1
|
Essebier P, Keyser M, Yordanov T, Hill B, Yu A, Noordstra I, Yap AS, Stehbens SJ, Lagendijk AK, Schimmel L, Gordon EJ. c-Src-induced vascular malformations require localised matrix degradation at focal adhesions. J Cell Sci 2024; 137:jcs262101. [PMID: 38881365 PMCID: PMC11267457 DOI: 10.1242/jcs.262101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024] Open
Abstract
Endothelial cells lining the blood vessel wall communicate intricately with the surrounding extracellular matrix, translating mechanical cues into biochemical signals. Moreover, vessels require the capability to enzymatically degrade the matrix surrounding them, to facilitate vascular expansion. c-Src plays a key role in blood vessel growth, with its loss in the endothelium reducing vessel sprouting and focal adhesion signalling. Here, we show that constitutive activation of c-Src in endothelial cells results in rapid vascular expansion, operating independently of growth factor stimulation or fluid shear stress forces. This is driven by an increase in focal adhesion signalling and size, with enhancement of localised secretion of matrix metalloproteinases responsible for extracellular matrix remodelling. Inhibition of matrix metalloproteinase activity results in a robust rescue of the vascular expansion elicited by heightened c-Src activity. This supports the premise that moderating focal adhesion-related events and matrix degradation can counteract abnormal vascular expansion, with implications for pathologies driven by unusual vascular morphologies.
Collapse
Affiliation(s)
- Patricia Essebier
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia4072
| | - Mikaela Keyser
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia4072
| | - Teodor Yordanov
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia4072
| | - Brittany Hill
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia4072
| | - Alexander Yu
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia4072
| | - Ivar Noordstra
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia4072
| | - Alpha S. Yap
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia4072
| | - Samantha J. Stehbens
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia4072
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia4072
| | - Anne K. Lagendijk
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia4072
| | - Lilian Schimmel
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia4072
| | - Emma J. Gordon
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia4072
| |
Collapse
|
2
|
Zhang Y, Liu J, de Souza Araujo I, Bahammam L, Munn L, Huang G. Neovascularization by DPSC-ECs in a Tube Model for Pulp Regeneration Study. J Dent Res 2024; 103:652-661. [PMID: 38716736 PMCID: PMC11122093 DOI: 10.1177/00220345241236392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024] Open
Abstract
The process of neovascularization during cell-based pulp regeneration is difficult to study. Here we developed a tube model that simulates root canal space and allows direct visualization of the vascularization process in vitro. Endothelial-like cells (ECs) derived from guiding human dental pulp stem cells (DPSCs) into expressing endothelial cell markers CD144, vWF, VEGFR1, and VEGFR2 were used. Human microvascular endothelial cells (hMVECs) were used as a positive control. DPSC-ECs formed tubules on Matrigel similar to hMVECs. Cells were mixed in fibrinogen/thrombin or mouse blood and seeded into wells of 96-well plates or injected into a tapered plastic tube (14 mm in length and 1 or 2 mm diameter of the apex opening) with the larger end sealed with MTA to simulate root canal space. Cells/gels in wells or tubes were incubated for various times in vitro and observed under the microscope for morphological changes. Samples were then fixed and processed for histological analysis to determine vessel formation. Vessel-like networks were observed in culture from 1 to 3 d after cell seeding. Cells/gels in 96-well plates were maintained up to 25 d. Histologically, both hMVECs and DPSC-ECs in 96-well plates or tubes showed intracellular vacuole formation. Some cells showed merged large vacuoles indicating the lumenization. Tubular structures were also observed resembling blood vessels. Cells appeared healthy throughout the tube except some samples (1 mm apical diameter) in the coronal third. Histological analysis also showed pulp-like soft tissue throughout the tube samples with vascular-like structures. hMVECs formed larger vascular lumen size than DPSC-ECs while the latter tended to have more lumen and tubular structure counts. We conclude that DPSC-ECs can form vascular structures and sustained in the 3-dimensional fibrin gel system in vitro. The tube model appears to be a proper and simple system simulating the root canal space for vascular formation and pulp regeneration studies.
Collapse
Affiliation(s)
- Y. Zhang
- Departments of Bioscience Research and Endodontics, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - J. Liu
- Departments of Bioscience Research and Endodontics, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - I.J. de Souza Araujo
- Departments of Bioscience Research and Endodontics, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - L. Bahammam
- Departments of Bioscience Research and Endodontics, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
- Faculty of Dentistry, King Abdulaziz University, Jeddah, Makkah, Kingdom of Saudi Arabia*
| | - L.L. Munn
- Radiation Oncology, Massachusetts General Hospital Research Institute, Harvard Medical School, Charlestown, MA, USA
| | - G.T.J. Huang
- Departments of Bioscience Research and Endodontics, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
3
|
Davis GE, Kemp SS. Extracellular Matrix Regulation of Vascular Morphogenesis, Maturation, and Stabilization. Cold Spring Harb Perspect Med 2023; 13:a041156. [PMID: 35817544 PMCID: PMC10578078 DOI: 10.1101/cshperspect.a041156] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The extracellular matrix represents a critical regulator of tissue vascularization during embryonic development and postnatal life. In this perspective, we present key information and concepts that focus on how the extracellular matrix controls capillary assembly, maturation, and stabilization, and, in addition, contributes to tissue stability and health. In particular, we present and discuss mechanistic details underlying (1) the role of the extracellular matrix in controlling different steps of vascular morphogenesis, (2) the ability of endothelial cells (ECs) and pericytes to coassemble into elongated and narrow capillary EC-lined tubes with associated pericytes and basement membrane matrices, and (3) the identification of specific growth factor combinations ("factors") and peptides as well as coordinated "factor" and extracellular matrix receptor signaling pathways that are required to form stabilized capillary networks.
Collapse
Affiliation(s)
- George E Davis
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, Florida 33612, USA
| | - Scott S Kemp
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, Florida 33612, USA
| |
Collapse
|
4
|
Sun Z, Kemp SS, Lin PK, Aguera KN, Davis GE. Endothelial k-RasV12 Expression Induces Capillary Deficiency Attributable to Marked Tube Network Expansion Coupled to Reduced Pericytes and Basement Membranes. Arterioscler Thromb Vasc Biol 2022; 42:205-222. [PMID: 34879709 PMCID: PMC8792373 DOI: 10.1161/atvbaha.121.316798] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE We sought to determine how endothelial cell (EC) expression of the activating k-Ras (kirsten rat sarcoma 2 viral oncogene homolog) mutation, k-RasV12, affects their ability to form lumens and tubes and interact with pericytes during capillary assembly Approach and Results: Using defined bioassays where human ECs undergo observable tubulogenesis, sprouting behavior, pericyte recruitment to EC-lined tubes, and pericyte-induced EC basement membrane deposition, we assessed the impact of EC k-RasV12 expression on these critical processes that are necessary for proper capillary network formation. This mutation, which is frequently seen in human ECs within brain arteriovenous malformations, was found to markedly accentuate EC lumen formation mechanisms, with strongly accelerated intracellular vacuole formation, vacuole fusion, and lumen expansion and with reduced sprouting behavior, leading to excessively widened tube networks compared with control ECs. These abnormal tubes demonstrate strong reductions in pericyte recruitment and pericyte-induced EC basement membranes compared with controls, with deficiencies in fibronectin, collagen type IV, and perlecan deposition. Analyses of signaling during tube formation from these k-RasV12 ECs reveals strong enhancement of Src (Src proto-oncogene, non-receptor tyrosine kinase), Pak2 (P21 [RAC1 (Rac family small GTPase 1)] activated kinase 2), b-Raf (v-raf murine sarcoma viral oncogene homolog B1), Erk (extracellular signal-related kinase), and Akt (AK strain transforming) activation and increased expression of PKCε (protein kinase C epsilon), MT1-MMP (membrane-type 1 matrix metalloproteinase), acetylated tubulin and CDCP1 (CUB domain-containing protein 1; most are known EC lumen regulators). Pharmacological blockade of MT1-MMP, Src, Pak, Raf, Mek (mitogen-activated protein kinase) kinases, Cdc42 (cell division cycle 42)/Rac1, and Notch markedly interferes with lumen and tube formation from these ECs. CONCLUSIONS Overall, this novel work demonstrates that EC expression of k-RasV12 disrupts capillary assembly due to markedly excessive lumen formation coupled with strongly reduced pericyte recruitment and basement membrane deposition, which are critical pathogenic features predisposing the vasculature to develop arteriovenous malformations.
Collapse
Affiliation(s)
- Zheying Sun
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL 33612
| | - Scott S. Kemp
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL 33612
| | - Prisca K. Lin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL 33612
| | - Kalia N. Aguera
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL 33612
| | - George E. Davis
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL 33612
| |
Collapse
|
5
|
Kemp SS, Lin PK, Sun Z, Castaño MA, Yrigoin K, Penn MR, Davis GE. Molecular basis for pericyte-induced capillary tube network assembly and maturation. Front Cell Dev Biol 2022; 10:943533. [PMID: 36072343 PMCID: PMC9441561 DOI: 10.3389/fcell.2022.943533] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Here we address the functional importance and role of pericytes in capillary tube network assembly, an essential process that is required for vascularized tissue development, maintenance, and health. Healthy capillaries may be directly capable of suppressing human disease. Considerable advances have occurred in our understanding of the molecular and signaling requirements controlling EC lumen and tube formation in 3D extracellular matrices. A combination of SCF, IL-3, SDF-1α, FGF-2 and insulin ("Factors") in conjunction with integrin- and MT1-MMP-induced signaling are required for EC sprouting behavior and tube formation under serum-free defined conditions. Pericyte recruitment to the abluminal EC tube surface results in elongated and narrow tube diameters and deposition of the vascular basement membrane. In contrast, EC tubes in the absence of pericytes continue to widen and shorten over time and fail to deposit basement membranes. Pericyte invasion, recruitment and proliferation in 3D matrices requires the presence of ECs. A detailed analysis identified that EC-derived PDGF-BB, PDGF-DD, ET-1, HB-EGF, and TGFβ1 are necessary for pericyte recruitment, proliferation, and basement membrane deposition. Blockade of these individual factors causes significant pericyte inhibition, but combined blockade profoundly interferes with these events, resulting in markedly widened EC tubes without basement membranes, like when pericytes are absent.
Collapse
Affiliation(s)
- Scott S Kemp
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL, United States
| | - Prisca K Lin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL, United States
| | - Zheying Sun
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL, United States
| | - Maria A Castaño
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL, United States
| | - Ksenia Yrigoin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL, United States
| | - Marlena R Penn
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL, United States
| | - George E Davis
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL, United States
| |
Collapse
|
6
|
Liu JT, Bao H, Fan YJ, Li ZT, Yao QP, Han Y, Zhang ML, Jiang ZL, Qi YX. Platelet-Derived Microvesicles Promote VSMC Dedifferentiation After Intimal Injury via Src/Lamtor1/mTORC1 Signaling. Front Cell Dev Biol 2021; 9:744320. [PMID: 34604241 PMCID: PMC8481604 DOI: 10.3389/fcell.2021.744320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/26/2021] [Indexed: 11/19/2022] Open
Abstract
Phenotypic switch of vascular smooth muscle cells (VSMCs) is important in vascular remodeling which causes hyperplasia and restenosis after intimal injury. Platelets are activated at injured intima and secrete platelet-derived microvesicles (PMVs). Herein, we demonstrated the role of PMVs in VSMC phenotypic switch and the potential underlying mechanisms. In vivo, platelets were locally adhered and activated at intimal injury site, while Lamtor1 was promoted and VSMCs were dedifferentiated. PMVs, collected from collagen-activated platelets in vitro which mimicked collagen exposure during intimal injury, promoted VSMC dedifferentiation, induced Lamtor1 expression, and activated mTORC1 signaling, reflected by the phosphorylation of two downstream targets, i.e., S6K and 4E-BP1. Knockdown of Lamtor1 with small interfering RNA attenuated these processes induced by PMVs. Based on the previously published proteomic data, Ingenuity Pathway Analysis revealed that Src may participate in regulating effects of PMVs. Src inhibitor significantly reversed the effects of PMVs on VSMC dedifferentiation, Lamtor1 expression and mTORC1 activation. Furthermore, in SMC-specific Lamtor1 knockout mice, intimal hyperplasia was markedly attenuated after intimal injury compared with the wild type. Our data suggested that PMVs secreted by activated platelets promoted VSMC dedifferentiation via Src/Lamtor1/mTORC1 signaling pathway. Lamtor1 may be a potential therapeutic target for intimal hyperplasia after injury.
Collapse
Affiliation(s)
- Ji-Ting Liu
- Institute of Mechanobiology and Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Han Bao
- Institute of Mechanobiology and Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yang-Jing Fan
- Institute of Mechanobiology and Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zi-Tong Li
- Institute of Mechanobiology and Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qing-Ping Yao
- Institute of Mechanobiology and Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Han
- Institute of Mechanobiology and Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ming-Liang Zhang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| | - Zong-Lai Jiang
- Institute of Mechanobiology and Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ying-Xin Qi
- Institute of Mechanobiology and Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Lin PK, Salvador J, Xie J, Aguera KN, Koller GM, Kemp SS, Griffin CT, Davis GE. Selective and Marked Blockade of Endothelial Sprouting Behavior Using Paclitaxel and Related Pharmacologic Agents. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:2245-2264. [PMID: 34563512 DOI: 10.1016/j.ajpath.2021.08.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/10/2021] [Accepted: 08/26/2021] [Indexed: 12/11/2022]
Abstract
Whether alterations in the microtubule cytoskeleton affect the ability of endothelial cells (ECs) to sprout and form branching networks of tubes was investigated in this study. Bioassays of human EC tubulogenesis, where both sprouting behavior and lumen formation can be rigorously evaluated, were used to demonstrate that addition of the microtubule-stabilizing drugs, paclitaxel, docetaxel, ixabepilone, and epothilone B, completely interferes with EC tip cells and sprouting behavior, while allowing for EC lumen formation. In bioassays mimicking vasculogenesis using single or aggregated ECs, these drugs induce ring-like lumens from single cells or cyst-like spherical lumens from multicellular aggregates with no evidence of EC sprouting behavior. Remarkably, treatment of these cultures with a low dose of the microtubule-destabilizing drug, vinblastine, led to an identical result, with complete blockade of EC sprouting, but allowing for EC lumen formation. Administration of paclitaxel in vivo markedly interfered with angiogenic sprouting behavior in developing mouse retina, providing corroboration. These findings reveal novel biological activities for pharmacologic agents that are widely utilized in multidrug chemotherapeutic regimens for the treatment of human malignant cancers. Overall, this work demonstrates that manipulation of microtubule stability selectively interferes with the ability of ECs to sprout, a necessary step to initiate and form branched capillary tube networks.
Collapse
Affiliation(s)
- Prisca K Lin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, Florida
| | - Jocelynda Salvador
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, Florida
| | - Jun Xie
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Kalia N Aguera
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, Florida
| | - Gretchen M Koller
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, Florida
| | - Scott S Kemp
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, Florida
| | - Courtney T Griffin
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - George E Davis
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, Florida.
| |
Collapse
|
8
|
Control of endothelial tubulogenesis by Rab and Ral GTPases, and apical targeting of caveolin-1-labeled vacuoles. PLoS One 2020; 15:e0235116. [PMID: 32569321 PMCID: PMC7307772 DOI: 10.1371/journal.pone.0235116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/08/2020] [Indexed: 12/26/2022] Open
Abstract
Here, we examine known GTPase regulators of vesicle trafficking events to assess whether they affect endothelial cell (EC) lumen and tube formation. We identify novel roles for the small GTPases Rab3A, Rab3B, Rab8A, Rab11A, Rab27A, RalA, RalB and caveolin-1 in co-regulating membrane trafficking events that control EC lumen and tube formation. siRNA suppression of individual GTPases such as Rab3A, Rab8A, and RalB markedly inhibit tubulogenesis, while greater blockade is observed with combinations of siRNAs such as Rab3A and Rab3B, Rab8A and Rab11A, and RalA and RalB. These combinations of siRNAs also disrupt very early events in lumen formation including the formation of intracellular vacuoles. In contrast, knockdown of the endocytosis regulator, Rab5A, fails to inhibit EC tube formation. Confocal microscopy and real-time videos reveal that caveolin-1 strongly labels intracellular vacuoles and localizes to the EC apical surface as they fuse to form the luminal membrane. In contrast, Cdc42 and Rab11A localize to a perinuclear, subapical region where intracellular vacuoles accumulate and fuse during lumen formation. Our new data demonstrates that EC tubulogenesis is coordinated by a series of small GTPases to control polarized membrane trafficking events to generate, deliver, and fuse caveolin-1-labeled vacuoles to create the apical membrane surface.
Collapse
|
9
|
Schimmel L, Fukuhara D, Richards M, Jin Y, Essebier P, Frampton E, Hedlund M, Dejana E, Claesson-Welsh L, Gordon E. c-Src controls stability of sprouting blood vessels in the developing retina independently of cell-cell adhesion through focal adhesion assembly. Development 2020; 147:dev185405. [PMID: 32108024 PMCID: PMC7157583 DOI: 10.1242/dev.185405] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/19/2020] [Indexed: 12/22/2022]
Abstract
Endothelial cell adhesion is implicated in blood vessel sprout formation, yet how adhesion controls angiogenesis, and whether it occurs via rapid remodeling of adherens junctions or focal adhesion assembly, or both, remains poorly understood. Furthermore, how endothelial cell adhesion is controlled in particular tissues and under different conditions remains unexplored. Here, we have identified an unexpected role for spatiotemporal c-Src activity in sprouting angiogenesis in the retina, which is in contrast to the dominant focus on the role of c-Src in the maintenance of vascular integrity. Thus, mice specifically deficient in endothelial c-Src displayed significantly reduced blood vessel sprouting and loss in actin-rich filopodial protrusions at the vascular front of the developing retina. In contrast to what has been observed during vascular leakage, endothelial cell-cell adhesion was unaffected by loss of c-Src. Instead, decreased angiogenic sprouting was due to loss of focal adhesion assembly and cell-matrix adhesion, resulting in loss of sprout stability. These results demonstrate that c-Src signaling at specified endothelial cell membrane compartments (adherens junctions or focal adhesions) control vascular processes in a tissue- and context-dependent manner.
Collapse
Affiliation(s)
- Lilian Schimmel
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Daisuke Fukuhara
- Uppsala University, Beijer and Science for Life Laboratories, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala 75185, Sweden
| | - Mark Richards
- Uppsala University, Beijer and Science for Life Laboratories, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala 75185, Sweden
| | - Yi Jin
- Uppsala University, Beijer and Science for Life Laboratories, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala 75185, Sweden
| | - Patricia Essebier
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Emmanuelle Frampton
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Marie Hedlund
- Uppsala University, Beijer and Science for Life Laboratories, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala 75185, Sweden
| | - Elisabetta Dejana
- Uppsala University, Beijer and Science for Life Laboratories, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala 75185, Sweden
| | - Lena Claesson-Welsh
- Uppsala University, Beijer and Science for Life Laboratories, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala 75185, Sweden
| | - Emma Gordon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Uppsala University, Beijer and Science for Life Laboratories, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala 75185, Sweden
| |
Collapse
|
10
|
Weinstein N, Mendoza L, Álvarez-Buylla ER. A Computational Model of the Endothelial to Mesenchymal Transition. Front Genet 2020; 11:40. [PMID: 32226439 PMCID: PMC7080988 DOI: 10.3389/fgene.2020.00040] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/14/2020] [Indexed: 12/13/2022] Open
Abstract
Endothelial cells (ECs) form the lining of lymph and blood vessels. Changes in tissue requirements or wounds may cause ECs to behave as tip or stalk cells. Alternatively, they may differentiate into mesenchymal cells (MCs). These processes are known as EC activation and endothelial-to-mesenchymal transition (EndMT), respectively. EndMT, Tip, and Stalk EC behaviors all require SNAI1, SNAI2, and Matrix metallopeptidase (MMP) function. However, only EndMT inhibits the expression of VE-cadherin, PECAM1, and VEGFR2, and also leads to EC detachment. Physiologically, EndMT is involved in heart valve development, while a defective EndMT regulation is involved in the physiopathology of cardiovascular malformations, congenital heart disease, systemic and organ fibrosis, pulmonary arterial hypertension, and atherosclerosis. Therefore, the control of EndMT has many promising potential applications in regenerative medicine. Despite the fact that many molecular components involved in EC activation and EndMT have been characterized, the system-level molecular mechanisms involved in this process have not been elucidated. Toward this end, hereby we present Boolean network model of the molecular involved in the regulation of EC activation and EndMT. The simulated dynamic behavior of our model reaches fixed and cyclic patterns of activation that correspond to the expected EC and MC cell types and behaviors, recovering most of the specific effects of simple gain and loss-of-function mutations as well as the conditions associated with the progression of several diseases. Therefore, our model constitutes a theoretical framework that can be used to generate hypotheses and guide experimental inquiry to comprehend the regulatory mechanisms behind EndMT. Our main findings include that both the extracellular microevironment and the pattern of molecular activity within the cell regulate EndMT. EndMT requires a lack of VEGFA and sufficient oxygen in the extracellular microenvironment as well as no FLI1 and GATA2 activity within the cell. Additionally Tip cells cannot undergo EndMT directly. Furthermore, the specific conditions that are sufficient to trigger EndMT depend on the specific pattern of molecular activation within the cell.
Collapse
Affiliation(s)
- Nathan Weinstein
- Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis Mendoza
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Elena R Álvarez-Buylla
- Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
11
|
Constitutive Active Mutant TIE2 Induces Enlarged Vascular Lumen Formation with Loss of Apico-basal Polarity and Pericyte Recruitment. Sci Rep 2019; 9:12352. [PMID: 31451744 PMCID: PMC6710257 DOI: 10.1038/s41598-019-48854-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/13/2019] [Indexed: 12/11/2022] Open
Abstract
Abnormalities in controlling key aspects of angiogenesis including vascular cell migration, lumen formation and vessel maturation are hallmarks of vascular anomalies including venous malformation (VM). Gain-of-function mutations in the tyrosine kinase receptor TIE2 can cause VM and induce a ligand-independent hyperactivation of TIE2. Despite these important findings, the TIE2-dependent mechanisms triggering enlarged vascular lesions are not well understood. Herein we studied TIE2 p.L914F, the most frequent mutation identified in VM patients. We report that endothelial cells harboring a TIE2-L914F mutation display abnormal cell migration due to a loss of front-rear polarity as demonstrated by a non-polarized Golgi apparatus. Utilizing a three-dimensional fibrin-matrix based model we show that TIE2-L914F mutant cells form enlarged lumens mimicking vascular lesions present in VM patients, independently of exogenous growth factors. Moreover, these abnormal vascular channels demonstrate a dysregulated expression pattern of apico-basal polarity markers Podocalyxin and Collagen IV. Furthermore, in this system we recapitulated another pathological feature of VM, the paucity of pericytes around ectatic veins. The presented data emphasize the value of this in vitro model as a powerful tool for the discovery of cellular and molecular signals contributing to abnormal vascular development and subsequent identification of novel therapeutic approaches.
Collapse
|
12
|
Beheshti A, McDonald JT, Miller J, Grabham P, Costes SV. GeneLab Database Analyses Suggest Long-Term Impact of Space Radiation on the Cardiovascular System by the Activation of FYN Through Reactive Oxygen Species. Int J Mol Sci 2019; 20:ijms20030661. [PMID: 30717456 PMCID: PMC6387434 DOI: 10.3390/ijms20030661] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 12/17/2022] Open
Abstract
Space radiation has recently been considered a risk factor for astronauts’ cardiac health. As an example, for the case of how to query and identify datasets within NASA’s GeneLab database and demonstrate the database utility, we used an unbiased systems biology method for identifying key genes/drivers for the contribution of space radiation on the cardiovascular system. This knowledge can contribute to designing appropriate experiments targeting these specific pathways. Microarray data from cardiomyocytes of male C57BL/6 mice followed-up for 28 days after exposure to 900 mGy of 1 GeV proton or 150 mGy of 1 GeV/n 56Fe were compared to human endothelial cells (HUVECs) cultured for 7 days on the International Space Station (ISS). We observed common molecular pathways between simulated space radiation and HUVECs flown on the ISS. The analysis suggests FYN is the central driver/hub for the cardiovascular response to space radiation: the known oxidative stress induced immediately following radiation would only be transient and would upregulate FYN, which in turn would reduce reactive oxygen species (ROS) levels, protecting the cardiovascular system. The transcriptomic signature of exposure to protons was also much closer to the spaceflight signature than 56Fe’s signature. To our knowledge, this is the first time GeneLab datasets were utilized to provide potential biological indications that the majority of ions on the ISS are protons, clearly illustrating the power of omics analysis. More generally, this work also demonstrates how to combine animal radiation studies done on the ground and spaceflight studies to evaluate human risk in space.
Collapse
Affiliation(s)
- Afshin Beheshti
- WYLE Labs, NASA Ames Research Center, Moffett Field CA 94035, USA.
| | - J Tyson McDonald
- Department of Physics, Hampton University, Hampton, VA 23668 USA.
| | - Jack Miller
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Peter Grabham
- Center for Radiological Research, Columbia University, New York, NY 10032, USA.
| | - Sylvain V Costes
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA.
| |
Collapse
|
13
|
Salvador J, Davis GE. Evaluation and Characterization of Endothelial Cell Invasion and Sprouting Behavior. Methods Mol Biol 2018; 1846:249-259. [PMID: 30242764 DOI: 10.1007/978-1-4939-8712-2_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Here, we describe highly reproducible methods to investigate human EC invasion and sprouting behavior in 3D collagen matrices. Two assay models are presented whereby ECs are induced to sprout from a monolayer surface or from aggregated ECs suspended within a collagen gel matrix. In each case, the assays are performed using serum-free defined media containing a combination of five growth factors (Factors): FGF-2, SCF, IL-3, SDF-1α, and insulin. In both models, marked EC sprouting occurs with leading EC tip cells over a 12-24 h period. To illustrate their utility, we present data showing the influence of various pharmacologic inhibitors directed to membrane-type matrix metalloproteinases (MT-MMPs), protein kinase C alpha (PKCα), Src family kinases, and Notch-dependent signaling. Marked inhibition of sprouting is observed after blockade of MT-MMPs and PKCα, while strong increases in sprouting and EC tip cell number is observed following blockade of Src kinases, Notch signaling or both. Interestingly, the increased sprouting behavior observed following Src or Notch blockade directly correlates with a loss in the ability of ECs to form lumens. These defined in vitro assay models allow for a genetic and signaling dissection of EC tip cells vs. lumen forming ECs, which are both necessary for the formation of branching networks of tubes during vascular morphogenic events.
Collapse
Affiliation(s)
- Jocelynda Salvador
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, MO, USA
| | - George E Davis
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, MO, USA.
| |
Collapse
|