1
|
Palmer EP, Cronise KE, Haines LA, Das S, Offermann A, Easton CP, Regan DP. Osteosarcoma Exosome Priming of Primary Human Lung Fibroblasts Induces an Immune Modulatory and Protumorigenic Phenotype. CANCER RESEARCH COMMUNICATIONS 2025; 5:594-608. [PMID: 40099972 PMCID: PMC11987067 DOI: 10.1158/2767-9764.crc-24-0371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/07/2024] [Accepted: 03/14/2025] [Indexed: 03/20/2025]
Abstract
SIGNIFICANCE These findings provide a critical first step in characterizing the capacity of OS-derived exosomes to reprogram primary LFs toward a tumor-promoting inflammatory phenotype in vitro, offering novel molecular targets for the modulation of fibroblasts in the lung microenvironment as potential therapeutic strategies to prevent OS metastasis.
Collapse
Affiliation(s)
- Eric P. Palmer
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Kathryn E. Cronise
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Laurel A. Haines
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Sunetra Das
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Aaron Offermann
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Carina P. Easton
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Daniel P. Regan
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
2
|
Ma L, Li Y, Sakamoto Y, Xie L, Suzuki S, Yoshida Y, Sui L, Guo G, Wen J, Ren W, Kakimi K, Osada K, Takahashi A, Shimokawa T. Optimal radiation dose to induce an abscopal effect by combining carbon-ion radiotherapy and anti-CTLA4 antibody. Neoplasia 2025; 60:101099. [PMID: 39674115 PMCID: PMC11699741 DOI: 10.1016/j.neo.2024.101099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 11/19/2024] [Accepted: 11/27/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND AND PURPOSE Although carbon-ion radiotherapy (CIRT) has led to good outcomes, controlling metastasis is still crucial for improving overall survival. This study aimed to evaluate the effectiveness of by two combinations, one of CIRT and anti-CTLA4 antibody, the other of CIRT and anti-PD-1 antibody, applied at different radiation doses for distal tumour and metastasis suppression. MATERIALS AND METHODS Murine cancer cells (colon carcinoma Colon-26 cells for experiments and osteosarcoma LM8 cells for verification) were grafted into both sides of the hind legs of syngeneic mice. Right-side tumours were irradiated with 3 Gy or 10 Gy CIRT while the left-side tumours were not irradiated, followed by the administration of the anti-CTLA4 antibody or anti-PD-1 antibody. The diameter of the tumours in both legs was measured 3 times per week after irradiation. The number of pulmonary metastases was evaluated within 3 weeks after irradiation. RESULTS Compared with the control group, the high-dose group showed promising anti-cancer benefits in terms of both irradiated tumours and lung metastasis, but neither 10 Gy CIRT combined with the anti-CTLA4 antibody nor 10 Gy CIRT combined with the anti-PD-1 antibody suppressed the growth of distant unirradiated tumours. In the low-dose group, the effect on primary tumour control was slightly weaker than that in the high-dose treatment group, but significant suppressive effects on both distant unirradiated tumours and metastases were observed following 3 Gy CIRT combined with anti-CTLA4 antibody treatment. Specifically, the volume of distant unirradiated tumours decreased by 40 % compared with that of the control group, and no lung metastasis was observed. CONCLUSION Our findings suggest that there is an optimal dose range for the abscopal effect generated with the CIRT combined with anti-CTLA4 antibody, and it highlights a new opportunity for increased induction efficiency of the abscopal effect of combination therapy.
Collapse
Affiliation(s)
- Liqiu Ma
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan; Gunma University Heavy Ion Medical Center, Gunma 371-8511, Japan; Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413, China.
| | - Yang Li
- Gunma University Heavy Ion Medical Center, Gunma 371-8511, Japan
| | - Yoshimitsu Sakamoto
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan
| | - Lin Xie
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan
| | - Saaya Suzuki
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan
| | - Yukari Yoshida
- Gunma University Heavy Ion Medical Center, Gunma 371-8511, Japan
| | - Li Sui
- Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413, China
| | - Gang Guo
- Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413, China
| | - Jialing Wen
- Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413, China
| | - Wangcai Ren
- Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413, China
| | - Kazuhiro Kakimi
- Department of Immunology, Kindai University Faculty of Medicine, Osaka 589-0014, Japan
| | - Kensuke Osada
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan
| | | | - Takashi Shimokawa
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan.
| |
Collapse
|
3
|
Lian H, Zhang J, Hou S, Ma S, Yu J, Zhao W, Zhao D, Zhang Z. Immunotherapy of osteosarcoma based on immune microenvironment modulation. Front Immunol 2025; 15:1498060. [PMID: 39916962 PMCID: PMC11799554 DOI: 10.3389/fimmu.2024.1498060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/30/2024] [Indexed: 02/09/2025] Open
Abstract
Osteosarcoma is a highly malignant tumor with unsatisfactory therapeutic outcomes achieved by chemotherapy, radiotherapy, and surgery. As an emerging oncological treatment, immunotherapy has shown potential in the clinical management of many tumors but has a poor response rate in osteosarcoma. The immunosuppressive microenvironment in osteosarcoma is the main reason for the ineffectiveness of immunotherapy, in which the low immune response rate of immune effector cells and the high activation of immunosuppressive cells contribute to this outcome. Therefore, modulating the function of the immune microenvironment in osteosarcoma is expected to remodel the immunosuppressive microenvironment of osteosarcoma and enhance the efficacy of immunotherapy. This article reviews the role of immune cells in the progression of osteosarcoma, describes the corresponding regulatory tools for the characteristics of different cells to enhance the efficacy of osteosarcoma immunotherapy, and concludes the prospects and future challenges of osteosarcoma immunotherapy.
Collapse
Affiliation(s)
- Heping Lian
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Jiakui Zhang
- Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shuna Hou
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shuang Ma
- Nursing Department, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jiachen Yu
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Wei Zhao
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Duoyi Zhao
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhiyu Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Kumar V, Bahuguna A, Kim M. Molecular insights into binding of bioactive compounds from essential oil of Trachyspermum ammi with human programmed cell death protein 1. J Biomol Struct Dyn 2024; 42:6871-6881. [PMID: 37477253 DOI: 10.1080/07391102.2023.2236709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
The human programmed cell death protein 1 (PD-1) is expressed on the surface of T cells and contributes significantly to tumor immunity. Herein, six major compounds (carvacrol, thymol, β-phellandrene, α-terpinene, myrcene D, and α-pinene) from Trachyspermum ammi were studied for their intermolecular interactions and stability against PD-1. All tested compounds displayed docking energy (-4.2 to -3.7 kcal/mol) with PD-1. The highest docking scores of -4.2 and -4.1 kcal/mol were recorded for carvacrol and thymol, respectively. Also, a 100 ns molecular dynamics simulation predicted the stability of carvacrol- and thymol-docked PD-1 complex. Maximum of < 30 Å and < 12 Å root-mean-square deviation were observed for carvacrol and thymol at the end of the 100 ns simulation with respect to protein (Cα atoms), indicating retention and displacement of carvacrol and thymol from the initial binding pocket, respectively. Moreover, the endpoint binding free energies support the higher binding affinity of carvacrol (-22.87 ± 5.52 kcal/mol) than thymol (-16.83 ± 1.30 kcal/mol). The equicrural states of the respective ligands were supported by the respective root mean square fluctuation, where no significant deviations in the atoms of the ligands were observed. These findings suggest that carvacrol and thymol inhibit the PD-1/PD-L1 axis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vishal Kumar
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea
| | - Ashutosh Bahuguna
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea
| | - Myunghee Kim
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea
- Institute of Cell Culture, Yeungnam University, Gyeongsan-si, Republic of Korea
| |
Collapse
|
5
|
Helm A, Fournier C. High-LET charged particles: radiobiology and application for new approaches in radiotherapy. Strahlenther Onkol 2023; 199:1225-1241. [PMID: 37872399 PMCID: PMC10674019 DOI: 10.1007/s00066-023-02158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/17/2023] [Indexed: 10/25/2023]
Abstract
The number of patients treated with charged-particle radiotherapy as well as the number of treatment centers is increasing worldwide, particularly regarding protons. However, high-linear energy transfer (LET) particles, mainly carbon ions, are of special interest for application in radiotherapy, as their special physical features result in high precision and hence lower toxicity, and at the same time in increased efficiency in cell inactivation in the target region, i.e., the tumor. The radiobiology of high-LET particles differs with respect to DNA damage repair, cytogenetic damage, and cell death type, and their increased LET can tackle cells' resistance to hypoxia. Recent developments and perspectives, e.g., the return of high-LET particle therapy to the US with a center planned at Mayo clinics, the application of carbon ion radiotherapy using cost-reducing cyclotrons and the application of helium is foreseen to increase the interest in this type of radiotherapy. However, further preclinical research is needed to better understand the differential radiobiological mechanisms as opposed to photon radiotherapy, which will help to guide future clinical studies for optimal exploitation of high-LET particle therapy, in particular related to new concepts and innovative approaches. Herein, we summarize the basics and recent progress in high-LET particle radiobiology with a focus on carbon ions and discuss the implications of current knowledge for charged-particle radiotherapy. We emphasize the potential of high-LET particles with respect to immunogenicity and especially their combination with immunotherapy.
Collapse
Affiliation(s)
- Alexander Helm
- Biophysics Department, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Claudia Fournier
- Biophysics Department, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany.
| |
Collapse
|
6
|
Ying H, Li ZQ, Li MP, Liu WC. Metabolism and senescence in the immune microenvironment of osteosarcoma: focus on new therapeutic strategies. Front Endocrinol (Lausanne) 2023; 14:1217669. [PMID: 37497349 PMCID: PMC10366376 DOI: 10.3389/fendo.2023.1217669] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/21/2023] [Indexed: 07/28/2023] Open
Abstract
Osteosarcoma is a highly aggressive and metastatic malignant tumor. It has the highest incidence of all malignant bone tumors and is one of the most common solid tumors in children and adolescents. Osteosarcoma tissues are often richly infiltrated with inflammatory cells, including tumor-associated macrophages, lymphocytes, and dendritic cells, forming a complex immune microenvironment. The expression of immune checkpoint molecules is also high in osteosarcoma tissues, which may be involved in the mechanism of anti-tumor immune escape. Metabolism and senescence are closely related to the immune microenvironment, and disturbances in metabolism and senescence may have important effects on the immune microenvironment, thereby affecting immune cell function and immune responses. Metabolic modulation and anti-senescence therapy are gaining the attention of researchers as emerging immunotherapeutic strategies for tumors. Through an in-depth study of the interconnection of metabolism and anti- senescence in the tumor immune microenvironment and its regulatory mechanism on immune cell function and immune response, more precise therapeutic strategies can be developed. Combined with the screening and application of biomarkers, personalized treatment can be achieved to improve therapeutic efficacy and provide a scientific basis for clinical decision-making. Metabolic modulation and anti- senescence therapy can also be combined with other immunotherapy approaches, such as immune checkpoint inhibitors and tumor vaccines, to form a multi-level and multi-dimensional immunotherapy strategy, thus further enhancing the effect of immunotherapy. Multidisciplinary cooperation and integrated treatment can optimize the treatment plan and maximize the survival rate and quality of life of patients. Future research and clinical practice will further advance this field, promising more effective treatment options for patients with osteosarcoma. In this review, we reviewed metabolic and senescence characteristics in the immune microenvironment of osteosarcoma and related immunotherapies, and provide a reference for development of more personalized and effective therapeutic strategies.
Collapse
Affiliation(s)
- Hui Ying
- Department of Emergency Trauma Surgery, Ganzhou People’s Hospital, Ganzhou, China
- Department of Spine Surgery, Ganzhou People’s Hospital, Ganzhou, China
| | - Zhi-Qiang Li
- Department of Emergency Trauma Surgery, Ganzhou People’s Hospital, Ganzhou, China
- Department of Spine Surgery, Ganzhou People’s Hospital, Ganzhou, China
| | - Meng-Pan Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wen-Cai Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Deguchi T, Maekawa N, Konnai S, Owaki R, Hosoya K, Morishita K, Nakamura M, Okagawa T, Takeuchi H, Kim S, Kinoshita R, Tachibana Y, Yokokawa M, Takagi S, Kato Y, Suzuki Y, Murata S, Ohashi K. Enhanced Systemic Antitumour Immunity by Hypofractionated Radiotherapy and Anti-PD-L1 Therapy in Dogs with Pulmonary Metastatic Oral Malignant Melanoma. Cancers (Basel) 2023; 15:cancers15113013. [PMID: 37296981 DOI: 10.3390/cancers15113013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Although immune checkpoint inhibitors (ICIs), such as the anti-programmed death-ligand 1 (PD-L1) antibody, have been developed for the treatment of canine malignant melanoma, desirable clinical efficacies have not been achieved. Recent studies in humans have suggested that radiation therapy (RT) combined with ICIs induces robust systemic antitumour immunity in patients with cancer. This study retrospectively examined the therapeutic efficacy of combination therapy (hypofractionated RT and anti-PD-L1 antibody [c4G12]) in dogs with pulmonary metastatic oral malignant melanoma. The intrathoracic clinical benefit rate (CBR)/median overall survival (OS) in the no RT (n = 20, free from the effect of RT), previous RT (n = 9, received RT ≤8 weeks prior to the first c4G12 dose), and concurrent RT (n = 10, c4G12 therapy within ±1 week of the first RT fraction) groups were 10%/185 days, 55.6%/283.5 days (p < 0.05 vs. no RT group), and 20%/129 days (p > 0.05 vs. no RT group), respectively. The adverse events were considered to be tolerable in the combination therapy. Thus, hypofractionated RT before the initiation of c4G12 therapy can be an effective approach for enhancing the therapeutic efficacy of immunotherapy, with acceptable safety profiles. Further prospective clinical studies are required to confirm the findings of this study.
Collapse
Affiliation(s)
- Tatsuya Deguchi
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0819, Japan
| | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Satoru Konnai
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Ryo Owaki
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0819, Japan
| | - Kenji Hosoya
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0819, Japan
| | - Keitaro Morishita
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0819, Japan
| | - Motoji Nakamura
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0819, Japan
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Hiroto Takeuchi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Sangho Kim
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0819, Japan
| | - Ryohei Kinoshita
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0819, Japan
| | - Yurika Tachibana
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0819, Japan
| | - Madoka Yokokawa
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0819, Japan
| | - Satoshi Takagi
- Department of Veterinary Surgery 1, School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Yasuhiko Suzuki
- International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 060-0808, Japan
| | - Shiro Murata
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Kazuhiko Ohashi
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| |
Collapse
|
8
|
Hattinger CM, Salaroglio IC, Fantoni L, Godel M, Casotti C, Kopecka J, Scotlandi K, Ibrahim T, Riganti C, Serra M. Strategies to Overcome Resistance to Immune-Based Therapies in Osteosarcoma. Int J Mol Sci 2023; 24:ijms24010799. [PMID: 36614241 PMCID: PMC9821333 DOI: 10.3390/ijms24010799] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/14/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Improving the prognosis and cure rate of HGOSs (high-grade osteosarcomas) is an absolute need. Immune-based treatment approaches have been increasingly taken into consideration, in particular for metastatic, relapsed and refractory HGOS patients, to ameliorate the clinical results currently achieved. This review is intended to give an overview on the immunotherapeutic treatments targeting, counteracting or exploiting the different immune cell compartments that are present in the HGOS tumor microenvironment. The principle at the basis of these strategies and the possible mechanisms that HGOS cells may use to escape these treatments are presented and discussed. Finally, a list of the currently ongoing immune-based trials in HGOS is provided, together with the results that have been obtained in recently completed clinical studies. The different strategies that are presently under investigation, which are generally aimed at abrogating the immune evasion of HGOS cells, will hopefully help to indicate new treatment protocols, leading to an improvement in the prognosis of patients with this tumor.
Collapse
Affiliation(s)
- Claudia Maria Hattinger
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | | | - Leonardo Fantoni
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy
| | - Martina Godel
- Department of Oncology, University of Torino, Via Santena 5/bis, 10126 Torino, Italy
| | - Chiara Casotti
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy
| | - Joanna Kopecka
- Department of Oncology, University of Torino, Via Santena 5/bis, 10126 Torino, Italy
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Toni Ibrahim
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, Via Santena 5/bis, 10126 Torino, Italy
- Correspondence: (C.R.); (M.S.)
| | - Massimo Serra
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Correspondence: (C.R.); (M.S.)
| |
Collapse
|
9
|
Wen Y, Tang F, Tu C, Hornicek F, Duan Z, Min L. Immune checkpoints in osteosarcoma: Recent advances and therapeutic potential. Cancer Lett 2022; 547:215887. [PMID: 35995141 DOI: 10.1016/j.canlet.2022.215887] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 11/02/2022]
Abstract
Osteosarcoma is the most common primary malignant bone tumor and is associated with a high risk of recurrence and distant metastasis. Effective treatment for osteosarcoma, especially advanced osteosarcoma, has stagnated over the past four decades. The advent of immune checkpoint inhibitor (ICI) has transformed the treatment paradigm for multiple malignant tumor types and indicated a potential therapeutic strategy for osteosarcoma. In this review, we discuss recent advances in immune checkpoints, including programmed cell death protein-1 (PD-1), programmed cell death protein ligand-1 (PD-L1), and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), and their related ICIs for osteosarcoma treatment. We present the main existing mechanisms of resistance to ICIs therapy in osteosarcoma. Moreover, we summarize the current strategies for improving the efficacy of ICIs in osteosarcoma and address the potential predictive biomarkers of ICIs treatment in osteosarcoma.
Collapse
Affiliation(s)
- Yang Wen
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Fan Tang
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Chongqi Tu
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Francis Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center, the University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center, the University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Li Min
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
10
|
Katsuki S, Takahashi Y, Tamari K, Minami K, Takenaka W, Ibuki Y, Yamamoto J, Tatekawa S, Hayashi K, Seo Y, Isohashi F, Ogawa K, Koizumi M. Radiation therapy enhances systemic antitumor efficacy in PD-L1 therapy regardless of sequence of radiation in murine osteosarcoma. PLoS One 2022; 17:e0271205. [PMID: 35816501 PMCID: PMC9273087 DOI: 10.1371/journal.pone.0271205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 06/25/2022] [Indexed: 12/25/2022] Open
Abstract
Recent studies demonstrate that immune checkpoint blockade (ICB) increases the chances of the abscopal effect, an anti-tumor effect outside the radiation field in radiation therapy. However, the optimal sequence between radiation and ICB remains unclear. To investigate the impact of sequence of radiation in anti-PD-L1 antibody (P1) therapy on immune microenvironments and antitumor efficacies in local and abscopal tumors, metastatic LM8 osteosarcoma cells were inoculated into both legs of C3H mice. For irradiation, only one side leg was irradiated at 10 Gy. Then mice were divided into four groups: administrated anti-PD-L1 antibody three times (P1 monotherapy), receiving radiation 3 days prior to P1 therapy (P1+pre-Rad), and receiving concurrent radiation with P1 therapy (P1+conc-Rad). Thereafter, tumor immune microenvironment and tumor volume changes were analyzed in irradiated and unirradiated tumors. The P1+pre-Rad regimen increased the proportion of CD8+ programmed cell death 1 (PD-1)+ granzyme B (GzmB)+ reinvigorated T cells and decreased the proportion of CD8+ PD-1+ GzmB- exhausted T cells than P1+conc-Rad regimen in unirradiated tumors. Combination regimens suppressed tumor growth in irradiated tumors compared with that in P1 monotherapy. In both irradiated and unirradiated tumors, significant tumor growth suppression and prolonged overall survival were observed under both combination treatment regimens compared with P1 monotherapy. However, no distinct differences in unirradiated tumor volume and survival were observed between P1+pre-Rad and P1+conc-Rad groups. These results suggest that local irradiation is necessary to improve systemic treatment efficacy in P1 therapy regardless of sequence of local irradiation.
Collapse
Affiliation(s)
- Shohei Katsuki
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yutaka Takahashi
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- * E-mail:
| | - Keisuke Tamari
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kazumasa Minami
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Wataru Takenaka
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoriko Ibuki
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Junya Yamamoto
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shotaro Tatekawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kazuhiko Hayashi
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuji Seo
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Fumiaki Isohashi
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masahiko Koizumi
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
11
|
Zhu T, Han J, Yang L, Cai Z, Sun W, Hua Y, Xu J. Immune Microenvironment in Osteosarcoma: Components, Therapeutic Strategies and Clinical Applications. Front Immunol 2022; 13:907550. [PMID: 35720360 PMCID: PMC9198725 DOI: 10.3389/fimmu.2022.907550] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/26/2022] [Indexed: 12/21/2022] Open
Abstract
Osteosarcoma is a primary malignant tumor that tends to threaten children and adolescents, and the 5-year event-free survival rate has not improved significantly in the past three decades, bringing grief and economic burden to patients and society. To date, the genetic background and oncogenesis mechanisms of osteosarcoma remain unclear, impeding further research. The tumor immune microenvironment has become a recent research hot spot, providing novel but valuable insight into tumor heterogeneity and multifaceted mechanisms of tumor progression and metastasis. However, the immune microenvironment in osteosarcoma has been vigorously discussed, and the landscape of immune and non-immune component infiltration has been intensively investigated. Here, we summarize the current knowledge of the classification, features, and functions of the main infiltrating cells, complement system, and exosomes in the osteosarcoma immune microenvironment. In each section, we also highlight the complex crosstalk network among them and the corresponding potential therapeutic strategies and clinical applications to deepen our understanding of osteosarcoma and provide a reference for imminent effective therapies with reduced adverse effects.
Collapse
Affiliation(s)
- Tianyi Zhu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Jing Han
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Liu Yang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Zhengdong Cai
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Wei Sun
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Yingqi Hua
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Jing Xu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| |
Collapse
|
12
|
Yamamoto J, Takahashi Y, Minami K, Tamari K, Katsuki S, Takenaka W, Tatekawa S, Hayashi K, Seo Y, Isohashi F, Ogawa K, Koizumi M. High Dose Local Photon Irradiation Is Crucial in Anti-CTLA-4 Antibody Therapy to Enhance the Abscopal Response in a Murine Pancreatic Carcinoma Model. Cancers (Basel) 2022; 14:cancers14092087. [PMID: 35565217 PMCID: PMC9101709 DOI: 10.3390/cancers14092087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 01/17/2023] Open
Abstract
Pancreatic cancer is an extremely treatment-resistant neoplasm to chemotherapy and immunotherapy. The combination of photon beam irradiation and anti-CTLA-4 antibody (C4) for the anti-tumor effect enhancement at local and distant tumors (abscopal tumors) was investigated using the pancreatic ductal adenocarcinoma (PDAC) mouse model. Pan02 cells were bilaterally inoculated to both legs of C57BL/6 mice. High dose photon beams in a hypofractionation or a single fraction were delivered to the tumors on one leg. Monotherapy with C4 via i.p. was not effective for PDAC. The high dose irradiation to the local tumors produced significant shrinkage of irradiated tumors but did not induce the abscopal responses. In contrast, the combination therapy of high dose photon beam irradiation in both hypofractionation and a single fraction with C4 enhanced the anti-tumor effect for abscopal tumors with significantly prolonged overall survival. The flow cytometric analysis revealed that the combination therapy dramatically decreased the regulatory T cell (Treg) proportion while increasing the cytotoxic T lymphocytes in both local and abscopal tumors. These results suggest that high dose photon beam irradiation plays an important role in C4 therapy to enhance the abscopal response with immune microenvironment changes in PDAC, regardless of the fractionation in radiation therapy.
Collapse
Affiliation(s)
- Junya Yamamoto
- Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; (J.Y.); (K.M.); (S.K.); (W.T.); (M.K.)
| | - Yutaka Takahashi
- Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; (J.Y.); (K.M.); (S.K.); (W.T.); (M.K.)
- Correspondence: ; Tel.: +81-6-6879-2564; Fax: +81-6-6879-2565
| | - Kazumasa Minami
- Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; (J.Y.); (K.M.); (S.K.); (W.T.); (M.K.)
| | - Keisuke Tamari
- Department of Radiation Oncology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; (K.T.); (S.T.); (K.H.); (Y.S.); (F.I.); (K.O.)
| | - Shohei Katsuki
- Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; (J.Y.); (K.M.); (S.K.); (W.T.); (M.K.)
| | - Wataru Takenaka
- Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; (J.Y.); (K.M.); (S.K.); (W.T.); (M.K.)
| | - Shotaro Tatekawa
- Department of Radiation Oncology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; (K.T.); (S.T.); (K.H.); (Y.S.); (F.I.); (K.O.)
| | - Kazuhiko Hayashi
- Department of Radiation Oncology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; (K.T.); (S.T.); (K.H.); (Y.S.); (F.I.); (K.O.)
| | - Yuji Seo
- Department of Radiation Oncology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; (K.T.); (S.T.); (K.H.); (Y.S.); (F.I.); (K.O.)
| | - Fumiaki Isohashi
- Department of Radiation Oncology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; (K.T.); (S.T.); (K.H.); (Y.S.); (F.I.); (K.O.)
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; (K.T.); (S.T.); (K.H.); (Y.S.); (F.I.); (K.O.)
| | - Masahiko Koizumi
- Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; (J.Y.); (K.M.); (S.K.); (W.T.); (M.K.)
| |
Collapse
|
13
|
Ma L. From Photon Beam to Accelerated Particle Beam: Antimetastasis Effect of Combining Radiotherapy With Immunotherapy. Front Public Health 2022; 10:847119. [PMID: 35425754 PMCID: PMC9002008 DOI: 10.3389/fpubh.2022.847119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/25/2022] [Indexed: 12/18/2022] Open
Abstract
Cancer is one of the major diseases that seriously threaten the human health. Radiotherapy is a common treatment for cancer. It is noninvasive and retains the functions of the organ where the tumor is located. Radiotherapy includes photon beam radiotherapy, which uses X-rays or gamma rays, and particle beam radiotherapy, using beams of protons and heavy ions. Compared with photon beam radiotherapy, particle beam radiotherapy has excellent dose distribution, which enables it to kill the primary tumor cells more effectively and simultaneously minimize the radiation-induced damage to normal tissues and organs surrounding the tumor. Despite the excellent therapeutic effect of particle beam radiotherapy on the irradiated tumors, it is not an effective treatment for metastatic cancers. Therefore, developing novel and effective treatment strategies for cancer is urgently needed to save patients with distant cancer metastasis. Immunotherapy enhances the body's own immune system to fight cancer by activating the immune cells, and consequently, to achieve the systemic anticancer effects, and it is considered to be an adjuvant therapy that can enhance the efficacy of particle beam radiotherapy. This review highlights the research progress of the antimetastasis effect and the mechanism of the photon beam or particle beam radiotherapy combined with immunotherapy and predicts the development prospects of this research area.
Collapse
Affiliation(s)
- Liqiu Ma
- Department of Nuclear Physics, China Institute of Atomic Energy, Beijing, China.,National Innovation Center of Radiation Application, Beijing, China
| |
Collapse
|
14
|
Meftahpour V, Aghebati-Maleki A, Fotouhi A, Safarzadeh E, Aghebati-Maleki L. Prognostic significance and therapeutic potentials of immune checkpoints in osteosarcoma. EXCLI JOURNAL 2022; 21:250-268. [PMID: 35145371 PMCID: PMC8822307 DOI: 10.17179/excli2021-4094] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022]
Abstract
Although there exist manifold strategies for cancer treatment, researchers are obliged to develop novel treatments based on the challenges that arise. One of these recent treatment approaches is cancer immunotherapy, which enjoys various types of strategies itself. However, one of the most significant methods, in this regard, is employing immune checkpoint proteins (ICPs). Bone sarcomas have several subtypes, with the most common ones being chordoma, chondrosarcoma, Ewing sarcoma, and osteosarcoma. Although many aggressive treatment approaches, including radiotherapy, chemotherapy, and surgical resection, have been employed over the last decades, significantly improved outcomes have not been observed for Ewing sarcoma or osteosarcoma patients. Additionally, chordoma and chdrosarcoma resist against both radiation and chemotherapy. Accordingly, elucidating how recent therapies could affect bone sarcomas is necessary. Checkpoint inhibitors have attracted great attention for the treatment of several cancer types, including bone sarcoma. Herein, the recent advances of current immune checkpoint targets, such as anti-PD-1/PD-L1 and anti-CTLA-4 blockade, for the treatment of bone sarcoma have been reviewed.
Collapse
Affiliation(s)
- Vafa Meftahpour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Fotouhi
- Department of Orthopedic Surgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Safarzadeh
- Department of Microbiology, Parasitology, and Immunology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Ma L, Sakamoto Y, Ando K, Fujita H, Takahashi A, Takeshima T, Otsuka H, Ebner DK, Kakimi K, Imai T, Shimokawa T. Th balance related host genetic background affects the therapeutic effects of combining carbon-ion radiotherapy with dendritic cell immunotherapy. Int J Radiat Oncol Biol Phys 2021; 112:780-789. [PMID: 34740767 DOI: 10.1016/j.ijrobp.2021.10.141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE The goal of this study is to clarify the underlying mechanisms of metastasis suppression by CiDC (carbon-ion radiotherapy (CIRT) combined with immature dendritic cell (iDC) immunotherapy), which was previously shown to significantly suppress pulmonary metastasis in a NR-S1-bearing C3H/He mouse model. METHODS AND MATERIALS Mouse carcinoma cell lines (LLC, LM8, Colon-26 and Colon-26MGS) were grafted into the right hind paw of syngeneic mice (C57BL/6J, C3H/He and BALB/c). Seven days later, the tumors on the mice were locally irradiated with carbon-ions (290 MeV/n, 6 cm SOBP, 1 or 2 Gy). At 1.5 days after irradiation, bone marrow-derived immature dendritic cells were administrated intravenously into a subset of the mice. The number of lung metastases was evaluated within three weeks after irradiation. In vitro cultured cancer cells were irradiated with carbon-ion (290 MeV/n, mono-energy, LET approximately 70 ∼ 80 keV/µm), and then co-cultured with iDCs for three days to determine the DC maturation. RESULTS CiDC effectively repressed distant lung metastases in cancer cell (LLC and LM8)-bearing C57BL/6J and C3H/He mouse models. However, Colon-26 and Colon-26MGS-bearing BALB/c models did not show enhancement of metastasis suppression by combination treatment. This was further evaluated by comparing LM8-bearing C3H/He and LLC-bearing C57BL/6J models with a Colon-26-bearing BALB/c model. In vitro co-culture assays demonstrated that all irradiated cell lines were able to activate C3H/He or C57BL/6J-derived iDCs into mature DCs, but not BALB/c-derived iDCs. CONCLUSION The genetic background of the host may have a strong impact on the potency of combination therapy. Future animal and clinical testing should evaluate host genetic factors when evaluating treatment efficacy.
Collapse
Affiliation(s)
- Liqiu Ma
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan; Gunma University Heavy Ion Medical Center, Gunma, Japan; China Institute of Atomic Energy, Beijing 102413, China
| | - Yoshimitsu Sakamoto
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Ken Ando
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan; Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Hidetoshi Fujita
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | | | - Tsuguhide Takeshima
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hiromi Otsuka
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Daniel K Ebner
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kazuhiro Kakimi
- Department of Immunotherapeutics, The University of Tokyo, Tokyo, Japan
| | - Takashi Imai
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Takashi Shimokawa
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.
| |
Collapse
|
16
|
Vatner R, James CD, Sathiaseelan V, Bondra KM, Kalapurakal JA, Houghton PJ. Radiation therapy and molecular-targeted agents in preclinical testing for immunotherapy, brain tumors, and sarcomas: Opportunities and challenges. Pediatr Blood Cancer 2021; 68 Suppl 2:e28439. [PMID: 32827353 DOI: 10.1002/pbc.28439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/24/2020] [Accepted: 05/07/2020] [Indexed: 01/07/2023]
Abstract
Despite radiation therapy (RT) being an integral part of the treatment of most pediatric cancers and the recent discovery of novel molecular-targeted agents (MTAs) in this era of precision medicine with the potential to improve the therapeutic ratio of modern chemoradiotherapy regimens, there are only a few preclinical trials being conducted to discover novel radiosensitizers and radioprotectors. This has resulted in a paucity of translational clinical trials combining RT and novel MTAs. This report describes the opportunities and challenges of investigating RT together with MTAs in preclinical testing for immunotherapy, brain tumors, and sarcomas in pediatric oncology. We discuss the need for improving the collaboration between radiation oncologists, biologists, and physicists to improve the reliability, reproducibility, and translational potential of RT-based preclinical research. Current translational clinical trials using RT and MTAs for immunotherapy, brain tumors, and sarcomas are described. The technologic advances in experimental RT, availability of novel experimental tumor models, advances in immunology and tumor biology, and the discovery of novel MTAs together hold considerable promise for good quality preclinical and clinical multimodality research to improve the current rates of survival and toxicity in children afflicted with cancer.
Collapse
Affiliation(s)
- Ralph Vatner
- Radiation Oncology, University of Cincinnati and Cincinnati Children's Hospital, Cincinnati, Ohio
| | | | | | - Kathryn M Bondra
- Greehey Children's Cancer Research Institute, University of Texas, San Antonio, Texas
| | | | - Peter J Houghton
- Greehey Children's Cancer Research Institute, University of Texas, San Antonio, Texas
| |
Collapse
|
17
|
Helm A, Tinganelli W, Fournier C, Simoniello P, Kurosawa F, Shimokawa T, Durante M. In Reply to Elmali et al. Int J Radiat Oncol Biol Phys 2021; 109:1658-1659. [PMID: 33714530 DOI: 10.1016/j.ijrobp.2020.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 11/24/2022]
Affiliation(s)
- Alexander Helm
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | - Claudia Fournier
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Palma Simoniello
- Department of Science and Technology, Parthenope University of Naples, Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Naples, Italy
| | - Fuki Kurosawa
- National Institute of Radiological Sciences, National Institutes of Quantum and Radiological Science and Technology, Chiba, Japan
| | - Takashi Shimokawa
- National Institute of Radiological Sciences, National Institutes of Quantum and Radiological Science and Technology, Chiba, Japan
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung, Technische Universität Darmstadt, Institut für Festkörperphysik, Darmstadt, Germany
| |
Collapse
|
18
|
In Regard to Helm et al. Int J Radiat Oncol Biol Phys 2021; 109:1658. [PMID: 33714531 DOI: 10.1016/j.ijrobp.2020.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/11/2020] [Indexed: 01/07/2023]
|
19
|
Ibuki Y, Takahashi Y, Tamari K, Minami K, Seo Y, Isohashi F, Koizumi M, Ogawa K. Local hyperthermia combined with CTLA-4 blockade induces both local and abscopal effects in a murine breast cancer model. Int J Hyperthermia 2021; 38:363-371. [PMID: 33657951 DOI: 10.1080/02656736.2021.1875059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
PURPOSE To evaluate the antitumor efficacy in local and distant tumors induced by local hyperthermia with CTLA-4 blockade. METHODS A mouse breast cancer cell line was inoculated into both sides of the legs of mice. The mice were treated with three administrations of CTLA-4 blockade, a single application of local hyperthermia (42.5 °C for 20 min) to the tumor on one side of the leg, or the combination of the two. Tumor growth in locally heated tumors (HT tumors) and unheated distant tumors (UnHT tumors) and overall survival were evaluated. RESULTS In the combination group, tumor volume significantly decreased for both HT and UnHT tumors compared with the tumors in the untreated and local hyperthermia monotherapy groups. Remarkable efficacy was only observed in the combination therapy group, in which 7 of 18 mice responded to HT and UnHT tumors, with significant prolonged overall survival. CONCLUSIONS Combination therapy enhanced the antitumor response not only in HT tumors but also in UnHT tumors and prolonged overall survival.
Collapse
Affiliation(s)
- Yoriko Ibuki
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yutaka Takahashi
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Keisuke Tamari
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazumasa Minami
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuji Seo
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Fumiaki Isohashi
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masahiko Koizumi
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
20
|
Fan MK, Qi LL, Zhang Q, Wang L. The Updated Status and Future Direction of Immunotherapy Targeting B7-H1/PD-1 in Osteosarcoma. Cancer Manag Res 2021; 13:757-764. [PMID: 33536783 PMCID: PMC7850464 DOI: 10.2147/cmar.s285560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/24/2020] [Indexed: 12/03/2022] Open
Abstract
Although the mortality rate of osteosarcoma (OS) patients has improved, there are still many unsolved problems concerning how to reduce recurrence and metastasis. In the tumor microenvironment, immune escape plays a more important role in tumor progression and development. Many costimulatory molecules of the B7 family have been reported to be involved in regulating immunological interactions between OS cells and immune cells. Among these molecules, B7-H1 and its receptor, programmed death-1 (PD-1), have been the focus of the fields of tumor immunology and have been recently applied in clinical trials of therapies for several solid tumors. These therapies, referred to as B7-H1/PD-1 checkpoint blockade therapies, are designed to block the interaction between the two molecules. Although the mechanism has been reported in some malignancies, the specific impact of B7-H1/PD-1 expression on OS has not been well defined. Here, we review the expression, function, and regulatory mechanism of the B7-H1/PD-1 axis in OS and introduce and compare the advantages and disadvantages of B7-H1/PD-1 immunotherapies in OS.
Collapse
Affiliation(s)
- Meng-ke Fan
- Department of Orthopedic Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Li-li Qi
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Qi Zhang
- Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Ling Wang
- Department of Orthopedic Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| |
Collapse
|
21
|
Chen C, Liu Y, Cui B. Effect of radiotherapy on T cell and PD-1 / PD-L1 blocking therapy in tumor microenvironment. Hum Vaccin Immunother 2021; 17:1555-1567. [PMID: 33428533 DOI: 10.1080/21645515.2020.1840254] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cancer is a worldwide problem that threatens human health. Radiotherapy plays an important role in a variety of cancer treatment methods. The administration of radiotherapy can alter the differentiation pathways and functions of T cells, which in turn improves the immune response of T cells. Radiotherapy can also induce up-regulation of PD-L1 expression, which means that it has great potential for enhancing the therapeutic effect of anti-PD-1/PD-L1 inhibitors and reducing the risk of drug resistance toward them. At present, the combination of radiotherapy and anti-PD-1/PD-L1 inhibitors has shown significant therapeutic effects in clinical tumor research. This review focuses on the mechanism of radiotherapy on T cells reported in recent years, as well as related research progress in the application of PD-1/PD-L1 blockers. It will provide a theoretical basis for the rational clinical application of radiotherapy combined with PD-1/PD-L1 inhibitors.
Collapse
Affiliation(s)
- Chen Chen
- Department of Colorectal Surgery, The Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Yanlong Liu
- Department of Colorectal Surgery, The Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Binbin Cui
- Department of Colorectal Surgery, The Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| |
Collapse
|
22
|
Mason NJ. Comparative Immunology and Immunotherapy of Canine Osteosarcoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1258:199-221. [PMID: 32767244 DOI: 10.1007/978-3-030-43085-6_14] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Approximately 800 people are diagnosed with osteosarcoma (OSA) per year in the USA. Although 70% of patients with localized OSA are cured with multiagent chemotherapy and surgical resection, the prognosis for patients with metastatic or relapsed disease is guarded. The small number of patients diagnosed annually contributes to an incomplete understanding of disease pathogenesis, and challenges in performing appropriately powered clinical trials and detecting correlative biomarkers of response. While mouse models of OSA are becoming increasingly sophisticated, they generally fail to accurately recapitulate tumor heterogeneity, tumor microenvironment (TME), systemic immune dysfunction, and the clinical features of tumor recurrence, metastases, and chemoresistance, which influence outcome. Pet dogs spontaneously develop OSA with an incidence that is 30-50 times higher than humans. Canine OSA parallels the human disease in its clinical presentation, biological behavior, genetic complexity, and therapeutic management. However, despite therapy, most dogs die from metastatic disease within 1 year of diagnosis. Since OSA occurs in immune-competent dogs, immune factors that sculpt tumor immunogenicity and influence responses to immune modulation are in effect. In both species, immune modulation has shown beneficial effects on patient outcome and work is now underway to identify the most effective immunotherapies, combination of immunotherapies, and correlative biomarkers that will further improve clinical response. In this chapter, the immune landscape of canine OSA and the immunotherapeutic strategies used to modulate antitumor immunity in dogs with the disease will be reviewed. From this immunological viewpoint, the value of employing dogs with spontaneous OSA to accelerate and inform the translation of immunotherapies into the human clinic will be underscored.
Collapse
Affiliation(s)
- Nicola J Mason
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Hagan CT, Mi Y, Knape NM, Wang AZ. Enhancing Combined Immunotherapy and Radiotherapy through Nanomedicine. Bioconjug Chem 2020; 31:2668-2678. [PMID: 33251789 PMCID: PMC7747221 DOI: 10.1021/acs.bioconjchem.0c00520] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/06/2020] [Indexed: 02/06/2023]
Abstract
Radiotherapy and immunotherapy are two key treatments for cancer. There is growing evidence that they are also synergistic, and combination treatments are being studied extensively in the clinical setting. In addition, there is emerging evidence that nanotechnology-enabled therapeutics can potentiate both radiotherapy and immunotherapy, in turn improving both treatments. This is an exciting new area of interdisciplinary science and has significant potential for major clinical impact. Some of the approaches in this area have already reached the clinical stage. In this review, we will discuss recent advances in the interface between radiotherapy, immunotherapy, and nanomedicine. We plan to review the many approaches to combine these three fields for cancer treatment.
Collapse
Affiliation(s)
- C. Tilden Hagan
- Laboratory
of Nano- and Translational Medicine, Lineberger Comprehensive Cancer
Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina
Institute of Nanomedicine, University of
North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department
of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- UNC/NCSU
Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yu Mi
- Laboratory
of Nano- and Translational Medicine, Lineberger Comprehensive Cancer
Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina
Institute of Nanomedicine, University of
North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department
of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Nicole M. Knape
- Laboratory
of Nano- and Translational Medicine, Lineberger Comprehensive Cancer
Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina
Institute of Nanomedicine, University of
North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department
of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Andrew Z. Wang
- Laboratory
of Nano- and Translational Medicine, Lineberger Comprehensive Cancer
Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina
Institute of Nanomedicine, University of
North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department
of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
24
|
Helm A, Tinganelli W, Simoniello P, Kurosawa F, Fournier C, Shimokawa T, Durante M. Reduction of Lung Metastases in a Mouse Osteosarcoma Model Treated With Carbon Ions and Immune Checkpoint Inhibitors. Int J Radiat Oncol Biol Phys 2020; 109:594-602. [PMID: 32980497 DOI: 10.1016/j.ijrobp.2020.09.041] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 08/12/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE The combination of radiation therapy and immunotherapy is recognized as a very promising strategy for metastatic cancer treatment. The purpose of this work is to compare the effectiveness of x-ray and high-energy carbon ion therapy in combination with checkpoint inhibitors in a murine model. METHODS AND MATERIALS We used an osteosarcoma mouse model irradiated with either carbon ions or x-rays in combination with 2 immune checkpoint inhibitors (anti-PD-1 and anti-CTLA-4). LM8 osteosarcoma cells were injected in both hind limbs of female C3H/He mice 7 days before exposure to carbon ions or x-rays. In experimental groups receiving irradiation, only the tumor on the left limb was exposed, whereas the tumor on the right limb served as an abscopal mimic. Checkpoint inhibitors were injected intraperitoneally 1 day before exposure as well as concomitant to and after exposure. Tumor growth was measured regularly up to day 21 after exposure, when mice were sacrificed. Both tumors as well as lungs were extracted. RESULTS A reduced growth of the abscopal tumor was most pronounced after the combined protocol of carbon ions and the immune checkpoint inhibitors administered sequentially. Radiation or checkpoint inhibitors alone were not sufficient to reduce the growth of the abscopal tumors. Carbon ions alone reduced the number of lung metastases more efficiently than x-rays, and in combination with immunotherapy both radiation types essentially suppressed the metastasis, with carbon ions being again more efficient. Investigation of the infiltration of immune cells in the abscopal tumors of animals treated with combination revealed an increase in CD8+ cells. CONCLUSIONS Combination of checkpoint inhibitors with high-energy carbon ion radiation therapy can be an effective strategy for the treatment of advanced tumors.
Collapse
Affiliation(s)
- Alexander Helm
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Walter Tinganelli
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Palma Simoniello
- Department of Science and Technology, Parthenope University of Naples, Naples, Italy; Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Naples, Italy
| | - Fuki Kurosawa
- National Institute of Radiological Sciences, National Institutes of Quantum and Radiological Science and Technology, Chiba, Japan
| | - Claudia Fournier
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Takashi Shimokawa
- National Institute of Radiological Sciences, National Institutes of Quantum and Radiological Science and Technology, Chiba, Japan
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany; Technische Universität Darmstadt, Institut für Festkörperphysik, Darmstadt, Germany.
| |
Collapse
|
25
|
Takenaka W, Takahashi Y, Tamari K, Minami K, Katsuki S, Seo Y, Isohashi F, Koizumi M, Ogawa K. Radiation Dose Escalation is Crucial in Anti-CTLA-4 Antibody Therapy to Enhance Local and Distant Antitumor Effect in Murine Osteosarcoma. Cancers (Basel) 2020; 12:E1546. [PMID: 32545427 PMCID: PMC7352693 DOI: 10.3390/cancers12061546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/06/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022] Open
Abstract
We previously reported that a combination of 10 Gy of X-ray irradiation and dual immune checkpoint blockade with anti-CTLA-4 (C4) and anti-PD-L1 antibodies produced a significant shrinkage of irradiated and unirradiated tumors (abscopal effect) and prolonged overall survival. However, the optimal radiation delivery regimen combined with single immune checkpoint blockade of C4 for inducing a maximum systemic antitumor response still remains unclear, particularly for patients with osteosarcoma. We used syngeneic C3H mice that were subcutaneously injected with LM8 osteosarcoma cells into both legs. C4 was administered three times, and one side of the tumor was irradiated by X-ray beams. The optimal radiation dose required to induce the abscopal effect was explored with a focus on the induction of the type-I interferon pathway. Radiation delivered in a single fraction of 10 Gy, 4.5 Gy × 3 fractions (fx), and 2 Gy × 8 fx with C4 failed to produce significant inhibition of unirradiated tumor growth compared with monotherapy with C4. Dose escalation to 16 Gy in a single fraction, or the equivalent hypofractionated dose of 8 Gy × 3 fx, which significantly increased secretion of IFN-β in vitro, produced a dramatic regression of both irradiated and unirradiated tumors and prolonged overall survival in combination with C4. Furthermore, irradiation at 16 Gy in both a single fraction and 8 Gy × 3 fx diminished regulatory T cells in the unirradiated tumor microenvironment. These results suggest that total dose escalation of radiation is crucial in C4 therapy to enhance the antitumor response in both local and distant tumors and prolonged overall survival regardless of fractionation for osteosarcoma.
Collapse
Affiliation(s)
- Wataru Takenaka
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; (W.T.); (S.K.); (M.K.)
| | - Yutaka Takahashi
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; (K.T.); (K.M.); (Y.S.); (F.I.); (K.O.)
| | - Keisuke Tamari
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; (K.T.); (K.M.); (Y.S.); (F.I.); (K.O.)
| | - Kazumasa Minami
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; (K.T.); (K.M.); (Y.S.); (F.I.); (K.O.)
| | - Shohei Katsuki
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; (W.T.); (S.K.); (M.K.)
| | - Yuji Seo
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; (K.T.); (K.M.); (Y.S.); (F.I.); (K.O.)
| | - Fumiaki Isohashi
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; (K.T.); (K.M.); (Y.S.); (F.I.); (K.O.)
| | - Masahiko Koizumi
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; (W.T.); (S.K.); (M.K.)
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; (K.T.); (K.M.); (Y.S.); (F.I.); (K.O.)
| |
Collapse
|
26
|
Tung FI, Zheng LJ, Hou KT, Chiang CS, Chen MH, Liu TY. One-stop radiotherapeutic targeting of primary and distant osteosarcoma to inhibit cancer progression and metastasis using 2DG-grafted graphene quantum dots. NANOSCALE 2020; 12:8809-8818. [PMID: 32250377 DOI: 10.1039/c9nr10823h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The application of radiotherapy (RT) to treat osteosarcoma (OS) has been limited, but this is starting to change as the ability to target radiation energy to niches improves. Furthermore, lung cancer from highly metastatic OS is a major cause of death, so it is critical to explore new strategies to tackle metastasis. In this study, we designed a nanoscale radiosensitizer by grafting 2-deoxy-d-glucose (2DG) onto graphene quantum dots (GQD) to achieve OS targeting and boost RT efficacy. Combining the use of 2DG-grafted GQDs (2DG-g-GQD) with RT produced a significant increase in oxidative stress response and DNA damage in the 143B OS cell line compared with RT alone. Moreover, 2DG-g-GQDs selectively associated with 143B cells, and demonstrated the inhibition of migration in a scratch assay. We also demonstrated remarkable improvement in their ability to inhibit tumour progression and lung metastasis in an OS xenograft mouse model. Our results show that the use of 2DG-g-GQDs as OS-targeting radiosensitizers improves their therapeutic outcome and exhibits potential for use in low-dose precision RT for OS.
Collapse
Affiliation(s)
- Fu-I Tung
- Department of Orthopaedic Surgery, Taipei City Hospital, Yangming branch, Taipei City 112, Taiwan.
| | | | | | | | | | | |
Collapse
|
27
|
Fernandez-Palomo C, Fazzari J, Trappetti V, Smyth L, Janka H, Laissue J, Djonov V. Animal Models in Microbeam Radiation Therapy: A Scoping Review. Cancers (Basel) 2020; 12:E527. [PMID: 32106397 PMCID: PMC7139755 DOI: 10.3390/cancers12030527] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Microbeam Radiation Therapy (MRT) is an innovative approach in radiation oncology where a collimator subdivides the homogeneous radiation field into an array of co-planar, high-dose beams which are tens of micrometres wide and separated by a few hundred micrometres. OBJECTIVE This scoping review was conducted to map the available evidence and provide a comprehensive overview of the similarities, differences, and outcomes of all experiments that have employed animal models in MRT. METHODS We considered articles that employed animal models for the purpose of studying the effects of MRT. We searched in seven databases for published and unpublished literature. Two independent reviewers screened citations for inclusion. Data extraction was done by three reviewers. RESULTS After screening 5688 citations and 159 full-text papers, 95 articles were included, of which 72 were experimental articles. Here we present the animal models and pre-clinical radiation parameters employed in the existing MRT literature according to their use in cancer treatment, non-neoplastic diseases, or normal tissue studies. CONCLUSIONS The study of MRT is concentrated in brain-related diseases performed mostly in rat models. An appropriate comparison between MRT and conventional radiotherapy (instead of synchrotron broad beam) is needed. Recommendations are provided for future studies involving MRT.
Collapse
Affiliation(s)
| | - Jennifer Fazzari
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (C.F.-P.); (J.F.); (V.T.); (J.L.)
| | - Verdiana Trappetti
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (C.F.-P.); (J.F.); (V.T.); (J.L.)
| | - Lloyd Smyth
- Department of Obstetrics & Gynaecology, University of Melbourne, 3057 Parkville, Australia;
| | - Heidrun Janka
- Medical Library, University Library Bern, University of Bern, 3012 Bern, Switzerland;
| | - Jean Laissue
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (C.F.-P.); (J.F.); (V.T.); (J.L.)
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (C.F.-P.); (J.F.); (V.T.); (J.L.)
| |
Collapse
|
28
|
Madda R, Chen CM, Wang JY, Chen CF, Chao KY, Yang YM, Wu HY, Chen WM, Wu PK. Proteomic profiling and identification of significant markers from high-grade osteosarcoma after cryotherapy and irradiation. Sci Rep 2020; 10:2105. [PMID: 32034162 PMCID: PMC7005698 DOI: 10.1038/s41598-019-56024-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] Open
Abstract
Biological reconstruction of allografts and recycled autografts have been widely implemented in high-grade osteogenic sarcoma. For treating tumor-bearing autografts, extracorporeal irradiation (ECIR) and liquid nitrogen (LN) freezing techniques are being used worldwide as a gold standard treatment procedure. Both the methods aim to eradicate the tumor cells from the local recurrence and restore the limb function. Therefore, it is essential and crucial to find, and compare the alterations at molecular and physiological levels of the treated and untreated OGS recycled autografts to obtain valuable clinical information for better clinical practice. Thus, we aimed to investigate the significantly expressed altered proteins from ECIR-and cryotherapy/freezing- treated OGS (n = 12) were compared to untreated OGS (n = 12) samples using LC-ESI-MS/MS analysis, and the selected proteins from this protein panel were verified using immunoblot analysis. From our comparative proteomic analysis identified a total of 131 differentially expressed proteins (DEPs) from OGS. Among these, 91 proteins were up-regulated (2.5 to 3.5-folds), and 40 proteins were down-regulated (0.2 to 0.5 folds) (p < 0.01 and 0.05). The functional enrichment analysis revealed that the identified DEPs have belonged to more than 10 different protein categories include cytoskeletal, extracellular matrix, immune, enzyme modulators, and cell signaling molecules. Among these, we have confirmed two potential candidates’ expressions levels such as Fibronectin and Protein S100 A4 using western blot analysis. Our proteomic study revealed that LN-freezing and ECIR treatments are effectively eradicating tumor cells, and reducing the higher expressions of DEPs at molecular levels which may help in restoring the limb functions of OGS autografts effectively. To the best of our knowledge, this is the first proteomic study that compared proteomic profiles among freezing, ECIR treated with untreated OGS in recycled autografts. Moreover, the verified proteins could be used as prognostic or diagnostic markers that reveal valuable scientific information which may open various therapeutic avenues in clinical practice to improve patient outcomes.
Collapse
Affiliation(s)
- Rashmi Madda
- Department of Orthopedics & Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of orthopedics, Therapeutical and Musculoskeletal Tumor Research Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Orthopedic Department, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Research and Development, National Yang-Ming University, Taipei, Taiwan
| | - Chao-Ming Chen
- Department of Orthopedics & Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of orthopedics, Therapeutical and Musculoskeletal Tumor Research Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Orthopedic Department, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jir-You Wang
- Department of Orthopedics & Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of orthopedics, Therapeutical and Musculoskeletal Tumor Research Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Orthopedic Department, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Cheng-Fong Chen
- Department of Orthopedics & Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of orthopedics, Therapeutical and Musculoskeletal Tumor Research Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Orthopedic Department, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kuang-Yu Chao
- Department of Orthopedics & Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of orthopedics, Therapeutical and Musculoskeletal Tumor Research Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Orthopedic Department, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Min Yang
- Department of Orthopedics & Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of orthopedics, Therapeutical and Musculoskeletal Tumor Research Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Orthopedic Department, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hsin-Yi Wu
- Instrumentation center, National Taiwan University, Taipei, Taiwan
| | - Wei-Ming Chen
- Department of Orthopedics & Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of orthopedics, Therapeutical and Musculoskeletal Tumor Research Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Orthopedic Department, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Po-Kuei Wu
- Department of Orthopedics & Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan. .,Department of orthopedics, Therapeutical and Musculoskeletal Tumor Research Center, Taipei Veterans General Hospital, Taipei, Taiwan. .,Orthopedic Department, School of Medicine, National Yang-Ming University, Taipei, Taiwan. .,Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
29
|
Roberts RD, Lizardo MM, Reed DR, Hingorani P, Glover J, Allen-Rhoades W, Fan T, Khanna C, Sweet-Cordero EA, Cash T, Bishop MW, Hegde M, Sertil AR, Koelsche C, Mirabello L, Malkin D, Sorensen PH, Meltzer PS, Janeway KA, Gorlick R, Crompton BD. Provocative questions in osteosarcoma basic and translational biology: A report from the Children's Oncology Group. Cancer 2019; 125:3514-3525. [PMID: 31355930 PMCID: PMC6948723 DOI: 10.1002/cncr.32351] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/02/2019] [Accepted: 05/08/2019] [Indexed: 01/06/2023]
Abstract
Patients who are diagnosed with osteosarcoma (OS) today receive the same therapy that patients have received over the last 4 decades. Extensive efforts to identify more effective or less toxic regimens have proved disappointing. As we enter a postgenomic era in which we now recognize OS not as a cancer of mutations but as one defined by p53 loss, chromosomal complexity, copy number alteration, and profound heterogeneity, emerging threads of discovery leave many hopeful that an improving understanding of biology will drive discoveries that improve clinical care. Under the organization of the Bone Tumor Biology Committee of the Children's Oncology Group, a team of clinicians and scientists sought to define the state of the science and to identify questions that, if answered, have the greatest potential to drive fundamental clinical advances. Having discussed these questions in a series of meetings, each led by invited experts, we distilled these conversations into a series of seven Provocative Questions. These include questions about the molecular events that trigger oncogenesis, the genomic and epigenomic drivers of disease, the biology of lung metastasis, research models that best predict clinical outcomes, and processes for translating findings into clinical trials. Here, we briefly present each Provocative Question, review the current scientific evidence, note the immediate opportunities, and speculate on the impact that answered questions might have on the field. We do so with an intent to provide a framework around which investigators can build programs and collaborations to tackle the hardest problems and to establish research priorities for those developing policies and providing funding.
Collapse
Affiliation(s)
- Ryan D Roberts
- Center for Childhood Cancer, Nationwide Children's Hospital, The Ohio State University James Comprehensive Cancer Center, Columbus, Ohio
| | - Michael M Lizardo
- Department of Molecular Oncology, BC Cancer, Provincial Health Services Authority, Vancouver, British Columbia, Canada
| | - Damon R Reed
- Sarcoma Department, Chemical Biology and Molecular Medicine Program and Adolescent and Young Adult Oncology Program, Moffitt Cancer Center, Tampa, Florida
| | - Pooja Hingorani
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, Arizona
| | - Jason Glover
- Children's Cancer and Blood Disorders Program, Randall Children's Hospital, Portland, Oregon
| | - Wendy Allen-Rhoades
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Texas.,Texas Children's Hospital Cancer and Hematology Centers, Houston, Texas
| | - Timothy Fan
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana-Champaign, Illinois
| | - Chand Khanna
- Ethos Vet Health, Woburn, Massachusetts.,Ethos Discovery (501c3), Washington, DC
| | - E Alejandro Sweet-Cordero
- Division of Hematology and Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Thomas Cash
- Department of Pediatrics, Emory University, Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Michael W Bishop
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Meenakshi Hegde
- Center for Cell and Gene Therapy, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Aparna R Sertil
- Department of Basic Medical Sciences, College of Medicine Phoenix, University of Arizona, Phoenix, Arizona
| | - Christian Koelsche
- Department of General Pathology, Institute of Pathology, Ruprecht-Karls-University, Heidelberg, Germany
| | - Lisa Mirabello
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - David Malkin
- Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, Division of Hematology/Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Poul H Sorensen
- Department of Molecular Oncology, BC Cancer, Provincial Health Services Authority, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Paul S Meltzer
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Katherine A Janeway
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Richard Gorlick
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Brian D Crompton
- Dana-Farber Cancer Institute, Boston, and Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| |
Collapse
|
30
|
Lippitz BE, Harris RA. A translational concept of immuno-radiobiology. Radiother Oncol 2019; 140:116-124. [PMID: 31271996 DOI: 10.1016/j.radonc.2019.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/30/2019] [Accepted: 06/02/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Traditional concepts of radiobiology model the direct radiation-induced cellular cytotoxicity but are not focused on late and sustained effects of radiation. Recent experimental data show the close involvement of immunological processes. METHODS Based on systematic PubMed searches, experimental data on immunological radiation effects are summarized and analyzed in a non-quantitative descriptive manner to provide a translational perspective on the immuno-modulatory impact of radiation in cancer. RESULTS Novel experimental findings document that sustained radiation effects are ultimately mediated through systemic factors such as cytotoxic CD8+ T cells and involve a local immuno-stimulation. Increased tumor infiltration of CD8+ T cell is a prerequisite for long-term radiation effects. CD8+ T cell depletion induces radio-resistance in experimental tumors. The proposed sequence of events involves radiation-damaged cells that release HMGB1, which activates macrophages via TLR4 to a local immuno-stimulation via TNF, which contributes to maturation of DCs. The mature DCs migrate to lymph nodes where they trigger effective CD8+ T cell responses. Radiation effects are boosted, when the physiological self-terminating negative feedback of immune reactions is antagonised via blocking of TGF-β or via checkpoint inhibition with involvement of CD8+ T cells as common denominator. CONCLUSION The concept of immuno-radiobiology emphasizes the necessity for a functional integrity of APCs and T cells for the long-term effects of radiotherapy. Local irradiation at higher doses induces tumor infiltration of CD8+ T cells, which can be boosted by immunotherapy. More systematic research is warranted to better understand the immunological effects of escalating radiation doses.
Collapse
Affiliation(s)
- Bodo E Lippitz
- Dept. of Clinical Neuroscience, Karolinska Institute, Centre for Molecular Medicine L8:04, Karolinska University Hospital, Stockholm, Sweden; Interdisciplinary Centre for Radiosurgery (ICERA), Hamburg, Germany.
| | - Robert A Harris
- Dept. of Clinical Neuroscience, Karolinska Institute, Centre for Molecular Medicine L8:04, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
31
|
Yu D, Zhang S, Feng A, Xu D, Zhu Q, Mao Y, Zhao Y, Lv Y, Han C, Liu R, Tian Y. Methotrexate, doxorubicin, and cisplatinum regimen is still the preferred option for osteosarcoma chemotherapy: A meta-analysis and clinical observation. Medicine (Baltimore) 2019; 98:e15582. [PMID: 31083238 PMCID: PMC6531127 DOI: 10.1097/md.0000000000015582] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/24/2019] [Accepted: 04/11/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND We designed the study to investigate whether methotrexate, doxorubicin, and cisplatinum (MAP) chemotherapy strategy was still the preferred option for the survival of osteosarcoma patients. METHOD We collected some trials of osteosarcoma to make a meta-analysis first. Then, we retrospectively collected data from 115 patients with osteosarcoma and performed further analysis to verify the impact of MAP regimen on the survival of patients. RESULTS Seven studies including 3433 participants met the preliminary inclusion criteria. Meta-analysis of the 3-year disease-free survival (odds ratio [OR] = 1.06, 95% confidence interval [CI]: 0.88-1.28; P = .52) and overall survival (OR = 1.21, 95% CI: 0.70-2.11; P = .54), 5-year disease-free survival (OR = 1.07, 95% CI: 0.87-1.30; P = .54) and overall survival (OR = 0.86, 95% CI: 0.65-1.12; P = .26), and mortality rate (OR = 0.90, 95% CI: 0.70-1.17; P = .44), showed no statistically significant differences. The most common grade 3/4 adverse events were neutropenia (498 [85.9%] patients in MAP vs 533 [93.3%] in MAP plus ifosfamide and etoposide, or other adjuvant therapy drugs [MAP]). MAP was associated with less frequent toxicities than MAP group with statistical significance in thrombocytopenia, febrile neutropenia, anemia, and hypophosphatemia. The same phenomenon could also be seen in the analysis of clinical data. CONCLUSION MAP regimen remains the preferred option for osteosarcoma chemotherapy.
Collapse
Affiliation(s)
- Dapeng Yu
- Department of Spine Surgery, Shandong Provincial Western Hospital, Jinan, Shandong
| | - Shuisheng Zhang
- Department of General Surgery, Peking University Third Hospital, Beijing
| | - Alei Feng
- Department of Oncology, Provincial Hospital Affiliated to Shandong University
| | - Deguo Xu
- Department of Radiotherapy Oncology, Shandong Provincial Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong
| | - Qingshan Zhu
- Department of Radiotherapy Oncology, Anyang Cancer Hospital of Henan Province, Anyang, Henan
| | - Yantao Mao
- Department of Oncology, Yantaishan Hospital of Shandong Province, Yantai City, Shandong
| | - Yi Zhao
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning
| | - Yajuan Lv
- Department of Radiotherapy Oncology, Shandong Provincial Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong
| | - Cuiping Han
- Department of Radiotherapy Oncology, Shandong Provincial Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong
| | - Rujun Liu
- Department of Oncology, LongKou Peoples Hospital, Yantai, Shandong, P.R. China
| | - Yuan Tian
- Department of Radiotherapy Oncology, Shandong Provincial Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong
| |
Collapse
|
32
|
Yang X, Zhang W, Xu P. NK cell and macrophages confer prognosis and reflect immune status in osteosarcoma. J Cell Biochem 2019; 120:8792-8797. [PMID: 30556159 DOI: 10.1002/jcb.28167] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/08/2018] [Indexed: 01/24/2023]
Abstract
Osteosarcoma (OS) is a common primary malignant bone tumor in young adolescents. About 30% of patients with OS have a recurrence, and the overall survival after OS recurrence is not good. In this study, we aimed to analyze and identify factors that influence prognosis after OS relapse. We retrieved the Gene Expression Omnibus data set and collected a series of transcriptome data with clinical information, including microRNA (miRNA) and messenger RNA (mRNA) expression profiles in recurrent OS. Upon comparison of the dysregulated genes of survival status in the recurrent OS samples, it was found that there were 268 differential expressed (DE) mRNAs and six DE miRNAs. These genes are related to pathways in cancer. We also predicted the interaction networks of these DE mRNAs and miRNAs. Further, we applied cibersort to estimate the proportion of immune cell types and we discovered that natural killer cells and macrophages have different abundance between good prognosis and poor prognosis. Our study indicates that for recurrent OS samples, there are several differences between these two groups, including gene expression and the status of immune activation. The immunity status is a candidate signature for disease prediction, prevention, and therapy choices.
Collapse
Affiliation(s)
- Xianliang Yang
- Department of Orthopedic, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang, China
| | - Wenbin Zhang
- Department of Orthopedic, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang, China
| | - Panfeng Xu
- Department of Orthopedic, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang, China
| |
Collapse
|
33
|
Carbon ion irradiation enhances the antitumor efficacy of dual immune checkpoint blockade therapy both for local and distant sites in murine osteosarcoma. Oncotarget 2019; 10:633-646. [PMID: 30774761 PMCID: PMC6363009 DOI: 10.18632/oncotarget.26551] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/20/2018] [Indexed: 12/21/2022] Open
Abstract
Carbon ion radiotherapy has been utilized even for X-ray resistant tumors. However, control of distant metastasis remains a major challenge in carbon ion irradiation. We investigated whether carbon ion irradiation combined with dual immune checkpoint blockade therapy (anti-PD-L1 and anti-CTLA-4 antibodies [P1C4]) provides anti-tumor efficacy for both local and distant sites. A mouse osteosarcoma cell line (LM8) was inoculated into both hind legs of C3H mice assigned to four groups: no treatment (NoTX), P1C4, 5.3 Gy of carbon ion irradiation to one leg (Cion), and combination (Comb) groups. In the Comb group, tumor growth delay was observed not only in the irradiated tumors but also in the unirradiated tumors. Notably, a complete response of unirradiated tumors was observed in 64% of mice in the Comb group, while only 20% of mice in the P1C4 group showed a complete response. Significant activation of immune cells was observed in the Comb group, with an increase in CD8+/GzmB+ tumor-infiltrating lymphocytes (TILs) in the irradiated tumor, and of CD8+/GzmB+ and CD4+ TILs in the unirradiated tumor, respectively. Depletion of CD8 abolished the tumor growth delay in unirradiated tumors in mice treated by Cion and P1C4. Overall survival was significantly prolonged in the Comb group. HMGB-1 release from irradiated tumors was significantly increased after Cion both in vitro and in vivo. These data suggest that carbon ion therapy enhances P1C4 efficacy against osteosarcoma in both the primary tumor and distant metastases mediated by immune activation.
Collapse
|
34
|
Kimura K, Hayashi Y, Otani K, Tsujii Y, Iijima H, Isohashi F, Ogawa K, Takehara T. Esophageal carcinosarcoma that disappeared pathologically by palliative radiotherapy alone. Clin J Gastroenterol 2019; 12:247-253. [PMID: 30649679 DOI: 10.1007/s12328-019-00933-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/08/2019] [Indexed: 12/25/2022]
Abstract
Only a few cases of esophageal granulocyte-colony-stimulating-factor (G-CSF)-producing esophageal carcinosarcoma are reported, and patients with G-CSF-producing tumors are typically considered to have poor prognosis. An 89-year-old man was examined for low-grade fever and dysphagia. Chest computed tomography revealed a huge 80-mm tumor on the thoracic esophagus without direct invasion to surrounding organs. Esophagogastroduodenoscopy (EGD) showed a huge mass occupying the esophageal lumen with a superficial flat lesion. Histopathological examination revealed that the tumor was composed of bizarre giant cells and pleomorphic spindle cells with hyperchromatic nuclei. Laboratory data showed aberrant elevation of leukocyte and neutrophil counts and G-CSF levels. The tumor was finally diagnosed as a G-CSF-producing esophageal carcinosarcoma, stage II (T2N0M0, Union for International Cancer Control-TNM Classification of Malignant Tumors, 8th edition). Considering his general condition, we performed palliative radiotherapy (45 Gy/15 fr) alone after consultation with surgeons and radiation oncologists. Follow-up EGD demonstrated the disappearance of the tumor, and the histological assessment of biopsy specimens confirmed no evidence of malignancy. The leukocyte count and G-CSF levels decreased within normal range. This is a very rare case of G-CSF-producing esophageal carcinosarcoma in which a pathologically complete response was achieved using palliative radiotherapy alone.
Collapse
Affiliation(s)
- Keiichi Kimura
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | - Yoshito Hayashi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | - Keisuke Otani
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshiki Tsujii
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | - Hideki Iijima
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | - Fumiaki Isohashi
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Osaka, Japan.
| |
Collapse
|
35
|
Huang R, Cui Y, Guo Y. Programmed Cell Death Protein-1 Predicts the Recurrence of Breast Cancer in Patients Subjected to Radiotherapy After Breast-Preserving Surgery. Technol Cancer Res Treat 2018; 17:1533033818793425. [PMID: 30122122 PMCID: PMC6102752 DOI: 10.1177/1533033818793425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Radiotherapy is the most important component of the comprehensive treatment of breast cancer, and immunocompromised patients respond with lower response rate. However, the role of programmed cell death protein-1, a critical immune molecule, in recurrence of breast cancer subjected to radiotherapy is unknown. A retrospective analysis was designed to explore the relevance. A number of 42 patients with early-stage breast cancer undergoing breast-conserving surgery and postoperative radiotherapy (18 recurrence and 24 nonrecurrence) were recruited, and clinical data were obtained. Immunohistochemistry was employed to detect programmed cell death protein-1, and Kaplan-Meier curves were used to analyze recurrence-free survival. The expression of programmed cell death protein-1 was higher in the recurrence group than recurrence-free group ( P < .05). Meanwhile, the recurrence-free mean survival was significantly longer in programmed cell death protein-1 low-expression group (68 months) than that in programmed cell death protein-1 high-expression group (56 months). In addition, the levels of T lymphocytes were obviously lower in patients with breast cancer than healthy group, and natural killer showed an opposite tendency. CD4+ decreased significantly after 1 week radiotherapy and recovered rapidly 3 weeks after radiotherapy. Compared to recurrence-free group, the increment of T lymphocytes were inadequate in recurrence group. These experimental results indicated that the expression of programmed cell death protein-1 in tumor-infiltrating lymphocytes is related to immune disorder and recurrence of patients undergoing breast-preserving surgery and radiotherapy.
Collapse
Affiliation(s)
- Ruyi Huang
- 1 Department of Surgery, Division of Thyroid and Mammary Surgery, the Affiliated Wuxi People's Hospital of Nanjing Medical University, China
| | - Yiyao Cui
- 2 Department of Surgery, Division of Thyroid and Mammary Surgery, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Yujiang Guo
- 1 Department of Surgery, Division of Thyroid and Mammary Surgery, the Affiliated Wuxi People's Hospital of Nanjing Medical University, China
| |
Collapse
|
36
|
Vikas P, Borcherding N, Zhang W. The clinical promise of immunotherapy in triple-negative breast cancer. Cancer Manag Res 2018; 10:6823-6833. [PMID: 30573992 PMCID: PMC6292225 DOI: 10.2147/cmar.s185176] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous disease with poorer outcomes compared to other breast cancer subtypes. Contributing to the worse prognosis in TNBC is the higher rates of relapse and rapid progression after relapse. Advances in targeted therapeutics and conventional chemotherapy for TNBC have been stymied due to the lack of specific targets. Moreover, the responses to chemotherapy in TNBC lack durability, partially accounting for the higher rates of relapse. Immunotherapy, notably immune-checkpoint blockade, has shown to improve survival and maintain robust antitumor responses in both hematologic and solid malignancies. Unlike lung cancer, melanoma, and bladder cancer, most breast cancers are not inherently immunogenic and typically have low T cell infiltration. However, among breast cancer subtypes, TNBC is characterized by greater tumor immune infiltrate and higher degree of stromal and intratumoral tumor-infiltrating lymphocytes (TILs), a predictive marker for responses to immunotherapy. Moreover, in TNBC, the high number of stromal TILs is predictive of more favorable survival outcomes and response to chemotherapy. Immunotherapy is being extensively explored in TNBC and clinical trials are showing some promising results. This article focuses on the rationale for immunotherapy in TNBC, to explore and discuss preclinical data, results from early clinical trials, and to summarize some ongoing trials. We will also discuss the potential application of immunotherapy in TNBC from a clinician's perspective.
Collapse
Affiliation(s)
- Praveen Vikas
- Department of Internal Medicine, College of Medicine, University of Iowa, Iowa City, IA, USA,
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA,
| | - Nicholas Borcherding
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA,
- Department of Pathology, College of Medicine, University of Iowa, Iowa City, IA, USA
- Cancer Biology Graduate Program, College of Medicine, University of Iowa, Iowa City, IA, USA
- Medical Scientist Training Program, College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Weizhou Zhang
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA,
- Department of Pathology, College of Medicine, University of Iowa, Iowa City, IA, USA
- Cancer Biology Graduate Program, College of Medicine, University of Iowa, Iowa City, IA, USA
- Medical Scientist Training Program, College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
37
|
A curative treatment strategy using tumor debulking surgery combined with immune checkpoint inhibitors for advanced pediatric solid tumors: An in vivo study using a murine model of osteosarcoma. J Pediatr Surg 2018; 53:2460-2464. [PMID: 30266483 DOI: 10.1016/j.jpedsurg.2018.08.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 08/25/2018] [Indexed: 11/23/2022]
Abstract
BACKGROUND/PURPOSE This study aimed to assess the significance of tumor debulking surgery by using immune checkpoint inhibitors for advanced pediatric solid tumors in a murine model of advanced osteosarcoma. METHODS In C3H mice, 5 × 106 LM8 (osteosarcoma cell line with a high metastatic potential in the lungs originating from the C3H mouse) cells were transplanted subcutaneously. Thereafter, the mice were divided into 4 groups as follows: the control group received no intervention (CG, n = 5), the surgery group underwent subcutaneous tumor resection (tumor debulking surgery) 11 days after transplantation (SG, n = 10), the immunotherapy group received a cocktail consisting of 200 μg each of three antibodies (anti-Tim-3, anti-PD-L1, and anti-OX-86) intraperitoneally on posttransplantation days 11, 14, 18, and 21 (IG, n = 10), and the combination therapy group, tumor debulking surgery on day 11 and the cocktail intraperitoneally on days 11, 14, 18, and 21 (COMBG, n = 10). Survival curves were plotted by using the Kaplan-Meier method and compared with those plotted using the log-rank test. Next, the lungs of mice in the 4 groups were pathologically evaluated. RESULTS The COMBG showed significantly longer survival than the other three groups (P ≤ 0.002), whereas the SG and IG revealed no difference in survival rate compared to CG. Pathological evaluations revealed no lung metastasis 16 weeks after tumor transplantation in the survivors of COMBG. CONCLUSIONS The results of this study suggest that tumor debulking surgery combined with immune checkpoint inhibitors could be a curative treatment for advanced pediatric solid tumors.
Collapse
|
38
|
Evaluation of tumor-infiltrating lymphocytes in osteosarcomas of the jaws: a multicenter study. Virchows Arch 2018; 474:201-207. [PMID: 30483955 DOI: 10.1007/s00428-018-2499-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/18/2018] [Accepted: 11/21/2018] [Indexed: 12/31/2022]
|
39
|
Patel RB, Baniel CC, Sriramaneni RN, Bradley K, Markovina S, Morris ZS. Combining brachytherapy and immunotherapy to achieve in situ tumor vaccination: A review of cooperative mechanisms and clinical opportunities. Brachytherapy 2018; 17:995-1003. [PMID: 30078541 PMCID: PMC8292980 DOI: 10.1016/j.brachy.2018.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/06/2018] [Indexed: 12/22/2022]
Abstract
As immunotherapies continue to emerge as a standard component of treatment for a variety of cancers, the imperative for testing these in combination with other standard cancer therapies grows. Radiation therapy may be a particularly well-suited partner for many immunotherapies. By modulating immune tolerance and functional immunogenicity at a targeted tumor site, radiation therapy may serve as a method of in situ tumor vaccination. In situ tumor vaccination is a therapeutic strategy that seeks to convert a patient's own tumor into a nidus for enhanced presentation of tumor-specific antigens in a way that will stimulate and diversify an antitumor T cell response. The mechanisms whereby radiation may impact immunotherapy are diverse and include its capacity to simultaneously elicit local inflammation, temporary local depletion of suppressive lymphocyte lineages, enhanced tumor cell susceptibility to immune response, and immunogenic tumor cell death. Emerging data suggest that each of these mechanisms may display a distinct dose-response profile, making it challenging to maximize each of these effects using external beam radiation. Conversely, the highly heterogenous and conformal dose distribution achieved with brachytherapy may be optimal for enhancing the immunogenic capacity of radiation at a tumor site while minimizing off-target antagonistic effects on peripheral immune cells. Here, we review the immunogenic effects of radiation, summarize the clinical rationale and data supporting the use of radiation together with immunotherapies, and discuss the rationale and urgent need for further preclinical and clinical investigation specifically of brachytherapy in combination with immunotherapies. Harnessing these immunomodulatory effects of brachytherapy may offer solutions to overcome obstacles to the efficacy of immunotherapies in immunologically "cold" tumors while potentiating greater response in the context of immunologically "hot" tumors.
Collapse
Affiliation(s)
- Ravi B Patel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Claire C Baniel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Raghava N Sriramaneni
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Kristin Bradley
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Stephanie Markovina
- Department of Radiation Oncology, Washington University in St Louis, St Louis, MO
| | - Zachary S Morris
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI.
| |
Collapse
|
40
|
Lamichhane P, Amin NP, Agarwal M, Lamichhane N. Checkpoint Inhibition: Will Combination with Radiotherapy and Nanoparticle-Mediated Delivery Improve Efficacy? MEDICINES (BASEL, SWITZERLAND) 2018; 5:E114. [PMID: 30360504 PMCID: PMC6313567 DOI: 10.3390/medicines5040114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 02/07/2023]
Abstract
Checkpoint inhibition (CPI) has been a rare success story in the field of cancer immunotherapy. Knowledge gleaned from preclinical studies and patients that do not respond to these therapies suggest that the presence of tumor-infiltrating lymphocytes and establishment of immunostimulatory conditions, prior to CPI treatment, are required for efficacy of CPI. To this end, radiation therapy (RT) has been shown to promote immunogenic cell-death-mediated tumor-antigen release, increase infiltration and cross-priming of T cells, and decreasing immunosuppressive milieu in the tumor microenvironment, hence allowing CPI to take effect. Preclinical and clinical studies evaluating the combination of RT with CPI have been shown to overcome the resistance to either therapy alone. Additionally, nanoparticle and liposome-mediated delivery of checkpoint inhibitors has been shown to overcome toxicities and improve therapeutic efficacy, providing a rationale for clinical investigations of nanoparticle, microparticle, and liposomal delivery of checkpoint inhibitors. In this review, we summarize the preclinical and clinical studies of combined RT and CPI therapies in various cancers, and review findings from studies that evaluated nanoparticle and liposomal delivery of checkpoint inhibitors for cancer treatments.
Collapse
Affiliation(s)
| | - Neha P Amin
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Manuj Agarwal
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Narottam Lamichhane
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
41
|
Borcherding N, Kolb R, Gullicksrud J, Vikas P, Zhu Y, Zhang W. Keeping Tumors in Check: A Mechanistic Review of Clinical Response and Resistance to Immune Checkpoint Blockade in Cancer. J Mol Biol 2018; 430:2014-2029. [PMID: 29800567 PMCID: PMC6071324 DOI: 10.1016/j.jmb.2018.05.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/26/2022]
Abstract
Immune checkpoints are a diverse set of inhibitory signals to the immune system that play a functional role in adaptive immune response and self-tolerance. Dysregulation of these pathways is a vital mechanism in the avoidance of immune destruction by tumor cells. Immune checkpoint blockade (ICB) refers to targeted strategies to disrupt the tumor co-opted immune suppression to enhance anti-tumor immunity. Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death 1 (PD-1) are two immune checkpoints that have the widest range of antibody-based therapies. These therapies have gone from promising approaches to Food and Drug Administration-approved first- and second-line agents for a number of immunogenic cancers. The burgeoning investigations of ICB efficacy in blood and solid cancers have underscored the importance of identifying the predictors of response and resistance to ICB. Identification of response correlates is made complicated by the observations of mixed reactions, or different responses in multiple lesions from the same patient, and delayed responses that can occur over a year after the induction therapy. Factors that can influence response and resistance in ICB can illuminate underlying molecular mechanisms of immune activation and suppression. These same response predictors can guide the identification of patients who would benefit from ICB, reduce off-target immune-relate adverse events, and facilitate the use of combinatorial therapies to increase efficacy. Here we review the underlying principles of immune checkpoint therapy and results of single-agent ICB clinical trials, and summarize the predictors of response and resistance.
Collapse
Affiliation(s)
- Nicholas Borcherding
- Department of Pathology, University of Iowa, College of Medicine, Iowa City, IA 52242-11, USA; Cancer Biology Graduate Program, University of Iowa, College of Medicine, Iowa City, IA 52242-11, USA; Medical Scientist Training Program, University of Iowa, College of Medicine, Iowa City, IA 52242-11, USA; Holden Comprehensive Cancer Center, University of Iowa, College of Medicine, Iowa City, IA 52242-11, USA
| | - Ryan Kolb
- Department of Pathology, University of Iowa, College of Medicine, Iowa City, IA 52242-11, USA; Holden Comprehensive Cancer Center, University of Iowa, College of Medicine, Iowa City, IA 52242-11, USA
| | - Jodi Gullicksrud
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Praveen Vikas
- Holden Comprehensive Cancer Center, University of Iowa, College of Medicine, Iowa City, IA 52242-11, USA
| | - Yuwen Zhu
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Weizhou Zhang
- Department of Pathology, University of Iowa, College of Medicine, Iowa City, IA 52242-11, USA; Cancer Biology Graduate Program, University of Iowa, College of Medicine, Iowa City, IA 52242-11, USA; Medical Scientist Training Program, University of Iowa, College of Medicine, Iowa City, IA 52242-11, USA; Holden Comprehensive Cancer Center, University of Iowa, College of Medicine, Iowa City, IA 52242-11, USA.
| |
Collapse
|