1
|
Dang TN, Van CN, Ochi R, Kuwamura H, Kurose T, Nakamura Y, Hisaoka-Nakashima K, Morioka N, Nishijo H, Fujita N, Urakawa S. Voluntary exercise prevents and eradicates anxiety-like behavior by influencing parvalbumin-positive neurons, perineuronal nets, and microglia activation in corticolimbic regions of neuropathic pain rats. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2025; 18:100181. [PMID: 40161039 PMCID: PMC11954125 DOI: 10.1016/j.ynpai.2025.100181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/22/2025] [Accepted: 02/22/2025] [Indexed: 04/02/2025]
Abstract
Anxiety-like behavior often emerges in the later stages of neuropathic pain, exacerbating the pain condition and potentially involving parvalbumin-positive (PV+) neurons. This study aimed to investigate the effects of voluntary exercise on neuropathic pain-induced anxiety and its relationship with PV+ neurons, perineuronal nets (PNNs, labeled with Wisteria floribunda agglutinin [WFA]), and microglia in the corticolimbic regions. Male Wistar rats with partial sciatic nerve ligation (PSL) were given access to running wheels either from 3 days (early voluntary exercise [EEx]) or from 4 weeks (late voluntary exercise [LEx]) postoperatively. Nociceptive behaviors were assessed using the von Frey and acetone tests, while anxiety-like behaviors were assessed using the open field and elevated plus maze tests. Brain sections were histologically analyzed using immunohistochemistry and immunofluorescence 8 weeks post-surgery. Both early and late exercise partially restored the paw withdrawal thresholds and the arousal response. PSL-EEx rats did not exhibit anxiety-like behaviors. PSL-LEx rats transiently showed anxiety-like behaviors, but these were eradicated by exercise. PSL altered PV+ neurons and PNNs in specific corticolimbic subregions. Notably, voluntary exercise restored the densities of PV+-strong WFA+ neurons in the basolateral amygdala, PV+-WFA-, and PV+-WFA+ neurons in the anterior cingulate cortex, and PV+-WFA+ neurons in the hippocampal cornu ammonis 1. These changes correlated with reduced anxiety-like behaviors. Exercise modulated PSL-induced microglial activation and interacted differently with these neurons. These findings suggest that voluntary exercise prevents and eliminates chronic pain-induced anxiety through neuronal mechanisms other than analgesic effects, potentially involving PV+ neurons, PNNs, and microglia in the corticolimbic subregions.
Collapse
Affiliation(s)
- Thu Nguyen Dang
- Department of Neurorehabilitation and Emotional Science, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
- Department of Anesthesiology, Military Hospital 103, Vietnam Military Medical University, No. 261 Phung Hung Street, Ha Dong District, Hanoi 12108, Viet Nam
| | - Cuong Nguyen Van
- Department of Neurorehabilitation and Emotional Science, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Ryosuke Ochi
- Department of Neurorehabilitation and Emotional Science, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka City, Fukuoka 812-8582, Japan
| | - Hiroki Kuwamura
- Department of Neurorehabilitation and Emotional Science, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Tomoyuki Kurose
- Department of Anatomy and Histology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Yoki Nakamura
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Hisao Nishijo
- Faculty of Human Sciences, University of East Asia, 2-12-1 Ichinomiya Gakuen-cho, Shimonoseki City, Yamaguchi 751-8503, Japan
| | - Naoto Fujita
- Department of Neurorehabilitation and Emotional Science, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
- Department of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Susumu Urakawa
- Department of Neurorehabilitation and Emotional Science, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| |
Collapse
|
2
|
Karimi S, Kazori N, Alavi SMH, Alijanpour S, Siddiqi MAA, Zeynali B. Nandrolone decanoate-induced hypogonadism in male rats: Dose- and time-dependent effects on pituitary and testicular hormonal functions. Physiol Rep 2024; 12:e70053. [PMID: 39370302 PMCID: PMC11456365 DOI: 10.14814/phy2.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024] Open
Abstract
Anabolic-androgenic steroids (AASs) impairment of reproduction has been reported. We investigated dose- and time-dependent effects of Nandrolone decanoate (ND) on reproductive system in comparison with Testosterone enanthate (TE). Male Wistar rats were administrated with 1, 3, and 9 mg/kg/weeks ND or 1 and 3 mg/kg/weeks TE for 8 weeks, and testicular phenotype and reproductive hormones were assessed at 4 and 8 weeks post-treatments. AASs × treatment period interaction was significant for gonadosomatic index (GSI), testosterone (T), 17β-estradiol (E2), and luteinizing hormone (LH). At 4 weeks post-treatment, GSI was decreased in rats treated with 3 mg/kg/weeks ND and T was decreased in all ND-treated groups, while no significant changes in LH levels were observed. At 8 weeks post-treatment, GSI was decreased in rats treated with 1 and 3 mg/kg/weeks ND and with 3 mg/kg/weeks TE, T was decreased in all groups, and E2 and LH were increased and decreased, respectively, in rats treated with 9 mg/kg/weeks ND and with 3 mg/kg/weeks TE. The testes showed histopathological defects in both ND- and TE-treated rats suggesting a delay in seminiferous cycle. This study shows AASs-induced hypogonadism at low-dose that coincided with inhibition of T biosynthesis and disruption of T feedback on pituitary.
Collapse
Affiliation(s)
- Sholeh Karimi
- Department of Animal Biology, School of Biology, College of ScienceUniversity of TehranTehranIran
| | - Negar Kazori
- Department of Animal Biology, School of Biology, College of ScienceUniversity of TehranTehranIran
| | | | - Sara Alijanpour
- Department of Animal Biology, School of Biology, College of ScienceUniversity of TehranTehranIran
| | - Mohammad Alim Atif Siddiqi
- Department of Animal Biology, School of Biology, College of ScienceUniversity of TehranTehranIran
- Present address:
Department of Biology, Faculty of EducationLoger Higher Education InstituteLogerAfghanistan
| | - Bahman Zeynali
- Department of Animal Biology, School of Biology, College of ScienceUniversity of TehranTehranIran
| |
Collapse
|
3
|
Krstic B, Selakovic D, Jovicic N, Krstic M, Katanic Stankovic JS, Rosic S, Milovanovic D, Rosic G. Complex Hippocampal Response to Thermal Skin Injury and Protocols with Hyperbaric Oxygen Therapy and Filipendula ulmaria Extract in Rats. Int J Mol Sci 2024; 25:3033. [PMID: 38474277 DOI: 10.3390/ijms25053033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
The aim of this study was to evaluate the alterations of the hippocampal function that may be related to anxiogenic response to thermal skin injury, including the morpho-functional alterations, and the effects of hyperbaric oxygen (HBO) and Filipendula ulmaria (FU) extract in the treatment of anxiety-like behavior that coincides with thermal skin injury. A rat thermal skin injury experimental model was performed on 2-month-old male Wistar albino rats. The evaluated therapeutic protocols included HBO and/or antioxidant supplementation. HBO was applied for 7 days in the hyperbaric chamber (100% O2, 2.5 ATA, 60 min). Oral administration of FU extract (final concentration of 100 mg/kg b.w.) to achieve antioxidant supplementation was also applied for 7 days. Anxiety level was estimated in the open field and elevated plus-maze test, which was followed by anesthesia, sacrifice, and collection of hippocampal tissue samples. HBO treatment and FU supplementation significantly abolished anxiogenic response to thermal skin injury. This beneficial effect was accompanied by the reduction in hippocampal pro-inflammatory and pro-apoptotic indicators, and enhanced BDNF and GABA-ARα2S gene expression, previously observed in untreated burns. The hippocampal relative gene expression of melatonin receptors and NPY positively responded to the applied protocols, in the same manner as µ and δ opioid receptors, while the opposite response was observed for κ receptors. The results of this study provide some confirmations that adjuvant strategies, such as HBO and antioxidant supplementation, may be simultaneously applied in the treatment of the anxiety-like behavior that coincides with thermal skin injury.
Collapse
Affiliation(s)
- Bojana Krstic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Dragica Selakovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Nemanja Jovicic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Milos Krstic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Jelena S Katanic Stankovic
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Sara Rosic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Dragan Milovanovic
- Clinical Pharmacology Department, Clinical Centre Kragujevac, 34000 Kragujevac, Serbia
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Gvozden Rosic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
4
|
Adenosine receptors participate in anabolic-androgenic steroid-induced changes on risk assessment/anxiety-like behaviors in male and female rats. Physiol Behav 2023; 261:114071. [PMID: 36584765 DOI: 10.1016/j.physbeh.2022.114071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
Anabolic-androgenic steroids (AAS) and caffeine can induce several behavioral alterations in humans and rodents. Administration of nandrolone decanoate is known to affect defensive responses to aversive stimuli, generally decreasing inhibitory control and increasing aggressivity but whether caffeine intake influences behavioral changes induced by AAS is unknown. The present study aimed to investigate behavioral effects of caffeine (a non-selective antagonist of adenosine receptors) alone or combined with nandrolone decanoate (one of the most commonly AAS abused) in female and male Lister Hooded rats. Our results indicated that chronic administration of nandrolone decanoate (10 mg/kg, i.m., once a week for 8 weeks) decreased risk assessment/anxiety-like behaviors (in the elevated plus maze test), regardless of sex. These effects were prevented by combined caffeine intake (0.1 g/L, p.o., ad libitum). Overall, the present study heralds a key role for caffeine intake in the modulation of nandrolone decanoate-induced behavioral changes in rats, suggesting adenosine receptors as candidate targets to manage impact of AAS on brain function and behavior.
Collapse
|
5
|
Branković S, Bugarčić M, Bugarčić FŽ, Ostojić A, Petronijević J, Rosić G, Radojević I, Selaković D, Simić Z, Joksimović N. Economic, ecological, and health aspects of β-diketonate application in the process of water purification. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58703-58715. [PMID: 35366727 DOI: 10.1007/s11356-022-19986-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
Water pollution is a constant challenge for humanity. Sustainable economic development and environmental protection through a green economy structure provide the opportunity to project a model of scientific, social, and economic flows. Considering new chemical use in water treatment, we tested two β-diketonates that we previously synthesized in the reaction between methyl ketone and diethyl oxalate under basic conditions. For water treatment, we used the appropriate salts of the mentioned compounds due to better solubility in water. In cooperation with the partner organizations PUC (public utility companies) Kragujevac, LTD (Private Limited Company), "Rudnik," and FIAT (Fabbrica Italiana Automobili Torino), we conducted research on their wastewater treatment. The results appeared to be more convincing in practice than the conventional methods. As a result of the study, no negative effects exerted on living organisms were found. Therefore, we are on the right track for potential application in the treatment of drinking water. Appropriate β-diketonates were tested on twelve microorganisms (isolates from the wastewater and standard strains of bacteria and yeast). One of the two tested compounds showed promising antimicrobial activity. Further investigations showed that the tested compounds significantly reduce the concentration of heavy metals, which was confirmed by statistical calculations. Also, the main advantage of this method is a small volume of waste requiring disposal, no need for driving off excess moisture, used recyclability of the coagulants, reducing hazardous waste, and therefore reducing the costs for water treatment.
Collapse
Affiliation(s)
- Snežana Branković
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Marijana Bugarčić
- Faculty of Economics, University of Kragujevac, Liceja Kneževine Srbije 3, 34000, Kragujevac, Serbia
| | - Filip Ž Bugarčić
- Faculty of Economics, University of Kragujevac, Liceja Kneževine Srbije 3, 34000, Kragujevac, Serbia
| | - Aleksandar Ostojić
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Jelena Petronijević
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Gvozden Rosić
- Department of Physiology, Faculty of Medical Science, University of Kragujevac, Svetozara Markovića 69, 34000, Kragujevac, Serbia
| | - Ivana Radojević
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Dragica Selaković
- Department of Physiology, Faculty of Medical Science, University of Kragujevac, Svetozara Markovića 69, 34000, Kragujevac, Serbia
| | - Zoran Simić
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Nenad Joksimović
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia.
| |
Collapse
|
6
|
Nikolic S, Gazdic-Jankovic M, Rosic G, Miletic-Kovacevic M, Jovicic N, Nestorovic N, Stojkovic P, Filipovic N, Milosevic-Djordjevic O, Selakovic D, Zivanovic M, Seklic D, Milivojević N, Markovic A, Seist R, Vasilijic S, Stankovic KM, Stojkovic M, Ljujic B. Orally administered fluorescent nanosized polystyrene particles affect cell viability, hormonal and inflammatory profile, and behavior in treated mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119206. [PMID: 35405220 DOI: 10.1016/j.envpol.2022.119206] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 03/12/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Commercially manufactured or generated through environmental degradation, microplastics (MPs) and nanoplastics (NPs) considerably contribute to environmental pollution. There is a knowledge gap in how exposure to MPs/NPs changes cellular function and affects animal and human health. Here, we demonstrate that after oral uptake, fluorescent polystyrene (PS) nanoparticles pass through the mouse digestive system, accumulate and aggregate in different organs, and induce functional changes in cells and organs. Using cochlear explant as a novel in vitro system, we confirmed the consequences of PS-MP/NP interaction with inner ear cells by detecting aggregates and hetero-aggregates of PS particles in hair cells. The testes of treated males accumulated MPs/NPs in the interstitial compartment surrounding the seminiferous tubules, which was associated with a statistically significant decrease in testosterone levels. Male mice showed increased secretion of interleukins (IL-12p35 and IL-23) by splenocytes while cyto- and genotoxicity tests indicated impaired cell viability and increased DNA damage in spleen tissue. Males also showed a broad range of anxiogenic responses to PS nanoparticles while hippocampal samples from treated females showed an increased expression of Bax and Nlrp3 genes, indicating a pro-apoptotic/proinflammatory effect of PS treatment. Taken together, induced PS effects are also gender-dependent, and therefore, strongly motivate future research to mitigate the deleterious effects of nanosized plastic particles.
Collapse
Affiliation(s)
- Sandra Nikolic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marina Gazdic-Jankovic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Gvozden Rosic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marina Miletic-Kovacevic
- Department of Histology and Embryology, University of Kragujevac, Faculty of Medical Sciences, Kragujevac, Serbia
| | - Nemanja Jovicic
- Department of Histology and Embryology, University of Kragujevac, Faculty of Medical Sciences, Kragujevac, Serbia
| | - Natasa Nestorovic
- Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Serbia
| | | | - Nenad Filipovic
- Faculty of Engineering, University of Kragujevac, Kragujevac, Serbia
| | - Olivera Milosevic-Djordjevic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia; Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Dragica Selakovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marko Zivanovic
- Laboratory for Bioengineering, Institute of Information Technologies Kragujevac, University of Kragujevac, Kragujevac, Serbia
| | - Dragana Seklic
- Laboratory for Bioengineering, Institute of Information Technologies Kragujevac, University of Kragujevac, Kragujevac, Serbia
| | - Nevena Milivojević
- Laboratory for Bioengineering, Institute of Information Technologies Kragujevac, University of Kragujevac, Kragujevac, Serbia
| | - Aleksandra Markovic
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Richard Seist
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, United States; Program Department of Otorhinolaryngology-Head and Neck Surgery, Paracelsus Medical University, Salzburg, Austria
| | - Sasa Vasilijic
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, United States
| | - Konstantina M Stankovic
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, United States
| | - Miodrag Stojkovic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia; SPEBO Medical, Fertility Clinic Leskovac, Serbia
| | - Biljana Ljujic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.
| |
Collapse
|
7
|
Kim JT, Roberts K, Dunlap G, Perry R, Washington T, Wolchok JC. Nandrolone supplementation does not improve functional recovery in an aged animal model of volumetric muscle loss injury. J Tissue Eng Regen Med 2022; 16:367-379. [PMID: 35113494 DOI: 10.1002/term.3286] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/12/2022] [Accepted: 01/20/2022] [Indexed: 11/12/2022]
Abstract
Aging hinders the effectiveness of regenerative medicine strategies targeting the repair of volumetric muscle loss (VML) injury. Anabolic steroids have been shown to improve several factors which contribute to the age-related decline in muscle's regenerative capacity. In this study, the impact of exogenous nandrolone decanoate (ND) administration on the effectiveness of a VML regenerative repair strategy was explored using an aged animal model. Unilateral tibialis anterior VML injuries were repaired in 18-month-aged animal models (male Fischer 344 rat) using decellularized human skeletal muscle scaffolds supplemented with autologous minced muscle. The contralateral limb was left untreated/uninjured. Following repair, ND(+) or a carrier control (ND-) was delivered via weekly injection for a period of 8 weeks. At 8 weeks, muscle isometric torque, gene expression, and tissue structure were assessed. ND(+) treatment did not improve contractile torque recovery following VML repair when compared to carrier only ND(-) injection controls. Peak isometric torque in the ND(+) VML repair group remained significantly below contralateral uninjured control values (4.69 ± 1.18vs. 7.46 ± 1.53 N mm/kg) and was statistically indistinguishable from carrier only ND(-) VML repair controls (4.47 ± 1.18 N mm/kg). Gene expression for key myogenic genes (Pax7, MyoD, MyoG, IGF-1) were not significantly elevated in response to ND injection, suggesting continued age related myogenic impairment even in the presence of ND(+) treatment. ND injection did reduce the histological appearance of fibrosis at the site of VML repair, and increased expression of the collagen III gene, suggesting some positive effects on repair site matrix regulation. Overall, the results presented in this study suggest that a decline in regenerative capacity with aging may present an obstacle to regenerative medicine strategies targeting VML injury and that the delivery of anabolic stimuli via ND administration was unable to overcome this decline.
Collapse
Affiliation(s)
- John T Kim
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Kevin Roberts
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Grady Dunlap
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Richard Perry
- Department of Health, Human Performance, and Recreation, College of Education and Health Professions, University of Arkansas, Fayetteville, Arkansas, USA
| | - Tyrone Washington
- Department of Health, Human Performance, and Recreation, College of Education and Health Professions, University of Arkansas, Fayetteville, Arkansas, USA
| | - Jeffrey C Wolchok
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
8
|
Oliveira RF, Paiva KM, da Rocha GS, de Moura Freire MA, de Araújo DP, de Oliveira LC, Guzen FP, de Gois Morais PLA, de Paiva Cavalcanti JRL. Neurobiological effects of forced swim exercise on the rodent hippocampus: a systematic review. Acta Neurobiol Exp (Wars) 2021; 81:58-68. [PMID: 33949162 DOI: 10.21307/ane-2021-007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/26/2021] [Indexed: 11/11/2022]
Abstract
Forced swimming is a common exercise method used for its low cost and easy management, as seen in studies with the hippocampus. Since it is applied for varied research purposes many protocols are available with diverse aspects of physical intensity, time and periodicity, which produces variable outcomes. In the present study, we performed a systematic review to stress the neurobiological effects of forced swim exercise on the rodent hippocampus. Behavior, antioxidant levels, neurotrophins and inflammatory markers were the main topics examined upon the swimming effects. Better results among these analyses were associated with forced exercise at moderate intensity with an adaptation period and the opposite for continuous exhausting exercises with no adaptation. On further consideration, a standard swimming protocol is necessary to reduce variability of results for each scenario investigated about the impact of the forced swimming on the hippocampus. Forced swimming is a common exercise method used for its low cost and easy management, as seen in studies with the hippocampus. Since it is applied for varied research purposes many protocols are available with diverse aspects of physical intensity, time and periodicity, which produces variable outcomes. In the present study, we performed a systematic review to stress the neurobiological effects of forced swim exercise on the rodent hippocampus. Behavior, antioxidant levels, neurotrophins and inflammatory markers were the main topics examined upon the swimming effects. Better results among these analyses were associated with forced exercise at moderate intensity with an adaptation period and the opposite for continuous exhausting exercises with no adaptation. On further consideration, a standard swimming protocol is necessary to reduce variability of results for each scenario investigated about the impact of the forced swimming on the hippocampus.
Collapse
Affiliation(s)
- Rodrigo Freire Oliveira
- Laboratory of Experimental Neurology , Department of Biomedical Sciences , University of the State of Rio Grande do Norte , Brazil
| | - Karina Maia Paiva
- Laboratory of Experimental Neurology , Department of Biomedical Sciences , University of the State of Rio Grande do Norte , Brazil
| | - Gabriel Sousa da Rocha
- Laboratory of Experimental Neurology , Department of Biomedical Sciences , University of the State of Rio Grande do Norte , Brazil
| | - Marco Aurélio de Moura Freire
- Laboratory of Experimental Neurology , Department of Biomedical Sciences , University of the State of Rio Grande do Norte , Brazil
| | - Dayane Pessoa de Araújo
- Laboratory of Experimental Neurology , Department of Biomedical Sciences , University of the State of Rio Grande do Norte , Brazil
| | - Lucídio Cleberson de Oliveira
- Laboratory of Experimental Neurology , Department of Biomedical Sciences , University of the State of Rio Grande do Norte , Brazil
| | - Fausto Pierdoná Guzen
- Laboratory of Experimental Neurology , Department of Biomedical Sciences , University of the State of Rio Grande do Norte , Brazil
| | | | | |
Collapse
|
9
|
Cattelan Souza L, de Brito MLO, Jesse CR, Boeira SP, de Gomes MG, Goes ATR, Fabbro LD, Machado FR, Prigol M, Nogueira CW. Involvement of kynurenine pathway in depressive-like behaviour induced by nandrolone decanoate in mice. Steroids 2020; 164:108727. [PMID: 32891681 DOI: 10.1016/j.steroids.2020.108727] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 08/24/2020] [Accepted: 08/30/2020] [Indexed: 11/17/2022]
Abstract
Nandrolone decanoate (ND) belongs to the class II of anabolic-androgenic steroids (AAS), which is composed of 19-nor-testosterone-derivatives. AAS represent a group of synthetic testosterone that is used in clinical treatment. However, these drugs are widely abused among individuals as a means of promoting muscle growth or enhancing athletic performance. AAS in general and ND in particular have been associated with several behavioral disturbances, such as anxiety, aggressiveness and depression. A factor that contributes to the development of depression is the brain activation of indoleamine 2,3-dioxygenase (IDO), the rate-limiting enzyme of kynurenine pathway (KP). In the present study, we examined the involvement of KP in depressive phenotype induced by a ND treatment (10 mg/kg/day/s.c., for 28 days) that mimics human abuse system (e.g. supraphysiological doses) in C57B/6J mice. Our results showed that ND caused depressive like-behavior in the tail suspension test and anhedonic-like state measured in the sucrose preference test. ND administration decreased the levels of brain-derived neurotrophic factor and neurotrophin-3 and reduced Na+,K+-ATPase activity in the hippocampus, striatum and prefrontal cortex. We also found that ND elicited KP activation, as reflected by the increase of IDO activity and kynurenine levels in these brain regions. Moreover, ND decreased serotonin levels and increased 5-hydroxyindoleacetic acid levels in the brain. Treatment with IDO inhibitor 1-methyl-dl-trypthophan (1 mg/kg/i.p.) reversed the behavioral and neurochemical alterations induced by ND. These results indicate for the first time that KP plays a key role in depressive-like behavior and neurotoxicity induced by supraphysiologicaldoses of ND in mice.
Collapse
Affiliation(s)
- Leandro Cattelan Souza
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, CEP 97650-000, Itaqui, RS, Brazil; Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil.
| | - Maicon Lenon Otenio de Brito
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, CEP 97650-000, Itaqui, RS, Brazil
| | - Cristiano Ricardo Jesse
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, CEP 97650-000, Itaqui, RS, Brazil
| | - Silvana Peterini Boeira
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, CEP 97650-000, Itaqui, RS, Brazil
| | - Marcelo Gomes de Gomes
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, CEP 97650-000, Itaqui, RS, Brazil
| | - André Tiago Rossito Goes
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, CEP 97650-000, Itaqui, RS, Brazil
| | - Lucian Del Fabbro
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, CEP 97650-000, Itaqui, RS, Brazil
| | - Franciele Romero Machado
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, CEP 97650-000, Itaqui, RS, Brazil
| | - Marina Prigol
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, CEP 97650-000, Itaqui, RS, Brazil
| | - Cristina Wayne Nogueira
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| |
Collapse
|
10
|
Nandrolone Decanoate: Use, Abuse and Side Effects. ACTA ACUST UNITED AC 2020; 56:medicina56110606. [PMID: 33187340 PMCID: PMC7696474 DOI: 10.3390/medicina56110606] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/28/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022]
Abstract
Background and Objectives: Androgens play a significant role in the development of male reproductive organs. The clinical use of synthetic testosterone derivatives, such as nandrolone, is focused on maximizing the anabolic effects and minimizing the androgenic ones. Class II anabolic androgenic steroids (AAS), including nandrolone, are rapidly becoming a widespread group of drugs used both clinically and illicitly. The illicit use of AAS is diffused among adolescent and bodybuilders because of their anabolic proprieties and their capacity to increase tolerance to exercise. This systematic review aims to focus on side effects related to illicit AAS abuse, evaluating the scientific literature in order to underline the most frequent side effects on AAS abusers’ bodies. Materials and Methods: A systematic review of the scientific literature was performed using the PubMed database and the keywords “nandrolone decanoate”. The inclusion criteria for articles or abstracts were English language and the presence of the following words: “abuse” or “adverse effects”. After applying the exclusion and inclusion criteria, from a total of 766 articles, only 148 were considered eligible for the study. Results: The most reported adverse effects (found in more than 5% of the studies) were endocrine effects (18 studies, 42%), such as virilization, gynecomastia, hormonal disorders, dyslipidemia, genital alterations, and infertility; cardiovascular dysfunctions (six studies, 14%) such as vascular damage, coagulation disorders, and arteriosus hypertension; skin disorders (five studies, 12%) such as pricking, acne, and skin spots; psychiatric and mood disorders (four studies, 9%) such as aggressiveness, sleep disorders and anxiety; musculoskeletal disorders (two studies, 5%), excretory disorders (two studies, 5%), and gastrointestinal disorders (two studies, 5%). Conclusions: Based on the result of our study, the most common adverse effects secondary to the abuse of nandrolone decanoate (ND) involve the endocrine, cardiovascular, skin, and psychiatric systems. These data could prove useful to healthcare professionals in both sports and clinical settings.
Collapse
|
11
|
Damião B, Rossi-Junior WC, Guerra FDR, Marques PP, Nogueira DA, Esteves A. Anabolic steroids and their effects of on neuronal density in cortical areas and hippocampus of mice. BRAZ J BIOL 2020; 81:537-543. [PMID: 32876164 DOI: 10.1590/1519-6984.224642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 02/01/2020] [Indexed: 12/26/2022] Open
Abstract
Anabolic substances have been increasingly used by bodybuilders and athletes with the goal of improving performance and aesthetics. However, this practice has caused some concern to physicians and researchers because of unknowledge of consequences that the indiscriminate and illicit use of these substances can cause. Thus, this study analyzed the effects of two commercially available anabolic steroids (AS), Winstrol Depot® (Stanozolol) and Deposteron® (Testosterone Cypionate), in the neuronal density of limbic, motor and sensory regions on the cerebral cortex and in CA1, CA2, CA3 regions of the hippocampus. A total of 60 Swiss mice were used (30 males and 30 females), separated into three groups: control and two experimental groups, which received the AAS. From each brain, homotypic and semi-serial samples were taken in frontal sections from areas established for the study. The results showed that females treated with testosterone cypionate presented a reduction in all regions tested and the ones treated with Stanozolol showed a decrease in some hippocampal areas. Regarding male animals, stanozolol led to a decrease in neuron number in one hippocampal region. These data allow us to conclude that supra-physiological doses of steroids used in this study, can cause considerable damage to nervous tissue with ultrastructural and consequently behavioral impairment. These changes could interfere with the loss of physical yield and performance of athletes and non-athletes and may cause irreparable damage to individuals making irresponsible use of anabolic steroids.
Collapse
Affiliation(s)
- B Damião
- Programa de Ciências Farmacêuticas, Universidade Federal de Alfenas - UNIFAL-MG, R. Gabriel Monteiro da Silva, 700, Centro, CEP 37130-000, Alfenas, MG, Brasil
| | - W C Rossi-Junior
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas - UNIFAL-MG, R. Gabriel Monteiro da Silva, 700, Centro, CEP 37130-000, Alfenas, MG, Brasil
| | - F D R Guerra
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas - UNIFAL-MG, R. Gabriel Monteiro da Silva, 700, Centro, CEP 37130-000, Alfenas, MG, Brasil
| | - P P Marques
- Departamento de Morfologia, Faculdade de Ciências Médicas, Universidade José Vellano - UNIFENAS, Rodovia MG-179, Km 0, s/n, CEP 37130-000, Alfenas, MG, Brasil
| | - D A Nogueira
- Departamento de Estatística, Instituto de Ciências Exatas, Universidade Federal de Alfenas - UNIFAL-MG, R. Gabriel Monteiro da Silva, 700, Centro, CEP 37130-000, Alfenas, MG, Brasil
| | - A Esteves
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas - UNIFAL-MG, R. Gabriel Monteiro da Silva, 700, Centro, CEP 37130-000, Alfenas, MG, Brasil
| |
Collapse
|
12
|
Sretenovic J, Zivkovic V, Srejovic I, Ajdzanovic V, Ristic N, Trifunovic M, Pantovic S, Jovic S, Jakovljevic V, Bolevich S, Milosavljevic Z, Milosevic V. Immunohistomorphometric and Hormonal Analysis of the Pituitary Gonadotropic Cells After Application of the Nandrolone Decanoate and Swimming Training in Adult Male Rats. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2020; 26:699-707. [PMID: 32519626 DOI: 10.1017/s143192762000166x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The aim of the study was to investigate the effects of chronic nandrolone decanoate treatment and/or swimming training on immunohistomorphometric parameters on rat pituitary gonadotropic cells. Male Wistar albino rats, 10 weeks old, were classified into four groups: control (T−N−), nandrolone (T−N+), swimming training (T+N−), and swimming training with nandrolone (T+N+). The T+ groups swam for 4 weeks, 1 h/day, 5 days/week. The N+ groups received nandrolone decanoate (20 mg/kg) once per week for 4 weeks. Pituitary tissue sections were processed and stained for immunohistochemical analysis and immunofluorescence. The volume density of luteinizing hormone (LH) cells was decreased by 48% in T−N+ and for 35% in the T+N+ group. The volume density of follicle-stimulating hormone (FSH) cells was decreased by 39% in T−N+ and for 30% in T+N+ compared to the control. Nandrolone alone, or combined with swimming training, decreased the number of LH/FSH cells compared to the control. The levels of the immunofluorescent signal of LH/FSH cells were increased in all experimental groups. Nandrolone alone decreased the serum level of LH by 17%, whereas swimming training alone increased FSH levels by 11% compared to the control. Serum levels of testosterone were increased in all experimental groups. Nandrolone alone, or combined with swimming training, decreased immunohistomorphometric parameters of gonadotropic cells, whereas the levels of immunofluorescent signal were increased.
Collapse
Affiliation(s)
- Jasmina Sretenovic
- Faculty of Medical Sciences, Department of Physiology, University of Kragujevac, Svetozara Markovica 69, 34000Kragujevac, Serbia
| | - Vladimir Zivkovic
- Faculty of Medical Sciences, Department of Physiology, University of Kragujevac, Svetozara Markovica 69, 34000Kragujevac, Serbia
| | - Ivan Srejovic
- Faculty of Medical Sciences, Department of Physiology, University of Kragujevac, Svetozara Markovica 69, 34000Kragujevac, Serbia
| | - Vladimir Ajdzanovic
- Department of Cytology, Institute for Biological Research "Sinisa Stankovic" - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000Belgrade, Serbia
| | - Natasa Ristic
- Department of Cytology, Institute for Biological Research "Sinisa Stankovic" - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000Belgrade, Serbia
| | - Miroljub Trifunovic
- Department of Otorhinolaryngology and Maxillofacial Surgery, General Hospital Studenica, Jug Bogdanova 110, 36000Kraljevo, Serbia
| | - Suzana Pantovic
- Faculty of Medical Sciences, Department of Physiology, University of Kragujevac, Svetozara Markovica 69, 34000Kragujevac, Serbia
| | - Slavoljub Jovic
- Faculty of Veterinary Medicine, Department of Physiology and Biochemistry, University of Belgrade, Bulevar oslobodjenja 18, Belgrade11000, Serbia
| | - Vladimir Jakovljevic
- Faculty of Medical Sciences, Department of Physiology, University of Kragujevac, Svetozara Markovica 69, 34000Kragujevac, Serbia
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University, Moscow119992, Russian Federation
| | - Sergey Bolevich
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University, Moscow119992, Russian Federation
| | - Zoran Milosavljevic
- Faculty of Medical Science, Department of Histology and Embryology, University of Kragujevac, Svetozara Markovica 69, 34 000Kragujevac, Serbia
| | - Verica Milosevic
- Department of Cytology, Institute for Biological Research "Sinisa Stankovic" - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000Belgrade, Serbia
| |
Collapse
|
13
|
Stajic D, Selakovic D, Jovicic N, Joksimovic J, Arsenijevic N, Lukic ML, Rosic G. The role of galectin-3 in modulation of anxiety state level in mice. Brain Behav Immun 2019; 78:177-187. [PMID: 30682502 DOI: 10.1016/j.bbi.2019.01.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 01/16/2019] [Accepted: 01/19/2019] [Indexed: 01/19/2023] Open
Abstract
Galectin-3 (Gal-3), a member of lectin family that binds to oligosaccharides, is involved in several biological processes, including maturation and function of nervous system. It had been reported that Gal-3 regulates oligodendrocytes differentiation and that Gal-3/Toll-like receptor-4 (TLR4) axis is involved in neuroinflammation. As both, central nervous system (CNS) maturation and neuroinflammation may affect behavior, the principle aim of this study was to examine the effects of Gal-3 gene deletion on behavior. Here we provide the evidence that Gal-3 deficiency shows clear anxiogenic effect in mature untreated animals (basal conditions). This was accompanied with lower interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) relative gene expression and hippocampal content, with no effect on TLR4 expression. Gal-3 deficiency was also accompanied with lower brain-derived neurotrophic factor (BDNF) relative gene expression and immunoreactivity in hippocampus (predominantly in CA1 region). Besides, the Gal-3 gene deletion resulted in attenuation of the hippocampal relative gene expression of GABA-A receptor subunits 2 and 5 (GABA-AR2S and GABA-AR5S), On the other hand, Gal-3 deficiency attenuates LPS-induced neuroinflammation. The anxiogenic effect of acute neuroinflammation was accompanied with increased hippocampal IL-6, TNF-α and TLR4 gene expression, as well as decreased gene and immunohistochemical BDNF expression in hippocampus, with significant decline in GABA-AR2S in wild type (WT) mice in comparison to basal conditions. Gal-3 gene deletion prevented the increase in IL-6, the decline in BDNF gene expression and immunoreactivity, and reduction in hippocampal GABA-AR2S, and therefore attenuated the anxiogenic effect of neuroinflammation. In summary, our data demonstrate that apparently opposite effects of Gal-3 deficiency on anxiety levels (anxiogenic effect under basal conditions and anxiolytic action during neuroinflammation) seem to be related to the shift in IL-6, TNF-α and hippocampal BDNF.
Collapse
Affiliation(s)
- Dalibor Stajic
- Department of Hygiene and Ecology, Faculty of Medical Sciences, University of Kragujevac, Serbia; Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Serbia
| | - Dragica Selakovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Serbia
| | - Nemanja Jovicic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Serbia
| | - Jovana Joksimovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Serbia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Serbia
| | - Miodrag L Lukic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Serbia.
| | - Gvozden Rosic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Serbia.
| |
Collapse
|
14
|
The Benefits of Using New Tools for Behavioral Investigations in Animal Experimental Models. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2019. [DOI: 10.1515/sjecr-2017-0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
The animal experimental models of emotional disorders attempt to reproduce features of human psychiatric disorders in laboratory animals by correlating the physiological and behavioral changes associated with specific emotional states, the etiology of disorders, and responses on drug treatments. Animal experimental models that accurately recapitulate clinical pathology are indispensable for understanding molecular mechanisms and advancing preclinical studies. Behavioral tests on animal models have been developed over time in two directions: to enable the acquisition of as many valid behavior data as possible, and constructing experimental models and procedures that represent a parallel with certain conditions in humans. In this review we discuss more information for the new tools in behavioral investigations in animal experimental models. Here we described evoked beam-walking (EBW) test as a new test for estimation of anxiety levels. The reliability of that test was confirmed in our studies by using nandrolone decanoate (ND) and testosterone enanthate (TE) in supraphysiological doses. Also, we defined a new approach to estimation of exploratory activity by using these tests and an improvement of detectability in standard evaluation of depressive state levels. Taking into account that behavioral investigation in animal models still has to remain indispensable in conducting of preclinical studies, we assume that new tools that can be applied in this field may improve the quality of research.
Collapse
|
15
|
Joksimovic J, Selakovic D, Jovicic N, Mitrovic S, Mihailovic V, Katanic J, Milovanovic D, Rosic G. Exercise Attenuates Anabolic Steroids-Induced Anxiety via Hippocampal NPY and MC4 Receptor in Rats. Front Neurosci 2019; 13:172. [PMID: 30863280 PMCID: PMC6399386 DOI: 10.3389/fnins.2019.00172] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/13/2019] [Indexed: 12/16/2022] Open
Abstract
The aim of our study was to evaluate the effects of chronic administration of nandrolone-decanoate (ND) or testosterone-enanthate (TE) in supraphysiological doses and a prolonged swimming protocol, alone and in combination with ND or TE, on anxiety-like behavior in rats. We investigated the immunohistochemical alterations of the hippocampal neuropeptide Y (NPY) and melanocortin 4 receptor (MC4R) neurons, as a possible underlying mechanism in a modulation of anxiety-like behavior in rats. Both applied anabolic androgenic steroids (AASs) induced anxiogenic effect accompanied with decreased serum and hippocampal NPY. The exercise-induced anxiolytic effect was associated with increased hippocampal NPY expression. ND and TE increased the number of MC4R, while the swimming protocol was followed by the reduction of MC4R in the CA1 region of the hippocampus. However, NPY/MC4R ratio in hippocampus was lowered by AASs and elevated by exercise in all hippocampal regions. An augmentation of this ratio strongly and positively correlated to increased time in open arms of elevated plus maze, in the context that indicates anxiolytic effect. Our findings support the conclusion that alterations in both hippocampal NPY and MC4R expression are involved in anxiety level changes in rats, while their quantitative relationship (NPY/MC4R ratio) is even more valuable in the estimation of anxiety regulation than individual alterations for both NPY and MC4R expression in the hippocampus.
Collapse
Affiliation(s)
- Jovana Joksimovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Dragica Selakovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nemanja Jovicic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Slobodanka Mitrovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir Mihailovic
- Department of Chemistry, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Jelena Katanic
- Department of Chemistry, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Dragan Milovanovic
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Gvozden Rosic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
16
|
Selakovic D, Joksimovic J, Jovicic N, Mitrovic S, Mihailovic V, Katanic J, Milovanovic D, Pantovic S, Mijailovic N, Rosic G. The Impact of Hippocampal Sex Hormones Receptors in Modulation of Depressive-Like Behavior Following Chronic Anabolic Androgenic Steroids and Exercise Protocols in Rats. Front Behav Neurosci 2019; 13:19. [PMID: 30792631 PMCID: PMC6374347 DOI: 10.3389/fnbeh.2019.00019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/22/2019] [Indexed: 12/31/2022] Open
Abstract
The aim of this study was to evaluate alterations in depressive-like behaviors in rats following chronic administration of a supraphysiological dose of anabolic androgenic steroids (AASs) as well as exposure to a prolonged exercise protocol. The role of hippocampal sex hormones receptors in the modulation of depressive-like behavior was also assessed. A total of 48 male Wistar albino rats were divided into six groups: control, exercise (1 h/day, five consecutive days), nandrolone-decanoate (ND, 20 mg/kg/week, in a single dose), exercise plus ND, testosterone-enanthate (TE, 20 mg/kg/week, in a single dose), and exercise plus TE. After the 6-week protocols were complete, the rats underwent behavioral testing in the tail suspension test (TST). Rats were sacrificed for the collection of blood samples, to determine sex hormones levels, and isolation of the hippocampus, to determine [androgen receptors (AR) and estrogen receptors α (ERα)] expression. ND and TE treatment induced significant depressive-like behavior, opposing the antidepressant effect of exercise. Chronic TE administration elevated testosterone (T) and dihydrotestosterone (DHT) serum levels, and this was augmented by exercise. In contrast, ND and exercise alone did not alter T or DHT levels. There were no changes in serum estradiol levels in any of the groups. Immunohistochemical analysis showed that exercise reduced AR immunoreactivity in all hippocampal regions and increased the ERα expression in the CA1, dentate gyrus (DG), and total hippocampal sections, but not in the CA2/3 region. AASs administration increased AR expression in all hippocampal regions, although not the total hippocampal section in the TE group and did not significantly decrease ERα. The hippocampal AR/ERα expression index was lowered while parvalbumin (PV)-immunoreactivity was enhanced by exercise. AASs administration increased the AR/ERα index and reduced PV-immunoreactivity in the hippocampus. The number of PV-immunoreactive neurons negatively correlated with the antidepressant effects and the AR/ERα ratio. Our results suggest a potential role of the numerical relationship between two sex hormones receptors (stronger correlation than for each individual receptor) in the regulation of depressive-like behavior via the hippocampal GABAergic system in rats, which allow better understanding of the hippocampal sex hormones receptors role in modulation of depressive-like behavior.
Collapse
Affiliation(s)
- Dragica Selakovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jovana Joksimovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nemanja Jovicic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Slobodanka Mitrovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir Mihailovic
- Department of Chemistry, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Jelena Katanic
- Department of Chemistry, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Dragan Milovanovic
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Suzana Pantovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Natasa Mijailovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Gvozden Rosic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
17
|
Mijailovic N, Selakovic D, Joksimovic J, Mihailovic V, Katanic J, Jakovljevic V, Nikolic T, Bolevich S, Zivkovic V, Pantic M, Rosic G. The anxiolytic effects of atorvastatin and simvastatin on dietary-induced increase in homocysteine levels in rats. Mol Cell Biochem 2019; 452:199-217. [PMID: 30120639 DOI: 10.1007/s11010-018-3425-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 08/14/2018] [Indexed: 12/17/2022]
Abstract
The aim of this study was to evaluate the effects of atorvastatin and simvastatin on behavioral manifestations that followed hyperhomocysteinemia induced by special dietary protocols enriched in methionine and deficient in B vitamins (B6, B9, B12) by means of alterations in anxiety levels in rats. Simultaneously, we investigated the alterations of oxidative stress markers in rat hippocampus induced by applied dietary protocols. Furthermore, considering the well-known antioxidant properties of statins, we attempted to assess their impact on major markers of oxidative stress and their possible beneficial role on anxiety-like behavior effect in rats. The 4-week-old male Wistar albino rats were divided (eight per group) according to basic dietary protocols: standard chow, methionine-enriched, and methionine-enriched vitamins B (B6, B9, B12) deficient. Each dietary protocol (30 days) included groups with atorvastatin (3 mg/kg/day i.p.) and simvastatin (5 mg/kg/day i.p.). The behavioral testing was performed in the open field and elevated plus maze tests. Parameters of oxidative stress (index of lipid peroxidation, superoxide dismutase, catalase activity, glutathione) were determined in hippocampal tissue samples following decapitation after anesthesia. Methionine-load dietary protocols induced increased oxidative stress in rat hippocampus, which was accompanied by anxiogenic behavioral manifestations. The methionine-enriched diet with restricted vitamins B intake induced more pronounced anxiogenic effect, as well as increased oxidative stress compared to the methionine-load diet with normal vitamins B content. Simultaneous administration of statins showed beneficial effects by means of both decreased parameters of oxidative stress and attenuation of anxiety. The results obtained with simvastatin were more convincible compared to atorvastatin.
Collapse
Affiliation(s)
- Natasa Mijailovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, Kragujevac, 34000, Serbia
| | - Dragica Selakovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, Kragujevac, 34000, Serbia
| | - Jovana Joksimovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, Kragujevac, 34000, Serbia
| | - Vladimir Mihailovic
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovica 12, Kragujevac, 34000, Serbia
| | - Jelena Katanic
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovica 12, Kragujevac, 34000, Serbia
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, Kragujevac, 34000, Serbia.
- Department of Human Pathology, 1st Moscow State Medical University IM Sechenov, Moscow, Russia.
| | - Tamara Nikolic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, Kragujevac, 34000, Serbia
| | - Sergey Bolevich
- Department of Human Pathology, 1st Moscow State Medical University IM Sechenov, Moscow, Russia
| | - Vladimir Zivkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, Kragujevac, 34000, Serbia
| | - Milica Pantic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, Kragujevac, 34000, Serbia
| | - Gvozden Rosic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, Kragujevac, 34000, Serbia
| |
Collapse
|
18
|
Sretenovic J, Ajdzanovic V, Zivkovic V, Srejovic I, Corbic M, Milosevic V, Jakovljevic V, Milosavljevic Z. Nandrolone decanoate and physical activity affect quadriceps in peripubertal rats. Acta Histochem 2018; 120:429-437. [PMID: 29759662 DOI: 10.1016/j.acthis.2018.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 02/06/2023]
Abstract
Anabolic androgenic steroids (AASs) are synthetic analogs of testosterone often used by athletes to increase the skeletal muscle mass. Our goal was to examine the effects of physical activity and physical activity combined with supraphysiological doses of nandrolone on functional morphology of the quadriceps muscle. The study included 32 peripubertal Wistar rats, divided into 4 groups: control (T-N-), nandrolone (T-N+), physical activity (T+N-) and physical activity plus nandrolone (T+N+) groups. The T+N- and T+N+ group swam for 4 weeks, 1 h/day, 5 days/week. The T-N+ and T+N+ groups received nandolone decanoate (20 mg/kg b.w.) once per week, subcutaneously. Subsequently, the rats were sacrificed and muscle specimens were prepared for the processing. Tissue sections were histochemically and immunohistochemically stained, while the image analysis was used for quantification. Longitudinal diameter of quadriceps muscle cells was increased for 21% in T-N+, for 57% in T+N- and for 64% in T+N+ group while cross section muscle cell area was increased in T-N+ for 19%, in T+N- for 47% and in T+N+ group for 59%, compared to the control. Collagen fibers covered area was increased in T-N+ group for 36%, in T+N- for 109% and in T+N+ group for 159%, compared to the control. Erythrocyte depots were decreased in T-N+ group and increased in T+N- and T+N+ group, in comparison with T-N-. VEGF depots were increased in all treated groups. Chronic administration of supraphysiological doses of AASs alone or in combination with physical activity induces hypertrophy and significant changes in the quadriceps muscle tissue structure.
Collapse
Affiliation(s)
- Jasmina Sretenovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir Ajdzanovic
- Department of Cytology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Vladimir Zivkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Ivan Srejovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Milena Corbic
- Clinic of Neurology, KRH Klinikum Agnes Karll Laatzen, Hannover, Germany
| | - Verica Milosevic
- Department of Cytology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia.
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia; Department of Human Pathology, 1st Moscow State Medical University IM Sechenov, Moscow, Russia
| | - Zoran Milosavljevic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|