1
|
Zeng X, Vidlund J, Gillespie B, Cao L, Agga GE, Lin J, Dego OK. Evaluation of immunogenicity of enterobactin conjugate vaccine for the control of Escherichia coli mastitis in dairy cows. J Dairy Sci 2023; 106:7147-7163. [PMID: 37210351 DOI: 10.3168/jds.2022-23219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/09/2023] [Indexed: 05/22/2023]
Abstract
Mastitis is the most common disease of dairy cows that incurs severe economic losses to the dairy industry. Currently, environmental mastitis pathogens are a major problem for most dairy farms. A current commercially available Escherichia coli vaccine does not prevent clinical mastitis and production losses, likely due to antibody accessibility and antigenic variation issues. Therefore, a novel vaccine that prevents clinical disease and production losses is critically needed. Recently a nutritional immunity approach, which restricts bacterial iron uptake by immunologically sequestering conserved iron-binding enterobactin (Ent), has been developed. The objective of this study was to evaluate the immunogenicity of the keyhole limpet hemocyanin-enterobactin (KLH-Ent) conjugate vaccine in dairy cows. Twelve pregnant Holstein dairy cows in their first through third lactations were randomized to the control or vaccine group, with 6 cows per group. The vaccine group received 3 subcutaneous vaccinations of KLH-Ent with adjuvants at drying off (D0), 20 (D21), and 40 (D42) days after drying off. The control group was injected with phosphate-buffered saline (pH 7.4) mixed with the same adjuvants at the same time points. Vaccination effects were assessed over the study period until the end of the first month of lactation. The KLH-Ent vaccine did not cause any systemic adverse reactions or reduction in milk production. Compared with the control group, the vaccine elicited significantly higher levels of serum Ent-specific IgG at calving (C0) and 30 d postcalving (C30), mainly its IgG2 fraction, which was significantly higher at D42, C0, C14, and C30 d, with no significant change in IgG1 levels. Milk Ent-specific IgG and IgG2 levels in the vaccine group were significantly higher on C30. Fecal microbial community structures were similar for both control and vaccine groups on the same day and shifted directionally along the sampling days. In conclusion, the KLH-Ent vaccine successfully triggered strong Ent-specific immune responses in dairy cows without significantly affecting the gut microbiota diversity and health. The results show that Ent conjugate vaccine is a promising nutritional immunity approach in control of E. coli mastitis in dairy cows.
Collapse
Affiliation(s)
- X Zeng
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996
| | - J Vidlund
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996
| | - B Gillespie
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996
| | - L Cao
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996
| | - G E Agga
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, US Department of Agriculture, Bowling Green, KY 42101
| | - J Lin
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996
| | - O Kerro Dego
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996.
| |
Collapse
|
2
|
Dobrut A, Wójcik-Grzybek D, Młodzińska A, Pietras-Ożga D, Michalak K, Tabacki A, Mroczkowska U, Brzychczy-Włoch M. Detection of immunoreactive proteins of Escherichia coli, Streptococcus uberis, and Streptococcus agalactiae isolated from cows with diagnosed mastitis. Front Cell Infect Microbiol 2023; 13:987842. [PMID: 36844415 PMCID: PMC9950269 DOI: 10.3389/fcimb.2023.987842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
Introduction Mastitis is a widespread mammary gland disease of dairy cows that causes severe economic losses to dairy farms. Mastitis can be caused by bacteria, fungi, and algae. The most common species isolated from infected milk are, among others, Streptococcus spp., and Escherichia coli. The aim of our study was protein detection based on both in silico and in vitro methods, which allowed the identification of immunoreactive proteins representative of the following species: Streptococcus uberis, Streptococcus agalactiae, and Escherichia coli. Methods The study group included 22 milk samples and 13 serum samples obtained from cows with diagnosed mastitis, whereas the control group constituted 12 milk samples and 12 serum samples isolated from healthy animals. Detection of immunoreactive proteins was done by immunoblotting, while amino acid sequences from investigated proteins were determined by MALDI-TOF. Then, bioinformatic analyses were performed on detected species specific proteins in order to investigate their immunoreactivity. Results As a result, we identified 13 proteins: 3 (molybdenum cofactor biosynthesis protein B, aldehyde reductase YahK, outer membrane protein A) for E. coli, 4 (elongation factor Tu, tRNA uridine 5-carboxymethylaminomethyl modification enzyme MnmG, GTPase Obg, glyceraldehyde-3-phosphate dehydrogenase) for S. uberis, and 6 (aspartate carbamoyltransferase, elongation factor Tu, 60 kDa chaperonin, elongation factor G, galactose-6-phosphate isomerase subunit LacA, adenosine deaminase) for S. agalactiae, which demonstrated immunoreactivity to antibodies present in serum from cows with diagnosed mastitis. Discussion Due to the confirmed immunoreactivity, specificity and localization in the bacterial cell, these proteins can be considered considered potential targets in innovative rapid immunodiagnostic assays for bovine mastitis, however due to the limited number of examined samples, further examination is needed.
Collapse
Affiliation(s)
- Anna Dobrut
- Department of Molecular Medical Microbiology, Chair of Microbiology, Jagiellonian University Medical College, Krakow, Poland,*Correspondence: Anna Dobrut,
| | - Dagmara Wójcik-Grzybek
- Department of Experimental Physiology, Chair of Physiology, Jagiellonian University Medical College, Krakow, Poland
| | | | - Dorota Pietras-Ożga
- Department of Epizootiology and Clinic of Infectious Diseases, University of Life Sciences, Lublin, Poland
| | - Katarzyna Michalak
- Department of Epizootiology and Clinic of Infectious Diseases, University of Life Sciences, Lublin, Poland
| | | | | | - Monika Brzychczy-Włoch
- Department of Molecular Medical Microbiology, Chair of Microbiology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
3
|
Goulart DB, Mellata M. Escherichia coli Mastitis in Dairy Cattle: Etiology, Diagnosis, and Treatment Challenges. Front Microbiol 2022; 13:928346. [PMID: 35875575 PMCID: PMC9301288 DOI: 10.3389/fmicb.2022.928346] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Bovine mastitis is an inflammation of the udder tissue parenchyma that causes pathological changes in the glandular tissue and abnormalities in milk leading to significant economic losses to the dairy industry across the world. Mammary pathogenic Escherichia (E.) coli (MPEC) is one of the main etiologic agents of acute clinical mastitis in dairy cattle. MPEC strains have virulence attributes to resist the host innate defenses and thrive in the mammary gland environment. The association between specific virulence factors of MPEC with the severity of mastitis in cattle is not fully understood. Furthermore, the indiscriminate use of antibiotics to treat mastitis has resulted in antimicrobial resistance to all major antibiotic classes in MPEC. A thorough understanding of MPEC’s pathogenesis and antimicrobial susceptibility pattern is required to develop better interventions to reduce mastitis incidence and prevalence in cattle and the environment. This review compiles important information on mastitis caused by MPEC (e.g., types of mastitis, host immune response, diagnosis, treatment, and control of the disease) as well as the current knowledge on MPEC virulence factors, antimicrobial resistance, and the dilemma of MPEC as a new pathotype. The information provided in this review is critical to identifying gaps in knowledge that will guide future studies to better design diagnostic, prevent, and develop therapeutic interventions for this significant dairy disease.
Collapse
Affiliation(s)
- Débora Brito Goulart
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
- *Correspondence: Débora Brito Goulart,
| | - Melha Mellata
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
- Melha Mellata,
| |
Collapse
|
4
|
Fowler BD, Kose N, Reidy JX, Handal LS, Skaar EP, Crowe JE. Human Monoclonal Antibodies to Escherichia coli Outer Membrane Protein A Porin Domain Cause Aggregation but Do Not Alter In Vivo Bacterial Burdens in a Murine Sepsis Model. Infect Immun 2022; 90:e0017622. [PMID: 35583347 PMCID: PMC9202393 DOI: 10.1128/iai.00176-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli is one of the most frequent human pathogens, increasingly exhibits antimicrobial resistance, and has complex interactions with the host immune system. E. coli exposure or infection can result in the generation of antibodies specific for outer membrane protein A (OmpA), a multifunctional porin. We identified four OmpA-specific naturally occurring antibodies from healthy human donor B cells and assessed their interactions with E. coli and OmpA. These antibodies are highly specific for OmpA, exhibiting no cross-reactivity to a strain lacking ompA and retaining binding to both laboratory and clinical isolates of E. coli in enzyme-linked immunosorbent assay (ELISA) and immunofluorescence assays. One monoclonal antibody (Mab), designated ECOL-11, is specific for the extracellular N-terminal porin domain of OmpA and induces growth phase-specific bacterial aggregation. This aggregation is not induced by the fragment antigen binding (Fab) form of the MAb, suggesting the importance of bivalency for this aggregating activity. ECOL-11 decreases adhesion and phagocytosis of E. coli by RAW 264.7 macrophage-like cells, possibly by inhibiting the adhesion functions of OmpA. Despite this in vitro phenotype, organ E. coli burdens were not altered by antibody prophylaxis in a murine model of lethal E. coli septic shock. Our findings support the importance of OmpA at the host-pathogen interface and begin to explore the implications and utility of E. coli-specific antibodies in human hosts.
Collapse
Affiliation(s)
- Benjamin D. Fowler
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Nurgun Kose
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Joseph X. Reidy
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Laura S. Handal
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James E. Crowe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
5
|
Park K, Svennerholm K, Crescitelli R, Lässer C, Gribonika I, Lötvall J. Synthetic bacterial vesicles combined with tumour extracellular vesicles as cancer immunotherapy. J Extracell Vesicles 2021; 10:e12120. [PMID: 34262675 PMCID: PMC8254025 DOI: 10.1002/jev2.12120] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/09/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
Bacterial outer membrane vesicles (OMV) have gained attention as a promising new cancer vaccine platform for efficiently provoking immune responses. However, OMV induce severe toxicity by activating the innate immune system. In this study, we applied a simple isolation approach to produce artificial OMV that we have named Synthetic Bacterial Vesicles (SyBV) that do not induce a severe toxic response. We also explored the potential of SyBV as an immunotherapy combined with tumour extracellular vesicles to induce anti-tumour immunity. Bacterial SyBV were produced with high yield by a protocol including lysozyme and high pH treatment, resulting in pure vesicles with very few cytosolic components and no RNA or DNA. These SyBV did not cause systemic pro-inflammatory cytokine responses in mice compared to naturally released OMV. However, SyBV and OMV were similarly effective in activation of mouse bone marrow-derived dendritic cells. Co-immunization with SyBV and melanoma extracellular vesicles elicited tumour regression in melanoma-bearing mice through Th-1 type T cell immunity and balanced antibody production. Also, the immunotherapeutic effect of SyBV was synergistically enhanced by anti-PD-1 inhibitor. Moreover, SyBV displayed significantly greater adjuvant activity than other classical adjuvants. Taken together, these results demonstrate a safe and efficient strategy for eliciting specific anti-tumour responses using immunotherapeutic bacterial SyBV.
Collapse
Affiliation(s)
- Kyong‐Su Park
- Krefting Research CentreInstitute of MedicineUniversity of GothenburgGothenburgSweden
| | - Kristina Svennerholm
- Department of Anesthesiology and Intensive Care MedicineInstitute of Clinical ScienceSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Rossella Crescitelli
- Krefting Research CentreInstitute of MedicineUniversity of GothenburgGothenburgSweden
| | - Cecilia Lässer
- Krefting Research CentreInstitute of MedicineUniversity of GothenburgGothenburgSweden
| | - Inta Gribonika
- Department of Microbiology and ImmunologyInstitute of BiomedicineUniversity of GothenburgGothenburgSweden
| | - Jan Lötvall
- Krefting Research CentreInstitute of MedicineUniversity of GothenburgGothenburgSweden
| |
Collapse
|
6
|
Shielding Effect of Escherichia coli O-Antigen Polysaccharide on J5-Induced Cross-Reactive Antibodies. mSphere 2021; 6:6/1/e01227-20. [PMID: 33504665 PMCID: PMC7885324 DOI: 10.1128/msphere.01227-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite intensive research, mastitis remains an important disease in dairy cattle with a significant impact on animal welfare, use of antibiotics, and, in the end, the economy of dairy farms. Although vaccines available so far have shown limited efficacy against coliform mastitis, vaccination is considered one of the measures that could limit the consequences of mastitis. Escherichia coli is the leading cause of severe mastitis in dairy farms. As E. coli mastitis is refractory to the hygienic control measures adapted to contagious mastitis, efficient vaccines are in demand. Existing mastitis vaccines, based on the use of killed rough E. coli J5 as the antigen, aim at inducing phagocytosis by neutrophils. We assessed the binding of J5-induced antibodies to isogenic rough and smooth strains along with a panel of mastitis-associated E. coli. Analysis by enzyme-linked immunosorbent assay revealed that antibodies to OmpA or killed J5 bind readily to rough E. coli but poorly to smooth strains. Flow cytometry analysis indicated that immunization with J5 induced antibodies that cross-reacted with rough E. coli strains but with only a small subpopulation of smooth strains. We identified type 1 fimbriae as the target of most antibodies cross-reacting with the smooth strains. These results suggest that the O-polysaccharide of lipopolysaccharide shields the outer membrane antigens and that only fiber antigens protruding at the bacterial surface can elicit antibodies reacting with mastitis-associated E. coli. We evaluated J5-induced antibodies in an opsonophagocytic killing assay with bovine neutrophils. J5 immune serum was not more efficient than preimmune serum, showing that immunization did not improve on the already high efficiency of naturally acquired antibodies to E. coli. In conclusion, it is unlikely that the efficiency of J5 vaccines is related to the induction of opsonic antibodies. Consequently, other research directions, such as cell-mediated immunity, should be explored to improve E. coli mastitis vaccines. IMPORTANCE Despite intensive research, mastitis remains an important disease in dairy cattle with a significant impact on animal welfare, use of antibiotics, and, in the end, the economy of dairy farms. Although vaccines available so far have shown limited efficacy against coliform mastitis, vaccination is considered one of the measures that could limit the consequences of mastitis. One reason for the lack of efficiency of current vaccines likely stems from the current evaluation of vaccines that relies mostly on measuring antibody production against vaccine antigens. This report clearly shows that vaccine-induced antibodies fail to bind to most mastitis-associated E. coli strains because of the presence of an O-antigen and, thus, do not allow for improved phagocytosis of pathogens. As a consequence, this report calls for revised criteria for the evaluation of vaccines and suggests that cell-mediated immunity should be targeted by new vaccinal strategies. More generally, these results could be extended to other vaccine development strategies targeting coliform bacteria.
Collapse
|
7
|
You HS, Lee SH, Kang SS, Hyun SH. OmpA of Klebsiella pneumoniae ATCC 13883 induces pyroptosis in HEp-2 cells, leading to cell-cycle arrest and apoptosis. Microbes Infect 2020; 22:432-440. [PMID: 32569734 DOI: 10.1016/j.micinf.2020.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 06/08/2020] [Accepted: 06/08/2020] [Indexed: 01/23/2023]
Abstract
Klebsiella pneumoniae is an opportunistic pathogenic bacterium that commonly causes pneumonia in elderly people. OmpA, a toxin that is highly expressed in the outer membrane of the bacterium, is one of the primary factors implicated in the pulmonary pathogenesis of K. pneumoniae. To evaluate the associated pyroptosis mechanism of infection, the ompA gene was cloned, and the protein was expressed, extracted, and used to treat human larynx epithelial cells. We observed that OmpA induces reactive oxygen species production and cell-cycle arrest in the G2/M phase in host cells, leading to subsequent apoptosis. Moreover, OmpA was found to induce IL-1β and IL-18 production in host cells, resulting in caspase-1 activation, which simultaneously stimulated pyroptosis, thus leading to the death of the host cells. We next sought to examine differential gene expression via RNA sequencing to better elucidate the mechanisms associated with these cellular changes, and found that genes associated with these pathways were more highly expressed in OmpA-treated cells than in K. pneumoniae-infected cells. Thus, cell-cycle arrest, apoptosis, and pyroptosis may serve as the primary defenses employed by host cells against OmpA. These results provide novel insights into the host defense against K. pneumoniae infection.
Collapse
Affiliation(s)
- Hee Sang You
- Department of Biomedical Laboratory Science, Eulji University, School of Medicine, 77, Gyeryong-ro, 771 beon-gil, Jung-gu, Daejeon, 34824, Republic of Korea; Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, 77, Gyeryong-ro, 771 beon-gil, Jung-gu, Daejeon, 34824, Republic of Korea
| | - Song Hee Lee
- Department of Biomedical Laboratory Science, Eulji University, School of Medicine, 77, Gyeryong-ro, 771 beon-gil, Jung-gu, Daejeon, 34824, Republic of Korea; Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, 77, Gyeryong-ro, 771 beon-gil, Jung-gu, Daejeon, 34824, Republic of Korea
| | - Sang Sun Kang
- Department of Biology Education, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Sung Hee Hyun
- Department of Biomedical Laboratory Science, Eulji University, School of Medicine, 77, Gyeryong-ro, 771 beon-gil, Jung-gu, Daejeon, 34824, Republic of Korea; Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, 77, Gyeryong-ro, 771 beon-gil, Jung-gu, Daejeon, 34824, Republic of Korea.
| |
Collapse
|
8
|
Machado VS, Silva TH. Adaptive immunity in the postpartum uterus: Potential use of vaccines to control metritis. Theriogenology 2020; 150:201-209. [PMID: 31983466 DOI: 10.1016/j.theriogenology.2020.01.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 12/21/2022]
Abstract
After parturition, dairy cows rely on an effective innate immune response, through the actions of neutrophils, macrophages, and antimicrobial peptides, to clear the uterus from pathogenic bacteria, such as E. coli, Bacteroides spp, F. necrophorum and T. pyogenes. However, the role of adaptive immunity in the postpartum uterus is less understood. In this review, we explore concepts of mucosal adaptive immunity and discuss recent findings regarding the efficacy of vaccines to reduce metritis in dairy cows. Areas of lymphocytic aggregates are seen throughout the bovine reproductive tract after parturition, but it is unknown if their development is influenced by previous exposure to pathogens or other intrinsic factors. Through the actions of Treg cells and γδ T cells, the uterus is an immune-tolerant environment during pregnancy. After parturition, the dynamics in the endometrial and circulating lymphocytic populations differ among cows that develop uterine diseases and healthy counterparts. However, the functionality of those cells has not yet been determined. It has been hypothesized that cows that fail to switch their uterine environment from an anti-inflammatory state prior to parturition to a pro-inflammatory state after calving are more susceptible to uterine infections. Given the nature of metritis related pathogens and the importance of innate immunity to uterine defense mechanisms, we speculate that an adaptive immunity biased towards a Th1/Th17 cellular response will provide best protection against uterine infections. Few studies have evaluated the efficacy of immunization in reducing the incidence of metritis in dairy cows revealing inconsistent findings.
Collapse
Affiliation(s)
- V S Machado
- Department of Veterinary Sciences, College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX, 79409, United States.
| | - T H Silva
- Department of Veterinary Sciences, College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX, 79409, United States; Department of Animal Science, School of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, SP, 13635-900, Brazil
| |
Collapse
|
9
|
Zhang H, Zhang H, Xiong B, Fan G, Cao Z. Immunogenicity of recombinant outer membrane porin protein and protective efficacy against lethal challenge with
Bordetella bronchiseptica
in rabbits. J Appl Microbiol 2019; 127:1646-1655. [DOI: 10.1111/jam.14451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/27/2019] [Accepted: 09/06/2019] [Indexed: 01/21/2023]
Affiliation(s)
- H. Zhang
- State Key Laboratory of Animal Genetic Engineering Vaccine YEBIO Bioengineering Co., Ltd. of Qingdao Qingdao China
| | - H. Zhang
- State Key Laboratory of Animal Genetic Engineering Vaccine YEBIO Bioengineering Co., Ltd. of Qingdao Qingdao China
| | - B. Xiong
- State Key Laboratory of Animal Genetic Engineering Vaccine YEBIO Bioengineering Co., Ltd. of Qingdao Qingdao China
| | - G. Fan
- State Key Laboratory of Animal Genetic Engineering Vaccine YEBIO Bioengineering Co., Ltd. of Qingdao Qingdao China
| | - Z. Cao
- State Key Laboratory of Animal Genetic Engineering Vaccine YEBIO Bioengineering Co., Ltd. of Qingdao Qingdao China
- Yellow Sea Fisheries Research Institute Chinese Academy of Fishery Sciences Qingdao China
| |
Collapse
|
10
|
Yanagisawa N, Ueshiba H, Abe Y, Kato H, Higuchi T, Yagi J. Outer Membrane Protein of Gut Commensal Microorganism Induces Autoantibody Production and Extra-Intestinal Gland Inflammation in Mice. Int J Mol Sci 2018; 19:ijms19103241. [PMID: 30347705 PMCID: PMC6214128 DOI: 10.3390/ijms19103241] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/25/2018] [Accepted: 10/15/2018] [Indexed: 02/08/2023] Open
Abstract
Gut commensal microorganisms have been linked with chronic inflammation at the extra-intestinal niche of the body. The object of the study was to investigate on the chronic effects of a gut commensal Escherichia coli on extra-intestinal glands. The presence of autoimmune response was diagnosed by autoantibody levels and histological methods. Repeated injection of E. coli induced mononuclear cell inflammation in the Harderian and submandibular salivary glands of female C57BL/6 mice. Inflammation was reproduced by adoptive transfer of splenocytes to immune-deficient Rag2 knockout mice and CD4+ T cells to mature T cell-deficient TCRβ-TCRδ knockout mice. MALDI TOF mass spectrometry of the protein to which sera of E. coli-treated mice reacted was determined as the outer membrane protein A (OmpA) of E. coli. Multiple genera of the Enterobacteriaceae possessed OmpA with high amino-acid sequence similarities. Repeated injection of recombinant OmpA reproduced mononuclear cell inflammation of the Harderian and salivary glands in mice and elevation of autoantibodies against Sjögren’s-syndrome-related antigens SSA/Ro and SSB/La. The results indicated the possibility of chronic stimuli from commensal bacteria-originated components as a pathogenic factor to elicit extra-intestinal autoimmunity.
Collapse
Affiliation(s)
- Naoko Yanagisawa
- Microbiology and Immunology, Tokyo Women's Medical University, Tokyo 162-8666, Japan.
| | - Hidehiro Ueshiba
- Microbiology and Immunology, Tokyo Women's Medical University, Tokyo 162-8666, Japan.
| | - Yoshihiro Abe
- Microbiology and Immunology, Tokyo Women's Medical University, Tokyo 162-8666, Japan.
| | - Hidehito Kato
- Microbiology and Immunology, Tokyo Women's Medical University, Tokyo 162-8666, Japan.
| | - Tomoaki Higuchi
- Microbiology and Immunology, Tokyo Women's Medical University, Tokyo 162-8666, Japan.
| | - Junji Yagi
- Microbiology and Immunology, Tokyo Women's Medical University, Tokyo 162-8666, Japan.
| |
Collapse
|