1
|
Ng CS, Qin J. Switch/Sucrose Nonfermentable-Deficient Tumors-Morphology, Immunophenotype, Genetics, Epigenetics, Nosology, and Therapy. J Transl Med 2025; 105:102185. [PMID: 39542101 DOI: 10.1016/j.labinv.2024.102185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/03/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024] Open
Abstract
About 20% of human cancers harbor mutations of genes encoding switch/sucrose nonfermentable (SWI/SNF) complex subunits. Deficiency of subunits of the complex is present in 10% of non-small-cell lung cancers (NSCLC; SMARCA4/SMARCA2 deficient), 100% thoracic SMARCA4/A2-deficient undifferentiated tumors (TSADUDT; SMARCA4/A2 deficient), malignant rhabdoid tumor, and atypical/teratoid tumor (SMARCB1-deficient), >90% of small cell carcinoma of the ovary, hypercalcemic type (SMARCA4/SMARCA2 deficient), frequently in undifferentiated/dedifferentiated endometrial carcinoma (SMARCA4, SMARCA2, SMARCB1, and ARID1A/B deficient), 100% SMARCA4 deficient undifferentiated uterine sarcoma (SMARCA4 deficient); and in various other tumors from multifarious anatomical sites. Silencing of SWI/SNF gene expression may be genomically or epigenetically driven, causing loss of tumor suppression function or facilitating other oncogenic events. The SWI/SNF-deficient tumors share the phenotype of poor or no differentiation, often with a variable component of rhabdoid tumor cells. They present at advanced stages with poor prognosis. Rhabdoid tumor cell phenotype is a useful feature to prompt investigation for this group of tumors. In the thoracic space, the overlap in morphology, immunophenotype, genetics, and epigenetics of SMARCA4/A2-deficient NSCLC and TSADUDT appears more significant. This raises a possible nosologic relationship between TSADUDT and SMARCA4/A2-deficient NSCLC. Increased understanding of the genetics, epigenetics, and mechanisms of oncogenesis in these poor prognostic tumors, which are often resistant to conventional treatment, opens a new horizon of therapy for the tumors.
Collapse
Affiliation(s)
- Chi Sing Ng
- Department of Pathology, Caritas Medical Center, Kowloon, Hong Kong.
| | - Jilong Qin
- Department of Pathology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Liu Z, Lai S, Qu Q, Liu X, Zhang W, Zhao D, He S, Sun Y, Bao H. Analysis of weighted gene co-expression networks and clinical validation identify hub genes and immune cell infiltration in the endometrial cells of patients with recurrent implantation failure. Front Genet 2024; 15:1292757. [PMID: 38645487 PMCID: PMC11026622 DOI: 10.3389/fgene.2024.1292757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/22/2024] [Indexed: 04/23/2024] Open
Abstract
Background About 10% of individuals undergoing in vitro fertilization encounter recurrent implantation failure (RIF), which represents a worldwide social and economic concern. Nevertheless, the critical genes and genetic mechanisms underlying RIF are largely unknown. Methods We first obtained three comprehensive microarray datasets "GSE58144, GSE103465 and GSE111974". The differentially expressed genes (DEGs) evaluation, enrichment analysis, as well as efficient weighted gene co-expression network analysis (WGCNA), were employed for distinguishing RIF-linked hub genes, which were tested by RT-qPCR in our 30 independent samples. Next, we studied the topography of infiltration of 22 immune cell subpopulations and the association between hub genes and immune cells in RIF using the CIBERSORT algorithm. Finally, a novel ridge plot was utilized to exhibit the potential function of core genes. Results The enrichment of GO/KEGG pathways reveals that Herpes simplex virus 1 infection and Salmonella infection may have an important role in RIF. After WGCNA, the intersected genes with the previous DEGs were obtained using both variance and association. Notably, the subsequent nine hub genes were finally selected: ACTL6A, BECN1, SNRPD1, POLR1B, GSK3B, PPP2CA, RBBP7, PLK4, and RFC4, based on the PPI network and three different algorithms, whose expression patterns were also verified by RT-qPCR. With in-depth analysis, we speculated that key genes mentioned above might be involved in the RIF through disturbing endometrial microflora homeostasis, impairing autophagy, and inhibiting the proliferation of endometrium. Furthermore, the current study revealed the aberrant immune infiltration patterns and emphasized that uterine NK cells (uNK) and CD4+ T cells were substantially altered in RIF endometrium. Finally, the ridge plot displayed a clear and crucial association between hub genes and other genes and key pathways. Conclusion We first utilized WGCNA to identify the most potential nine hub genes which might be associated with RIF. Meanwhile, this study offers insights into the landscape of immune infiltration status to reveal the underlying immune pathogenesis of RIF. This may be a direction for the next study of RIF etiology. Further studies would be required to investigate the involved mechanisms.
Collapse
Affiliation(s)
- Zhenteng Liu
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
- Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), Yantai, Shandong, China
| | - Shoucui Lai
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
- Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), Yantai, Shandong, China
| | - Qinglan Qu
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
- Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), Yantai, Shandong, China
| | - Xuemei Liu
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
- Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), Yantai, Shandong, China
| | - Wei Zhang
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
- Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), Yantai, Shandong, China
| | - Dongmei Zhao
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
- Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), Yantai, Shandong, China
| | - Shunzhi He
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
- Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), Yantai, Shandong, China
| | - Yuxia Sun
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
- Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), Yantai, Shandong, China
| | - Hongchu Bao
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
- Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), Yantai, Shandong, China
| |
Collapse
|
3
|
Singh A, Modak SB, Chaturvedi MM, Purohit JS. SWI/SNF Chromatin Remodelers: Structural, Functional and Mechanistic Implications. Cell Biochem Biophys 2023:10.1007/s12013-023-01140-5. [PMID: 37119511 DOI: 10.1007/s12013-023-01140-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
The nuclear events of a eukaryotic cell, such as replication, transcription, recombination and repair etc. require the transition of the compactly arranged chromatin into an uncompacted state and vice-versa. This is mediated by post-translational modification of the histones, exchange of histone variants and ATP-dependent chromatin remodeling. The SWI/SNF chromatin remodeling complexes are one of the most well characterized families of chromatin remodelers. In addition to their role in modulating chromatin, they have also been assigned roles in cancer and health-related anomalies such as developmental, neurocognitive, and intellectual disabilities. Owing to their vital cellular and medical connotations, developing an understanding of the structural and functional aspects of the complex becomes imperative. However, due to the intricate nature of higher-order chromatin as well as compositional heterogeneity of the SWI/SNF complex, intra-species isoforms and inter-species homologs, this often becomes challenging. To this end, the present review attempts to present an amalgamated perspective on the discovery, structure, function, and regulation of the SWI/SNF complex.
Collapse
Affiliation(s)
- Abhilasha Singh
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | | | - Madan M Chaturvedi
- Department of Zoology, University of Delhi, Delhi, 110007, India
- SGT University, Gurugram (Delhi-NCR), Haryana, 122505, India
| | | |
Collapse
|
4
|
Lampersberger L, Conte F, Ghosh S, Xiao Y, Price J, Jordan D, Matus DQ, Sarkies P, Beli P, Miska EA, Burton NO. Loss of the E3 ubiquitin ligases UBR-5 or HECD-1 restores Caenorhabditis elegans development in the absence of SWI/SNF function. Proc Natl Acad Sci U S A 2023; 120:e2217992120. [PMID: 36689659 PMCID: PMC9945973 DOI: 10.1073/pnas.2217992120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/15/2022] [Indexed: 01/25/2023] Open
Abstract
SWItch/sucrose non-fermenting (SWI/SNF) complexes are a family of chromatin remodelers that are conserved across eukaryotes. Mutations in subunits of SWI/SNF cause a multitude of different developmental disorders in humans, most of which have no current treatment options. Here, we identify an alanine-to-valine-causing mutation in the SWI/SNF subunit snfc-5 (SMARCB1 in humans) that prevents embryonic lethality in Caenorhabditis elegans nematodes harboring a loss-of-function mutation in the SWI/SNF subunit swsn-1 (SMARCC1/2 in humans). Furthermore, we found that the combination of this specific mutation in snfc-5 and a loss-of-function mutation in either of the E3 ubiquitin ligases ubr-5 (UBR5 in humans) or hecd-1 (HECTD1 in humans) can restore development to adulthood in swsn-1 loss-of-function mutants that otherwise die as embryos. Using these mutant models, we established a set of 335 genes that are dysregulated in SWI/SNF mutants that arrest their development embryonically but exhibit near wild-type levels of expression in the presence of suppressor mutations that prevent embryonic lethality, suggesting that SWI/SNF promotes development by regulating some subset of these 335 genes. In addition, we show that SWI/SNF protein levels are reduced in swsn-1; snfc-5 double mutants and partly restored to wild-type levels in swsn-1; snfc-5; ubr-5 triple mutants, consistent with a model in which UBR-5 regulates SWI/SNF levels by tagging the complex for proteasomal degradation. Our findings establish a link between two E3 ubiquitin ligases and SWI/SNF function and suggest that UBR5 and HECTD1 could be potential therapeutic targets for the many developmental disorders caused by missense mutations in SWI/SNF subunits.
Collapse
Affiliation(s)
- Lisa Lampersberger
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, CambridgeCB2 1QN, UK
- Department of Genetics, University of Cambridge, CambridgeCB2 3EH, UK
| | | | - Subhanita Ghosh
- Medical Research Council London Institute of Medical Sciences, LondonW12 0NN, UK
| | - Yutong Xiao
- Department of Biochemistry and Cell Biology, Stony Brook University, NY11790
| | - Jonathan Price
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, CambridgeCB2 1QN, UK
- Department of Genetics, University of Cambridge, CambridgeCB2 3EH, UK
| | - David Jordan
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, CambridgeCB2 1QN, UK
- Department of Genetics, University of Cambridge, CambridgeCB2 3EH, UK
| | - David Q. Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, NY11790
| | - Peter Sarkies
- Medical Research Council London Institute of Medical Sciences, LondonW12 0NN, UK
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, UK
| | - Petra Beli
- Institute of Molecular Biology, Mainz55128, Germany
| | - Eric A. Miska
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, CambridgeCB2 1QN, UK
- Department of Genetics, University of Cambridge, CambridgeCB2 3EH, UK
- Department of Biochemistry, University of Cambridge, CambridgeCB2 1QW, UK
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, CambridgeCB10 1SA, UK
| | - Nicholas O. Burton
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI49503
| |
Collapse
|
5
|
Chen PM, Wong CN, Wong CN, Chu PY. Actin-like Protein 6A Expression Correlates with Cancer Stem Cell-like Features and Poor Prognosis in Ovarian Cancer. Int J Mol Sci 2023; 24:ijms24032016. [PMID: 36768349 PMCID: PMC9916576 DOI: 10.3390/ijms24032016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
Ovarian cancer has the highest mortality rate among gynecological cancers, often diagnosed at the late stage and lacking an effective targeted therapy. Although the study of malignant features of cancer, considered to be cancer stem cells (CSCs), is emerging, the aim of this study was to predict and explore the possible mechanism and clinical value of genetic markers in the development of ovarian cancer from a combined database with CSCs features. The common differentially expressed genes (DEGs) were selected in GSE185833 and GSE176246 datasets from the Gene Expression Omnibus (GEO). The GSE185833 dataset was created to reveal gene expression profiles of peritoneal metastasis tissues using single-cell sequencing, and the GSE176246 dataset was determined from gene expression profiles of chemotherapy-refractory ovarian cancer cell lines compared with ovarian cancer cell lines by RNA-seq analysis. By analyzing the correlation between common DEGs and prognosis of ovarian cancer and its possible pathways and functions were predicted by The Cancer Genome Atlas (TCGA) database. The expression levels of 11 genetic markers were significantly elevated in highly invasive and chemoresistant ovarian cancer. The expression of Actin-like protein 6A (ACTL6A) was found to be correlated with survival prognosis, and the total survival time of the patients with high expression of ACTL6A was shorter than those with low expression. Gene set enrichment analysis (GSEA) showed that ACTL6A positively enriched the gene set of 'Cell cycle' and ACTL6A negatively enriched the gene set of focal adhesion. CP724714, a human epidermal growth factor receptor 2 (HER2) inhibitor, could serve as a therapeutic option when ACTL6A levels are high in ovarian cancer cells. The high expression of ACTL6A is a poor prognostic factor in ovarian cancer and may serve as an effective biomarker for predicting treatment-refractory, metastasis, and prognosis of patients with ovarian cancer. The use of HER2 inhibitors is a promising therapeutic strategy against chemoresistant ovarian cancer.
Collapse
Affiliation(s)
- Po-Ming Chen
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan
| | - Chui-Nguk Wong
- Department of Obstetrics and Gynecology, Show Chwan Memorial Hospital, Changhua 500, Taiwan
| | - Chui-Na Wong
- Department of Obstetrics and Gynecology, Show Chwan Memorial Hospital, Changhua 500, Taiwan
| | - Pei-Yi Chu
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 242, Taiwan
- National Institute of Cancer Research, National Health Research Institute, Tainan 704, Taiwan
- Correspondence: ; Tel.: +886-4-7256166
| |
Collapse
|
6
|
Hernández-García J, Diego-Martin B, Kuo PH, Jami-Alahmadi Y, Vashisht AA, Wohlschlegel J, Jacobsen SE, Blázquez MA, Gallego-Bartolomé J. Comprehensive identification of SWI/SNF complex subunits underpins deep eukaryotic ancestry and reveals new plant components. Commun Biol 2022; 5:549. [PMID: 35668117 PMCID: PMC9170682 DOI: 10.1038/s42003-022-03490-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/16/2022] [Indexed: 01/19/2023] Open
Abstract
Over millions of years, eukaryotes evolved from unicellular to multicellular organisms with increasingly complex genomes and sophisticated gene expression networks. Consequently, chromatin regulators evolved to support this increased complexity. The ATP-dependent chromatin remodelers of the SWI/SNF family are multiprotein complexes that modulate nucleosome positioning and appear under different configurations, which perform distinct functions. While the composition, architecture, and activity of these subclasses are well understood in a limited number of fungal and animal model organisms, the lack of comprehensive information in other eukaryotic organisms precludes the identification of a reliable evolutionary model of SWI/SNF complexes. Here, we performed a systematic analysis using 36 species from animal, fungal, and plant lineages to assess the conservation of known SWI/SNF subunits across eukaryotes. We identified evolutionary relationships that allowed us to propose the composition of a hypothetical ancestral SWI/SNF complex in the last eukaryotic common ancestor. This last common ancestor appears to have undergone several rounds of lineage-specific subunit gains and losses, shaping the current conformation of the known subclasses in animals and fungi. In addition, our results unravel a plant SWI/SNF complex, reminiscent of the animal BAF subclass, which incorporates a set of plant-specific subunits of still unknown function.
Collapse
Affiliation(s)
- Jorge Hernández-García
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
- Laboratory of Biochemistry, Wageningen University & Research, 6703 WE, Stippeneng 4, Wageningen, The Netherlands
| | - Borja Diego-Martin
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| | - Peggy Hsuanyu Kuo
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, 90095, CA, USA
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, 90095, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, 90095, CA, USA
| | - Ajay A Vashisht
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, 90095, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, 90095, CA, USA
| | - James Wohlschlegel
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, 90095, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, 90095, CA, USA
| | - Steven E Jacobsen
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, 90095, CA, USA
- Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California at Los Angeles, Los Angeles, 90095, CA, USA
- Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, 90095, CA, USA
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| | - Javier Gallego-Bartolomé
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain.
| |
Collapse
|
7
|
Wedemeyer MA, Muskens I, Strickland BA, Aurelio O, Martirosian V, Wiemels JL, Weisenberger DJ, Wang K, Mukerjee D, Rhie SK, Zada G. Epigenetic dysregulation in meningiomas. Neurooncol Adv 2022; 4:vdac084. [PMID: 35769412 PMCID: PMC9234763 DOI: 10.1093/noajnl/vdac084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Background Meningiomas are the most common primary brain tumor. Though typically benign with a low mutational burden, tumors with benign histology may behave aggressively and there are no proven chemotherapies. Although DNA methylation patterns distinguish subgroups of meningiomas and have higher predictive value for tumor behavior than histologic classification, little is known about differences in DNA methylation between meningiomas and surrounding normal dura tissue. Methods Whole-exome sequencing and methylation array profiling were performed on 12 dura/meningioma pairs (11 WHO grade I and 1 WHO grade II). Single-nucleotide polymorphism (SNP) genotyping and methylation array profiling were performed on an additional 19 meningiomas (9 WHO grade I, 5 WHO grade II, 4 WHO grade III). Results Using multimodal studies of meningioma/dura pairs, we identified 4 distinct DNA methylation patterns. Diffuse DNA hypomethylation of malignant meningiomas readily facilitated their identification from lower-grade tumors by unsupervised clustering. All clusters and 12/12 meningioma-dura pairs exhibited hypomethylation of the gene promoters of a module associated with the craniofacial patterning transcription factor FOXC1 and its upstream lncRNA FOXCUT. Furthermore, we identified an epigenetic continuum of increasing hypermethylation of polycomb repressive complex target promoters with increasing histopathologic grade. Conclusion These findings support future investigations of the role of epigenetic dysregulation of FOXC1 and cranial patterning genes in meningioma formation as well as studies of the utility of polycomb inhibitors for the treatment of malignant meningiomas.
Collapse
Affiliation(s)
- Michelle A Wedemeyer
- Department of Neurosurgery, University of California San Francisco, Benioff Children’s Hospitals, San Francisco, California, USA
| | - Ivo Muskens
- Children’s Cancer Research Laboratory, Center of Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Ben A Strickland
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Oscar Aurelio
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA,Brain Tumor Center, University of Southern California, Los Angeles, California, USA
| | - Vahan Martirosian
- Brain Tumor Center, University of Southern California, Los Angeles, California, USA
| | - Joseph L Wiemels
- Children’s Cancer Research Laboratory, Center of Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Daniel J Weisenberger
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Kai Wang
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Debraj Mukerjee
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Suhn K Rhie
- Suhn K. Rhie, PhD, Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA ()
| | - Gabriel Zada
- Corresponding Authors: Gabriel Zada, MD, MS, Department of Neurosurgery, Keck School of Medicine, University of Southern California, 1200 N State Street, Los Angeles, CA 90033, USA ()
| |
Collapse
|
8
|
Lu G, Peng Q, Wu L, Zhang J, Ma L. Identification of de novo mutations for ARID1B haploinsufficiency associated with Coffin-Siris syndrome 1 in three Chinese families via array-CGH and whole exome sequencing. BMC Med Genomics 2021; 14:270. [PMID: 34775996 PMCID: PMC8591803 DOI: 10.1186/s12920-021-01119-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/05/2021] [Indexed: 11/25/2022] Open
Abstract
Background Coffin–Siris syndrome (CSS) is a multiple malformation syndrome characterized by intellectual disability associated with coarse facial features, hirsutism, sparse scalp hair, and hypoplastic or absent fifth fingernails or toenails. CSS represents a small group of intellectual disability, and could be caused by at least twelve genes. The genetic background is quite heterogenous, making it difficult for clinicians and genetic consultors to pinpoint the exact disease types. Methods Array-Comparative Genomic Hybridization (array-CGH) and whole exome sequencing (WES) were applied for three trios affected with intellectual disability and clinical features similar with those of Coffin–Siris syndrome. Sanger sequencing was used to verify the detected single-nucleotide variants (SNVs). Results All of the three cases were female with normal karyotypes of 46, XX, born of healthy, non-consanguineous parents. A 6q25 microdeletion (arr[hg19]6q25.3(155,966,487–158,803,979) × 1) (2.84 Mb) (case 1) and two loss-of-function (LoF) mutations of ARID1B [c.2332 + 1G > A in case 2 and c.4741C > T (p.Q1581X) in case 3] were identified. All of the three pathogenic abnormalities were de novo, not inherited from their parents. After comparison of publicly available microdeletions containing ARID1B, four types of microdeletions leading to insufficient production of ARID1B were identified, namely deletions covering the whole region of ARID1B, deletions covering the promoter region, deletions covering the termination region or deletions covering enhancer regions. Conclusion Here we identified de novo ARID1B mutations in three Chinese trios. Four types of microdeletions covering ARID1B were identified. This study broadens current knowledge of ARID1B mutations for clinicians and genetic consultors.
Collapse
Affiliation(s)
- Guanting Lu
- Department of Pathology, Laboratory of Translational Medicine Research, Deyang Key Laboratory of Tumor Molecular Research, Deyang People's Hospital, No. 173 First Section of TaishanBei Road, Jiangyang District, Deyang, 618000, China.
| | - Qiongling Peng
- Department of Child Healthcare, Shenzhen Baoan Women's and Children's Hospital, Jinan University, 56 Yulyu Road, Baoan District, Shenzhen, 518000, China
| | - Lianying Wu
- Department of Pathology, Laboratory of Translational Medicine Research, Deyang Key Laboratory of Tumor Molecular Research, Deyang People's Hospital, No. 173 First Section of TaishanBei Road, Jiangyang District, Deyang, 618000, China
| | - Jian Zhang
- Department of Pathology, Laboratory of Translational Medicine Research, Deyang Key Laboratory of Tumor Molecular Research, Deyang People's Hospital, No. 173 First Section of TaishanBei Road, Jiangyang District, Deyang, 618000, China
| | - Liya Ma
- Department of Child Healthcare, Shenzhen Baoan Women's and Children's Hospital, Jinan University, 56 Yulyu Road, Baoan District, Shenzhen, 518000, China.
| |
Collapse
|
9
|
Davis RB, Kaur T, Moosa MM, Banerjee PR. FUS oncofusion protein condensates recruit mSWI/SNF chromatin remodeler via heterotypic interactions between prion-like domains. Protein Sci 2021; 30:1454-1466. [PMID: 34018649 PMCID: PMC8197437 DOI: 10.1002/pro.4127] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022]
Abstract
Fusion transcription factors generated by genomic translocations are common drivers of several types of cancers including sarcomas and leukemias. Oncofusions of the FET (FUS, EWSR1, and TAF15) family proteins result from the fusion of the prion-like domain (PLD) of FET proteins to the DNA-binding domain (DBD) of certain transcription regulators and are implicated in aberrant transcriptional programs through interactions with chromatin remodelers. Here, we show that FUS-DDIT3, a FET oncofusion protein, undergoes PLD-mediated phase separation into liquid-like condensates. Nuclear FUS-DDIT3 condensates can recruit essential components of the global transcriptional machinery such as the chromatin remodeler SWI/SNF. The recruitment of mammalian SWI/SNF (mSWI/SNF) is driven by heterotypic PLD-PLD interactions between FUS-DDIT3 and core subunits of SWI/SNF, such as the catalytic component BRG1. Further experiments with single-molecule correlative force-fluorescence microscopy support a model wherein the fusion protein forms condensates on DNA surface and enrich BRG1 to activate transcription by ectopic chromatin remodeling. Similar PLD-driven co-condensation of mSWI/SNF with transcription factors can be employed by other oncogenic fusion proteins with a generic PLD-DBD domain architecture for global transcriptional reprogramming.
Collapse
Affiliation(s)
- Richoo B. Davis
- Department of PhysicsUniversity at BuffaloBuffaloNew YorkUSA
| | - Taranpreet Kaur
- Department of PhysicsUniversity at BuffaloBuffaloNew YorkUSA
| | | | | |
Collapse
|
10
|
Shidlovskii YV, Bylino OV, Shaposhnikov AV, Kachaev ZM, Lebedeva LA, Kolesnik VV, Amendola D, De Simone G, Formicola N, Schedl P, Digilio FA, Giordano E. Subunits of the PBAP Chromatin Remodeler Are Capable of Mediating Enhancer-Driven Transcription in Drosophila. Int J Mol Sci 2021; 22:ijms22062856. [PMID: 33799739 PMCID: PMC7999800 DOI: 10.3390/ijms22062856] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
The chromatin remodeler SWI/SNF is an important participant in gene activation, functioning predominantly by opening the chromatin structure on promoters and enhancers. Here, we describe its novel mode of action in which SWI/SNF factors mediate the targeted action of an enhancer. We studied the functions of two signature subunits of PBAP subfamily, BAP170 and SAYP, in Drosophila. These subunits were stably tethered to a transgene reporter carrying the hsp70 core promoter. The tethered subunits mediate transcription of the reporter in a pattern that is generated by enhancers close to the insertion site in multiple loci throughout the genome. Both tethered SAYP and BAP170 recruit the whole PBAP complex to the reporter promoter. However, we found that BAP170-dependent transcription is more resistant to the depletion of other PBAP subunits, suggesting that BAP170 may play a more critical role in establishing enhancer-dependent transcription.
Collapse
Affiliation(s)
- Yulii V. Shidlovskii
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (O.V.B.); (A.V.S.); (Z.M.K.); (L.A.L.); (V.V.K.); (P.S.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
- Correspondence: (Y.V.S.); (F.A.D.); (E.G.)
| | - Oleg V. Bylino
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (O.V.B.); (A.V.S.); (Z.M.K.); (L.A.L.); (V.V.K.); (P.S.)
| | - Alexander V. Shaposhnikov
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (O.V.B.); (A.V.S.); (Z.M.K.); (L.A.L.); (V.V.K.); (P.S.)
| | - Zaur M. Kachaev
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (O.V.B.); (A.V.S.); (Z.M.K.); (L.A.L.); (V.V.K.); (P.S.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Lyubov A. Lebedeva
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (O.V.B.); (A.V.S.); (Z.M.K.); (L.A.L.); (V.V.K.); (P.S.)
| | - Valeria V. Kolesnik
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (O.V.B.); (A.V.S.); (Z.M.K.); (L.A.L.); (V.V.K.); (P.S.)
| | - Diego Amendola
- Department of Biology, Università di Napoli Federico II, 80138 Naples, Italy; (D.A.); (G.D.S.)
| | - Giovanna De Simone
- Department of Biology, Università di Napoli Federico II, 80138 Naples, Italy; (D.A.); (G.D.S.)
- Department of Sciences, Roma Tre University, 00154 Rome, Italy
| | - Nadia Formicola
- Institute of Research on Terrestrial Ecosystems (IRET) National Research Council (CNR), 05010 Porano, Italy;
- Institut de Biologie Valrose iBV UMR CNRS 7277, Université Côte d’Azur, 06108 Nice, France
| | - Paul Schedl
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (O.V.B.); (A.V.S.); (Z.M.K.); (L.A.L.); (V.V.K.); (P.S.)
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | - Filomena Anna Digilio
- Institute of Research on Terrestrial Ecosystems (IRET) National Research Council (CNR), 05010 Porano, Italy;
- Correspondence: (Y.V.S.); (F.A.D.); (E.G.)
| | - Ennio Giordano
- Department of Biology, Università di Napoli Federico II, 80138 Naples, Italy; (D.A.); (G.D.S.)
- Correspondence: (Y.V.S.); (F.A.D.); (E.G.)
| |
Collapse
|
11
|
Wang C, Guo Z, Zhan X, Yang F, Wu M, Zhang X. Structure of the yeast Swi/Snf complex in a nucleosome free state. Nat Commun 2020; 11:3398. [PMID: 32636384 PMCID: PMC7340788 DOI: 10.1038/s41467-020-17229-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/15/2020] [Indexed: 11/09/2022] Open
Abstract
SWI/SNF remodelers play a key role in regulating chromatin architecture and gene expression. Here, we report the cryo-EM structure of the Saccharomyces cerevisiae Swi/Snf complex in a nucleosome-free state. The structure consists of a stable triangular base module and a flexible Arp module. The conserved subunits Swi1 and Swi3 form the backbone of the complex and closely interact with other components. Snf6, which is specific for yeast Swi/Snf complex, stabilizes the binding of the ATPase-containing subunit Snf2 to the base module. Comparison of the yeast Swi/Snf and RSC complexes reveals conserved structural features that govern the assembly and function of these two subfamilies of chromatin remodelers. Our findings complement those from recent structures of the yeast and human chromatin remodelers and provide further insights into the assembly and function of the SWI/SNF remodelers.
Collapse
Affiliation(s)
- Chengcheng Wang
- Key Laboratory of Structural Biology of Zhejiang Province, Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, 310024, Hangzhou, Zhejiang Province, China. .,School of Life Sciences, Westlake University, 18 Shilongshan Road, 310024, Hangzhou, Zhejiang Province, China.
| | - Zhouyan Guo
- Key Laboratory of Structural Biology of Zhejiang Province, Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, 310024, Hangzhou, Zhejiang Province, China.,School of Life Sciences, Westlake University, 18 Shilongshan Road, 310024, Hangzhou, Zhejiang Province, China.,College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Xiechao Zhan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Fenghua Yang
- Key Laboratory of Structural Biology of Zhejiang Province, Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, 310024, Hangzhou, Zhejiang Province, China.,School of Life Sciences, Westlake University, 18 Shilongshan Road, 310024, Hangzhou, Zhejiang Province, China
| | - Mingxuan Wu
- School of Science, Westlake University, 18 Shilongshan Road, 310024, Hangzhou, Zhejiang Province, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, 310024, Hangzhou, Zhejiang Province, China
| | - Xiaofeng Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, 310024, Hangzhou, Zhejiang Province, China. .,School of Life Sciences, Westlake University, 18 Shilongshan Road, 310024, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
12
|
Srikanth S, Ramachandran S, Mohan S S. Construction of the gene regulatory network identifies MYC as a transcriptional regulator of SWI/SNF complex. Sci Rep 2020; 10:158. [PMID: 31932624 PMCID: PMC6957478 DOI: 10.1038/s41598-019-56844-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022] Open
Abstract
Precise positioning of nucleosomes at the gene regulatory elements mediated by the SWI/SNF family of remodelling complex is important for the transcriptional regulation of genes. A wide set of genes are either positively or negatively regulated by SWI/SNF. In higher eukaryotes, around thirty genes were found to code for SWI/SNF subunits. The construction of a gene regulatory network of SWI/SNF subunits identifies MYC as a common regulator for many of the SWI/SNF subunit genes. A meta-analysis study was conducted to investigate the MYC dependent regulation of SWI/SNF remodelling complex. Subunit information and the promoter sequences of the subunit genes were used to find the canonical E-box motif and its variants. Detailed analysis of mouse and human ChIP-Seq at the SWI/SNF subunit loci indicates the presence of MYC binding peaks overlapping with E-boxes. The co-expression correlation and the differential expression analysis of wt vs. MYC perturbed MEFs indicate the MYC dependent regulation of some of the SWI/SNF subunits. The extension of the analysis was done on MYC proficient and MYC deficient embryonic fibroblast cell lines, TGR1 and HO15, and in one of the MYC amplified cancer types, Medulloblastoma. A transcriptional regulatory feedback loop between MYC and SWI/SNF could be a major factor contributing to the aggressiveness of MYC dependent cancers.
Collapse
Affiliation(s)
- Srimari Srikanth
- School of Chemical & Biotechnology, SASTRA Deemed to be University, Tirumalaisamudram, Thanjavur, India
| | - Srimathy Ramachandran
- School of Chemical & Biotechnology, SASTRA Deemed to be University, Tirumalaisamudram, Thanjavur, India
| | - Suma Mohan S
- School of Chemical & Biotechnology, SASTRA Deemed to be University, Tirumalaisamudram, Thanjavur, India.
| |
Collapse
|
13
|
Sekiguchi F, Tsurusaki Y, Okamoto N, Teik KW, Mizuno S, Suzumura H, Isidor B, Ong WP, Haniffa M, White SM, Matsuo M, Saito K, Phadke S, Kosho T, Yap P, Goyal M, Clarke LA, Sachdev R, McGillivray G, Leventer RJ, Patel C, Yamagata T, Osaka H, Hisaeda Y, Ohashi H, Shimizu K, Nagasaki K, Hamada J, Dateki S, Sato T, Chinen Y, Awaya T, Kato T, Iwanaga K, Kawai M, Matsuoka T, Shimoji Y, Tan TY, Kapoor S, Gregersen N, Rossi M, Marie-Laure M, McGregor L, Oishi K, Mehta L, Gillies G, Lockhart PJ, Pope K, Shukla A, Girisha KM, Abdel-Salam GMH, Mowat D, Coman D, Kim OH, Cordier MP, Gibson K, Milunsky J, Liebelt J, Cox H, El Chehadeh S, Toutain A, Saida K, Aoi H, Minase G, Tsuchida N, Iwama K, Uchiyama Y, Suzuki T, Hamanaka K, Azuma Y, Fujita A, Imagawa E, Koshimizu E, Takata A, Mitsuhashi S, Miyatake S, Mizuguchi T, Miyake N, Matsumoto N. Genetic abnormalities in a large cohort of Coffin-Siris syndrome patients. J Hum Genet 2019; 64:1173-1186. [PMID: 31530938 DOI: 10.1038/s10038-019-0667-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/13/2019] [Accepted: 08/25/2019] [Indexed: 01/15/2023]
Abstract
Coffin-Siris syndrome (CSS, MIM#135900) is a congenital disorder characterized by coarse facial features, intellectual disability, and hypoplasia of the fifth digit and nails. Pathogenic variants for CSS have been found in genes encoding proteins in the BAF (BRG1-associated factor) chromatin-remodeling complex. To date, more than 150 CSS patients with pathogenic variants in nine BAF-related genes have been reported. We previously reported 71 patients of whom 39 had pathogenic variants. Since then, we have recruited an additional 182 CSS-suspected patients. We performed comprehensive genetic analysis on these 182 patients and on the previously unresolved 32 patients, targeting pathogenic single nucleotide variants, short insertions/deletions and copy number variations (CNVs). We confirmed 78 pathogenic variations in 78 patients. Pathogenic variations in ARID1B, SMARCB1, SMARCA4, ARID1A, SOX11, SMARCE1, and PHF6 were identified in 48, 8, 7, 6, 4, 1, and 1 patients, respectively. In addition, we found three CNVs including SMARCA2. Of particular note, we found a partial deletion of SMARCB1 in one CSS patient and we thoroughly investigated the resulting abnormal transcripts.
Collapse
Affiliation(s)
- Futoshi Sekiguchi
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan
| | - Yoshinori Tsurusaki
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan.,Faculty of Nutritional Science, Sagami Women's University, Sagamihara, Kanagawa, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Keng Wee Teik
- Department of Genetics, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Seiji Mizuno
- Department of Clinical Genetics, Central Hospital, Aichi Developmental Disability Center, Kasugai, Japan
| | - Hiroshi Suzumura
- Department of Pediatrics, Dokkyo Medical University, Tochigi, Japan
| | | | - Winnie Peitee Ong
- Department of Genetics, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Muzhirah Haniffa
- Department of Genetics, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Susan M White
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Mari Matsuo
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Kayoko Saito
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Shubha Phadke
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Tomoki Kosho
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Patrick Yap
- Genetic Health Service New Zealand, Auckland, New Zealand.,Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Manisha Goyal
- Rare Disease Clinic, J K Lone Hospital, SMS Medical College, Jaipur, Rajasthan, India
| | - Lorne A Clarke
- British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Rani Sachdev
- Centre for Clinical Genetics, Sydney Children's Hospital, Randwick, NSW, Australia
| | - George McGillivray
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Richard J Leventer
- Royal Children's Hospital Department of Neurology, Murdoch Children's Research Institute and University of Melbourne Department of Pediatrics, Parkville, 3052, Australia
| | - Chirag Patel
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | | | - Hitoshi Osaka
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | - Yoshiya Hisaeda
- Department of Neonatology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Hirofumi Ohashi
- Division of Medical Genetics, Saitama Children's Medical Center, Saitama, Japan
| | - Kenji Shimizu
- Division of Medical Genetics, Saitama Children's Medical Center, Saitama, Japan
| | - Keisuke Nagasaki
- Department of Homeostatic Regulation and Development, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Junpei Hamada
- Department of Pediatrics, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Sumito Dateki
- Department of Pediatrics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takashi Sato
- Asahikawa-Kosei General Hospital, Hokkaido, Japan
| | - Yasutsugu Chinen
- Department of Child Health and Welfare, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Tomonari Awaya
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeo Kato
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kougoro Iwanaga
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiko Kawai
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Matsuoka
- Department of General Pediatrics, Okinawa Prefectural Nanbu Medical Center and Children's Medical Center, Okinawa, Japan
| | - Yoshikazu Shimoji
- Department of General Pediatrics, Okinawa Prefectural Nanbu Medical Center and Children's Medical Center, Okinawa, Japan
| | - Tiong Yang Tan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Seema Kapoor
- Division of Genetics, Department of Pediatrics, Maulana Azad Medical College, New Delhi, India
| | | | - Massimiliano Rossi
- Hospices Civils de Lyon, Service de Génétique, Centre de Référence Anomalies du Développement, and INSERM U1028, CNRS UMR5292, CRNL, GENDEV Team, UCBL1, Bron, France
| | - Mathieu Marie-Laure
- Hospices Civils de Lyon, Service de Génétique, Centre de Référence Anomalies du Développement, and INSERM U1028, CNRS UMR5292, CRNL, GENDEV Team, UCBL1, Bron, France
| | - Lesley McGregor
- South Australian Clinical Genetics Service, SA Pathology, Women's and Children's Hospital, Adelaide, Australia
| | - Kimihiko Oishi
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lakshmi Mehta
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Greta Gillies
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Victoria, Australia
| | - Paul J Lockhart
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Victoria, Australia
| | - Kate Pope
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Victoria, Australia
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Katta Mohan Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Ghada M H Abdel-Salam
- Department of Clinical Genetics, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - David Mowat
- Department of Medical Genetics, Sydney Children's Hospital, Sydney, NSW, Australia
| | - David Coman
- Department of Paediatrics, The Wesley Hospital, Brisbane, QLD, Australia
| | - Ok Hwa Kim
- Department of Radiology, Ajou University Hospital, Suwon, Korea
| | | | - Kate Gibson
- Genetic Health Service New Zealand, Christchurch Hospital, Christchurch, New Zealand
| | | | - Jan Liebelt
- South Australian Clinical Genetics Services, Women's and Children's Hospital, North Adelaide, Australia
| | - Helen Cox
- West Midlands Regional Genetics Service, Birmingham Women's NHS Foundation Trust, Birmingham Women's Hospital, Edgbaston, Birmingham, B15 2TG, UK
| | - Salima El Chehadeh
- Service de Genetique Medicale, Hopital de Hautepierre, Strasbourg, France
| | | | - Ken Saida
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan
| | - Hiromi Aoi
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan.,Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Gaku Minase
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan
| | - Kazuhiro Iwama
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan.,Department of Oncology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Kanagawa, Japan
| | - Toshifumi Suzuki
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan.,Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Kohei Hamanaka
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan
| | - Yoshiteru Azuma
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan
| | - Eri Imagawa
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eriko Koshimizu
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan
| | - Atsushi Takata
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan
| | - Satomi Mitsuhashi
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan.,Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Kanagawa, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan
| | - Noriko Miyake
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan.
| |
Collapse
|
14
|
Spaeth JM, Liu JH, Peters D, Guo M, Osipovich AB, Mohammadi F, Roy N, Bhushan A, Magnuson MA, Hebrok M, Wright CVE, Stein R. The Pdx1-Bound Swi/Snf Chromatin Remodeling Complex Regulates Pancreatic Progenitor Cell Proliferation and Mature Islet β-Cell Function. Diabetes 2019; 68:1806-1818. [PMID: 31201281 PMCID: PMC6702633 DOI: 10.2337/db19-0349] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/06/2019] [Indexed: 12/13/2022]
Abstract
Transcription factors positively and/or negatively impact gene expression by recruiting coregulatory factors, which interact through protein-protein binding. Here we demonstrate that mouse pancreas size and islet β-cell function are controlled by the ATP-dependent Swi/Snf chromatin remodeling coregulatory complex that physically associates with Pdx1, a diabetes-linked transcription factor essential to pancreatic morphogenesis and adult islet cell function and maintenance. Early embryonic deletion of just the Swi/Snf Brg1 ATPase subunit reduced multipotent pancreatic progenitor cell proliferation and resulted in pancreas hypoplasia. In contrast, removal of both Swi/Snf ATPase subunits, Brg1 and Brm, was necessary to compromise adult islet β-cell activity, which included whole-animal glucose intolerance, hyperglycemia, and impaired insulin secretion. Notably, lineage-tracing analysis revealed Swi/Snf-deficient β-cells lost the ability to produce the mRNAs for Ins and other key metabolic genes without effecting the expression of many essential islet-enriched transcription factors. Swi/Snf was necessary for Pdx1 to bind to the Ins gene enhancer, demonstrating the importance of this association in mediating chromatin accessibility. These results illustrate how fundamental the Pdx1:Swi/Snf coregulator complex is in the pancreas, and we discuss how disrupting their association could influence type 1 and type 2 diabetes susceptibility.
Collapse
Affiliation(s)
- Jason M Spaeth
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Jin-Hua Liu
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Daniel Peters
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | - Min Guo
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Anna B Osipovich
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Fardin Mohammadi
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | - Nilotpal Roy
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Anil Bhushan
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Mark A Magnuson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | | | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| |
Collapse
|
15
|
S AS, Goutham R N A, Mohan S S. In silico screening of cancer-associated mutations in the HSA domain of BRG1 and its role in affecting the Arp-HSA sub-complex of SWI/SNF. Comput Biol Chem 2018; 77:109-115. [PMID: 30286321 DOI: 10.1016/j.compbiolchem.2018.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/24/2018] [Accepted: 07/03/2018] [Indexed: 11/30/2022]
Abstract
SWI/SNF (SWItch/Sucrose Non-Fermentable) complexes regulate the gene expression programs by remodeling the nucleosome architecture of the chromatin functional elements. These large multi-component complexes comprise eight or more subunits and are conserved from yeast to human. Noticeably, nuclear actin and actin-related proteins (Arps) are an integral part of these complexes and are known to directly interact with the helicase-SANT-associated (HSA) domain of ATPase subunit. Recently, SWI/SNF subunits are gaining importance because of the prevalence of cancer-causing mutations associated with them. The functional characterization of the mutations in the SWI/SNF subunits is important for understanding their role in tumorigenesis and identifying potential therapeutic strategies. To study the actin-related complex of human SWI/SNF and the cancer-associated mutations interfering Arp assembly with the ATPase subunit, we modelled the structure of the β-actin-BAF53A-HSA complex based on the yeast Arp-HSA complex (PDB ID: 4I6M). Seven deleterious mutations in the HSA domain of BRG1 were identified based on the functional screening of cancer-associated mutations in the COSMIC database. Detailed structural analysis of the six mutations (R466H, R469W, Y489C, K502N, R513Q and R521P) based on molecular dynamics (MD) simulations reveal the distinct effect of each mutation in destabilizing the structure of the Arp-HSA complex. Predominantly we could notice the long-range effect of the HSA mutations in influencing the dynamics of the Arp subunits.
Collapse
Affiliation(s)
- Alagu Sankareswaran S
- School of Chemical & Biotechnology, Sastra Deemed University, Tirumalaisamudram, Thanjavur, 613401, India
| | - Arun Goutham R N
- School of Chemical & Biotechnology, Sastra Deemed University, Tirumalaisamudram, Thanjavur, 613401, India
| | - Suma Mohan S
- School of Chemical & Biotechnology, Sastra Deemed University, Tirumalaisamudram, Thanjavur, 613401, India.
| |
Collapse
|
16
|
Alpsoy A, Dykhuizen EC. Glioma tumor suppressor candidate region gene 1 (GLTSCR1) and its paralog GLTSCR1-like form SWI/SNF chromatin remodeling subcomplexes. J Biol Chem 2018; 293:3892-3903. [PMID: 29374058 DOI: 10.1074/jbc.ra117.001065] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/24/2018] [Indexed: 12/13/2022] Open
Abstract
The mammalian SWI/SNF chromatin remodeling complex is a heterogeneous collection of related protein complexes required for gene regulation and genome integrity. It contains a central ATPase (BRM or BRG1) and various combinations of 10-14 accessory subunits (BAFs for BRM/BRG1 Associated Factors). Two distinct complexes differing in size, BAF and the slightly larger polybromo-BAF (PBAF), share many of the same core subunits but are differentiated primarily by having either AT-rich interaction domain 1A/B (ARID1A/B in BAF) or ARID2 (in PBAF). Using density gradient centrifugation and immunoprecipitation, we have identified and characterized a third and smaller SWI/SNF subcomplex. We termed this complex GBAF because it incorporates two mutually exclusive paralogs, GLTSCR1 (glioma tumor suppressor candidate region gene 1) or GLTSCR1L (GLTSCR1-like), instead of an ARID protein. In addition to GLTSCR1 or GLTSCR1L, the GBAF complex contains BRD9 (bromodomain-containing 9) and the BAF subunits BAF155, BAF60, SS18, BAF53a, and BRG1/BRM. We observed that GBAF does not contain the core BAF subunits BAF45, BAF47, or BAF57. Even without these subunits, GBAF displayed in vitro ATPase activity and bulk chromatin affinity comparable to those of BAF. GBAF associated with BRD4, but, unlike BRD4, the GBAF component GLTSCR1 was not required for the viability of the LNCaP prostate cancer cell line. In contrast, GLTSCR1 or GLTSCR1L knockouts in the metastatic prostate cancer cell line PC3 resulted in a loss in proliferation and colony-forming ability. Taken together, our results provide evidence for a compositionally novel SWI/SNF subcomplex with cell type-specific functions.
Collapse
Affiliation(s)
- Aktan Alpsoy
- From the Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907
| | - Emily C Dykhuizen
- From the Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|