1
|
Oklander LI, Fernández GP, Machado S, Caputo M, Hirano ZMB, Rylands AB, Neves LG, Mendes SL, Pacca LG, de Melo FR, Mourthé I, Freitas TRO, Corach D, Jerusalinsky L, Bonatto SL. Phylogeography, taxonomy, and conservation of the endangered brown howler monkey, Alouatta guariba (Primates, Atelidae), of the Atlantic Forest. Front Genet 2024; 15:1453005. [PMID: 39737001 PMCID: PMC11683736 DOI: 10.3389/fgene.2024.1453005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/15/2024] [Indexed: 01/01/2025] Open
Abstract
The brown howler, Alouatta guariba, endemic to the Atlantic Forest of Brazil and Argentina, is threatened by habitat loss and fragmentation, hunting, and its susceptibility to yellow fever. Two subspecies have been recognized, but their names, validity, and geographic ranges have been controversial. We obtained samples covering the species' entire distribution in Brazil and Argentina to clarify these issues by investigating their genetic diversity and structure and assessing their evolutionary history. We analyzed, for the first time, a set of ten microsatellite markers (N = 153), plus mitochondrial DNA (mtDNA) segments of the control region (N = 207) and cytochrome b gene (N = 116). The microsatellite data support two to three genetic clusters with biological significance. The southern populations (Argentina, Santa Catarina, and Rio Grande do Sul) presented a homogeneous genetic component, and populations from São Paulo (SP) to the north presented another component, although most presented ∼20% of the southern component. With K = 3, SP emerged as a third component while sharing some ancestry with Rio de Janeiro and Argentina. The mtDNA phylogenies revealed three main clades that diverged almost simultaneously around 250 thousand years ago (kya). Clades A and B are from central SP to the north and east, while clade C is from SP to the south and southwest. Samples from SP presented haplotypes in all three clades, sometimes in the same population. The demographic history of the species estimated with the Bayesian skyline plot of the mtDNA showed a strong expansion ∼40-20 kya and a strong reduction over the last ∼4-2 kya. Although the genetic clusters identified here deserve appropriate management strategies as conservation units, the absence of (i) concordance between the mtDNA and microsatellite data, (ii) reciprocal monophyly in the mtDNA, and (iii) clear-cut non-genetic diagnostic characters advises against considering them as different taxonomic entities. None of the previous taxonomic proposals were corroborated by our data. Our results elucidate the taxonomy of the Atlantic Forest brown howler, indicating it should be considered a monotypic species, A. guariba. We also clarify the evolutionary history of the species regarding its intraspecific genetic diversity, which is crucial information for its conservation and population management.
Collapse
Affiliation(s)
- Luciana I. Oklander
- Instituto de Biología Subtropical (IBS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Misiones (UNAM), Posadas, Argentina
- Neotropical Primate Conservation Argentina, Puerto Iguazú, Misiones, Argentina
- Primate Specialist Group, Species Survival Commission, International Union for the Conservation of Nature IUCN, Austin, TX, United States
| | - Gabriela P. Fernández
- Centro de Bioinvestigaciones (CeBio), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (UNNOBA-UNSAdA-CONICET), Buenos Aires, Argentina
| | - Stela Machado
- Programa de Pós-Graduação em Ecologia e Evolução da Biodiversidade, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Mariela Caputo
- Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Genética Forense y Servicio de Huellas Digitales Genéticas, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Zelinda M. B. Hirano
- Primate Specialist Group, Species Survival Commission, International Union for the Conservation of Nature IUCN, Austin, TX, United States
- Projeto Bugio, Centro de Pesquisas Biológicas de Indaial—CEPESBI, Universidade Regional de Blumenau—FURB, Indaial, Santa Catarina, Brazil
| | - Anthony B. Rylands
- Primate Specialist Group, Species Survival Commission, International Union for the Conservation of Nature IUCN, Austin, TX, United States
- Re:wild, Austin, TX, United States
| | | | - Sérgio L. Mendes
- Primate Specialist Group, Species Survival Commission, International Union for the Conservation of Nature IUCN, Austin, TX, United States
- Instituto Nacional da Mata Atlântica—INMA, Ministério da Ciência, Tecnologia e Inovação—MCTI, Santa Teresa, Espírito Santo, Brazil
| | - Luciana G. Pacca
- Centro Nacional de Pesquisa e Conservação de Primatas Brasileiros—CPB, Instituto Chico Mendes de Conservação da Biodiversidade—ICMBio, Cabedelo, Brazil
| | - Fabiano R. de Melo
- Primate Specialist Group, Species Survival Commission, International Union for the Conservation of Nature IUCN, Austin, TX, United States
- Departamento de Engenharia Florestal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Italo Mourthé
- Primate Specialist Group, Species Survival Commission, International Union for the Conservation of Nature IUCN, Austin, TX, United States
- Programa de Pós-Graduação em Ecologia e Evolução da Biodiversidade, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Thales R. O. Freitas
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Daniel Corach
- Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Genética Forense y Servicio de Huellas Digitales Genéticas, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Leandro Jerusalinsky
- Primate Specialist Group, Species Survival Commission, International Union for the Conservation of Nature IUCN, Austin, TX, United States
- Centro Nacional de Pesquisa e Conservação de Primatas Brasileiros—CPB, Instituto Chico Mendes de Conservação da Biodiversidade—ICMBio, Cabedelo, Brazil
- Programa de Pós Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Programa Macacos Urbanos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Sandro L. Bonatto
- Programa de Pós-Graduação em Ecologia e Evolução da Biodiversidade, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
2
|
García de la Chica A, Oklander LI, Kowalewski MM, Fernandez-Duque E. Human and Non-Human Primate Coexistence in Argentina: Conflicts and Solutions. Animals (Basel) 2023; 13:3331. [PMID: 37958086 PMCID: PMC10648367 DOI: 10.3390/ani13213331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
There are five different primate species inhabiting widely distinct ecoregions in Argentina. Each of them faces various threats in terms of conservation and conflicts that hamper their ability to coexist with human populations. We present here some of the drivers known to be the causes of conflicts between humans and primates in the southernmost area of distribution of Latin American primates. We focus our synthesis on two of the biggest sources of conflict: the effects of different anthropogenic disturbances, and human misconceptions concerning the role of primates in the ecosystem. In each section, we briefly characterize the conflicts worldwide and then provide specific cases and examples from Argentina. In the last part of the manuscript, we further describe some ongoing national and regional educational, research, and conservation approaches to mitigate those effects.
Collapse
Affiliation(s)
- Alba García de la Chica
- Instituto de Ecología, Genética y Evolución, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
- Owl Monkey Project—Fundación ECO, Formosa 3600, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1425, Argentina
| | - Luciana I. Oklander
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1425, Argentina
- Instituto de Biología Subtropical (IBS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Misiones (UNAM), Posadas 3300, Argentina
- Neotropical Primate Conservation Argentina, Puerto Iguazú 3370, Argentina
| | - Martin M. Kowalewski
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1425, Argentina
- Neotropical Primate Conservation Argentina, Puerto Iguazú 3370, Argentina
- Estación Biológica Corrientes—Centro de Ecología Aplicada del Litoral (CECOAL-CONICET-UNNE), Corrientes 3400, Argentina
| | - Eduardo Fernandez-Duque
- Owl Monkey Project—Fundación ECO, Formosa 3600, Argentina
- Department of Anthropology and School of the Environment, Yale University, New Haven, CT 06511, USA
- Facultad de Recursos Naturales, Universidad Nacional de Formosa, Formosa 3600, Argentina
| |
Collapse
|
3
|
Dos Santos EO, Klain VF, B Manrique S, Rodrigues RO, Dos Santos HF, Sangioni LA, Dasso MG, de Almeida MAB, Dos Santos E, Born LC, Reck J, Botton SDA. Influence of landscape structure on previous exposure to Leptospira spp. and Brucella abortus in free-living neotropical primates from southern Brazil. Am J Primatol 2023; 85:e23472. [PMID: 36814095 DOI: 10.1002/ajp.23472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 01/14/2023] [Accepted: 01/21/2023] [Indexed: 02/24/2023]
Abstract
The environments in which neotropical primates live have been undergoing an intense fragmentation process, constituting a major threat to the species' survival and causing resource scarcity, social isolation, and difficulty in dispersal, leaving populations increasingly vulnerable. Moreover, the proximity of wild environments to anthropized landscapes can change the dynamics of pathogens and the parasite-host-environment relationship, creating conditions that favor exposure to different pathogens. To investigate the previous exposure of free-living primates in Rio Grande do Sul State (RS), southern Brazil, to the bacterial agents Leptospira spp. and Brucella abortus, we investigated agglutinating antibodies against 23 serovars of Leptospira spp. using the microscopic agglutination test and B. abortus acidified antigen test in primate serum samples; 101 samples from primates captured between 2002 and 2016 in different forest fragments were used: 63 Alouatta caraya, 36 Alouatta guariba clamitans, and 02 Sapajus nigritus cucullatus. In addition, the forest remnants where the primates were sampled were characterized in a multiscale approach in radii ranging from 200 to 1400 m to investigate the potential relationship of previous exposure to the agent with the elements that make up the landscape structure. The serological investigation indicated the presence of antibodies for at least one of the 23 serovars of Leptospira spp. in 36.6% (37/101) of the samples analyzed, with titers ranging from 100 to 1600. The most observed serovars were Panama (17.8%), Ballum (5.9%), Butembo (5.9%), Canicola (5.9%), Hardjo (4.9%), and Tarassovi (3.9%); no samples were seropositive for Brucella abortus. Decreased forest cover and edge density were the landscape factors that had a significant relationship with Leptospira spp. exposure, indicating that habitat fragmentation may influence contact with the pathogen. The data generated in this study demonstrate the importance of understanding how changes in landscape structure affect exposure to pathogenic microorganisms of zoonotic relevance. Hence, improving epidemiological research and understanding primates' ecological role in these settings can help improve environmental surveillance and conservation strategies for primate populations in different landscapes.
Collapse
Affiliation(s)
- Elisandro O Dos Santos
- Laboratório de Saúde Única, Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais da Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
| | - Vinícius F Klain
- Laboratório de Primatologia, Escola de Ciências da Saúde e da Vida da Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Sebastián B Manrique
- Laboratório de Primatologia, Escola de Ciências da Saúde e da Vida da Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Rogério O Rodrigues
- Laboratório de Leptospirose do Instituto de Pesquisas Veterinárias Desidério Finamor, Secretaria Estadual de Agricultura, Pecuária e Desenvolvimento Rural, Eldorado do Sul, Brazil
| | - Helton F Dos Santos
- Núcleo de Estudos e Pesquisas em Animais Silvestres, Laboratório Central de Diagnóstico de Patologias Aviárias, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
| | - Luís A Sangioni
- Laboratório de Saúde Única, Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais da Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
| | - Maurício G Dasso
- Laboratório de Leptospirose do Instituto de Pesquisas Veterinárias Desidério Finamor, Secretaria Estadual de Agricultura, Pecuária e Desenvolvimento Rural, Eldorado do Sul, Brazil
| | - Marco A B de Almeida
- Divisão de Vigilância Ambiental em Saúde, Centro Estadual de Vigilância em Saúde, Secretaria de Estado da Saúde, Porto Alegre, Brazil
| | - Edmilson Dos Santos
- Divisão de Vigilância Ambiental em Saúde, Centro Estadual de Vigilância em Saúde, Secretaria de Estado da Saúde, Porto Alegre, Brazil
| | - Lucas C Born
- Divisão de Vigilância Ambiental em Saúde, Centro Estadual de Vigilância em Saúde, Secretaria de Estado da Saúde, Porto Alegre, Brazil
| | - José Reck
- Laboratório de Parasitologia do Instituto de Pesquisas Veterinárias Desidério Finamor, Secretaria Estadual de Agricultura, Pecuária e Desenvolvimento Rural, Eldorado do Sul, Brazil
| | - Sônia de Avila Botton
- Laboratório de Saúde Única, Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais da Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
| |
Collapse
|
4
|
Mancini AN, Chandrashekar A, Lahitsara JP, Ogbeta DG, Rajaonarivelo JA, Ranaivorazo NR, Rasoazanakolona J, Safwat M, Solo J, Razafindraibe JG, Razafindrakoto G, Baden AL. Terrain Ruggedness and Canopy Height Predict Short-Range Dispersal in the Critically Endangered Black-and-White Ruffed Lemur. Genes (Basel) 2023; 14:746. [PMID: 36981017 PMCID: PMC10048730 DOI: 10.3390/genes14030746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/30/2023] Open
Abstract
Dispersal is a fundamental aspect of primates' lives and influences both population and community structuring, as well as species evolution. Primates disperse within an environmental context, where both local and intervening environmental factors affect all phases of dispersal. To date, research has primarily focused on how the intervening landscape influences primate dispersal, with few assessing the effects of local habitat characteristics. Here, we use a landscape genetics approach to examine between- and within-site environmental drivers of short-range black-and-white ruffed lemur (Varecia variegata) dispersal in the Ranomafana region of southeastern Madagascar. We identified the most influential drivers of short-range ruffed lemur dispersal as being between-site terrain ruggedness and canopy height, more so than any within-site habitat characteristic evaluated. Our results suggest that ruffed lemurs disperse through the least rugged terrain that enables them to remain within their preferred tall-canopied forest habitat. Furthermore, we noted a scale-dependent environmental effect when comparing our results to earlier landscape characteristics identified as driving long-range ruffed lemur dispersal. We found that forest structure drives short-range dispersal events, whereas forest presence facilitates long-range dispersal and multigenerational gene flow. Together, our findings highlight the importance of retaining high-quality forests and forest continuity to facilitate dispersal and maintain functional connectivity in ruffed lemurs.
Collapse
Affiliation(s)
- Amanda N. Mancini
- Department of Anthropology, The Graduate Center, City University of New York, New York, NY 10016, USA
- The New York Consortium in Evolutionary Primatology (NYCEP), New York, NY 10065, USA
| | - Aparna Chandrashekar
- Department of Anthropology, The Graduate Center, City University of New York, New York, NY 10016, USA
- The New York Consortium in Evolutionary Primatology (NYCEP), New York, NY 10065, USA
| | | | - Daisy Gold Ogbeta
- Department of Nursing, Helene Fuld College of Nursing, New York, NY 10035, USA
- Department of Chemistry, Hunter College, New York, NY 10065, USA
| | - Jeanne Arline Rajaonarivelo
- UMI 233 TransVIHMI, Institut de Recherche pour le Développement (IRD), University of Montpellier, Inserm U 1175, 34000 Montpellier, France
| | | | - Joseane Rasoazanakolona
- Department of Zoology and Animal Biodiversity, Faculty of Science, University of Antananarivo, Antananarivo 101, Madagascar
| | - Mayar Safwat
- Department of Chemistry, Hunter College, New York, NY 10065, USA
| | - Justin Solo
- Centre ValBio Research Center, Ranomafana, Ifanadiana 312, Madagascar (J.G.R.)
| | | | | | - Andrea L. Baden
- Department of Anthropology, The Graduate Center, City University of New York, New York, NY 10016, USA
- The New York Consortium in Evolutionary Primatology (NYCEP), New York, NY 10065, USA
- Department of Anthropology, Hunter College, New York, NY 10065, USA
| |
Collapse
|
5
|
Chatterjee P, Mukherjee T, Dutta R, Sharief A, Kumar V, Joshi BD, Chandra K, Thakur M, Sharma LK. Future simulated landscape predicts habitat loss for the Golden Langur (Trachypithecus geei): A range level analysis for an endangered primate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154081. [PMID: 35218816 DOI: 10.1016/j.scitotenv.2022.154081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/16/2021] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Trachypithecus geei Khajuria, 1956 or Golden langur are an endangered colobine primate species that are distributed in the transboundary region of Bhutan and India. The species is severely threatened because of increasing habitat fragmentation and isolation across its entire range, especially the populations in Assam, India. The distribution range of the species has not been updated for the last two decades, nor is there any proper evaluation of the habitat requirements for the species. Therefore, we mapped the habitat suitability for the species across its entire distribution and projected its habitat suitability on the simulated landscape for the future (2031). The results indicate that out of the total range extent (66,320 km2), only 12,265 km2 (18.49%) is suitable for the species at present, which will further be reduced to 8884 km2 by the year 2031, indicating major range contraction. These suitable habitats are largely scattered and fragmented in southern range of the species. Among the predictors used, the distance to evergreen and deciduous broadleaf forest was the strongest predictor out of the 35 used for model building. Moreover, land use and land cover were found to be more informative than the climatic variables. Much of the suitable habitats of the species are located outside the protected area network in the landscape. Therefore, we identified landscape configurations and suitable habitat areas for the future conservation and monitoring of Golden Langur in the protected areas of its range.
Collapse
Affiliation(s)
| | | | - Ritam Dutta
- Zoological Survey of India, Kolkata 700053, India
| | | | - Vineet Kumar
- Zoological Survey of India, Kolkata 700053, India
| | | | | | | | | |
Collapse
|
6
|
Hsiao C, Lin HH, Kang SR, Hung CY, Sun PY, Yu CC, Toh KL, Yu PJ, Ju YT. Development of 16 novel EST-SSR markers for species identification and cross-genus amplification in sambar, sika, and red deer. PLoS One 2022; 17:e0265311. [PMID: 35363791 PMCID: PMC8975116 DOI: 10.1371/journal.pone.0265311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 03/01/2022] [Indexed: 11/19/2022] Open
Abstract
Deer genera around the globe are threatened by anthropogenic interference. The translocation of alien species and their subsequent genetic introgression into indigenous deer populations is particularly harmful to the species of greatest conservation concern. Products derived from deer, including venison and antler velvet, are also at risk of fraudulent labeling. The current molecular markers used to genetically identify deer species were developed from genome sequences and have limited applicability for cross-species amplification. The absence of efficacious diagnostic techniques for identifying deer species has hampered conservation and wildlife crime investigation efforts. Expressed sequence tag-simple sequence repeat (EST-SSR) markers are reliable tools for individual and species identification, especially in terms of cross-species genotyping. We conducted transcriptome sequencing of sambar (Rusa unicolor) antler velvet and acquired 11,190 EST-SSRs from 65,074 newly assembled unigenes. We identified a total of 55 unambiguous amplicons in sambar (n = 45), which were selected as markers to evaluate cross-species genotyping in sika deer (Cervus nippon, n = 30) and red deer (Cervus elaphus, n = 46), resulting in cross-species amplification rates of 94.5% and 89.1%, respectively. Based on polymorphic information content (>0.25) and genotyping fidelity, we selected 16 of these EST-SSRs for species identification. This marker set revealed significant genetic differentiation based on the fixation index and genetic distance values. Principal coordinate analysis and STRUCTURE analysis revealed distinct clusters of species and clearly identified red-sika hybrids. These markers showed applicability across different genera and proved suitable for identification and phylogenetic analyses across deer species.
Collapse
Affiliation(s)
- Chen Hsiao
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Hsin-Hung Lin
- Kaohsiung Animal Propagation Station, Pingdong, Taiwan
| | | | - Chien-Yi Hung
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Pei-Yu Sun
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Chieh-Cheng Yu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Kok-Lin Toh
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Pei-Ju Yu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yu-Ten Ju
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
7
|
Oklander LI, Caputo M, Fernández GP, Jerusalinsky L, de Oliveira SF, Bonatto SL, Corach D. Gone With the Water: The Loss of Genetic Variability in Black and Gold Howler Monkeys (Alouatta caraya) Due to Dam Construction. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.768652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Black and gold howler monkeys (Alouatta caraya) inhabit several eco-regions in South America with the highest population densities in riverine forests. Dam construction for electricity production represents a severe human alteration of ecosystems with consequences for primate conservation. To evaluate the possible loss of genetic diversity in A. caraya, we analysed and compared the genetic structure of the species across 22 study sites in Argentina (14), Paraguay (1), and Brazil (7). Four of these study sites (referred to as flooded) were sampled before dam-linked flooding which most likely caused a drastic decline or functional extinction of these populations. The genetic variability of 256 individuals was evaluated using 10 autosomal microsatellites (STRs) and 112 individuals by sequencing a fragment of 507 bp of mtDNA. DNA was extracted from tissue, blood, and faecal samples. Significantly higher values of genetic variability were observed for the flooded populations both in mtDNA and STRs. Population genetic structure showed a K = 1, 2, or 5 depending on the method, separating Argentinian and Paraguayan sites from Brazilian sites and, in the case of K = 5, two clusters were mostly represented by flooded populations. Isolation-by-distance analyses showed that geographic distances influence gene flow. Analytical methods, such as Pairwise Fst’s and Nei’s and regression model of Harpending and Ward, were concordant in detecting significant genetic structuring between flooded and remaining sites examined. Although some sites have very low sample sizes, these samples are of great importance since these sampling sites are currently flooded. Our results show that the study sites where dams were built had the greatest genetic diversity. As A. caraya is currently severely threatened by yellow fever outbreaks, the remaining populations may be more vulnerable to disease outbreaks due to impoverished genetic variability. Accordingly, it is essential to implement management actions to conserve the remaining populations. Our results underline the importance for Environmental Impact Assessments (EIA) to include data on the genetic structure of species in the affected sites prior to their alteration or destruction. These genetic data are also remarkably important for determining where to relocate specific individuals to help avoid biodiversity loss.
Collapse
|
8
|
Linden B, Dalton DL, Van Wyk A, de Jager D, Moodley Y, Taylor PJ. Potential drivers of samango monkey (Cercopithecus albogularis) population subdivision in a highly fragmented mountain landscape in northern South Africa. Primates 2022; 63:245-260. [PMID: 35226214 DOI: 10.1007/s10329-022-00981-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 02/07/2022] [Indexed: 10/19/2022]
Abstract
Forests affected by fragmentation are at risk of losing their primate populations over the long term. The impact of fragmentation on primate populations has been studied in several places in Africa, Asia and South America; however, there has been no discernible pattern of how primates react to forest disturbance and fragmentation. In fragmented habitats, the local extinction probability of a species increases due to a decrease in patch area and an increase in genetic isolation. Here we used microsatellite markers and mitochondrial DNA sequences to investigate how habitat fragmentation impacts on the genetic diversity and structure of a samango monkey population inhabiting forest patches in the Soutpansberg mountain range of northern South Africa. We sampled four local populations across the length of the mountain range and an additional outlying population from the Great Escarpment to the south. Our results indicate that local populations along the mountain range were historically more connected and less distinct than at present. In more recent times, a lack of contemporary gene flow is leading to a more pronounced genetic structure, causing population subdivision across the mountain and likely isolating the Soutpansberg population from the escarpment population to the south. Based on our results, we suggest that natural and anthropogenic fragmentation are driving population genetic differentiation, and that the matrix surrounding forests and their suitability for samango monkey utilisation play a role at the local scale. The degree of genetic isolation found for samango monkey populations in our study raises concerns about the long-term viability of populations across the mountain range.
Collapse
Affiliation(s)
- Birthe Linden
- SARChI Chair on Biodiversity Value and Change, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa. .,Lajuma Research Centre, P.O. Box 522, Louis Trichardt, 0920, South Africa.
| | - Desiré L Dalton
- South African National Biodiversity Institute, P.O. Box 754, Pretoria, 0001, South Africa.,School of Health and Life Sciences, Teesside University, Middlesbrough,, TS1 3BA, United Kingdom
| | - Anna Van Wyk
- South African National Biodiversity Institute, P.O. Box 754, Pretoria, 0001, South Africa.,Molecular Ecology and Evolution Programme, Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Science, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Deon de Jager
- Molecular Ecology and Evolution Programme, Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Science, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Yoshan Moodley
- Department of Biological Sciences, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| | - Peter J Taylor
- SARChI Chair on Biodiversity Value and Change, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa.,School of Life Sciences, Biological Sciences Building, University of KwaZulu-Natal, South Ring Road, Westville Campus, Durban, 3630, South Africa.,Zoology and Entomology Department, University of the Free State, Private Bag X13, Phuthaditjhaba, 9866, South Africa
| |
Collapse
|
9
|
Kuthyar S, Kowalewski MM, Seabolt M, Roellig DM, Gillespie TR. Molecular characterization of Giardia duodenalis and evidence for cross-species transmission in Northern Argentina. Transbound Emerg Dis 2021; 69:2209-2218. [PMID: 34224652 DOI: 10.1111/tbed.14220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 11/29/2022]
Abstract
Anthropogenic activities, such as human population expansion and land-use change, create ecological overlap between humans, domesticated animals, and wildlife and can exacerbate the zoonotic transmission of parasites. To improve our understanding of this dynamic, we employed multi-locus genotyping to conduct a cross-sectional study of the potential for zoonotic transmission of the protozoan parasite Giardia duodenalis among humans, household associated livestock and dogs, and black and gold howler monkeys (Alouatta caraya) in the Corrientes Province of Argentina. We found Giardia prevalence to be highest in howler monkeys (90.3% (47/52)), followed by humans (61.1% (22/36)), dogs (44.4% (16/36)), and cattle (41.9% (18/43)). We further established that howler monkeys exclusively harbored strains of assemblage B (100%) while humans were infected with either assemblage A (13.3%) or B (80%) or A and B (6.7%), and cattle and dogs were infected with either assemblage A (cattle, 94.1%; dogs, 80%)), A and C (10%), or their host-adapted assemblage (cattle, 5.9%; dogs, 10%). Our finding of G. duodenalis in both humans and domesticated animals (assemblage A) and humans and wild primates (assemblage B) suggests that cross-species transmission of multiple assemblages of G. duodenalis may occur in rural complexes such as northern Argentina where people, domesticated animals, and wildlife overlap. We further highlight the need to investigate the implications of these results for human health, the economics of livestock production, and wildlife conservation in this and similar systems.
Collapse
Affiliation(s)
- Sahana Kuthyar
- Department of Environmental Sciences, Emory University, Atlanta, Georgia, USA
| | - Martin M Kowalewski
- Department of Environmental Sciences, Emory University, Atlanta, Georgia, USA.,Estación Biológica Corrientes, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" (MACN-CONICET), Corrientes, Argentina
| | - Matthew Seabolt
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA.,CFD Research Corporation, Huntsville, Alabama, USA
| | - Dawn M Roellig
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - Thomas R Gillespie
- Department of Environmental Sciences, Emory University, Atlanta, Georgia, USA.,Program in Population Biology, Ecology, and Evolutionary Biology and Department of Environmental Health, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
10
|
Westphal D, Mancini AN, Baden AL. Primate landscape genetics: A review and practical guide. Evol Anthropol 2021; 30:171-184. [PMID: 33720482 DOI: 10.1002/evan.21891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/12/2020] [Accepted: 02/17/2021] [Indexed: 11/06/2022]
Abstract
Landscape genetics is an emerging field that integrates population genetics, landscape ecology, and spatial statistics to investigate how geographical and environmental features and evolutionary processes such as gene flow, genetic drift, and selection structure genetic variation at both the population and individual levels, with implications for ecology, evolution, and conservation biology. Despite being particularly well suited for primatologists, this method is currently underutilized. Here, we synthesize the current state of research on landscape genetics in primates. We begin by outlining how landscape genetics has been used to disentangle the drivers of diversity, followed by a review of how landscape genetic methods have been applied to primates. This is followed by a section highlighting special considerations when applying the methods to primates, and a practical guide to facilitate further landscape genetics studies using both existing and de novo datasets. We conclude by exploring future avenues of inquiry that could be facilitated by recent developments as well as underdeveloped applications of landscape genetics to primates.
Collapse
Affiliation(s)
- Darice Westphal
- Department of Anthropology, The Graduate Center, City University of New York, New York, New York, USA.,The New York Consortium in Evolutionary Primatology (NYCEP), New York, New York, USA
| | - Amanda N Mancini
- Department of Anthropology, The Graduate Center, City University of New York, New York, New York, USA.,The New York Consortium in Evolutionary Primatology (NYCEP), New York, New York, USA
| | - Andrea L Baden
- Department of Anthropology, The Graduate Center, City University of New York, New York, New York, USA.,The New York Consortium in Evolutionary Primatology (NYCEP), New York, New York, USA.,Department of Anthropology, Hunter College, New York, New York, USA
| |
Collapse
|
11
|
Use of genetic tools to assess predation on reintroduced howler monkeys (Alouatta caraya) in Northeastern Argentina. Primates 2021; 62:521-528. [PMID: 33609193 DOI: 10.1007/s10329-021-00896-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
Despite strong support from the media, the reintroduction of animals into natural environments does not always achieve its goal. Alouatta caraya is the primate species facing the greatest hunting pressure due to the illegal pet trade in Argentina. Confiscations of this species are common, as is the voluntary surrender of animals by owners no longer able or willing to care for them. These animals ultimately arrive at rehabilitation centers and, in many cases, are released into natural environments that may differ from the original sites where they were captured. Until recently, the lack of genetic analysis of the individuals involved led to biased relocation decisions. We followed the reintroduction of 12 A. caraya individuals in a protected area (Isla Palacio, Misiones, Argentina). The presence of potential predators such as pumas (Puma concolor) and jaguars (Panthera onca) in this area was confirmed by camera traps, footprints and feces. After the disappearance of four A. caraya at the reintroduction site, we investigated the applicability of genetic assignment tests based on genotypic data to accurately identify predated individuals. Genetic analyses allowed us to determine the predator species (P. onca) and to identify the predated individuals as two of the reintroduced animals. This procedure is promising for identifying the remains of predated individuals, and can contribute to the design of reintroduction policies based on scientific evidence.
Collapse
|
12
|
Kuthyar S, Kowalewski MM, Roellig DM, Mallott EK, Zeng Y, Gillespie TR, Amato KR. Effects of anthropogenic habitat disturbance and Giardia duodenalis infection on a sentinel species' gut bacteria. Ecol Evol 2021; 11:45-57. [PMID: 33437414 PMCID: PMC7790644 DOI: 10.1002/ece3.6910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/27/2020] [Accepted: 08/27/2020] [Indexed: 12/29/2022] Open
Abstract
Habitat disturbance, a common consequence of anthropogenic land use practices, creates human-animal interfaces where humans, wildlife, and domestic species can interact. These altered habitats can influence host-microbe dynamics, leading to potential downstream effects on host physiology and health. Here, we explored the effect of ecological overlap with humans and domestic species and infection with the protozoan parasite Giardia duodenalis on the bacteria of black and gold howler monkeys (Alouatta caraya), a key sentinel species, in northeastern Argentina. Fecal samples were screened for Giardia duodenalis infection using a nested PCR reaction, and the gut bacterial community was characterized using 16S rRNA gene amplicon sequencing. Habitat type was correlated with variation in A. caraya gut bacterial community composition but did not affect gut bacterial diversity. Giardia presence did not have a universal effect on A. caraya gut bacteria across habitats, perhaps due to the high infection prevalence across all habitats. However, some bacterial taxa were found to vary with Giardia infection. While A. caraya's behavioral plasticity and dietary flexibility allow them to exploit a range of habitat conditions, habitats are generally becoming more anthropogenically disturbed and, thus, less hospitable. Alterations in gut bacterial community dynamics are one possible indicator of negative health outcomes for A. caraya in these environments, since changes in host-microbe relationships due to stressors from habitat disturbance may lead to negative repercussions for host health. These dynamics are likely relevant for understanding organism responses to environmental change in other mammals.
Collapse
Affiliation(s)
- Sahana Kuthyar
- Department of AnthropologyNorthwestern UniversityEvanstonILUSA
- Departments of Environmental Sciences and Environmental Health and Program in Population Biology, Ecology, and Evolutionary BiologyEmory UniversityAtlantaGAUSA
| | - Martin M. Kowalewski
- Departments of Environmental Sciences and Environmental Health and Program in Population Biology, Ecology, and Evolutionary BiologyEmory UniversityAtlantaGAUSA
- Estación Biológica CorrientesMuseo Argentino de Ciencias Naturales “Bernardino Rivadavia” (MACN‐CONICET)CorrientesArgentina
| | - Dawn M. Roellig
- National Center for Emerging and Zoonotic Infectious DiseasesCenters for Disease Control and Prevention (CDC)AtlantaGAUSA
| | | | - Yan Zeng
- Department of AnthropologyNorthwestern UniversityEvanstonILUSA
| | - Thomas R. Gillespie
- Departments of Environmental Sciences and Environmental Health and Program in Population Biology, Ecology, and Evolutionary BiologyEmory UniversityAtlantaGAUSA
| | | |
Collapse
|
13
|
Melo-Carrillo A, Dunn JC, Cortés-Ortiz L. Low genetic diversity and limited genetic structure across the range of the critically endangered Mexican howler monkey (Alouatta palliata mexicana). Am J Primatol 2020; 82:e23160. [PMID: 32557717 DOI: 10.1002/ajp.23160] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/01/2020] [Accepted: 06/07/2020] [Indexed: 11/08/2022]
Abstract
Genetic diversity provides populations with the possibility to persist in ever-changing environments, where selective regimes change over time. Therefore, the long-term survival of a population may be affected by its level of genetic diversity. The Mexican howler monkey (Alouatta palliata mexicana) is a critically endangered primate restricted to southeast Mexico. Here, we evaluate the genetic diversity and population structure of this subspecies based on 83 individuals from 31 groups sampled across the distribution range of the subspecies, using 29 microsatellite loci. Our results revealed extremely low genetic diversity (HO = 0.21, HE = 0.29) compared to studies of other A. palliata populations and to other Alouatta species. Principal component analysis, a Bayesian clustering method, and analyses of molecular variance did not detect strong signatures of genetic differentiation among geographic populations of this subspecies. Although we detect small but significant FST values between populations, they can be explained by a pattern of isolation by distance. These results and the presence of unique alleles in different populations highlight the importance of implementing conservation efforts in multiple populations across the distribution range of A. p. mexicana to preserve its already low genetic diversity. This is especially important given current levels of population isolation due to the extreme habitat fragmentation across the distribution range of this primate.
Collapse
Affiliation(s)
- Adrián Melo-Carrillo
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan
| | - Jacob C Dunn
- Behavioural Ecology Research Group, School of Life Sciences, Anglia Ruskin University, Cambridge, UK.,Biological Anthropology, Department of Archaeology, University of Cambridge, Cambridge, UK.,Department of Cognitive Biology, University of Vienna, Vienna, Austria
| | - Liliana Cortés-Ortiz
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
14
|
Oklander LI, Caputo M, Solari A, Corach D. Genetic assignment of illegally trafficked neotropical primates and implications for reintroduction programs. Sci Rep 2020; 10:3676. [PMID: 32111905 PMCID: PMC7048725 DOI: 10.1038/s41598-020-60569-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/12/2020] [Indexed: 11/09/2022] Open
Abstract
The black and gold howler monkey (Alouatta caraya) is a neotropical primate threatened by habitat loss and capture for illegal trade in Argentina. Using multilocus microsatellite genotypes from 178 A. caraya individuals sampled from 15 localities in Argentina, we built a genotype reference database (GRDB). Bayesian assignment methods applied to the GRDB allowed us to correctly re-assign 73% of individuals to their true location of origin and 93.3% to their cluster of origin. We used the GRDB to assign 22 confiscated individuals (17 of which were reintroduced), and 3 corpses to both localities and clusters of origin. We assigned with a probability >70% the locality of origin of 14 individuals and the cluster of origin of 21. We found that most of the confiscated individuals were assigned to one cluster (F-Ch-C) and two localities included in the GRDB, suggesting that trafficked A. caraya primarily originated in this area. Our results reveal that only 4 of 17 reintroduced individuals were released in sites corresponding to their cluster of origin. Our findings illustrate the applicability of genotype databases for inferring hotspots of illegal capture and for guiding future reintroduction efforts, both of which are essential elements of species protection and recovery programs.
Collapse
Affiliation(s)
- Luciana Inés Oklander
- Grupo de Investigación en Genética Aplicada (GIGA), Instituto de Biología Subtropical (IBS), Nodo Posadas, Jujuy 1745, N3300NFK Posadas, Universidad Nacional de Misiones (UNaM) - CONICET, Misiones, Argentina.
| | - Mariela Caputo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología Inmunología Biotecnología y Genética, Cátedra de Genética Forense y Servicio de Huellas Digitales Genéticas, Junín 956, C1113AAD, Buenos Aires, Argentina.,CONICET - Consejo Nacional de Investigaciones Científicas y Tecnológicas, C1033AAJ, Buenos Aires, Argentina
| | - Agustín Solari
- Instituto de Biología Subtropical (IBS), Universidad Nacional de Misiones (UNaM) - CONICET, Nodo Iguazú, Bertoni 68, 3370, Puerto Iguazú, Misiones, Argentina
| | - Daniel Corach
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología Inmunología Biotecnología y Genética, Cátedra de Genética Forense y Servicio de Huellas Digitales Genéticas, Junín 956, C1113AAD, Buenos Aires, Argentina.,CONICET - Consejo Nacional de Investigaciones Científicas y Tecnológicas, C1033AAJ, Buenos Aires, Argentina
| |
Collapse
|
15
|
Bicca-Marques JC, Chaves ÓM, Hass GP. Howler monkey tolerance to habitat shrinking: Lifetime warranty or death sentence? Am J Primatol 2020; 82:e23089. [PMID: 31912561 DOI: 10.1002/ajp.23089] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 12/14/2019] [Accepted: 12/20/2019] [Indexed: 01/10/2023]
Abstract
Habitat loss and fragmentation are major threats to the conservation of nonhuman primates. Given that species differ in their responses to fragmented landscapes, identifying the factors that enable them to cope with altered environments or that cause their extirpation is critical to design conservation management strategies. Howler monkeys (Alouatta spp.) are good models for studying the strategies of tolerant arboreal taxa and how they cope with spatial restriction, because they live in habitats ranging from vast pristine forests to small disturbed fragments and orchards. While some aspects of their ecology and behavior are conserved, others vary in predictable ways in response to habitat shrinking and decreasing resource availability. We argue that the ability of individual howler monkeys to inhabit low-quality environments does not guarantee the long-term persistence of the small populations that live under these conditions. Their local extirpation explains why few forest fragments below a given area threshold are frequently inhabited in landscapes where recolonization and gene flow are compromised by long isolation distances or less permeable matrices. In sum, howlers' ability to cope with habitat restriction at the individual level in the short-term may mask the inevitable fate of isolated populations, thereby compromising the persistence of the species at a regional scale in the long-term if howlers' need for protection in large forests is undervalued.
Collapse
Affiliation(s)
- Júlio César Bicca-Marques
- Laboratório de Primatologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Óscar M Chaves
- Escuela de Biología, Universidad de Costa Rica, San Pedro de Montes de Oca, Costa Rica
| | - Gabriela Pacheco Hass
- Laboratório de Primatologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
16
|
Holzmann I, Areta JI. Reduced geographic variation in roars in different habitats rejects the acoustic adaptation hypothesis in the black‐and‐gold howler monkey (
Alouatta caraya
). Ethology 2019. [DOI: 10.1111/eth.12962] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ingrid Holzmann
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Instituto de Bio y Geociencias del NOA (IBIGEO) Laboratorio de Ecología Comportamiento y Sonidos Naturales (ECOSON) Universidad Nacional de Salta (UNSA) Rosario de Lerma Argentina
| | - Juan Ignacio Areta
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Instituto de Bio y Geociencias del NOA (IBIGEO) Laboratorio de Ecología Comportamiento y Sonidos Naturales (ECOSON) Universidad Nacional de Salta (UNSA) Rosario de Lerma Argentina
| |
Collapse
|
17
|
Jardim MM, Queirolo D, Peters FB, Mazim FD, Favarini MO, Tirelli FP, Trindade RA, Bonatto SL, Bicca-Marques JC, Mourthe I. Southern extension of the geographic range of black-and-gold howler monkeys (Alouatta caraya). MAMMALIA 2019. [DOI: 10.1515/mammalia-2018-0127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The black-and-gold howler monkey (Alouatta caraya) is widely distributed in Brazil, Bolivia, Paraguay, and northeastern Argentina. Despite this wide distribution, it is locally threatened in some parts of its southern range by forest loss and fragmentation, and yellow fever outbreaks. We present 14 new localities of A. caraya occurrence in the Pampa biome of southern Brazil, extending its range southwards by approximately 100 km.
Collapse
Affiliation(s)
- Márcia M.A. Jardim
- Fundação Zoobotânica do Rio Grande do Sul, Museu de Ciências Naturais, Setor de Mastozoologia , Porto Alegre , Brazil
| | - Diego Queirolo
- Centro Universitario de Rivera , Universidad de la República , Rivera , Uruguay
| | | | | | | | - Flávia P. Tirelli
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) , Escola de Ciências, Laboratório de Biologia Genômica e Molecular , Porto Alegre , Brazil
| | - Rhaysa A. Trindade
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) , Escola de Ciências, Laboratório de Biologia Genômica e Molecular , Porto Alegre , Brazil
| | - Sandro L. Bonatto
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) , Escola de Ciências, Laboratório de Biologia Genômica e Molecular , Porto Alegre , Brazil
| | | | - Italo Mourthe
- PUCRS, Escola de Ciências, Laboratório de Primatologia , Porto Alegre , Brazil
| |
Collapse
|
18
|
Red Fox Ancestry and Connectivity Assessments Reveal Minimal Fur Farm Introgression in Greater Yellowstone Ecosystem. JOURNAL OF FISH AND WILDLIFE MANAGEMENT 2018. [DOI: 10.3996/092017-jfwm-073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Abstract
Rocky Mountain red foxes Vulpes vulpes macroura potentially encounter other red fox Vulpes vulpes lineages at lower elevations, which may include nonindigenous red foxes derived from fur farms. Introgression from nonindigenous red foxes could have negative evolutionary consequences for the rare Rocky Mountain red fox subspecies. Red foxes at high elevations in the Greater Yellowstone Ecosystem exhibit lighter coat colors than those at lower elevations, potentially indicating that they represent the indigenous subspecies and that gene flow across the elevational gradient is restricted. We collected tissue samples across a 1,750-m elevation range and examined mitochondrial DNA sequences and nuclear DNA microsatellite genotypes to assess the ancestry and genetic population structure of red foxes in the northern Greater Yellowstone Ecosystem. We also used reference samples from fur farm red foxes and indigenous red foxes of the western United States to assess the extent of nonindigenous introgression across the ecosystem. We found little overlap in the elevational distribution of maternally inherited mitochondrial DNA haplotypes: above 1,600 m, we only found indigenous Rocky Mountain haplotypes (n = 4), whereas below 1,600 m, we found haplotypes not indigenous to the Rocky Mountains (n = 5) that were associated with fur farms or indigenous to the Great Plains. In contrast, biparentally inherited microsatellite variation showed little population structure across the elevational gradient. Despite this evidence of nuclear gene flow across the elevational gradient, we found little fur farm introgression in the microsatellite genotypes. It is possible that long-standing nuclear (but apparently not mitochondrial) gene flow between Rocky Mountain red foxes and indigenous red foxes on the Great Plains explained the low nuclear differentiation of these populations. Importantly, our results suggested that high elevations of the northern Greater Yellowstone Ecosystem remained free of significant fur farm introgression. Mitonuclear discordance could reflect sex-biased dispersal, which we hypothesize could be the effect of elevational differences in reproductive phenology.
Collapse
|