1
|
Ibarz-Pavon AB, Bielsky MC, Bose R, Cavaleri M, Crump JA, Hombach J, Kaslow DC, Khaman F, MacLennan CA, Mehring-LeDoare K, Pollard AJ, Quadri F, John J, Wilder-Smith A. Consultation report - considerations for a regulatory pathway for bivalent Salmonella Typhi/Paratyphi A vaccines for use in endemic countries. Vaccine 2025; 56:127189. [PMID: 40318346 DOI: 10.1016/j.vaccine.2025.127189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
Enteric fever caused by Salmonella enterica serovars Typhi and Paratyphi A and, to a lesser extent, S. Paratyphi B and C, remains a significant cause of mortality and morbidity in resource-constrained settings. Typhoid conjugate vaccines (TCVs) protect against S. Typhi but no vaccine to date protects against paratyphoid fever. There are several bivalent S. Typhi/Paratyphi A products in development; however, the low incidence of paratyphoid fever in many settings limits the feasibility of phase 3 efficacy studies. Two bivalent vaccines adding the S. Paratyphi A-specific O:2 lipopolysaccharide conjugated to a protein carrier to TCV constructs have successfully completed phase 1 studies and will progress rapidly in their development. The WHO's Product Development for Vaccines Advisory Committee (PDVAC) endorsed a regulatory pathway for a bivalent S. Typhi/Paratyphi A vaccine that contemplates demonstrating protective efficacy against S. Paratyphi A infection in a controlled human infection model (CHIM). Since the use of CHIM data in lieu of phase 3 efficacy studies and to identify markers of immune protection is not yet widely accepted by regulatory bodies, the WHO organized a consultation with vaccine developers, manufacturers, and regulators. The purpose of the meeting was to discuss the feasibility and considerations for the licensure of a bivalent S. Typhi/Paratyphi A vaccine. The aim of the consultation was to gain alignment among key stakeholders and facilitate the pathway to licensure in endemic countries.
Collapse
Affiliation(s)
- Ana Belen Ibarz-Pavon
- World Health Organization, Department of Immunization, Vaccines and Biologicals, Geneva, Switzerland.
| | | | - Rubina Bose
- Central Drugs Standard Control Organization (CDSCO), India
| | | | - John A Crump
- Centre for International Health, University of Otago, Dunedin, New Zealand
| | - Joachim Hombach
- World Health Organization, Department of Immunization, Vaccines and Biologicals, Geneva, Switzerland
| | - David C Kaslow
- Food and Drug Administration, Center for Biologics Evaluation and Research, Silver Spring, MD, USA
| | - Farhana Khaman
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Calman A MacLennan
- Bill & Melinda Gates Foundation, Enteric & Diarrheal Diseases, 440 5th Ave N, Seattle, WA 98109, USA; Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Kirsty Mehring-LeDoare
- World Health Organization, Department of Immunization, Vaccines and Biologicals, Geneva, Switzerland; City St. George's, University of London, London, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and The NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Firdausi Quadri
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Jacob John
- Christian Medical College, Vellore, India
| | - Annelies Wilder-Smith
- World Health Organization, Department of Immunization, Vaccines and Biologicals, Geneva, Switzerland
| |
Collapse
|
2
|
Pinto M, Durante S, Carducci M, Massai L, Alfini R, Mylona E, Karkey A, Baker S, Micoli F, Giannelli C, Rossi O, Rondini S. The Salmonella Paratyphi A O-Antigen Glycoconjugate Vaccine Is Able to Induce Antibodies with Bactericidal Activity Against a Panel of Clinical Isolates. Vaccines (Basel) 2025; 13:122. [PMID: 40006669 PMCID: PMC11860196 DOI: 10.3390/vaccines13020122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Typhoid and paratyphoid fevers represent a global health burden, especially in Southern Asia, exacerbated by the increase in antimicrobial resistance. While vaccines against Salmonella Typhi have been successfully introduced, a vaccine against S. Paratyphi A is not available, yet. Efforts to develop an effective vaccine targeting both Salmonella serovars are currently ongoing. GVGH is developing a bivalent vaccine constituted by the Vi-CRM197 typhoid conjugate vaccine (TCV), and the Salmonella Paratyphi A O-antigen (O:2), also conjugated to the CRM197 carrier protein (O:2-CRM197). In this work we have characterized a panel of S. Paratyphi A clinical isolates from endemic regions, differing in terms of their O:2 structural features. METHODS Rabbits were immunized with the S. Paratyphi A component of the vaccine candidate and the resulting sera were tested for their ability to bind and kill the isolates using flow cytometry and luminescence-based serum bactericidal assay (L-SBA). RESULTS The O:2-CRM197 glycoconjugate induced a functional immune response in rabbits, effectively binding and killing a diverse panel of clinical isolates. The sera demonstrated bactericidal activity independent of the O:2 structural variations, including differences in O-acetylation and glucosylation levels. Additionally, the study found that the O:2-CRM197 conjugate's adsorption to Alhydrogel did not significantly impact its immunogenicity or bactericidal efficacy. CONCLUSIONS The O:2-CRM197 component of the bivalent vaccine candidate shows promise in providing broad protection against S. Paratyphi A isolates, regardless of their O-antigen structural variations. The ongoing clinical studies on human sera are expected to confirm these results.
Collapse
Affiliation(s)
- Marika Pinto
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy; (M.P.); (S.D.); (M.C.); (L.M.); (R.A.); (F.M.); (C.G.); (O.R.)
| | - Salvatore Durante
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy; (M.P.); (S.D.); (M.C.); (L.M.); (R.A.); (F.M.); (C.G.); (O.R.)
- GSK, via Fiorentina 1, 53100 Siena, Italy
| | - Martina Carducci
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy; (M.P.); (S.D.); (M.C.); (L.M.); (R.A.); (F.M.); (C.G.); (O.R.)
| | - Luisa Massai
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy; (M.P.); (S.D.); (M.C.); (L.M.); (R.A.); (F.M.); (C.G.); (O.R.)
| | - Renzo Alfini
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy; (M.P.); (S.D.); (M.C.); (L.M.); (R.A.); (F.M.); (C.G.); (O.R.)
| | - Elli Mylona
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK; (E.M.); (S.B.)
| | - Abhilasha Karkey
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, P.O. Box 26500, Kathmandu 44700, Nepal;
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK; (E.M.); (S.B.)
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy; (M.P.); (S.D.); (M.C.); (L.M.); (R.A.); (F.M.); (C.G.); (O.R.)
| | - Carlo Giannelli
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy; (M.P.); (S.D.); (M.C.); (L.M.); (R.A.); (F.M.); (C.G.); (O.R.)
| | - Omar Rossi
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy; (M.P.); (S.D.); (M.C.); (L.M.); (R.A.); (F.M.); (C.G.); (O.R.)
| | - Simona Rondini
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy; (M.P.); (S.D.); (M.C.); (L.M.); (R.A.); (F.M.); (C.G.); (O.R.)
| |
Collapse
|
3
|
Alfini R, Carducci M, Massai L, De Simone D, Mariti M, Rossi O, Rondini S, Micoli F, Giannelli C. Design of a Glycoconjugate Vaccine Against Salmonella Paratyphi A. Vaccines (Basel) 2024; 12:1272. [PMID: 39591175 PMCID: PMC11599127 DOI: 10.3390/vaccines12111272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Typhoid and paratyphoid fever together are responsible for millions of cases and thousands of deaths per year, most of which occur in children in South and Southeast Asia. While typhoid conjugate vaccines (TCVs) are licensed, no vaccines are currently available against S. Paratyphi A. Here we describe the design of a S. Paratyphi A conjugate. METHODS The serovar-specific O-antigen (O:2) was linked to the CRM197 carrier protein (O:2-CRM197) and a panel of conjugates differing for structural characteristics were compared in mice and rabbits. RESULTS We identified the O-antigen molecular size, polysaccharide to protein ratio, conjugate cross-linking, and O:2 O-acetylation level as critical quality attributes and identified optimal design for a more immunogenic vaccine. CONCLUSIONS This work guides the development of the O:2-CRM197 conjugate to be combined with TCV in a bivalent formulation against enteric fever.
Collapse
Affiliation(s)
- Renzo Alfini
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (M.C.); (L.M.); (D.D.S.); (O.R.); (S.R.); (F.M.); (C.G.)
| | - Martina Carducci
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (M.C.); (L.M.); (D.D.S.); (O.R.); (S.R.); (F.M.); (C.G.)
| | - Luisa Massai
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (M.C.); (L.M.); (D.D.S.); (O.R.); (S.R.); (F.M.); (C.G.)
| | - Daniele De Simone
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (M.C.); (L.M.); (D.D.S.); (O.R.); (S.R.); (F.M.); (C.G.)
| | | | - Omar Rossi
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (M.C.); (L.M.); (D.D.S.); (O.R.); (S.R.); (F.M.); (C.G.)
| | - Simona Rondini
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (M.C.); (L.M.); (D.D.S.); (O.R.); (S.R.); (F.M.); (C.G.)
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (M.C.); (L.M.); (D.D.S.); (O.R.); (S.R.); (F.M.); (C.G.)
| | - Carlo Giannelli
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (M.C.); (L.M.); (D.D.S.); (O.R.); (S.R.); (F.M.); (C.G.)
| |
Collapse
|
4
|
Di Benedetto R, Massai L, Wright M, Mancini F, Cleveland M, Rossi O, Giannelli C, Berlanda Scorza F, Micoli F. Adjuvanted Modified Bacterial Antigens for Single-Dose Vaccines. Int J Mol Sci 2024; 25:11461. [PMID: 39519015 PMCID: PMC11546299 DOI: 10.3390/ijms252111461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Alum is the most used vaccine adjuvant, due to its safety, low cost and adjuvanticity to various antigens. However, the mechanism of action of alum is complex and not yet fully understood, and the immune responses elicited can be weak and antigen-dependent. While several antigens rapidly desorb from alum upon exposure to serum, phosphorylated proteins remain tightly bound through a ligand-exchange reaction with surface hydroxyls on alum. Here, bacterial proteins and glycoconjugates have been modified with phosphoserines, aiming at enhancing the binding to alum and prolonging their bioavailability. Tetanus toxoid protein and Salmonella Typhi fragmented Vi-CRM conjugate were used. Both antigens rapidly and completely desorbed from alum after incubation with serum, verified via a competitive ELISA assay, and set up to rapidly evaluate in vitro antigen desorption from alum. After antigen modification with phosphoserines, desorption from alum was slowed down, and modified antigens demonstrated more prolonged retention at the injection sites through in vivo optical imaging in mice. Both modified antigens elicited stronger immune responses in mice, after a single injection only, compared to unmodified antigens. A stronger binding to alum could result in potent single-dose vaccine candidates and opens the possibility to design novel carrier proteins for glycoconjugates and improved versions of bacterial recombinant proteins.
Collapse
Affiliation(s)
- Roberta Di Benedetto
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.D.B.); (L.M.); (F.M.); (O.R.); (C.G.); (F.B.S.)
| | - Luisa Massai
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.D.B.); (L.M.); (F.M.); (O.R.); (C.G.); (F.B.S.)
| | - Mark Wright
- GSK, Stevenage SG1 2NFX, Hertfordshire, UK; (M.W.); (M.C.)
| | - Francesca Mancini
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.D.B.); (L.M.); (F.M.); (O.R.); (C.G.); (F.B.S.)
| | | | - Omar Rossi
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.D.B.); (L.M.); (F.M.); (O.R.); (C.G.); (F.B.S.)
| | - Carlo Giannelli
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.D.B.); (L.M.); (F.M.); (O.R.); (C.G.); (F.B.S.)
| | - Francesco Berlanda Scorza
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.D.B.); (L.M.); (F.M.); (O.R.); (C.G.); (F.B.S.)
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.D.B.); (L.M.); (F.M.); (O.R.); (C.G.); (F.B.S.)
| |
Collapse
|
5
|
Oldrini D, Di Benedetto R, Carducci M, De Simone D, Massai L, Alfini R, Galli B, Brunelli B, Przedpelski A, Barbieri JT, Rossi O, Giannelli C, Rappuoli R, Berti F, Micoli F. Testing a Recombinant Form of Tetanus Toxoid as a Carrier Protein for Glycoconjugate Vaccines. Vaccines (Basel) 2023; 11:1770. [PMID: 38140177 PMCID: PMC10747096 DOI: 10.3390/vaccines11121770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Glycoconjugate vaccines play a major role in the prevention of infectious diseases worldwide, with significant impact on global health, enabling the polysaccharides to induce immunogenicity in infants and immunological memory. Tetanus toxoid (TT), a chemically detoxified bacterial toxin, is among the few carrier proteins used in licensed glycoconjugate vaccines. The recombinant full-length 8MTT was engineered in E. coli with eight individual amino acid mutations to inactivate three toxin functions. Previous studies in mice showed that 8MTT elicits a strong IgG response, confers protection, and can be used as a carrier protein. Here, we compared 8MTT to traditional carrier proteins TT and cross-reactive material 197 (CRM197), using different polysaccharides as models: Group A Streptococcus cell-wall carbohydrate (GAC), Salmonella Typhi Vi, and Neisseria meningitidis serogroups A, C, W, and Y. The persistency of the antibodies induced, the ability of the glycoconjugates to elicit booster response after re-injection at a later time point, the eventual carrier-induced epitopic suppression, and immune interference in multicomponent formulations were also evaluated. Overall, immunogenicity responses obtained with 8MTT glycoconjugates were compared to those obtained with corresponding TT and, in some cases, were higher than those induced by CRM197 glycoconjugates. Our results support the use of 8MTT as a good alternative carrier protein for glycoconjugate vaccines, with advantages in terms of manufacturability compared to TT.
Collapse
Affiliation(s)
- Davide Oldrini
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy; (D.O.); (R.D.B.); (M.C.); (D.D.S.); (L.M.); (R.A.); (O.R.); (C.G.)
| | - Roberta Di Benedetto
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy; (D.O.); (R.D.B.); (M.C.); (D.D.S.); (L.M.); (R.A.); (O.R.); (C.G.)
| | - Martina Carducci
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy; (D.O.); (R.D.B.); (M.C.); (D.D.S.); (L.M.); (R.A.); (O.R.); (C.G.)
| | - Daniele De Simone
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy; (D.O.); (R.D.B.); (M.C.); (D.D.S.); (L.M.); (R.A.); (O.R.); (C.G.)
| | - Luisa Massai
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy; (D.O.); (R.D.B.); (M.C.); (D.D.S.); (L.M.); (R.A.); (O.R.); (C.G.)
| | - Renzo Alfini
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy; (D.O.); (R.D.B.); (M.C.); (D.D.S.); (L.M.); (R.A.); (O.R.); (C.G.)
| | - Barbara Galli
- GSK, via Fiorentina 1, 53100 Siena, Italy; (B.G.); (B.B.); (F.B.)
| | | | - Amanda Przedpelski
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (A.P.); (J.T.B.)
| | - Joseph T. Barbieri
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (A.P.); (J.T.B.)
| | - Omar Rossi
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy; (D.O.); (R.D.B.); (M.C.); (D.D.S.); (L.M.); (R.A.); (O.R.); (C.G.)
| | - Carlo Giannelli
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy; (D.O.); (R.D.B.); (M.C.); (D.D.S.); (L.M.); (R.A.); (O.R.); (C.G.)
| | - Rino Rappuoli
- Fondazione Biotecnopolo, via Fiorentina 1, 53100 Siena, Italy;
| | - Francesco Berti
- GSK, via Fiorentina 1, 53100 Siena, Italy; (B.G.); (B.B.); (F.B.)
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy; (D.O.); (R.D.B.); (M.C.); (D.D.S.); (L.M.); (R.A.); (O.R.); (C.G.)
| |
Collapse
|
6
|
Micoli F, Stefanetti G, MacLennan CA. Exploring the variables influencing the immune response of traditional and innovative glycoconjugate vaccines. Front Mol Biosci 2023; 10:1201693. [PMID: 37261327 PMCID: PMC10227950 DOI: 10.3389/fmolb.2023.1201693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 04/28/2023] [Indexed: 06/02/2023] Open
Abstract
Vaccines are cost-effective tools for reducing morbidity and mortality caused by infectious diseases. The rapid evolution of pneumococcal conjugate vaccines, the introduction of tetravalent meningococcal conjugate vaccines, mass vaccination campaigns in Africa with a meningococcal A conjugate vaccine, and the recent licensure and introduction of glycoconjugates against S. Typhi underlie the continued importance of research on glycoconjugate vaccines. More innovative ways to produce carbohydrate-based vaccines have been developed over the years, including bioconjugation, Outer Membrane Vesicles (OMV) and the Multiple antigen-presenting system (MAPS). Several variables in the design of these vaccines can affect the induced immune responses. We review immunogenicity studies comparing conjugate vaccines that differ in design variables, such as saccharide chain length and conjugation chemistry, as well as carrier protein and saccharide to protein ratio. We evaluate how a better understanding of the effects of these different parameters is key to designing improved glycoconjugate vaccines.
Collapse
Affiliation(s)
| | - Giuseppe Stefanetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Calman A. MacLennan
- Enteric and Diarrheal Diseases, Global Health, Bill and Melinda Gates Foundation, Seattle, WA, United States
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- The Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
7
|
Jossi SE, Arcuri M, Alshayea A, Persaud RR, Marcial-Juárez E, Palmieri E, Di Benedetto R, Pérez-Toledo M, Pillaye J, Channell WM, Schager AE, Lamerton RE, Cook CN, Goodall M, Haneda T, Bäumler AJ, Jackson-Jones LH, Toellner KM, MacLennan CA, Henderson IR, Micoli F, Cunningham AF. Vi polysaccharide and conjugated vaccines afford similar early, IgM or IgG-independent control of infection but boosting with conjugated Vi vaccines sustains the efficacy of immune responses. Front Immunol 2023; 14:1139329. [PMID: 37033932 PMCID: PMC10076549 DOI: 10.3389/fimmu.2023.1139329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Vaccination with Vi capsular polysaccharide (Vi-PS) or protein-Vi typhoid conjugate vaccine (TCV) can protect adults against Salmonella Typhi infections. TCVs offer better protection than Vi-PS in infants and may offer better protection in adults. Potential reasons for why TCV may be superior in adults are not fully understood. Methods and results Here, we immunized wild-type (WT) mice and mice deficient in IgG or IgM with Vi-PS or TCVs (Vi conjugated to tetanus toxoid or CRM197) for up to seven months, with and without subsequent challenge with Vi-expressing Salmonella Typhimurium. Unexpectedly, IgM or IgG alone were similarly able to reduce bacterial burdens in tissues, and this was observed in response to conjugated or unconjugated Vi vaccines and was independent of antibody being of high affinity. Only in the longer-term after immunization (>5 months) were differences observed in tissue bacterial burdens of mice immunized with Vi-PS or TCV. These differences related to the maintenance of antibody responses at higher levels in mice boosted with TCV, with the rate of fall in IgG titres induced to Vi-PS being greater than for TCV. Discussion Therefore, Vi-specific IgM or IgG are independently capable of protecting from infection and any superior protection from vaccination with TCV in adults may relate to responses being able to persist better rather than from differences in the antibody isotypes induced. These findings suggest that enhancing our understanding of how responses to vaccines are maintained may inform on how to maximize protection afforded by conjugate vaccines against encapsulated pathogens such as S. Typhi.
Collapse
Affiliation(s)
- Siân E. Jossi
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Melissa Arcuri
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- GSK Vaccines Institute for Global Health SRL, Siena, Italy
| | - Areej Alshayea
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Ruby R. Persaud
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Edith Marcial-Juárez
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Elena Palmieri
- GSK Vaccines Institute for Global Health SRL, Siena, Italy
| | | | - Marisol Pérez-Toledo
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Jamie Pillaye
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Will M. Channell
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Anna E. Schager
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Rachel E. Lamerton
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Charlotte N. Cook
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Margaret Goodall
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Takeshi Haneda
- Laboratory of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Andreas J. Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, United States
| | - Lucy H. Jackson-Jones
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| | - Kai-Michael Toellner
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Calman A. MacLennan
- Bill & Melinda Gates Foundation, London, United Kingdom
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ian R. Henderson
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | | | - Adam F. Cunningham
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
8
|
Berlanda Scorza F, Martin LB, Podda A, Rappuoli R. A strategic model for developing vaccines against neglected diseases: An example of industry collaboration for sustainable development. Hum Vaccin Immunother 2022; 18:2136451. [PMID: 36495000 PMCID: PMC9746511 DOI: 10.1080/21645515.2022.2136451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/30/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
Infectious diseases continue to disproportionately affect low- and middle-income countries (LMICs) and children aged <5 y. Developing vaccines against diseases endemic in LMICs relies mainly on strong public-private collaborations, but several challenges remain. We review the operating model of the GSK Vaccines Institute for Global Health (GVGH), which aims to address these challenges. The model involves i) selection of vaccine targets based on priority ranking for impact on global health; ii) development from design to clinical proof-of-concept; iii) transfer to an industrial partner, for further technical/clinical development, licensing, manufacturing, and distribution. Cost and risks associated with pre-clinical and early clinical development are assumed by GVGH, increasing the probability to make the vaccine more affordable in LMICs. A conjugate vaccine against typhoid fever, Vi-CRM197, has recently obtained WHO prequalification, within a year from licensure in India, demonstrating the success of the GVGH model for development and delivery of global health vaccines.
Collapse
Affiliation(s)
| | | | - Audino Podda
- GSK Vaccines Institute for Global Health, Siena, Italy
| | - Rino Rappuoli
- GSK Vaccines Institute for Global Health, Siena, Italy
- GSK, Siena, Italy
| |
Collapse
|
9
|
Stefanetti G, MacLennan CA, Micoli F. Impact and Control of Sugar Size in Glycoconjugate Vaccines. Molecules 2022; 27:molecules27196432. [PMID: 36234967 PMCID: PMC9572008 DOI: 10.3390/molecules27196432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/17/2022] Open
Abstract
Glycoconjugate vaccines have contributed enormously to reducing and controlling encapsulated bacterial infections for over thirty years. Glycoconjugate vaccines are based on a carbohydrate antigen that is covalently linked to a carrier protein; this is necessary to cause T cell responses for optimal immunogenicity, and to protect young children. Many interdependent parameters affect the immunogenicity of glycoconjugate vaccines, including the size of the saccharide antigen. Here, we examine and discuss the impact of glycan chain length on the efficacy of glycoconjugate vaccines and report the methods employed to size polysaccharide antigens, while highlighting the underlying reaction mechanisms. A better understanding of the impact of key parameters on the immunogenicity of glycoconjugates is critical to developing a new generation of highly effective vaccines.
Collapse
Affiliation(s)
- Giuseppe Stefanetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
- Correspondence:
| | - Calman Alexander MacLennan
- Enteric and Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, 500 5th Ave. N, Seattle, WA 98109, USA
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
- The Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | | |
Collapse
|
10
|
Li J, Xiang H, Zhang Q, Miao X. Polysaccharide-Based Transdermal Drug Delivery. Pharmaceuticals (Basel) 2022; 15:ph15050602. [PMID: 35631428 PMCID: PMC9146969 DOI: 10.3390/ph15050602] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/04/2022] Open
Abstract
Materials derived from natural plants and animals have great potential for transdermal drug delivery. Polysaccharides are widely derived from marine, herbal, and microbial sources. Compared with synthetic polymers, polysaccharides have the advantages of non-toxicity and biodegradability, ease of modification, biocompatibility, targeting, and antibacterial properties. Currently, polysaccharide-based transdermal drug delivery vehicles, such as hydrogel, film, microneedle (MN), and tissue scaffolds are being developed. The addition of polysaccharides allows these vehicles to exhibit better-swelling properties, mechanical strength, tensile strength, etc. Due to the stratum corneum’s resistance, the transdermal drug delivery system cannot deliver drugs as efficiently as desired. The charge and hydration of polysaccharides allow them to react with the skin and promote drug penetration. In addition, polysaccharide-based nanotechnology enhances drug utilization efficiency. Various diseases are currently treated by polysaccharide-based transdermal drug delivery devices and exhibit promising futures. The most current knowledge on these excellent materials will be thoroughly discussed by reviewing polysaccharide-based transdermal drug delivery strategies.
Collapse
Affiliation(s)
- Jingyuan Li
- Marine College, Shandong University, Weihai 264209, China; (J.L.); (H.X.); (Q.Z.)
- SDU-ANU Joint Science College, Shandong University, Weihai 264209, China
| | - Hong Xiang
- Marine College, Shandong University, Weihai 264209, China; (J.L.); (H.X.); (Q.Z.)
| | - Qian Zhang
- Marine College, Shandong University, Weihai 264209, China; (J.L.); (H.X.); (Q.Z.)
| | - Xiaoqing Miao
- Marine College, Shandong University, Weihai 264209, China; (J.L.); (H.X.); (Q.Z.)
- Weihai Changqing Ocean Science Technology Co., Ltd., Weihai 264209, China
- Correspondence: ; Tel.: +86-19806301068
| |
Collapse
|
11
|
Anish C, Beurret M, Poolman J. Combined effects of glycan chain length and linkage type on the immunogenicity of glycoconjugate vaccines. NPJ Vaccines 2021; 6:150. [PMID: 34893630 PMCID: PMC8664855 DOI: 10.1038/s41541-021-00409-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/01/2021] [Indexed: 11/09/2022] Open
Abstract
The development and use of antibacterial glycoconjugate vaccines have significantly reduced the occurrence of potentially fatal childhood and adult diseases such as bacteremia, bacterial meningitis, and pneumonia. In these vaccines, the covalent linkage of bacterial glycans to carrier proteins augments the immunogenicity of saccharide antigens by triggering T cell-dependent B cell responses, leading to high-affinity antibodies and durable protection. Licensed glycoconjugate vaccines either contain long-chain bacterial polysaccharides, medium-sized oligosaccharides, or short synthetic glycans. Here, we discuss factors that affect the glycan chain length in vaccines and review the available literature discussing the impact of glycan chain length on vaccine efficacy. Furthermore, we evaluate the available clinical data on licensed glycoconjugate vaccine preparations with varying chain lengths against two bacterial pathogens, Haemophilus influenzae type b and Neisseria meningitidis group C, regarding a possible correlation of glycan chain length with their efficacy. We find that long-chain glycans cross-linked to carrier proteins and medium-sized oligosaccharides end-linked to carriers both achieve high immunogenicity and efficacy. However, end-linked glycoconjugates that contain long untethered stretches of native glycan chains may induce hyporesponsiveness by T cell-independent activation of B cells, while cross-linked medium-sized oligosaccharides may suffer from suboptimal saccharide epitope accessibility.
Collapse
Affiliation(s)
- Chakkumkal Anish
- grid.497529.40000 0004 0625 7026Bacterial Vaccines Discovery and Early Development, Janssen Vaccines and Prevention B.V., Leiden, Netherlands
| | - Michel Beurret
- Bacterial Vaccines Discovery and Early Development, Janssen Vaccines and Prevention B.V., Leiden, Netherlands.
| | - Jan Poolman
- grid.497529.40000 0004 0625 7026Bacterial Vaccines Discovery and Early Development, Janssen Vaccines and Prevention B.V., Leiden, Netherlands
| |
Collapse
|
12
|
Rotavirus spike protein ΔVP8* as a novel carrier protein for conjugate vaccine platform with demonstrated antigenic potential for use as bivalent vaccine. Sci Rep 2021; 11:22037. [PMID: 34764353 PMCID: PMC8586335 DOI: 10.1038/s41598-021-01549-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/29/2021] [Indexed: 11/18/2022] Open
Abstract
Conjugate vaccine platform is a promising strategy to overcome the poor immunogenicity of bacterial polysaccharide antigens in infants and children. A carrier protein in conjugate vaccines works not only as an immune stimulator to polysaccharide, but also as an immunogen; with the latter generally not considered as a measured outcome in real world. Here, we probed the potential of a conjugate vaccine platform to induce enhanced immunogenicity of a truncated rotavirus spike protein ΔVP8*. ΔVP8* was covalently conjugated to Vi capsular polysaccharide (Vi) of Salmonella Typhi to develop a bivalent vaccine, termed Vi-ΔVP8*. Our results demonstrated that the Vi-ΔVP8* vaccine can induce specific immune responses against both antigens in immunized mice. The conjugate vaccine elicits high antibody titers and functional antibodies against S. Typhi and Rotavirus (RV) when compared to immunization with a single antigen. Together, these results indicate that Vi-ΔVP8* is a potent and immunogenic vaccine candidate, thus strengthening the potential of conjugate vaccine platform with enhanced immune responses to carrier protein, including ΔVP8*.
Collapse
|
13
|
Mohammadzadeh R, Soleimanpour S, Pishdadian A, Farsiani H. Designing and development of epitope-based vaccines against Helicobacter pylori. Crit Rev Microbiol 2021; 48:489-512. [PMID: 34559599 DOI: 10.1080/1040841x.2021.1979934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori infection is the principal cause of serious diseases (e.g. gastric cancer and peptic ulcers). Antibiotic therapy is an inadequate strategy in H. pylori eradication because of which vaccination is an inevitable approach. Despite the presence of countless vaccine candidates, current vaccines in clinical trials have performed with poor efficacy which makes vaccination extremely challenging. Remarkable advancements in immunology and pathogenic biology have provided an appropriate opportunity to develop various epitope-based vaccines. The fusion of proper antigens involved in different aspects of H. pylori colonization and pathogenesis as well as peptide linkers and built-in adjuvants results in producing epitope-based vaccines with excellent therapeutic efficacy and negligible adverse effects. Difficulties of the in vitro culture of H. pylori, high genetic variation, and unfavourable immune responses against feeble epitopes in the complete antigen are major drawbacks of current vaccine strategies that epitope-based vaccines may overcome. Besides decreasing the biohazard risk, designing precise formulations, saving time and cost, and induction of maximum immunity with minimum adverse effects are the advantages of epitope-based vaccines. The present article is a comprehensive review of strategies for designing and developing epitope-based vaccines to provide insights into the innovative vaccination against H. pylori.
Collapse
Affiliation(s)
- Roghayeh Mohammadzadeh
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Reference Tuberculosis Laboratory, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Pishdadian
- Department of Immunology, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Hadi Farsiani
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Increasing the High Throughput of a Luminescence-Based Serum Bactericidal Assay (L-SBA). BIOTECH 2021; 10:biotech10030019. [PMID: 35822773 PMCID: PMC9245470 DOI: 10.3390/biotech10030019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/02/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
Serum bactericidal assay (SBA) is the method to investigate in vitro complement-mediated bactericidal activity of sera raised upon vaccination. The assay is based on incubating the target bacteria and exogenous complement with sera at different dilutions and the result of the assay is represented by the sera dilution being able to kill 50% of bacteria present in the inoculum. The traditional readout of the assay is based on measurement of colony-forming units (CFU) obtained after plating different reaction mixes on agar. This readout is at low throughput and time consuming, even when automated counting is used. We previously described a novel assay with a luminescence readout (L-SBA) based on measurement of ATP released by live bacteria, which allowed to substantially increase the throughput as well as to reduce the time necessary to perform the assay when compared to traditional methods. Here we present a further improvement of the assay by moving from a 96-well to a 384-well format, which allowed us to further increase the throughput and substantially reduce costs while maintaining the high performance of the previously described L-SBA method. The method has been successfully applied to a variety of different pathogens.
Collapse
|
15
|
Micoli F, Alfini R, Di Benedetto R, Necchi F, Schiavo F, Mancini F, Carducci M, Oldrini D, Pitirollo O, Gasperini G, Balocchi C, Bechi N, Brunelli B, Piccioli D, Adamo R. Generalized Modules for Membrane Antigens as Carrier for Polysaccharides: Impact of Sugar Length, Density, and Attachment Site on the Immune Response Elicited in Animal Models. Front Immunol 2021; 12:719315. [PMID: 34594333 PMCID: PMC8477636 DOI: 10.3389/fimmu.2021.719315] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
Nanoparticle systems are being explored for the display of carbohydrate antigens, characterized by multimeric presentation of glycan epitopes and special chemico-physical properties of nano-sized particles. Among them, outer membrane vesicles (OMVs) are receiving great attention, combining antigen presentation with the immunopotentiator effect of the Toll-like receptor agonists naturally present on these systems. In this context, we are testing Generalized Modules for Membrane Antigens (GMMA), OMVs naturally released from Gram-negative bacteria mutated to increase blebbing, as carrier for polysaccharides. Here, we investigated the impact of saccharide length, density, and attachment site on the immune response elicited by GMMA in animal models, using a variety of structurally diverse polysaccharides from different pathogens (i.e., Neisseria meningitidis serogroup A and C, Haemophilus influenzae type b, and streptococcus Group A Carbohydrate and Salmonella Typhi Vi). Anti-polysaccharide immune response was not affected by the number of saccharides per GMMA particle. However, lower saccharide loading can better preserve the immunogenicity of GMMA as antigen. In contrast, saccharide length needs to be optimized for each specific antigen. Interestingly, GMMA conjugates induced strong functional immune response even when the polysaccharides were linked to sugars on GMMA. We also verified that GMMA conjugates elicit a T-dependent humoral immune response to polysaccharides that is strictly dependent on the nature of the polysaccharide. The results obtained are important to design novel glycoconjugate vaccines using GMMA as carrier and support the development of multicomponent glycoconjugate vaccines where GMMA can play the dual role of carrier and antigen. In addition, this work provides significant insights into the mechanism of action of glycoconjugates.
Collapse
Affiliation(s)
| | - Renzo Alfini
- GSK Vaccines Institute for Global Health (GVGH), Siena, Italy
| | | | | | - Fabiola Schiavo
- GSK Vaccines Institute for Global Health (GVGH), Siena, Italy
| | | | | | - Davide Oldrini
- GSK Vaccines Institute for Global Health (GVGH), Siena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Khalid A, Asim-Ur-Rehman, Ahmed N, Chaudhery I, Al-Jafary MA, Al-Suhaimi EA, Tarhini M, Lebaz N, Elaissari A. Polysaccharide Chemistry in Drug Delivery, Endocrinology, and Vaccines. Chemistry 2021; 27:8437-8451. [PMID: 33856737 DOI: 10.1002/chem.202100204] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Indexed: 12/26/2022]
Abstract
Polysaccharides, due to their outstanding properties, have attracted the attention of researchers, working in the biomedical field and especially of those working in drug delivery. Modified/functionalized polysaccharides further increase the importance for various applications. Delivery of therapeutics for diverse ailments in different endocrine glands and hormones safely, is a focal point of researchers working in the field. Among the routes followed, the transdermal route is preferred due to non-exposure of active moieties to the harsh gastric environment and first-pass metabolism. This review starts with the overview of polysaccharides used for the delivery of various therapeutic agents. Advantages of polysaccharides used in the transdermal route are addressed in detail. Types of polysaccharides will be elaborated through examples, and in this context, special emphasis will be on the polysaccharides being used for synthesis of the membranes/films. Techniques employed for their modification to design novel carriers for therapeutics delivery will also be discussed. The review will end with a brief discussion on recent developments and future perspectives for delivery of therapeutic agents, and vaccine development.
Collapse
Affiliation(s)
- Aimen Khalid
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Asim-Ur-Rehman
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Naveed Ahmed
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Iqra Chaudhery
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Meneerah A Al-Jafary
- Biology Department, College of Science, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Ebtesam Abdullah Al-Suhaimi
- Biology Department, College of Science, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Mohamad Tarhini
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69622, Villeurbanne, France
| | - Noureddine Lebaz
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, LAGEPP-UMR 5007, 69100, Villeurbanne, France
| | - Abdelhamid Elaissari
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69622, Villeurbanne, France
| |
Collapse
|
17
|
Bazhenova A, Gao F, Bolgiano B, Harding SE. Glycoconjugate vaccines against Salmonella enterica serovars and Shigella species: existing and emerging methods for their analysis. Biophys Rev 2021; 13:221-246. [PMID: 33868505 PMCID: PMC8035613 DOI: 10.1007/s12551-021-00791-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/25/2021] [Indexed: 12/26/2022] Open
Abstract
The global spread of enteric disease, the increasingly limited options for antimicrobial treatment and the need for effective eradication programs have resulted in an increased demand for glycoconjugate enteric vaccines, made with carbohydrate-based membrane components of the pathogen, and their precise characterisation. A set of physico-chemical and immunological tests are employed for complete vaccine characterisation and to ensure their consistency, potency, safety and stability, following the relevant World Health Organization and Pharmacopoeia guidelines. Variable requirements for analytical methods are linked to conjugate structure, carrier protein nature and size and O-acetyl content of polysaccharide. We investigated a key stability-indicating method which measures the percent free saccharide of Salmonella enterica subspecies enterica serovar Typhi capsular polysaccharide, by detergent precipitation, depolymerisation and HPAEC-PAD quantitation. Together with modern computational approaches, a more precise design of glycoconjugates is possible, allowing for improvements in solubility, structural conformation and stability, and immunogenicity of antigens, which may be applicable to a broad spectrum of vaccines. More validation experiments are required to establish the most effective and suitable methods for glycoconjugate analysis to bring uniformity to the existing protocols, although the need for product-specific approaches will apply, especially for the more complex vaccines. An overview of current and emerging analytical approaches for the characterisation of vaccines against Salmonella Typhi and Shigella species is described in this paper. This study should aid the development and licensing of new glycoconjugate vaccines aimed at the prevention of enteric diseases.
Collapse
Affiliation(s)
- Aleksandra Bazhenova
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, LE12 5RD UK
| | - Fang Gao
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, EN6 3QG UK
| | - Barbara Bolgiano
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, EN6 3QG UK
| | - Stephen E. Harding
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, LE12 5RD UK
- Museum of Cultural History, University of Oslo, Postboks 6762 St. Olavs plass, 0130 Oslo, Norway
| |
Collapse
|
18
|
Nuriev R, Galvidis I, Burkin M. Immunochemical characteristics of Streptococcus pneumoniae type 3 capsular polysaccharide glycoconjugate constructs correlate with its immunogenicity in mice model. Vaccine 2020; 38:8292-8301. [PMID: 33213929 DOI: 10.1016/j.vaccine.2020.11.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/30/2020] [Accepted: 11/07/2020] [Indexed: 11/16/2022]
Abstract
A panel of derivatives were prepared from Streptococcus pneumoniae polysaccharide type 3 (Ps3) modified with adipic acid dihydrazide (ADH). The degree of coupling between Ps3-adh derivatives and diphtheria (DTd) or tetanus (TTd) toxoids was varied by ADH linker loading. A series of Ps3 derivatives and the resultant glycoconjugates (GC) were tested for their immunochemical activity in an ELISA. Antigenic properties of components in GCs were estimated by interaction with serotype-specific and toxin-neutralizing antibodies to confirm the preservation of native protective epitopes both of Ps3 and DTd. After immunization of mice, a correlation was established between immunochemical activity and immunogenicity of these GCs. A correlation model developed for Ps3-DTd conjugates allowed to predict the immunogenicity of similar design Ps3-TTd conjugates based on ELISA testing data. The plausibility of this prediction was confirmed by the test immunization of mice with Ps3-TTds. The proposed immunochemical approach to the assessment and control of native structural and functional antigenic elements in GCs is important for the optimization of vaccine design and is an adequate alternative to extensive physicochemical characterization for assessing immunogenicity.
Collapse
Affiliation(s)
- Rinat Nuriev
- I.I. Mechnikov Research Institute for Vaccines and Sera, Moscow, 105064 Russia; I.M. Sechenov First Moscow State Medical University, Moscow, 119991 Russia
| | - Inna Galvidis
- I.I. Mechnikov Research Institute for Vaccines and Sera, Moscow, 105064 Russia
| | - Maksim Burkin
- I.I. Mechnikov Research Institute for Vaccines and Sera, Moscow, 105064 Russia.
| |
Collapse
|
19
|
Short Vi-polysaccharide abrogates T-independent immune response and hyporesponsiveness elicited by long Vi-CRM 197 conjugate vaccine. Proc Natl Acad Sci U S A 2020; 117:24443-24449. [PMID: 32900928 PMCID: PMC7533886 DOI: 10.1073/pnas.2005857117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Our results suggest a rational way of designing and developing an improved typhoid conjugate vaccine and, by extension, to conjugate vaccines in general: first, modify a T-independent polysaccharide so that it no longer induces a T-independent response, then conjugate the polysaccharide to a suitable carrier protein restoring immunogenicity, thus creating a pure T-dependent antigen that induces a strongly boostable and long-lived response at an early age. Polysaccharide-protein conjugates have been developed to overcome the T-independent response, hyporesponsiveness to repeated vaccination, and poor immunogenicity in infants of polysaccharides. To address the impact of polysaccharide length, typhoid conjugates made with short- and long-chain fractions of Vi polysaccharide with average sizes of 9.5, 22.8, 42.7, 82.0, and 165 kDa were compared. Long-chain-conjugated Vi (165 kDa) induced a response in both wild-type and T cell-deficient mice, suggesting that it maintains a T-independent response. In marked contrast, short-chain Vi (9.5 to 42.7 kDa) conjugates induced a response in wild-type mice but not in T cell-deficient mice, suggesting that the response is dependent on T cell help. Mechanistically, this was explained in neonatal mice, in which long-chain, but not short-chain, Vi conjugate induced late apoptosis of Vi-specific B cells in spleen and early depletion of Vi-specific B cells in bone marrow, resulting in hyporesponsiveness and lack of long-term persistence of Vi-specific IgG in serum and IgG+ antibody-secreting cells in bone marrow. We conclude that while conjugation of long-chain Vi generates T-dependent antigens, the conjugates also retain T-independent properties, leading to detrimental effects on immune responses. The data reported here may explain some inconsistencies observed in clinical trials and help guide the design of effective conjugate vaccines.
Collapse
|
20
|
Giannelli C, Raso MM, Palmieri E, De Felice A, Pippi F, Micoli F. Development of a Specific and Sensitive HPAEC-PAD Method for Quantification of Vi Polysaccharide Applicable to other Polysaccharides Containing Amino Uronic Acids. Anal Chem 2020; 92:6304-6311. [PMID: 32330386 DOI: 10.1021/acs.analchem.9b05107] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Typhoid fever is a major cause of morbidity and mortality in developing countries. Vaccines based on the Vi capsular polysaccharide are licensed or in development against typhoid fever. Vi content is a critical quality attribute for vaccines release, to monitor their stability and to ensure appropriate immune response. Vi polysaccharide is a homopolymer of α-1,4-N-acetylgalactosaminouronic acid, O-acetylated at the C-3 position, resistant to the commonly used acid hydrolysis for sugar chain depolymerization before monomer quantification. We previously developed a quantification method based on strong alkaline hydrolysis followed by High Performance Anion Exchange Chromatography-Pulsed Amperometric Detection analysis, but with low sensitivity and use for quantification of an unknown product coming from polysaccharide depolymerization. Here we describe the development of a method for Vi polysaccharide quantification based on acid hydrolysis with concomitant use of trifluoroacetic and hydrochloric acids. A Design of Experiment approach was used for the identification of the optimal hydrolysis conditions. The method is 100-fold more sensitive than the previous one, and specifically, resulting in the formation of a known product, confirmed to be the Vi monomer both de-O- and de-N-acetylated by mono- and bidimensional Nuclear Magnetic Resonance spectroscopy and mass spectrometry. Accuracy and precision were determined, and chromatographic conditions were improved to result in reduced time of analysis. This method will facilitate characterization of Vi-based vaccines. Furthermore, a similar approach has the potential to be extended to other polysaccharides containing 2-amino uronic acids, as already verified here for Shigella sonnei O-antigen, Streptococcus pneumoniae serotype 12F, and Staphylococcus aureus types 5 and 8 capsular polysaccharides.
Collapse
Affiliation(s)
- Carlo Giannelli
- GSK Vaccines Institute for Global Health, Via Fiorentina 1, 53100 Siena, Italy
| | | | - Elena Palmieri
- GSK Vaccines Institute for Global Health, Via Fiorentina 1, 53100 Siena, Italy
| | - Antonia De Felice
- GSK Vaccines Institute for Global Health, Via Fiorentina 1, 53100 Siena, Italy
| | - Federico Pippi
- GSK Vaccines Institute for Global Health, Via Fiorentina 1, 53100 Siena, Italy
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health, Via Fiorentina 1, 53100 Siena, Italy
| |
Collapse
|
21
|
Lockyer K, Gao F, Francis RJ, Eastwood D, Khatri B, Stebbings R, Derrick JP, Bolgiano B. Higher mass meningococcal group C-tetanus toxoid vaccines conjugated with carbodiimide correlate with greater immunogenicity. Vaccine 2020; 38:2859-2869. [PMID: 32089463 DOI: 10.1016/j.vaccine.2020.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/20/2020] [Accepted: 02/05/2020] [Indexed: 10/25/2022]
Abstract
To examine the link between meningococcal C (MenC) vaccine size and immunogenic response, a panel of MenC glycoconjugate vaccines were prepared differing in chain length, molar mass and hydrodynamic volume. The preparations consisted of different lengths of MenC polysaccharide (PS) covalently linked to monomeric purified tetanus toxoid (TT) carrier protein using the coupling reagent ethylcarbodiimide hydrochloride (EDC). Size exclusion chromatography with multi-angle light scattering (SEC-MALS) and viscometry analysis confirmed that the panel of MenC-TT conjugates spanned masses of 191,500 to 2,348,000 g/mol, and hydrodynamic radii ranging from 12.1 to 47.9 nm. The two largest conjugates were elliptical in shape, whereas the two smallest conjugates were more spherical. The larger conjugates appeared to fit a model described by multiple TTs with cross-linked PS, typical of lattice-like networks described previously for TT conjugates, while the smaller conjugates were found to fit a monomeric or dimeric TT configuration. The effect of vaccine conjugate size on immune responses was determined using a two-dose murine immunization. The two larger panel vaccine conjugates produced higher anti-MenC IgG1 and IgG2b titres after the second dose. Larger vaccine conjugate size also stimulated greater T-cell proliferative responses in an in vitro recall assay, although cytokines indicative of a T-helper response were not measurable. In conclusion, larger MenC-TT conjugates up to 2,348,000 g/mol produced by EDC chemistry correlate with greater humoral and cellular murine immune responses. These observations suggest that conjugate size can be an important modulator of immune response.
Collapse
Affiliation(s)
- Kay Lockyer
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Hertfordshire EN6 3QG, UK.
| | - Fang Gao
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Hertfordshire EN6 3QG, UK
| | - Robert J Francis
- Division of Analytical Biological Services, NIBSC, Blanche Lane, South Mimms, Hertfordshire EN6 3QG, UK
| | - David Eastwood
- Division of Biotherapeutics, NIBSC, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Bhagwati Khatri
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Hertfordshire EN6 3QG, UK
| | - Richard Stebbings
- Division of Biotherapeutics, NIBSC, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Jeremy P Derrick
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, UK
| | - Barbara Bolgiano
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Hertfordshire EN6 3QG, UK
| |
Collapse
|
22
|
MacCalman TE, Phillips-Jones MK, Harding SE. Glycoconjugate vaccines: some observations on carrier and production methods. Biotechnol Genet Eng Rev 2020; 35:93-125. [PMID: 32048549 DOI: 10.1080/02648725.2019.1703614] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glycoconjugate vaccines use protein carriers to improve the immune response to polysaccharide antigens. The protein component allows the vaccine to interact with T cells, providing a stronger and longer-lasting immune response than a polysaccharide interacting with B cells alone. Whilst in theory the mere presence of a protein component in a vaccine should be sufficient to improve vaccine efficacy, the extent of improvement varies. In the present review, a comparison of the performances of vaccines developed with and without a protein carrier are presented. The usefulness of analytical tools for macromolecular integrity assays, in particular nuclear magnetic resonance, circular dichroism, analytical ultracentrifugation and SEC coupled to multi-angle light scattering (MALS) is indicated. Although we focus mainly on bacterial capsular polysaccharide-protein vaccines, some consideration is also given to research on experimental cancer vaccines using zwitterionic polysaccharides which, unusually for polysaccharides, are able to invoke T-cell responses and have been used in the development of potential all-polysaccharide-based cancer vaccines.A general trend of improved immunogenicity for glycoconjugate vaccines is described. Since the immunogenicity of a vaccine will also depend on carrier protein type and the way in which it has been linked to polysaccharide, the effects of different carrier proteins and production methods are also reviewed. We suggest that, in general, there is no single best carrier for use in glycoconjugate vaccines. This indicates that the choice of carrier protein is optimally made on a case-by-case basis, based on what generates the best immune response and can be produced safely in each individual case.Abbreviations: AUC: analytical ultracentrifugation; BSA: bovine serum albumin; CD: circular dichroism spectroscopy; CPS: capsular polysaccharide; CRM197: Cross Reactive Material 197; DT: diphtheria toxoid; Hib: Haemophilius influenzae type b; MALS: multi-angle light scattering; Men: Neisseria menigitidis; MHC-II: major histocompatibility complex class II; NMR: nuclear magnetic resonance spectroscopy; OMP: outer membrane protein; PRP: polyribosyl ribitol phosphate; PSA: Polysaccharide A1; Sa: Salmonella; St.: Streptococcus; SEC: size exclusion chromatography; Sta: Staphylococcus; TT: tetanus toxoid; ZPS: zwitterionic polysaccharide(s).
Collapse
Affiliation(s)
- Thomas E MacCalman
- National Centre for Macromolecular Hydrodynamics, University of Nottingham, Nottingham, UK
| | - Mary K Phillips-Jones
- National Centre for Macromolecular Hydrodynamics, University of Nottingham, Nottingham, UK
| | - Stephen E Harding
- National Centre for Macromolecular Hydrodynamics, University of Nottingham, Nottingham, UK.,Kulturhistorisk Museum, University of Oslo, Oslo, Norway
| |
Collapse
|
23
|
Zeng W, Horrocks KJ, Tan ACL, Wong CY, Chua BY, Jackson DC. Modular platforms for the assembly of self-adjuvanting lipopeptide-based vaccines for use in an out-bred population. Vaccine 2020; 38:597-607. [PMID: 31740096 DOI: 10.1016/j.vaccine.2019.10.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/19/2019] [Accepted: 10/20/2019] [Indexed: 01/08/2023]
Abstract
To facilitate the preparation of synthetic epitope-based self-adjuvanting vaccines capable of eliciting antibody responses in an out-bred population, we have developed two modular approaches. In the first, the Toll-like receptor 2 agonist Pam2Cys and the target antibody epitope are assembled as a module which is then coupled to a carrier protein as a source of antigens to stimulate T cell help. A vaccine candidate made in this way was shown to induce a specific immune response in four different strains of mice without the need for extraneous adjuvant. In the second approach, three vaccine components in the form of a target antibody epitope, a T helper cell epitope and Pam2Cys, were prepared separately each carrying different chemical functional groups. By using pH-mediated chemo-selective ligations, the vaccine was assembled in a one-pot procedure. Using this approach, a number of vaccine constructs including a lipopeptide-protein conjugate were made and also shown to elicit immune responses in different strains of mice. These two modular approaches thus constitute a powerful platform for the assembly of self-adjuvanting lipopeptide-based vaccines that can potentially be used to induce robust antibody responses in an outbred population. Finally, our study of the impact of chemical linkages on immunogenicity of a lipopeptide vaccine shows that a stable covalent bond between Pam2Cys and a B cell epitope, rather than between Pam2Cys and T helper cell epitope is critical for the induction of antibody responses and biological efficacy, indicating that Pam2Cys functions not only as an adjuvant but also participates in processing and presentation of the immunogen.
Collapse
Affiliation(s)
- Weiguang Zeng
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville 3010, Victoria, Australia.
| | - Kylie J Horrocks
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Amabel C L Tan
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Chinn Yi Wong
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Brendon Y Chua
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - David C Jackson
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville 3010, Victoria, Australia
| |
Collapse
|
24
|
Micoli F, Del Bino L, Alfini R, Carboni F, Romano MR, Adamo R. Glycoconjugate vaccines: current approaches towards faster vaccine design. Expert Rev Vaccines 2019; 18:881-895. [PMID: 31475596 DOI: 10.1080/14760584.2019.1657012] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: Over the last decades, glycoconjugate vaccines have been proven to be a successful strategy to prevent infectious diseases. Many diseases remain to be controlled, especially in developing countries, and emerging antibiotic-resistant bacteria present an alarming public-health threat. The increasing complexity of future vaccines, and the need to accelerate development processes have triggered the development of faster approaches to glycoconjugate vaccines design. Areas covered: This review provides an overview of recent progress in glycoconjugation technologies toward faster vaccine design. Expert opinion: Among the different emerging approaches, glycoengineering has the potential to combine glycan assembly and conjugation to carrier systems (such as proteins or outer membrane vesicles) in one step, resulting in a simplified manufacturing process and fewer analytical controls. Chemical and enzymatic strategies, and their automation can facilitate glycoepitope identification for vaccine design. Other approaches, such as the liposomal encapsulation of polysaccharides, potentially enable fast and easy combination of numerous antigens in the same formulation. Additional progress is envisaged in the near future, and some of these systems still need to be further validated in humans. In parallel, new strategies are needed to accelerate the vaccine development process, including the associated clinical trials, up to vaccine release onto the market.
Collapse
Affiliation(s)
- Francesca Micoli
- Technology Platform, GSK Vaccines Institute for Global Health s.r.l , Siena , Italy
| | | | - Renzo Alfini
- Technology Platform, GSK Vaccines Institute for Global Health s.r.l , Siena , Italy
| | | | | | | |
Collapse
|
25
|
O-acetylation of typhoid capsular polysaccharide confers polysaccharide rigidity and immunodominance by masking additional epitopes. Vaccine 2019; 37:3866-3875. [PMID: 31160100 PMCID: PMC6997886 DOI: 10.1016/j.vaccine.2019.05.050] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 01/22/2023]
Abstract
The binding of anti-Vi mAb and polyclonal immune sera correlated with the level of O-acetylation. C. freundii Vi resists de-O-acetylation and is more viscous than S. Typhi Vi. Sera from human vaccine recipients contains IgG that recognizes the backbone of Vi. Simulations show O-acetyls are exposed on the surface of Vi and confer rigidity. MD gives conformational rationale for effect of O-acetylation on Vi antigenicity and viscosity.
In this work, we explore the effects of O-acetylation on the physical and immunological characteristics of the WHO International Standards of Vi polysaccharide (Vi) from both Citrobacter freundii and Salmonella enterica serovar Typhi. We find that, although structurally identical according to NMR, the two Vi standards have differences with respect to susceptibility to de-O-acetylation and viscosity in water. Vi standards from both species have equivalent mass and O-acetylation-dependent binding to a mouse monoclonal antibody and to anti-Vi polyclonal antisera, including the WHO International Standard for human anti-typhoid capsular Vi PS IgG. This study also confirms that human anti-Vi sera binds to completely de-O-acetylated Vi. Molecular dynamics simulations provide conformational rationales for the known effect of de-O-acetylation both on the viscosity and antigenicity of the Vi, demonstrating that de-O-acetylation has a very marked effect on the conformation and dynamic behavior of the Vi, changing the capsular polysaccharide from a rigid helix into a more flexible coil, as well as enhancing the strong interaction of the polysaccharide with sodium ions. Partial de-O-acetylation of Vi revealed hidden epitopes that were recognized by human and sheep anti-Vi PS immune sera. These findings have significance for the manufacture and evaluation of Vi vaccines.
Collapse
|
26
|
Lei Y, Zhao F, Shao J, Li Y, Li S, Chang H, Zhang Y. Application of built-in adjuvants for epitope-based vaccines. PeerJ 2019; 6:e6185. [PMID: 30656066 PMCID: PMC6336016 DOI: 10.7717/peerj.6185] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/29/2018] [Indexed: 12/21/2022] Open
Abstract
Several studies have shown that epitope vaccines exhibit substantial advantages over conventional vaccines. However, epitope vaccines are associated with limited immunity, which can be overcome by conjugating antigenic epitopes with built-in adjuvants (e.g., some carrier proteins or new biomaterials) with special properties, including immunologic specificity, good biosecurity and biocompatibility, and the ability to vastly improve the immune response of epitope vaccines. When designing epitope vaccines, the following types of built-in adjuvants are typically considered: (1) pattern recognition receptor ligands (i.e., toll-like receptors); (2) virus-like particle carrier platforms; (3) bacterial toxin proteins; and (4) novel potential delivery systems (e.g., self-assembled peptide nanoparticles, lipid core peptides, and polymeric or inorganic nanoparticles). This review primarily discusses the current and prospective applications of these built-in adjuvants (i.e., biological carriers) to provide some references for the future design of epitope-based vaccines.
Collapse
Affiliation(s)
- Yao Lei
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Furong Zhao
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Junjun Shao
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yangfan Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Shifang Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Huiyun Chang
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yongguang Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
27
|
Micoli F, Costantino P, Adamo R. Potential targets for next generation antimicrobial glycoconjugate vaccines. FEMS Microbiol Rev 2018; 42:388-423. [PMID: 29547971 PMCID: PMC5995208 DOI: 10.1093/femsre/fuy011] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/13/2018] [Indexed: 12/21/2022] Open
Abstract
Cell surface carbohydrates have been proven optimal targets for vaccine development. Conjugation of polysaccharides to a carrier protein triggers a T-cell-dependent immune response to the glycan moiety. Licensed glycoconjugate vaccines are produced by chemical conjugation of capsular polysaccharides to prevent meningitis caused by meningococcus, pneumococcus and Haemophilus influenzae type b. However, other classes of carbohydrates (O-antigens, exopolysaccharides, wall/teichoic acids) represent attractive targets for developing vaccines. Recent analysis from WHO/CHO underpins alarming concern toward antibiotic-resistant bacteria, such as the so called ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) and additional pathogens such as Clostridium difficile and Group A Streptococcus. Fungal infections are also becoming increasingly invasive for immunocompromised patients or hospitalized individuals. Other emergencies could derive from bacteria which spread during environmental calamities (Vibrio cholerae) or with potential as bioterrorism weapons (Burkholderia pseudomallei and mallei, Francisella tularensis). Vaccination could aid reducing the use of broad-spectrum antibiotics and provide protection by herd immunity also to individuals who are not vaccinated. This review analyzes structural and functional differences of the polysaccharides exposed on the surface of emerging pathogenic bacteria, combined with medical need and technological feasibility of corresponding glycoconjugate vaccines.
Collapse
Affiliation(s)
- Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena
| | | | | |
Collapse
|
28
|
Structural and immunological characterization of E. coli derived recombinant CRM 197 protein used as carrier in conjugate vaccines. Biosci Rep 2018; 38:BSR20180238. [PMID: 29875175 PMCID: PMC6153374 DOI: 10.1042/bsr20180238] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/21/2018] [Accepted: 06/05/2018] [Indexed: 12/15/2022] Open
Abstract
It is established that the immunogenicity of polysaccharides is enhanced by coupling them to carrier proteins. Cross reacting material (CRM197), a nontoxic variant of diphtheria toxin (DT) is widely used carrier protein for polysaccharide conjugate vaccines. Conventionally, CRM197 is isolated by fermentation of Corynebacterium diphtheriae C7 (β197) cultures, which often suffers from low yield. Recently, several recombinant approaches have been reported with robust processes and higher yields, which will improve the affordability of CRM197-based vaccines. Vaccine manufacturers require detailed analytical information to ensure that the CRM197 meets quality standards and regulatory requirements. In the present manuscript we have described detailed structural characteristics of Escherichia coli based recombinant CRM197 (rCRM197) carrier protein. The crystal structure of the E. coli based rCRM197 was found to be identical with the reported crystal structure of the C7 CRM197 produced in C. diphtheriae C7 strain (Protein Data Bank (PDB) ID: 4EA0). The crystal structure of rCRM197 was determined at 2.3 Å resolution and structure was submitted to the PDB with accession number ID 5I82. This is the first report of a crystal structure of E. coli derived recombinant CRM197 carrier protein. Furthermore, the rCRM197 was conjugated to Vi polysaccharide to generate Typhoid conjugate vaccine (Vi-rCRM197) and its immunogenicity was evaluated in Balb/C Mice. The Vi-rCRM197 conjugate vaccine was found to generate strong primary α-Vi antibody response and also showed a booster response after subsequent vaccination in mice. Overall data suggest that E. coli based recombinant CRM197 exhibits structural and immunological similarity with the C7 CRM197 and can be used as a carrier protein in conjugate vaccine development.
Collapse
|
29
|
Hennessey JP, Costantino P, Talaga P, Beurret M, Ravenscroft N, Alderson MR, Zablackis E, Prasad AK, Frasch C. Lessons Learned and Future Challenges in the Design and Manufacture of Glycoconjugate Vaccines. CARBOHYDRATE-BASED VACCINES: FROM CONCEPT TO CLINIC 2018. [DOI: 10.1021/bk-2018-1290.ch013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
| | | | - Philippe Talaga
- Department of Analytical Research and Development, Sanofi Pasteur, Marcy l’Etoile 69280, France
| | - Michel Beurret
- Janssen Vaccines & Prevention B.V., Leiden, 2301 CA, The Netherlands
| | - Neil Ravenscroft
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | | | - Earl Zablackis
- Analytical Process Technology, Sanofi Pasteur, Swiftwater, Pennsylvania 18370, United States
| | - A. Krishna Prasad
- Pfizer Vaccines Research and Development, Pearl River, New York 10965, United States
| | - Carl Frasch
- Consultant, Martinsburg, West Virginia 25402, United States
| |
Collapse
|
30
|
Interplay of Carbohydrate and Carrier in Antibacterial Glycoconjugate Vaccines. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 175:355-378. [PMID: 30143807 DOI: 10.1007/10_2018_71] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bacterial infections are a serious health concern and are responsible for millions of illnesses and deaths each year in communities around the world. Vaccination is an important public health measure for reducing and eliminating this burden, and regions with comprehensive vaccination programs have achieved significant reductions in infection and mortality. This is often accomplished by immunization with bacteria-derived carbohydrates, typically in conjunction with other biomolecules, which induce immunological memory and durable protection against bacterial human pathogens. For many species, however, vaccines are currently unavailable or have suboptimal efficacy characterized by short-lived memory and incomplete protection, especially among at-risk populations. To address this challenge, new tools and techniques have emerged for engineering carbohydrates and conjugating them to carrier molecules in a tractable and scalable manner. Collectively, these approaches are yielding carbohydrate-based vaccine designs with increased immunogenicity and protective efficacy, thereby opening up new opportunities for this important class of antigens. In this chapter we detail the current understanding of how carbohydrates interact with the immune system to provide immunity; how glycoengineering, especially in the context of glycoconjugate vaccines, can be used to modify and enhance immune responses; and current trends and strategies being pursued for the rational design of next-generation glycosylated antibacterial vaccines. Graphical Abstract.
Collapse
|