1
|
Hao H, Lian Y, Ren C, Yang S, Zhao M, Bo T, Xu J, Wang W. RebL1 is required for macronuclear structure stability and gametogenesis in Tetrahymena thermophila. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:183-197. [PMID: 38827131 PMCID: PMC11136921 DOI: 10.1007/s42995-024-00219-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 03/01/2024] [Indexed: 06/04/2024]
Abstract
Histone modification and nucleosome assembly play important roles in chromatin-related processes. Histone chaperones form different complexes and coordinate histone transportation and assembly. Various histone chaperone complexes have been identified in different organisms. The ciliate protozoa (ciliates) have various chromatin structures and different nuclear morphology. However, histone chaperone components and functions of different subunits remain unclear in ciliates. Tetrahymema thermophila contains a transcriptionally active macronucleus (MAC) and a transcriptionally inactive micronucleus (MIC) which exhibit multiple replication and various chromatin remodeling progresses during vegetative growth and sexual developmental stages. Here, we found histone chaperone RebL1 not only localized evenly in the transcriptionally active MAC but also dynamically changed in the MIC during vegetative growth and sexual developmental stages. REBL1 knockdown inhibited cellular proliferation. The macronuclear morphology became bigger in growing mutants. The abnormal macronuclear structure also occurred in the starvation stage. Furthermore, micronuclear meiosis was disturbed during sexual development, leading to a failure to generate new gametic nuclei. RebL1 potentially interacted with various factors involved in histone-modifying complexes and chromatin remodeling complexes in different developmental stages. REBL1 knockdown affected expression levels of the genes involved in chromatin organization and transcription. Taken together, RebL1 plays a vital role in maintaining macronuclear structure stability and gametogenesis in T. thermophila. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-024-00219-z.
Collapse
Affiliation(s)
- Huijuan Hao
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006 China
| | - Yinjie Lian
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006 China
| | - Chenhui Ren
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006 China
| | - Sitong Yang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006 China
| | - Min Zhao
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006 China
| | - Tao Bo
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006 China
| | - Jing Xu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006 China
- School of Life Science, Shanxi University, Taiyuan, 030006 China
| | - Wei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006 China
- Shanxi Key Laboratory of Biotechnology, Taiyuan, 030006 China
| |
Collapse
|
2
|
Lu MW, Beh LY, Yerlici VT, Fang W, Kulej K, Garcia BA, Landweber LF. Exploration of the Nuclear Proteomes in the Ciliate Oxytricha trifallax. Microorganisms 2023; 11:microorganisms11020343. [PMID: 36838311 PMCID: PMC9958989 DOI: 10.3390/microorganisms11020343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 01/31/2023] Open
Abstract
Nuclear dimorphism is a fundamental feature of ciliated protozoa, which have separate somatic and germline genomes in two distinct organelles within a single cell. The transcriptionally active somatic genome, contained within the physically larger macronucleus, is both structurally and functionally different from the silent germline genome housed in the smaller micronucleus. This difference in genome architecture is particularly exaggerated in Oxytricha trifallax, in which the somatic genome comprises tens of thousands of gene-sized nanochromosomes maintained at a high and variable ploidy, while the germline has a diploid set of megabase-scale chromosomes. To examine the compositional differences between the nuclear structures housing the genomes, we performed a proteomic survey of both types of nuclei and of macronuclear histones using quantitative mass spectrometry. We note distinct differences between the somatic and germline nuclei, with many functional proteins being highly enriched in one of the two nuclei. To validate our conclusions and the efficacy of nuclear separation, we used protein localization through a combination of transformations and immunofluorescence. We also note that the macronuclear histones strikingly display only activating marks, consistent with the conclusion that the macronucleus is the hub of transcription. These observations suggest that the compartmentalization of different genome features into separate structures has been accompanied by a similar specialization of nuclear components that maintain and facilitate the functions of the genomes specific to each nucleus.
Collapse
Affiliation(s)
- Michael W. Lu
- Department of Biological Sciences, Columbia University, New York, NY 10025, USA
| | - Leslie Y. Beh
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - V. Talya Yerlici
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Wenwen Fang
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Katarzyna Kulej
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Benjamin A. Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Laura F. Landweber
- Department of Biological Sciences, Columbia University, New York, NY 10025, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Correspondence:
| |
Collapse
|
3
|
Wei F, Pan B, Diao J, Wang Y, Sheng Y, Gao S. The micronuclear histone H3 clipping in the unicellular eukaryote Tetrahymena thermophila. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:584-594. [PMID: 37078088 PMCID: PMC10077241 DOI: 10.1007/s42995-022-00151-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/07/2022] [Indexed: 05/02/2023]
Abstract
Clipping of the histone H3 N-terminal tail has been implicated in multiple fundamental biological processes for a growing list of eukaryotes. H3 clipping, serving as an irreversible process to permanently remove some post-translational modifications (PTMs), may lead to noticeable changes in chromatin dynamics or gene expression. The eukaryotic model organism Tetrahymena thermophila is among the first few eukaryotes that exhibits H3 clipping activity, wherein the first six amino acids of H3 are cleaved off during vegetative growth. Clipping only occurs in the transcriptionally silent micronucleus of the binucleated T. thermophila, thus offering a unique opportunity to reveal the role of H3 clipping in epigenetic regulation. However, the physiological functions of the truncated H3 and its protease(s) for clipping remain elusive. Here, we review the major findings of H3 clipping in T. thermophila and highlight its association with histone modifications and cell cycle regulation. We also summarize the functions and mechanisms of H3 clipping in other eukaryotes, focusing on the high diversity in terms of protease families and cleavage sites. Finally, we predict several protease candidates in T. thermophila and provide insights for future studies. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-022-00151-0.
Collapse
Affiliation(s)
- Fan Wei
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Bo Pan
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Jinghan Diao
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Yuanyuan Wang
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Yalan Sheng
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Shan Gao
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| |
Collapse
|
4
|
Histone Chaperone Nrp1 Mutation Affects the Acetylation of H3K56 in Tetrahymena thermophila. Cells 2022; 11:cells11030408. [PMID: 35159218 PMCID: PMC8833950 DOI: 10.3390/cells11030408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/12/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Histone modification and nucleosome assembly are mainly regulated by various histone-modifying enzymes and chaperones. The roles of histone-modification enzymes have been well analyzed, but the molecular mechanism of histone chaperones in histone modification and nucleosome assembly is incompletely understood. We previously found that the histone chaperone Nrp1 is localized in the micronucleus (MIC) and the macronucleus (MAC) and involved in the chromatin stability and nuclear division of Tetrahymena thermophila. In the present work, we found that truncated C-terminal mutant HA-Nrp1TrC abnormally localizes in the cytoplasm. The truncated-signal-peptide mutants HA-Nrp1TrNLS1 and HA-Nrp1TrNLS2 are localized in the MIC and MAC. Overexpression of Nrp1TrNLS1 inhibited cellular proliferation and disrupted micronuclear mitosis during the vegetative growth stage. During sexual development, Nrp1TrNLS1 overexpression led to abnormal bouquet structures and meiosis arrest. Furthermore, Histone H3 was not transported into the nucleus; instead, it formed an abnormal speckled cytoplastic distribution in the Nrp1TrNLS1 mutants. The acetylation level of H3K56 in the mutants also decreased, leading to significant changes in the transcription of the genome of the Nrp1TrNLS1 mutants. The histone chaperone Nrp1 regulates the H3 nuclear import and acetylation modification of H3K56 and affects chromatin stability and genome transcription in Tetrahymena.
Collapse
|
5
|
Bo T, Kang Y, Liu Y, Xu J, Wang W. Atg5 Regulates Selective Autophagy of the Parental Macronucleus during Tetrahymena Sexual Reproduction. Cells 2021; 10:3071. [PMID: 34831293 PMCID: PMC8623110 DOI: 10.3390/cells10113071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/17/2022] Open
Abstract
Nuclear autophagy is an important selective autophagy process. The selective autophagy of sexual development micronuclei (MICs) and the programmed nuclear degradation of parental macronucleus (paMAC) occur during sexual reproduction in Tetrahymena thermophila. The molecular regulatory mechanism of nuclear selective autophagy is unclear. In this study, the autophagy-related protein Atg5 was identified from T. thermophila. Atg5 was localized in the cytoplasm in the early sexual-development stage and was localized in the paMAC in the late sexual-development stage. During this stage, the degradation of meiotic products of MIC was delayed in atg5i mutants. Furthermore, paMAC was abnormally enlarged and delayed or failed to degrade. The expression level and lipidation of Atg8.2 significantly decreased in the mutants. All these results indicated that Atg5 was involved in the regulation of the selective autophagy of paMAC by regulating Atg8.2 in Tetrahymena.
Collapse
Affiliation(s)
- Tao Bo
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (T.B.); (Y.K.); (Y.L.); (J.X.)
| | - Yu Kang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (T.B.); (Y.K.); (Y.L.); (J.X.)
| | - Ya Liu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (T.B.); (Y.K.); (Y.L.); (J.X.)
| | - Jing Xu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (T.B.); (Y.K.); (Y.L.); (J.X.)
- College of Life Sciences, Shanxi University, Taiyuan 030006, China
| | - Wei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (T.B.); (Y.K.); (Y.L.); (J.X.)
| |
Collapse
|
6
|
Lian Y, Hao H, Xu J, Bo T, Liang A, Wang W. The histone chaperone Nrp1 is required for chromatin stability and nuclear division in Tetrahymena thermophila. Epigenetics Chromatin 2021; 14:34. [PMID: 34301312 PMCID: PMC8299592 DOI: 10.1186/s13072-021-00409-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/06/2021] [Indexed: 12/23/2022] Open
Abstract
Histone chaperones facilitate DNA replication and repair by promoting chromatin assembly, disassembly and histone exchange. Following histones synthesis and nucleosome assembly, the histones undergo posttranslational modification by different enzymes and are deposited onto chromatins by various histone chaperones. In Tetrahymena thermophila, histones from macronucleus (MAC) and micronucleus (MIC) have been comprehensively investigated, but the function of histone chaperones remains unclear. Histone chaperone Nrp1 in Tetrahymena contains four conserved tetratricopepeptide repeat (TPR) domains and one C-terminal nuclear localization signal. TPR2 is typically interrupted by a large acidic motif. Immunofluorescence staining showed that Nrp1 is located in the MAC and MICs, but disappeared in the apoptotic parental MAC and the degraded MICs during the conjugation stage. Nrp1 was also colocalized with α-tubulin around the spindle structure. NRP1 knockdown inhibited cellular proliferation and led to the loss of chromosome, abnormal macronuclear amitosis, and disorganized micronuclear mitosis during the vegetative growth stage. During sexual developmental stage, the gametic nuclei failed to be selected and abnormally degraded in NRP1 knockdown mutants. Affinity purification combined with mass spectrometry analysis indicated that Nrp1 is co-purified with core histones, heat shock proteins, histone chaperones, and DNA damage repair proteins. The physical direct interaction of Nrp1 and Asf1 was also confirmed by pull-down analysis in vitro. The results show that histone chaperone Nrp1 is involved in micronuclear mitosis and macronuclear amitosis in the vegetative growth stage and maintains gametic nuclei formation during the sexual developmental stage. Nrp1 is required for chromatin stability and nuclear division in Tetrahymena thermophila.
Collapse
Affiliation(s)
- Yinjie Lian
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, 92 Wucheng Rd., Taiyuan, 030006, China
| | - Huijuan Hao
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, 92 Wucheng Rd., Taiyuan, 030006, China
| | - Jing Xu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, 92 Wucheng Rd., Taiyuan, 030006, China.,School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Tao Bo
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, 92 Wucheng Rd., Taiyuan, 030006, China
| | - Aihua Liang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, 92 Wucheng Rd., Taiyuan, 030006, China
| | - Wei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, 92 Wucheng Rd., Taiyuan, 030006, China.
| |
Collapse
|
7
|
Nucleus-specific linker histones Hho1 and Mlh1 form distinct protein interactions during growth, starvation and development in Tetrahymena thermophila. Sci Rep 2020; 10:168. [PMID: 31932604 PMCID: PMC6957481 DOI: 10.1038/s41598-019-56867-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023] Open
Abstract
Chromatin organization influences most aspects of gene expression regulation. The linker histone H1, along with the core histones, is a key component of eukaryotic chromatin. Despite its critical roles in chromatin structure and function and gene regulation, studies regarding the H1 protein-protein interaction networks, particularly outside of Opisthokonts, are limited. The nuclear dimorphic ciliate protozoan Tetrahymena thermophila encodes two distinct nucleus-specific linker histones, macronuclear Hho1 and micronuclear Mlh1. We used a comparative proteomics approach to identify the Hho1 and Mlh1 protein-protein interaction networks in Tetrahymena during growth, starvation, and sexual development. Affinity purification followed by mass spectrometry analysis of the Hho1 and Mlh1 proteins revealed a non-overlapping set of co-purifying proteins suggesting that Tetrahymena nucleus-specific linker histones are subject to distinct regulatory pathways. Furthermore, we found that linker histones interact with distinct proteins under the different stages of the Tetrahymena life cycle. Hho1 and Mlh1 co-purified with several Tetrahymena-specific as well as conserved interacting partners involved in chromatin structure and function and other important cellular pathways. Our results suggest that nucleus-specific linker histones might be subject to nucleus-specific regulatory pathways and are dynamically regulated under different stages of the Tetrahymena life cycle.
Collapse
|
8
|
Iwamoto M, Mori C, Osakada H, Koujin T, Hiraoka Y, Haraguchi T. Nuclear localization signal targeting to macronucleus and micronucleus in binucleated ciliate Tetrahymena thermophila. Genes Cells 2018; 23:568-579. [PMID: 29882620 DOI: 10.1111/gtc.12602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/27/2018] [Accepted: 05/08/2018] [Indexed: 01/25/2023]
Abstract
Ciliated protozoa possess two morphologically and functionally distinct nuclei: a macronucleus (MAC) and a micronucleus (MIC). The MAC is transcriptionally active and functions in all cellular events. The MIC is transcriptionally inactive during cell growth, but functions in meiotic events to produce progeny nuclei. Thus, these two nuclei must be distinguished by the nuclear proteins required for their distinct functions during cellular events such as cell proliferation and meiosis. To understand the mechanism of the nuclear transport specific to either MAC or MIC, we identified specific nuclear localization signals (NLSs) in two MAC- and MIC-specific nuclear proteins, macronuclear histone H1 and micronuclear linker histone-like protein (Mlh1), respectively. By expressing GFP-fused fragments of these proteins in Tetrahymena thermophila cells, two distinct regions in macronuclear histone H1 protein were assigned as independent MAC-specific NLSs and two distinct regions in Mlh1 protein were assigned as independent MIC-specific NLSs. These NLSs contain several essential lysine residues responsible for the MAC- and MIC-specific nuclear transport, but neither contains any consensus sequence with known monopartite or bipartite NLSs in other model organisms. Our findings contribute to understanding how specific nuclear targeting is achieved to perform distinct nuclear functions in binucleated ciliates.
Collapse
Affiliation(s)
- Masaaki Iwamoto
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Chie Mori
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Hiroko Osakada
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Takako Koujin
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Yasushi Hiraoka
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Tokuko Haraguchi
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|