significant and positive association with viral load in LTNPs, but not PAs. Conclusion: Our results describe for the first time the presence of monocyte dysregulation involving increased activation in LTNPs, who, in spite of preserved CD4 counts, may remain susceptible to prolonged effects of systemic inflammation and highlight CD206, as a unique non-T correlate of viremia, in viremic non-progression.
Collapse
Affiliation(s)
- Varsha M Prabhu
- Department of Biochemistry and Virology, National Institute for Research in Reproductive Health, Indian Council of Medical Research, Mumbai, India
| | - Amit Kumar Singh
- Department of Biochemistry and Virology, National Institute for Research in Reproductive Health, Indian Council of Medical Research, Mumbai, India
| | - Varsha Padwal
- Department of Biochemistry and Virology, National Institute for Research in Reproductive Health, Indian Council of Medical Research, Mumbai, India
| | - Vidya Nagar
- Department of Medicine, The Grant Medical College and Sir J. J. Group of Hospitals, Mumbai, India
| | - Priya Patil
- Department of Medicine, The Grant Medical College and Sir J. J. Group of Hospitals, Mumbai, India
| | - Vainav Patel
- Department of Biochemistry and Virology, National Institute for Research in Reproductive Health, Indian Council of Medical Research, Mumbai, India
| |
Collapse
|
11
|
Pena SA, Iyengar R, Eshraghi RS, Bencie N, Mittal J, Aljohani A, Mittal R, Eshraghi AA. Gene therapy for neurological disorders: challenges and recent advancements. J Drug Target 2019; 28:111-128. [DOI: 10.1080/1061186x.2019.1630415] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Stefanie A. Pena
- Department of Otolaryngology, Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rahul Iyengar
- Department of Otolaryngology, Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rebecca S. Eshraghi
- Department of Otolaryngology, Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nicole Bencie
- Department of Otolaryngology, Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jeenu Mittal
- Department of Otolaryngology, Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Abdulrahman Aljohani
- Department of Otolaryngology, Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rahul Mittal
- Department of Otolaryngology, Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Adrien A. Eshraghi
- Department of Otolaryngology, Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Biomedical Engineering, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
12
|
Yin LB, Song CB, Zheng JF, Fu YJ, Qian S, Jiang YJ, Xu JJ, Ding HB, Shang H, Zhang ZN. Elevated Expression of miR-19b Enhances CD8 + T Cell Function by Targeting PTEN in HIV Infected Long Term Non-progressors With Sustained Viral Suppression. Front Immunol 2019; 9:3140. [PMID: 30687333 PMCID: PMC6338066 DOI: 10.3389/fimmu.2018.03140] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 12/19/2018] [Indexed: 11/13/2022] Open
Abstract
Human immunodeficiency virus (HIV)-infected long-term non-progressors (LTNPs) are of particular importance because of their unique disease progression characteristics. Defined by the maintenance of normal CD4+T cells after more than 8 years of infection, these LTNPs are heterogeneous. Some LTNPs exhibit ongoing viral production, while others do not and are able to control viral production. The underlying basis for this heterogeneity has not been clearly elucidated. In this study, the miRNA expression profiles of LTNPs were assessed. The levels of microRNA-19b (miR-19b) were found to be significantly increased in peripheral blood mononuclear cells of LTNPs with lower rather than higher viral load. We made clear that miR-19b may regulate CD8+T cell functions in HIV infection, which has not been addressed before. Overexpression of miR-19b promoted CD8+T cell proliferation, as well as interferon-γ and granzyme B expression, while inhibiting CD8+T cells apoptosis induced by anti-CD3/CD28 stimulation. The target of miR-19b was found to be the "phosphatase and tensin homolog", which regulates CD8+T cells function during HIV infections. Furthermore, we found that miR-19b can directly inhibit viral production in in-vitro HIV infected T cells. These results highlight the importance of miR-19b to control viral levels, which facilitate an understanding of human immunodeficiency virus pathogenesis and provide potential targets for improved immune intervention.
Collapse
Affiliation(s)
- Lin-Bo Yin
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Cheng-Bo Song
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Jie-Fu Zheng
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Ya-Jing Fu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Shi Qian
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yong-Jun Jiang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Jun-Jie Xu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Hai-Bo Ding
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Hong Shang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Zi-Ning Zhang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
13
|
Yang H, Wallace Z, Dorrell L. Therapeutic Targeting of HIV Reservoirs: How to Give T Cells a New Direction. Front Immunol 2018; 9:2861. [PMID: 30564246 PMCID: PMC6288286 DOI: 10.3389/fimmu.2018.02861] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/20/2018] [Indexed: 01/02/2023] Open
Abstract
HIV cannot be cured by current antiretroviral therapy (ART) because it persists in a transcriptionally silent form in long-lived CD4+ cells. Leading efforts to develop a functional cure have prioritized latency reversal to expose infected cells to immune surveillance, coupled with enhancement of the natural cytolytic function of immune effectors, or "kick and kill." The most clinically advanced approach to improving the kill is therapeutic immunization, which aims to augment or re-focus HIV-specific cytolytic T cell responses. However, no vaccine strategy has enabled sustained virological control after ART withdrawal. Novel approaches are needed to overcome the limitations of natural adaptive immune responses, which relate to their specificity, potency, durability, and access to tissue reservoirs. Adoptive T cell therapy to treat HIV infection was first attempted over two decades ago, without success. Since then, progress in the field of cancer immunotherapy, together with recognition of the similarities in tumor microenvironments and HIV reservoirs has reignited interest in the application of T cell therapies to HIV eradication. Advances in engineering of chimeric antigen receptor (CAR)-transduced T cells have led to improved potency, persistence and latterly, resistance to HIV infection. Immune retargeting platforms have incorporated non-neutralizing and broadly neutralizing antibodies to generate Bispecific T cell Engagers (BiTEs) and Dual-Affinity Re-Targeting proteins (DARTs). T cell receptor engineering has enabled the development of the first bispecific Immune-mobilizing monoclonal T Cell receptors Against Viruses (ImmTAV) molecules. Here, we review the potential for these agents to provide a better "kill" and the challenges ahead for clinical development.
Collapse
Affiliation(s)
- Hongbing Yang
- Nuffield Department of Medicine, University of Oxford, Oxfordshire, United Kingdom
| | - Zoë Wallace
- Nuffield Department of Medicine, University of Oxford, Oxfordshire, United Kingdom.,Immunocore Ltd., Oxon, United Kingdom
| | - Lucy Dorrell
- Nuffield Department of Medicine, University of Oxford, Oxfordshire, United Kingdom.,Immunocore Ltd., Oxon, United Kingdom.,Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
Abstract
In this brief review and perspective, we address the question of whether the immune responses that bring about immune control of acute HIV infection are the same as, or distinct from, those that maintain long-term viral suppression once control of viremia has been achieved. To this end, we describe the natural history of elite and post-treatment control, noting the lack of data regarding what happens acutely. We review the evidence suggesting that the two clinical phenotypes may differ in terms of the mechanisms required to achieve and maintain control, as well as the level of inflammation that persists once a steady state is achieved. We then describe the evidence from longitudinal studies of controllers who fail and studies of biologic sex (male versus female), age (children versus adults), and simian immunodeficiency virus (SIV) (pathogenic/experimental versus nonpathogenic/natural infection). Collectively, these studies demonstrate that the battle between the inflammatory and anti-inflammatory pathways during acute infection has long-term consequences, both for the degree to which control is maintained and the health of the individual. Potent and stringent control of HIV may be required acutely, but once control is established, the chronic inflammatory response can be detrimental. Interventional approaches designed to bring about HIV cure and/or remission should be nuanced accordingly.
Collapse
Affiliation(s)
- Philip Goulder
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco, California, United States of America
| |
Collapse
|