1
|
Marquez-Grap G, Kranyak A, Brownstone N, Koo J. Can pimozide kill parasites? Surprisingly, the most honest answer is 'yes'. J DERMATOL TREAT 2025; 36:2466635. [PMID: 39988333 DOI: 10.1080/09546634.2025.2466635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 02/08/2025] [Indexed: 02/25/2025]
Abstract
Purpose: One of the most well-known medications for treating delusional infestation (DI) is pimozide. Many patients may be reluctant to initiate treatment unless a medication has anti-pathogenic properties, as they feel otherwise it does not address their concerns regarding infestation. In this article, we explore the evidence that pimozide has a range of antipathogenic effects and how this fact can aid in patient care. Materials and methods: A scoping literature review was performed using The National Library of Medicine (PubMed). The search terms used were pimozide AND anti-microbial OR anti-bacterial OR anti-infective. All relevant articles were reviewed up to September 2024. Results: Our findings show that pimozide has antibacterial and antiparasitic effects through several unique mechanisms. Additionally, several older first-generation antipsychotics also have demonstrated anti-pathogenic properties. While the studies identified are entirely in vitro, the potential antipathogenic effects of pimozide may be pivotal to patients with DI as they make the critical decision to accept or reject treatment. Conclusion: With adequate disclaimers that pimozide's therapeutic efficacy may not have to do with its anti-pathogen profile, the evidence that pimozide has anti-pathogenic properties may enable dermatology providers to strengthen their therapeutic approach and alliance with patients with DI and make life-changing therapy more acceptable to the patient.
Collapse
Affiliation(s)
| | - Allison Kranyak
- Department of Dermatology, University of California, San Francisco, CA, USA
| | - Nicholas Brownstone
- Department of Dermatology, Temple University Hospital, Philadelphia, PA, USA
| | - John Koo
- Department of Dermatology, University of California, San Francisco, CA, USA
| |
Collapse
|
2
|
Chen J, Tamareille S, Chèvremont E, Gimel JC, Calvignac B, Dallerac D, Lautram N, Lay TL, Rapenne C, Verdu I, Saulnier P, Martinez É, Lefebvre G. Distribution of amiodarone between lipid nanocapsules and residual micelles: Tangential flow filtration as a purification method and its impact on cytotoxicity. Int J Pharm 2025; 677:125651. [PMID: 40328342 DOI: 10.1016/j.ijpharm.2025.125651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/25/2025] [Accepted: 04/26/2025] [Indexed: 05/08/2025]
Abstract
Amiodarone (AMD) is an anti-arrhythmic drug prescribed for the treatment of atrial fibrillation. Despite its efficiency, AMD causes several extracardiac side effects due to its highly lipophilic nature, limiting its clinical use. Lipid nanocapsules (LNCs) are a promising approach for encapsulating AMD and altering its whole-body biodistribution. It has been established that during the phase inversion composition process to prepare LNCs loaded with AMD (LNC-AMD), some residual micelles will also be formed. These residual micelles could contain AMD and impact the formulation's cytotoxicity. In this study, we present a scalable tangential flow filtration (TFF) process for the separation of micelles from LNCs. Subsequently, dynamic light scattering and asymmetric flow-field flow fractionation in combination with UV and RI detections are subtly associated with a mass balance to assess the efficiency of TFF in removing free polyethylene glycol and surfactant micelles. An encapsulation efficiency of 91 % in the LNCs was calculated with a drug loading of 7.2 mg per gram of dry matter constituting the LNCs. Finally, the cytotoxicity of the LNC vector and LNC-AMD candidate nanomedicines, both purified and non-purified, was evaluated on H9C2, A549, and HepG2 cell lines. It has been demonstrated that the elimination of free polyethylene glycol and residual surfactant micelles results in a substantial enhancement in cell viability. The cytotoxic results raise questions about the cell-specific uptake and distribution of purified LNCs.
Collapse
Affiliation(s)
- Jaspe Chen
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France; Univ Angers, CHU Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Sophie Tamareille
- Univ Angers, Inserm, CNRS, MITOVASC, SFR ICAT, F-49000 Angers, France
| | | | - Jean-Christophe Gimel
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France; Univ Angers, SynNanoVect, SFR ICAT, F-49000 Angers, France
| | - Brice Calvignac
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France; Univ Angers, SynNanoVect, SFR ICAT, F-49000 Angers, France
| | - David Dallerac
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Nolwenn Lautram
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Tanguy Le Lay
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Clara Rapenne
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Isabelle Verdu
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Patrick Saulnier
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France; Univ Angers, CHU Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France; Univ Angers, SynNanoVect, SFR ICAT, F-49000 Angers, France
| | - Émilie Martinez
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Guillaume Lefebvre
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France; Univ Angers, SynNanoVect, SFR ICAT, F-49000 Angers, France.
| |
Collapse
|
3
|
Beech MJ, Toma EC, Smith HG, Trush MM, Ang JHJ, Wong MY, Wong CHJ, Ali HS, Butt Z, Goel V, Duarte F, Farley AJM, Walsh TR, Schofield CJ. Binding assays enable discovery of Tet(X) inhibitors that combat tetracycline destructase resistance. Chem Sci 2025:d5sc00964b. [PMID: 40342919 PMCID: PMC12056667 DOI: 10.1039/d5sc00964b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/16/2025] [Indexed: 05/11/2025] Open
Abstract
The Tet(X) flavin-dependent monooxygenases enable tetracycline antibiotic resistance by catalysing inactivating hydroxylation, so preventing inhibition of bacterial ribosomes. Tet(X) resistance is growing rapidly, threatening the efficacy of important last-resort tetracyclines such as tigecycline. Tet(X) inhibitors have potential to protect tetracyclines in combination therapies, but their discovery has been hampered by lack of high-throughput assays. We report the development of an efficient fluorescence polarisation Tet(X) binding assay employing a tetramethylrhodamine-glycyl-minocycline conjugate that enables inhibitor discovery. The assay was applied to tetracycline substrates and reported inhibitors, providing insight into their binding modes. Screening of a bioactive molecule library identified novel Tet(X) inhibitors, including psychoactive phenothiazine derivatives and the 5-HT4 agonist tegaserod, the activities of which were validated by turnover assays. Crystallographic studies of Tet(X4)-inhibitor complexes reveal two new inhibitor binding modes, importantly providing evidence for active site binding of Tet(X) inhibitors that do not share structural similarity with tetracycline substrates. In some cases, potentiation of tigecycline activity was observed in bacteria expressing Tet(X4). The combined results provide non-tetracycline scaffolds for development of potent Tet(X) inhibitors and highlight the need to evaluate the impact of non-antibiotics on antimicrobial resistance.
Collapse
Affiliation(s)
- Matthew J Beech
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford Oxford OX1 3TA UK
| | - Edmond C Toma
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford Oxford OX1 3TA UK
| | - Helen G Smith
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford Oxford OX1 3TA UK
| | - Maria M Trush
- Department of Biology and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford Oxford OX1 3RE UK
| | - Jit H J Ang
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR) 10, Biopolis Road Singapore 138670 Singapore
| | - Mei Y Wong
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR) 10, Biopolis Road Singapore 138670 Singapore
| | - Chung H J Wong
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR) 10, Biopolis Road Singapore 138670 Singapore
| | - Hafiz S Ali
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford Oxford OX1 3TA UK
| | - Zakia Butt
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford Oxford OX1 3TA UK
| | - Viha Goel
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford Oxford OX1 3TA UK
| | - Fernanda Duarte
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford Oxford OX1 3TA UK
| | - Alistair J M Farley
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford Oxford OX1 3TA UK
| | - Timothy R Walsh
- Department of Biology and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford Oxford OX1 3RE UK
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford Oxford OX1 3TA UK
| |
Collapse
|
4
|
Kilinç G, Ottenhoff THM, Saris A. Phenothiazines boost host control of Mycobacterium avium infection in primary human macrophages. Biomed Pharmacother 2025; 185:117941. [PMID: 40020517 DOI: 10.1016/j.biopha.2025.117941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/10/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025] Open
Abstract
Mycobacterium avium (Mav) complex is the leading cause of pulmonary diseases associated with non-tuberculous mycobacterial (NTM) infections worldwide. The inherent and increasing acquired antibiotic resistance of Mav hampers the treatment of Mav infections and emphasizes the urgent need for alternative treatment strategies. A promising approach is host-directed therapy (HDT), which aims to boost the host's immune defenses to combat infections. In this study, we show that phenothiazines, particularly trifluoperazine (TFP) and chlorproethazine (CPE), restricted Mav survival in primary human macrophages. Notably, TFP and CPE did not directly inhibit mycobacterial growth at used concentrations, confirming these drugs function through host-dependent mechanisms. TFP and CPE induced a mild, albeit not statistically significant, increase in autophagic flux along with the nuclear intensity of transcription factor EB (TFEB), the master transcriptional regulator of autophagy. Inhibition of autophagic flux with bafilomycin, however, did not impair the improved host infection control by TFP and CPE, suggesting that the host (auto)phagolysosomal pathway is not causally involved in the mechanism of action of TFP and CPE. Additionally, TFP and CPE increased the production of both cellular and mitochondrial reactive oxygen species (ROS). Scavenging mitochondrial ROS did not impact, whereas inhibition of NADPH oxidase (NOX)-mediated ROS production partially impaired the HDT activity of TFP and CPE, indicating that oxidative burst may play a limited role in the improved host control of Mav infection by these drugs. Overall, our study demonstrates that phenothiazines are promising HDT candidates that enhance the antimicrobial response of macrophages against Mav, through mechanism(s) that were partially elucidated.
Collapse
Affiliation(s)
- Gül Kilinç
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Tom H M Ottenhoff
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Anno Saris
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
5
|
Kuźbicka K, Pawłowska I, Kocić I. Drugs used in psychiatry causing an increase in body weight in children-a review. Int J Obes (Lond) 2025; 49:478-491. [PMID: 39448870 DOI: 10.1038/s41366-024-01662-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
Body weight gain is a prevalent adverse effect observed in psychiatric medication therapy. With the notable increase in mental health diagnoses among children and adolescents over the last decade, exacerbated by the COVID-19 pandemic, the use of medications associated with weight gain poses an additional risk for obesity development. This study aimed to identify psychiatric drugs that may induce weight gain in children as a side effect. Twenty-nine publications were included in this systematic review, investigating the effects of nineteen different drugs on children's weight. The majority of these drugs belonged to atypical antipsychotics and anticonvulsants. Nearly all included articles reported that the examined substances resulted in weight gain in children. As childhood obesity has become a significant problem with various metabolic, psychological and social consequences, it is crucial to carefully consider therapy options. In addition to evaluating effectiveness, it is important to also assess the potential for weight gain. Clinicians and nutrition specialists should individually evaluate patients' nutritional needs, evaluate obesity risk, and provide appropriate dietary guidance to minimalize the risk of weight gain.
Collapse
Affiliation(s)
- Karolina Kuźbicka
- Department of Pharmacology, Medical University of Gdańsk, Dębowa 23, 80-204, Gdańsk, Poland.
| | - Iga Pawłowska
- Department of Pharmacology, Medical University of Gdańsk, Dębowa 23, 80-204, Gdańsk, Poland
| | - Ivan Kocić
- Department of Pharmacology, Medical University of Gdańsk, Dębowa 23, 80-204, Gdańsk, Poland
| |
Collapse
|
6
|
Zolotareva D, Zazybin A, Belyankova Y, Bayazit S, Dauletbakov A, Seilkhanov T, Kemelbekov U, Aydemir M. Heterocyclic Antidepressants with Antimicrobial and Fungicide Activity. Molecules 2025; 30:1102. [PMID: 40076325 PMCID: PMC11902072 DOI: 10.3390/molecules30051102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
In this review, the presence of antimicrobial and fungicidal activity in heterocyclic antidepressants was investigated. The already proven connection between the intestinal microbiome and mental health prompted the idea of whether these drugs disrupt the normal intestinal microflora. In addition, there is a serious problem of increasing resistance of microorganisms to antibiotics. In this article, we found that almost all of the antidepressants considered (except moclobemide, haloperidol, and doxepin) have antimicrobial activity and can suppress the growth of not only pathogenic microorganisms but also the growth of bacteria that directly affect mental health (such as Lactobacillus, Lactococcus, Streptococcus, Enterococcus, and Bifidobacterium).
Collapse
Affiliation(s)
- Darya Zolotareva
- School of Chemical Engineering, Kazakh-British Technical University, 59 Tole bi Str., Almaty 050000, Kazakhstan; (D.Z.); (Y.B.); (S.B.); (A.D.)
| | - Alexey Zazybin
- School of Chemical Engineering, Kazakh-British Technical University, 59 Tole bi Str., Almaty 050000, Kazakhstan; (D.Z.); (Y.B.); (S.B.); (A.D.)
| | - Yelizaveta Belyankova
- School of Chemical Engineering, Kazakh-British Technical University, 59 Tole bi Str., Almaty 050000, Kazakhstan; (D.Z.); (Y.B.); (S.B.); (A.D.)
| | - Sarah Bayazit
- School of Chemical Engineering, Kazakh-British Technical University, 59 Tole bi Str., Almaty 050000, Kazakhstan; (D.Z.); (Y.B.); (S.B.); (A.D.)
| | - Anuar Dauletbakov
- School of Chemical Engineering, Kazakh-British Technical University, 59 Tole bi Str., Almaty 050000, Kazakhstan; (D.Z.); (Y.B.); (S.B.); (A.D.)
| | - Tulegen Seilkhanov
- Laboratory of Engineering Profile NMR Spectroscopy, Sh. Ualikhanov Kokshetau University, 76 Abay Str., Kokshetau 020000, Kazakhstan;
| | - Ulan Kemelbekov
- South Kazakhstan Medical Academy, 1 Al-Farabi Square, Shymkent 160019, Kazakhstan;
| | - Murat Aydemir
- Faculty of Science, Department of Chemistry, Dicle University, Diyarbakır 21280, Turkey;
| |
Collapse
|
7
|
Eltabeeb MA, Hamed RR, El-Nabarawi MA, Teaima MH, Hamed MIA, Darwish KM, Hassan M, Abdellatif MM. Nanocomposite alginate hydrogel loaded with propranolol hydrochloride kolliphor ® based cerosomes as a repurposed platform for Methicillin-Resistant Staphylococcus aureus-(MRSA)-induced skin infection; in-vitro, ex-vivo, in-silico, and in-vivo evaluation. Drug Deliv Transl Res 2025; 15:556-576. [PMID: 38762697 PMCID: PMC11683024 DOI: 10.1007/s13346-024-01611-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 05/20/2024]
Abstract
Nanocomposite alginate hydrogel containing Propranolol hydrochloride (PNL) cerosomes (CERs) was prepared as a repurposed remedy for topical skin Methicillin-Resistant Staphylococcus aureus (MRSA) infection. CERs were formed via an ethanol injection technique using different ceramides, Kolliphores® as a surfactant, and Didodecyldimethylammonium bromide (DDAB) as a positive charge inducer. CERs were optimized utilizing 13. 22 mixed-factorial design employing Design-Expert® software, the assessed responses were entrapment efficiency (EE%), particle size (PS), and zeta potential (ZP). The optimum CER, composed of 5 mg DDAB, ceramide VI, and Kolliphor® RH40 showed tubular vesicles with EE% of 92.91 ± 0.98%, PS of 388.75 ± 18.99 nm, PDI of 0.363 ± 0.01, and ZP of 30.36 ± 0.69 mV. Also, it remained stable for 90 days and manifested great mucoadhesive aspects. The optimum CER was incorporated into calcium alginate to prepare nanocomposite hydrogel. The ex-vivo evaluation illustrated that PNL was permeated in a more prolonged pattern from PNL-loaded CERs nanocomposite related to PNL-composite, optimum CER, and PNL solution. Confocal laser scanning microscopy revealed a perfect accumulation of fluorescein-labeled CERs in the skin. The in-silico investigation illustrated that the PNL was stable when mixed with other ingredients in the CERs and confirmed that PNL is a promising candidate for curing MRSA. Moreover, the PNL-loaded CERs nanocomposite revealed superiority over the PNL solution in inhibiting biofilm formation and eradication. The PNL-loaded CERs nanocomposite showed superiority over the PNL-composite for treating MRSA infection in the in-vivo mice model. Histopathological studies revealed the safety of the tested formulations. In conclusion, PNL-loaded CERs nanocomposite provided a promising, safe cure for MRSA bacterial skin infection.
Collapse
Affiliation(s)
- Moaz A Eltabeeb
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt.
| | - Raghda Rabe Hamed
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Mohamed A El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mahmoud H Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohammed I A Hamed
- Organic and Medicinal Chemistry Department, Faculty of Pharmacy, Fayoum University, Faiyum, Egypt
| | - Khaled M Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Mariam Hassan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, 43511, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Menna M Abdellatif
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| |
Collapse
|
8
|
Kamath S, Sokolenko E, Collins K, Chan NSL, Mills N, Clark SR, Marques FZ, Joyce P. IUPHAR themed review: The gut microbiome in schizophrenia. Pharmacol Res 2025; 211:107561. [PMID: 39732352 DOI: 10.1016/j.phrs.2024.107561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Gut microbial dysbiosis or altered gut microbial consortium, in schizophrenia suggests a pathogenic role through the gut-brain axis, influencing neuroinflammatory and neurotransmitter pathways critical to psychotic, affective, and cognitive symptoms. Paradoxically, conventional psychotropic interventions may exacerbate this dysbiosis, with antipsychotics, particularly olanzapine, demonstrating profound effects on microbial architecture through disruption of bacterial phyla ratios, diminished taxonomic diversity, and attenuated short-chain fatty acid synthesis. To address these challenges, novel therapeutic strategies targeting the gut microbiome, encompassing probiotic supplementation, prebiotic compounds, faecal microbiota transplantation, and rationalised co-pharmacotherapy, show promise in attenuating antipsychotic-induced metabolic disruptions while enhancing therapeutic efficacy. Harnessing such insights, precision medicine approaches promise to transform antipsychotic prescribing practices by identifying patients at risk of metabolic side effects based on their microbial profiles. This IUPHAR review collates the current literature landscape of the gut-brain axis and its intricate relationship with schizophrenia while advocating for integrating microbiome assessments and therapeutic management. Such a fundamental shift in proposing microbiome-informed psychotropic prescriptions to optimise therapeutic efficacy and reduce adverse metabolic impacts would align antipsychotic treatments with microbiome safety, prioritising 'gut-neutral' or gut-favourable drugs to safeguard long-term patient outcomes in schizophrenia therapy.
Collapse
Affiliation(s)
- Srinivas Kamath
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Elysia Sokolenko
- Discipline of Anatomy and Pathology, School of Biomedicine, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Kate Collins
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Nicole S L Chan
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Natalie Mills
- Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Scott R Clark
- Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Francine Z Marques
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Hypertension Research Laboratory, School of Biological Sciences and Victorian Heart Institute, Monash University, Melbourne, VIC, Australia
| | - Paul Joyce
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia.
| |
Collapse
|
9
|
Kowalska O, Piergies N, Barbasz A, Niemiec P, Gnacek P, Duraczyńska D, Oćwieja M. Spectroscopic Properties and Biological Activity of Fluphenazine Conjugates with Gold Nanoparticles. Molecules 2024; 29:5948. [PMID: 39770038 PMCID: PMC11676885 DOI: 10.3390/molecules29245948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Fluphenazine (FPZ) is a well-known neuroleptic that has attracted considerable scientific interest due to its biocidal, virucidal, and antitumor properties. Although methods for encapsulating and delivering FPZ to enhance its activity and reduce side effects have been developed, there is still limited knowledge about its conjugates with gold nanoparticles (AuNPs). Therefore, the aim of this research was to develop a preparation method for stable FPZ-AuNP conjugates and to investigate their physicochemical and biological properties. FPZ-AuNP conjugates were synthesized via a ligand exchange process on the surface of gold nanoparticles (AuNPs) with an average size of 17 ± 5 nm. Electrokinetic measurements revealed that the zeta potential of FPZ-AuNPs is affected by both their composition and pH. The FPZ-AuNPs exhibited an isoelectric point due to the acid-base properties of FPZ. Surface-enhanced Raman spectroscopy (SERS), combined with density functional theory (DFT), was used to determine the adsorption structure of FPZ after conjugation. Studies with human neuroblastoma cells (SH-SY5Y) revealed that FPZ-AuNP conjugates more effectively reduced cell viability compared to citrate-stabilized AuNPs alone or free FPZ molecules. The reduction in SH-SY5Y cell viability was found to be dependent on the FPZ-AuNP concentration.
Collapse
Affiliation(s)
- Oliwia Kowalska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland; (O.K.); (P.G.); (D.D.)
| | - Natalia Piergies
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland;
| | - Anna Barbasz
- Department of Biochemistry and Biophysics, Institute of Biology and Earth Sciences, University of the National Education Commission, Podchorazych 2, PL-30084 Krakow, Poland;
| | - Piotr Niemiec
- Faculty of Mathematics and Natural Sciences, Department of Chemistry, University of Applied Sciences in Tarnow, Mickiewicza 8, PL-33100 Tarnow, Poland;
| | - Patrycja Gnacek
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland; (O.K.); (P.G.); (D.D.)
| | - Dorota Duraczyńska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland; (O.K.); (P.G.); (D.D.)
| | - Magdalena Oćwieja
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland; (O.K.); (P.G.); (D.D.)
| |
Collapse
|
10
|
Ibrahim MM, Basalious EB, El-Nabarawi MA, Makhlouf AI, Sayyed ME, Ibrahim IT. Nose to brain delivery of mirtazapine via lipid nanocapsules: Preparation, statistical optimization, radiolabeling, in vivo biodistribution and pharmacokinetic study. Drug Deliv Transl Res 2024; 14:2539-2557. [PMID: 38376620 PMCID: PMC11525427 DOI: 10.1007/s13346-024-01528-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
Mirtazapine (MZPc) is an antidepressant drug which is approved by the FDA. It has low bioavailability, which is only 50%, in spite of its rapid absorption when orally administered owing to high first-pass metabolism. This study was oriented towards delivering intranasal (IN) mirtazapine by a direct route to the brain by means of preparing lipid nanocapsules (LNCs) as a targeted drug delivery system. MZP-LNCs were constructed by solvent-free phase inversion temperature technique applying D-Optimal mixture design to study the impact of 3 formulation variables on the characterization of the formulated nanocapsules. Independent variables were percentage of Labrafac oil, percentage of Solutol and percentage of water. Dependent variables were particle size, polydispersity index (PDI), Zeta potential and solubilization capacity. Nanocapsules of the optimized formula loaded with MZP were of spherical shape as confirmed by transmission electron microscopy with particle diameter of 20.59 nm, zeta potential of - 5.71, PDI of 0.223 and solubilization capacity of 7.21 mg/g. The in vivo pharmacokinetic behavior of intranasal MZP-LNCs in brain and blood was correlated to MZP solution after intravenous (IV) and intranasal administration in mice. In vivo biodistribution of the drug in mice was assessed by a radiolabeling technique using radioiodinated mirtazapine (131I-MZP). Results showed that intranasal MZP-LNCs were able to deliver higher amount of MZP to the brain with less drug levels in blood when compared to the MZP solution after IV and IN administration. Moreover, the percentage of drug targeting efficiency (%DTE) of the optimized MZP-LNCs was 332.2 which indicated more effective brain targeting by the intranasal route. It also had a direct transport percentage (%DTP) of 90.68 that revealed a paramount contribution of the nose to brain pathway in the drug delivery to the brain.
Collapse
Affiliation(s)
- Mennatullah M Ibrahim
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Emad B Basalious
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed A El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Amal Ia Makhlouf
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Cairo, Egypt
| | - Marwa Eid Sayyed
- Radio Labeled Compounds Department, Hot Labs Centre, Egyptian Atomic Energy Authority, P.O. Box 13759, Cairo, Egypt
| | - Ismail Taha Ibrahim
- Radio Labeled Compounds Department, Hot Labs Centre, Egyptian Atomic Energy Authority, P.O. Box 13759, Cairo, Egypt
- Faculty of Pharmacy, Albayan University, Baghdad, Iraq
| |
Collapse
|
11
|
Coscione F, Zineddu S, Vitali V, Fondi M, Messori L, Perrin E. The Many Lives of Auranofin: How an Old Anti-Rheumatic Agent May Become a Promising Antimicrobial Drug. Antibiotics (Basel) 2024; 13:652. [PMID: 39061334 PMCID: PMC11274207 DOI: 10.3390/antibiotics13070652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Auranofin (AF) is a gold-based compound with a well-known pharmacological and toxicological profile, currently used in the treatment of some severe forms of rheumatoid arthritis. Over the last twenty years, AF has also been repurposed as antiviral, antitumor, and antibacterial drug. In this review we focused on the antibacterial properties of AF, specifically researching the minimal inhibitory concentrations (MIC) of AF in both mono- and diderm bacteria reported so far in literature. AF proves to be highly effective against monoderm bacteria, while diderm are far less susceptible, probably due to the outer membrane barrier. We also reported the current mechanistic hypotheses concerning the antimicrobial properties of AF, although a conclusive description of its antibacterial mode of action is not yet available. Even if its mechanism of action has not been fully elucidated yet and further studies are required to optimize its delivery strategy, AF deserves additional investigation because of its unique mode of action and high efficacy against a wide range of pathogens, which could lead to potential applications in fighting antimicrobial resistance and improving therapeutic outcomes in infectious diseases.
Collapse
Affiliation(s)
- Francesca Coscione
- Department of Biology, University of Florence, Via Madonna del Piano 6, I-50019 Sesto Fiorentino, Italy; (F.C.); (M.F.)
| | - Stefano Zineddu
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino, Italy; (S.Z.); (V.V.)
| | - Valentina Vitali
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino, Italy; (S.Z.); (V.V.)
| | - Marco Fondi
- Department of Biology, University of Florence, Via Madonna del Piano 6, I-50019 Sesto Fiorentino, Italy; (F.C.); (M.F.)
| | - Luigi Messori
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino, Italy; (S.Z.); (V.V.)
| | - Elena Perrin
- Department of Biology, University of Florence, Via Madonna del Piano 6, I-50019 Sesto Fiorentino, Italy; (F.C.); (M.F.)
| |
Collapse
|
12
|
Gad AI, El-Ganiny AM, Eissa AG, Noureldin NA, Nazeih SI. Miconazole and phenothiazine hinder the quorum sensing regulated virulence in Pseudomonas aeruginosa. J Antibiot (Tokyo) 2024; 77:454-465. [PMID: 38724627 PMCID: PMC11208154 DOI: 10.1038/s41429-024-00731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/20/2024] [Accepted: 04/13/2024] [Indexed: 06/28/2024]
Abstract
Antibiotic resistance is a major health problem worldwide. Pseudomonas aeruginosa is a Gram-negative pathogen with an arsenal of virulence factors and elevated antimicrobial resistance. It is a leading cause of nosocomial infections with high morbidity and mortality. The significant time and effort required to develop new antibiotics can be circumvented using alternative therapeutic strategies, including anti-virulence targets. This study aimed to investigate the anti-virulence activity of the FDA-approved drugs miconazole and phenothiazine against P. aeruginosa. The phenotypic effect of sub-inhibitory concentrations of miconazole and phenothiazine on biofilm, pyocyanin, protease, rhamnolipid and hemolysin activities in PAO1 strain was examined. qRT-PCR was used to assess the effect of drugs on quorum-sensing genes that regulate virulence. Further, the anti-virulence potential of miconazole and phenothiazine was evaluated in silico and in vivo. Miconazole showed significant inhibition of Pseudomonas virulence by reducing biofilm-formation approximately 45-48%, hemolytic-activity by 59%, pyocyanin-production by 47-49%, rhamnolipid-activity by approximately 42-47% and protease activity by 36-40%. While, phenothiazine showed lower anti-virulence activity, it inhibited biofilm (31-35%), pyocyanin (37-39%), protease (32-40%), rhamnolipid (35-40%) and hemolytic activity (47-56%). Similarly, there was significantly reduced expression of RhlR, PqsR, LasI and LasR following treatment with miconazole, but less so with phenothiazine. In-silico analysis revealed that miconazole had higher binding affinity than phenothiazine to LasR, RhlR, and PqsR QS-proteins. Furthermore, there was 100% survival in mice injected with PAO1 treated with miconazole. In conclusion, miconazole and phenothiazine are promising anti-virulence agents for P. aeruginosa.
Collapse
Affiliation(s)
- Amany I Gad
- Microbiology and Immunology Department, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| | - Amira M El-Ganiny
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Ahmed G Eissa
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Nada A Noureldin
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Shaimaa I Nazeih
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
13
|
Toader C, Dobrin N, Costea D, Glavan LA, Covache-Busuioc RA, Dumitrascu DI, Bratu BG, Costin HP, Ciurea AV. Mind, Mood and Microbiota-Gut-Brain Axis in Psychiatric Disorders. Int J Mol Sci 2024; 25:3340. [PMID: 38542314 PMCID: PMC10970241 DOI: 10.3390/ijms25063340] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 04/30/2025] Open
Abstract
Psychiatric disorders represent a primary source of disability worldwide, manifesting as disturbances in individuals' cognitive processes, emotional regulation, and behavioral patterns. In the quest to discover novel therapies and expand the boundaries of neuropharmacology, studies from the field have highlighted the gut microbiota's role in modulating these disorders. These alterations may influence the brain's processes through the brain-gut axis, a multifaceted bidirectional system that establishes a connection between the enteric and central nervous systems. Thus, probiotic and prebiotic supplements that are meant to influence overall gut health may play an insightful role in alleviating psychiatric symptoms, such as the cognitive templates of major depressive disorder, anxiety, or schizophrenia. Moreover, the administration of psychotropic drugs has been revealed to induce specific changes in a microbiome's diversity, suggesting their potential utility in combating bacterial infections. This review emphasizes the intricate correlations between psychiatric disorders and the gut microbiota, mentioning the promising approaches in regard to the modulation of probiotic and prebiotic treatments, as well as the antimicrobial effects of psychotropic medication.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (B.-G.B.); (H.-P.C.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Nicolaie Dobrin
- Neurosurgical Clinic, “Prof. Dr. N. Oblu” Emergency Clinical Hospital, 700309 Iași, Romania;
| | - Daniel Costea
- Department of Neurosurgery, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Luca-Andrei Glavan
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (B.-G.B.); (H.-P.C.); (A.V.C.)
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (B.-G.B.); (H.-P.C.); (A.V.C.)
| | - David-Ioan Dumitrascu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (B.-G.B.); (H.-P.C.); (A.V.C.)
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (B.-G.B.); (H.-P.C.); (A.V.C.)
| | - Horia-Petre Costin
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (B.-G.B.); (H.-P.C.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (B.-G.B.); (H.-P.C.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
14
|
Michaelis L, Berg L, Maier L. Confounder or Confederate? The Interactions Between Drugs and the Gut Microbiome in Psychiatric and Neurological Diseases. Biol Psychiatry 2024; 95:361-369. [PMID: 37331548 DOI: 10.1016/j.biopsych.2023.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/20/2023]
Abstract
The gut microbiome is emerging as an important factor in signaling along the gut-brain axis. The intimate physiological connection between the gut and the brain allows perturbations in the microbiome to be directly transmitted to the central nervous system and thereby contribute to psychiatric and neurological diseases. Common microbiome perturbations result from the ingestion of xenobiotic compounds including pharmaceuticals such as psychotropic drugs. In recent years, a variety of interactions between these drug classes and the gut microbiome have been reported, ranging from direct inhibitory effects on gut bacteria to microbiome-mediated drug degradation or sequestration. Consequently, the microbiome may play a critical role in influencing the intensity, duration, and onset of therapeutic effects, as well as in influencing the side effects that patients may experience. Furthermore, because the composition of the microbiome varies from person to person, the microbiome may contribute to the frequently observed interpersonal differences in the response to these drugs. In this review, we first summarize the known interactions between xenobiotics and the gut microbiome. Then, for psychopharmaceuticals, we address the question of whether these interactions with gut bacteria are irrelevant for the host (i.e., merely confounding factors in metagenomic analyses) or whether they may even have therapeutic or adverse effects.
Collapse
Affiliation(s)
- Lena Michaelis
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; and the Cluster of Excellence EXC 2124 (Controlling Microbes to Fight Infections), University of Tübingen, Tübingen, Germany
| | - Lara Berg
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; and the Cluster of Excellence EXC 2124 (Controlling Microbes to Fight Infections), University of Tübingen, Tübingen, Germany
| | - Lisa Maier
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; and the Cluster of Excellence EXC 2124 (Controlling Microbes to Fight Infections), University of Tübingen, Tübingen, Germany.
| |
Collapse
|
15
|
Knudsen JK, Bundgaard-Nielsen C, Leutscher P, Hjerrild S, Nielsen RE, Sørensen S. Differences in bacterial taxa between treatment-naive patients with major depressive disorder and non-affected controls may be related to a proinflammatory profile. BMC Psychiatry 2024; 24:84. [PMID: 38297265 PMCID: PMC10832199 DOI: 10.1186/s12888-024-05547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/21/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is characterized by sadness and anhedonia, but also physical symptoms such as changes in appetite and weight. Gut microbiota has been hypothesized to be involved in MDD through gut-brain axis signaling. Moreover, antidepressants display antibacterial properties in the gastrointestinal tract. The aim of this study was to compare the gut microbiota and systemic inflammatory profile of young patients with MDD before and after initiation of antidepressant treatment and/or psychotherapy in comparison with a non-depressed control group (nonMDD). METHODS Fecal and blood samples were collected at baseline and at follow-up after four and twelve weeks, respectively. Patients started treatment immediately after collection of the baseline samples. The gut microbiota was characterized by 16 S rRNA gene sequencing targeting the hypervariable V4 region. Plasma levels of 49 unique immune markers were assessed using Mesoscale. RESULTS In total, 27 MDD patients and 32 nonMDD controls were included in the study. The gut microbiota in the baseline samples of MDD versus nonMDD participants did not differ regarding α- or β-diversity. However, there was a higher relative abundance of the genera Ruminococcus gnavus group, and a lower relative abundance of the genera Desulfovibrio, Tyzzerella, Megamonas, Olsenella, Gordonibacter, Allisonella and Rothia in the MDD group compared to the nonMDD group. In the MDD group, there was an increase in the genera Rothia, Desulfovibrio, Gordinobacteer and Lactobacillus, while genera belonging to the Firmicutes phylum were found depleted at twelve weeks follow-up compared to baseline. In the MDD group, IL-7, IL-8 and IL-17b levels were elevated compared to the nonMDD group at baseline. Furthermore, MDI score in the MDD group was found to correlate with Bray-Curtis dissimilarity at baseline, and several inflammatory markers at both baseline and after initiation of antidepressant treatment. CONCLUSION Several bacterial taxa differed between the MDD group and the nonMDD group at baseline and changed in relative abundance during antidepressant treatment and/or psychotherapy. The MDD group was furthermore found to have a pro-inflammatory profile compared to the nonMDD group at baseline. Further studies are required to investigate the gut microbiota and pro-inflammatory profile of patients with MDD.
Collapse
Affiliation(s)
- Julie Kristine Knudsen
- Centre for Clinical Research, North Denmark Regional Hospital, Bispensgade 37, Hjørring, 9800, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Caspar Bundgaard-Nielsen
- Centre for Clinical Research, North Denmark Regional Hospital, Bispensgade 37, Hjørring, 9800, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Peter Leutscher
- Centre for Clinical Research, North Denmark Regional Hospital, Bispensgade 37, Hjørring, 9800, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Steno Diabetes Center North Denmark, Aalborg, Denmark
| | - Simon Hjerrild
- Psychosis Research Unit, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - René Ernst Nielsen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Psychiatry, Aalborg University Hospital, Aalborg, Denmark
| | - Suzette Sørensen
- Centre for Clinical Research, North Denmark Regional Hospital, Bispensgade 37, Hjørring, 9800, Denmark.
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
- Steno Diabetes Center North Denmark, Aalborg, Denmark.
| |
Collapse
|
16
|
Sarhan MO, Haffez H, Elsayed NA, El-Haggar RS, Zaghary WA. New phenothiazine conjugates as apoptosis inducing agents: Design, synthesis, In-vitro anti-cancer screening and 131I-radiolabeling for in-vivo evaluation. Bioorg Chem 2023; 141:106924. [PMID: 37871390 DOI: 10.1016/j.bioorg.2023.106924] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Phenothiazines (PTZs) are a group of compounds characterized by the presence of the 10H-dibenzo-[b,e]-1,4-thiazine system. PTZs used in clinics as antipsychotic drugs with other diverse biological activities. The current aim of the study is to investigate and understand the effect of potent PTZs compounds using a group of In-vitro and In-vivo assays. A total of seventeen novel phenothiazine derivatives have been designed, synthesized, and evaluated primarily in-vitro for their ability to inhibit proliferation activity against NCI-60 cancer cell lines, including several multi-drug resistant (MDR) tumor cell lines. Almost all compounds were active and displayed promising cellular activities with GI50 values in the sub-micromolar range. Four of the most promising derivatives (4b, 4h, 4g and 6e) have been further tested against two selected sensitive cancer cell lines (colon cancer; HCT-116 and breast cancer; MDA-MB231). The apoptosis assay showed that all the selected compounds were able to induce early apoptosis and compound 6e was able to induce additional cellular necrosis. Cell cycle assay showed all selected compounds were able to induce cell cycle arrest at sub-molecular phase of G0-G1 with compound 6e induced cell cycle arrest at G2M in HCT-116 cells. Accordingly, the apoptotic effect of the selected compounds was extensively investigated on genetic level and Casp-3, Casp-9 and Bax gene were up-regulated with down-regulation of Bcl-2 gene suggesting the activation of both intrinsic and extrinsic pathways. In-vivo evaluation of the antitumor activity of compound 4b in solid tumor bearing mice showed promising therapeutic effect with manifestation of dose and time dependent toxic effects at higher doses. For better evaluation of the degree of localization of 4b, its 131I-congener (131I-4b) was injected intravenously in Ehrlich solid tumor bearing mice that showed good localization at tumor site with rapid distribution and clearance from the blood. In-silico study suggested NADPH oxidases (NOXs) as potential molecular target. The compounds introduced in the current study work provided a cutting-edge phenothiazine hybrid scaffold with promising anti-proliferation action that may suggest their anti-cancer activity.
Collapse
Affiliation(s)
- Mona O Sarhan
- Labelled Compounds Department, Hot Lab Centre, Egyptian Atomic Energy Authority, Egypt
| | - Hesham Haffez
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, 11795 Cairo, Egypt; Center of Scientific Excellence "Helwan Structural Biology Research, (HSBR)", Helwan University, 11795 Cairo, Egypt.
| | - Nosaiba A Elsayed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, 11795 Cairo, Egypt
| | - Radwan S El-Haggar
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, 11795 Cairo, Egypt
| | - Wafaa A Zaghary
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, 11795 Cairo, Egypt.
| |
Collapse
|
17
|
Mabrouk SS, Abdellatif GR, Zaid ASA, Aboshanab KM. Propranolol restores susceptibility of XDR Gram-negative pathogens to meropenem and Meropenem combination has been evaluated with either tigecycline or amikacin. BMC Microbiol 2023; 23:195. [PMID: 37481513 PMCID: PMC10362616 DOI: 10.1186/s12866-023-02934-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/04/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND Infection with extensive-drug-resistant (XDR) carbapenem-resistant (CR) Gram-negative bacteria (GNB) are viewed as a serious threat to human health because of the limited therapeutic options. This imposes the urgent need to find agents that could be used as adjuvants or combined with carbapenems to enhance or restore the susceptibility of XDR CR- GNB. Therefore, this study aimed to examine the effect of propranolol (PR) in combination with Meropenem (MEM) on the susceptibility profile of XDR CR-GNB recovered from severely infected patients as well as to evaluate combining MEM with either tigecycline (TGC) or amikacin (AK). METHODS A total of 59 non-duplicate CR- GNB were investigated for carbapenemase production by the major phenotypic methods. Molecular identification of five major carbapenemase-coding genes was carried out using polymerase chain reactions (PCR). Antimicrobial susceptibility tests were carried out using standard methods. Phenotypic and genotypic relatedness was carried out using the heatmap and ERIC PCR analysis. PR, 0.5 -1 mg/mL against the resulting non-clonal XDR CR-GNB pathogens were evaluated by calculating the MIC decrease factor (MDF). A combination of MEM with either AK or TGC was performed using the checkerboard assay. RESULTS A total of 21 (35.6%) and 38 (64.4%) CR-GNB isolates were identified as enterobacterial isolates (including 16 (27.1%) Klebsiella Pneumoniae and 5 (8.5%) Escherichia coli) and non-fermentative bacilli (including, 23 (39%), Acinetobacter baumannii, and 15 (25.4%) Pseudomonas aeruginosa). The heatmap and ERIC PCR analysis resulted in non-clonal 28 XDR CR isolates. PR, at a concentration of 0.5 mg /ml, decreased MICs values of the tested XDR CR isolates (28; 100%) and restored susceptibility of only 4 (14.3%) isolates. However, PR (1 mg/mL) when combined with MEM has completely (28; 100%) restored the susceptibility of the tested XDR CR- GNB to MEM. The MEM + AK and MEM + TGC combination showed mostly additive effects (92.8% and 71.4%, respectively). CONCLUSION PR at a concentration of 1 mg/mL restored the susceptibility of XDR CR- GNB to MEM which is considered a promising result that should be clinically investigated to reveal its suitability for clinical use in patients suffering from these life-threatening pathogens.
Collapse
Affiliation(s)
- Samar S. Mabrouk
- Department of Microbiology, Faculty of Pharmacy, Ahram Canadian University (ACU), 6Th October, Giza, Egypt
| | - Ghada R. Abdellatif
- Department of Microbiology, Faculty of Pharmacy, Ahram Canadian University (ACU), 6Th October, Giza, Egypt
| | - Ahmed S. Abu Zaid
- Department of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566 Egypt
| | - Khaled M. Aboshanab
- Department of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566 Egypt
| |
Collapse
|
18
|
Guedes GMDM, Melgarejo CMA, Freitas AS, Amando BR, Costa CL, Ocadaque CJ, Gomes FIF, Bandeira SP, de Aguiar Cordeiro R, Gadelha Rocha MF, Sidrim JJC, Castelo-Branco DDSCM. Effect of promethazine on biofilms of gram-positive cocci associated with infectious endocarditis. BIOFOULING 2023; 39:189-203. [PMID: 37144566 DOI: 10.1080/08927014.2023.2202313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
This study evaluated the antimicrobial activity of promethazine against Staphylococcus aureus, Staphylococcus epidermidis and Streptococcus mutans and its effect on the antimicrobial susceptibility of biofilms grown in vitro and ex vivo on porcine heart valves. Promethazine was evaluated alone and in combination with vancomycin and oxacillin against Staphylococcus spp. and vancomycin and ceftriaxone against S. mutans in planktonic form and biofilms grown in vitro and ex vivo. Promethazine minimum inhibitory concentration range was 24.4-95.31 μg/mL and minimum biofilm eradication concentration range was 781.25-3.125 μg/mL. Promethazine interacted synergistically with vancomycin, oxacillin and ceftriaxone against biofilms in vitro. Promethazine alone reduced (p < 0.05) the CFU-counts of biofilms grown on heart valves for Staphylococcus spp., but not for S. mutans, and increased (p < 0.05) the activity of vancomycin, oxacillin and ceftriaxone against biofilms of Gram-positive cocci grown ex vivo. These findings bring perspectives for repurposing promethazine as adjuvant in the treatment of infective endocarditis.
Collapse
Affiliation(s)
- Gláucia Morgana de Melo Guedes
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Carliane Melo Alves Melgarejo
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Alyne Soares Freitas
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Bruno Rocha Amando
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Cecília Leite Costa
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Crister José Ocadaque
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Francisco Ivanilsom Firmiano Gomes
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Silviane Praciano Bandeira
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Laboratory of Emerging and Reemerging Pathogens, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Rossana de Aguiar Cordeiro
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Laboratory of Emerging and Reemerging Pathogens, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Marcos Fábio Gadelha Rocha
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Laboratory of Emerging and Reemerging Pathogens, Federal University of Ceará, Fortaleza, Ceará, Brazil
- School of Veterinary Medicine, Postgraduate Program in Veterinary Sciences, State University of Ceará, Fortaleza, Ceará, Brazil
| | - José Júlio Costa Sidrim
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Laboratory of Emerging and Reemerging Pathogens, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Débora de Souza Collares Maia Castelo-Branco
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Laboratory of Emerging and Reemerging Pathogens, Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
19
|
Chelliah R, Jo KH, Yan P, Chen X, Jo HY, Hasan Madar I, Sultan G, Oh DH. Unravelling the sanitization potential of slightly acidic electrolyzed water combined Thymus vulgaris based nanoemulsion against foodborne pathogens and its safety assessment. Food Control 2023; 146:109527. [DOI: 10.1016/j.foodcont.2022.109527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
20
|
Chelliah R, Jo KH, Yan P, Chen X, Jo HY, Hasan Madar I, Sultan G, Oh DH. Unravelling the sanitization potential of slightly acidic electrolyzed water combined Thymus vulgaris based nanoemulsion against foodborne pathogens and its safety assessment. Food Control 2023; 146:109527. [DOI: https:/doi.10.1016/j.foodcont.2022.109527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
|
21
|
Synthesis and Investigation of Physicochemical and Biological Properties of Films Containing Encapsulated Propolis in Hyaluronic Matrix. Polymers (Basel) 2023; 15:polym15051271. [PMID: 36904511 PMCID: PMC10006925 DOI: 10.3390/polym15051271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The dynamic development of nanotechnology has enabled the development of innovative and novel techniques for the production and use of nanomaterials. One of them is the use of nanocapsules based on biodegradable biopolymer composites. Closing compounds with antimicrobial activity inside the nanocapsule cause the gradual release of biologically active substances into the environment, and the effect on pathogens is regular, prolonged and targeted. Known and used in medicine for years, propolis, thanks to the synergistic effect of active ingredients, has antimicrobial, anti-inflammatory and antiseptic properties. Biodegradable and flexible biofilms were obtained, the morphology of the composite was determined using scanning electron microscopy (SEM) and particle size was measured by the dynamic light scattering (DLS) method. Antimicrobial properties of biofoils were examined on commensal skin bacteria and pathogenic Candida isolates based on the growth inhibition zones. The research confirmed the presence of spherical nanocapsules with sizes in the nano/micrometric scale. The properties of the composites were characterized by infrared (IR) and ultraviolet (UV) spectroscopy. It has been proven that hyaluronic acid is a suitable matrix for the preparation of nanocapsules, as no significant interactions between hyaluronan and the tested compounds have been demonstrated. Color analysis and thermal properties, as well as the thickness and mechanical properties of the obtained films, were determined. Antimicrobial properties of the obtained nanocomposites were strong in relation to all analyzed bacterial and yeast strains isolated from various regions of the human body. These results suggest high potential applicability of the tested biofilms as effective materials for dressings to be applied on infected wounds.
Collapse
|
22
|
Dokla EME, Abutaleb NS, Milik SN, Kandil EAEA, Qassem OM, Elgammal Y, Nasr M, McPhillie MJ, Abouzid KAM, Seleem MN, Imming P, Adel M. SAR investigation and optimization of benzimidazole-based derivatives as antimicrobial agents against Gram-negative bacteria. Eur J Med Chem 2023; 247:115040. [PMID: 36584632 DOI: 10.1016/j.ejmech.2022.115040] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/03/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Antibiotic-resistant bacteria represent a serious threat to modern medicine and human life. Only a minority of antibacterial agents are active against Gram-negative bacteria. Hence, the development of novel antimicrobial agents will always be a vital need. In an effort to discover new therapeutics against Gram-negative bacteria, we previously reported a structure-activity-relationship (SAR) study on 1,2-disubstituted benzimidazole derivatives. Compound III showed a potent activity against tolC-mutant Escherichia coli with an MIC value of 2 μg/mL, representing a promising lead for further optimization. Building upon this study, herein, 49 novel benzimidazole compounds were synthesized to investigate their antibacterial activity against Gram-negative bacteria. Our design focused on three main goals, to address the low permeability of our compounds and improve their cellular accumulation, to expand the SAR study to the unexplored ring C, and to optimize the lead compound (III) by modification of the methanesulfonamide moiety. Compounds (25a-d, 25f-h, 25k, 25l, 25p, 25r, 25s, and 26b) exhibited potent activity against tolC-mutant E. coli with MIC values ranging from 0.125 to 4 μg/mL, with compound 25d displaying the highest potency among the tested compounds with an MIC value of 0.125 μg/mL. As its predecessor, III, compound 25d exhibited an excellent safety profile without any significant cytotoxicity to mammalian cells. Time-kill kinetics assay indicated that 25d exhibited a bacteriostatic activity and significantly reduced E. coli JW55031 burden as compared to DMSO. Additionally, combination of 25d with colistin partially restored its antibacterial activity against Gram-negative bacterial strains (MIC values ranging from 4 to 16 μg/mL against E. coli BW25113, K. pneumoniae, A. baumannii, and P. aeruginosa). Furthermore, formulation of III and 25d as lipidic nanoparticles (nanocapsules) resulted in moderate enhancement of their antibacterial activity against Gram-negative bacterial strains (A. Baumannii, N. gonorrhoeae) and compound 25d demonstrated superior activity to the lead compound III. These findings establish compound 25d as a promising candidate for treatment of Gram-negative bacterial infections and emphasize the potential of nano-formulations in overcoming poor cellular accumulation in Gram-negative bacteria where further optimization and investigation are warranted to improve the potency and broaden the spectrum of our compounds.
Collapse
Affiliation(s)
- Eman M E Dokla
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt; Institute für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, Halle (Saale), 06120, Germany.
| | - Nader S Abutaleb
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA; Department of Microbiology and Immunology, Zagazig University, Zagazig, 44519, Egypt
| | - Sandra N Milik
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt; School of Chemistry, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Ezzat A E A Kandil
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Omar M Qassem
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt; Purdue University Institute of Drug Discovery, Purdue University, West Lafayette, IN, 47907, USA
| | - Yehia Elgammal
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Martin J McPhillie
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Khaled A M Abouzid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Mohamed N Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA; Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Peter Imming
- Institute für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, Halle (Saale), 06120, Germany
| | - Mai Adel
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
| |
Collapse
|
23
|
Chen H, Cao T, Zhang B, Cai H. The regulatory effects of second-generation antipsychotics on lipid metabolism: Potential mechanisms mediated by the gut microbiota and therapeutic implications. Front Pharmacol 2023; 14:1097284. [PMID: 36762113 PMCID: PMC9905135 DOI: 10.3389/fphar.2023.1097284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023] Open
Abstract
Second-generation antipsychotics (SGAs) are the mainstay of treatment for schizophrenia and other neuropsychiatric diseases but cause a high risk of disruption to lipid metabolism, which is an intractable therapeutic challenge worldwide. Although the exact mechanisms underlying this lipid disturbance are complex, an increasing body of evidence has suggested the involvement of the gut microbiota in SGA-induced lipid dysregulation since SGA treatment may alter the abundance and composition of the intestinal microflora. The subsequent effects involve the generation of different categories of signaling molecules by gut microbes such as endogenous cannabinoids, cholesterol, short-chain fatty acids (SCFAs), bile acids (BAs), and gut hormones that regulate lipid metabolism. On the one hand, these signaling molecules can directly activate the vagus nerve or be transported into the brain to influence appetite via the gut-brain axis. On the other hand, these molecules can also regulate related lipid metabolism via peripheral signaling pathways. Interestingly, therapeutic strategies directly targeting the gut microbiota and related metabolites seem to have promising efficacy in the treatment of SGA-induced lipid disturbances. Thus, this review provides a comprehensive understanding of how SGAs can induce disturbances in lipid metabolism by altering the gut microbiota.
Collapse
Affiliation(s)
- Hui Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China,Institute of Clinical Pharmacy, Central South University, Changsha, China,International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - Ting Cao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China,Institute of Clinical Pharmacy, Central South University, Changsha, China,International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China,Institute of Clinical Pharmacy, Central South University, Changsha, China,International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China,*Correspondence: Bikui Zhang, ; Hualin Cai,
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China,Institute of Clinical Pharmacy, Central South University, Changsha, China,International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China,*Correspondence: Bikui Zhang, ; Hualin Cai,
| |
Collapse
|
24
|
Choudhury K, Chattopadhyay A, Ghosh SS. Mannosylated Gold Nanoclusters Incorporated with a Repurposed Antihistamine Drug Promethazine for Antibacterial and Antibiofilm Applications. ACS APPLIED BIO MATERIALS 2022; 5:5911-5923. [PMID: 36417570 DOI: 10.1021/acsabm.2c00867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Drug repurposing presents a workable strategy in tackling antibiotic resistance. Many known drugs have been repurposed for their applications against different targets. Antihistamines that are usually used to treat allergy symptoms can be combined with nanoscale materials to enhance their efficiency. Herein, we explored the antimicrobial properties of a common antihistamine drug, promethazine, in Gram-positive and Gram-negative bacteria. Being positively charged, promethazine was easily incorporated into the mannose-conjugated bovine serum albumin-stabilized promethazine hydrochloride gold nanoclusters. Capping with d-mannose helped in targeting the bacteria by inhibiting their adhesive appendage called pili. Following their uptake, drugs released inside the bacteria caused reactive oxygen species production and membrane permeability alteration, ultimately resulting in bacterial inhibition. Additionally, they were also explored for biofilm eradication. As observed through staining assays, the number of dead cells increased with increasing concentration of drug-loaded gold nanoclusters in the biofilm mass. Therefore, the as-synthesized mannosylated gold nanoclusters incorporated with promethazine were analyzed for potential antibacterial and antibiofilm applications.
Collapse
Affiliation(s)
- Konika Choudhury
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Arun Chattopadhyay
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.,Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Siddhartha Sankar Ghosh
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.,Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
25
|
Kabil MF, Mahmoud MY, Bakr AF, Zaafar D, El-Sherbiny IM. Switching indication of PEGylated lipid nanocapsules-loaded with rolapitant and deferasirox against breast cancer: Enhanced in-vitro and in-vivo cytotoxicity. Life Sci 2022; 305:120731. [PMID: 35753435 DOI: 10.1016/j.lfs.2022.120731] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/11/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022]
Abstract
Breast cancer (BC) is considered the leading cause of mortality and morbidity among adult women worldwide, and it is associated with many genetic or hormonal factors. Despite the advanced therapeutic and theranostic strategies for BC treatment, cancer metastasis and relapse are often observed among patients which lead to therapeutic failure. Accordingly, among the repositioned medication against BC proliferation is neurokinin receptor antagonists and iron chelating agents especially rolapitant HCl (RP) and deferasirox (DFO), respectively. However, RP and DFO are classified as class II with low aqueous solubility. Both drugs were nanoformulated into PEGylated lipid nanocapsules (LNCs) for enhancing their aqueous solubility and augmenting their efficacy. RP-LNCs, DFO-LNCs and their combinations were evaluated according to particle size (PS), zeta potential, polydispersity index (PDI) and surface morphology. Importantly, the antitumor effect of these novel molecules and their nanoforms was evaluated against the suppression of Ehrlich Ascites tumor model using female mice. Results revealed that RP-LNCs, DFO-LNCs and RP/DFO-LNCs exerted PS from 45.23 ± 3.54 to 60.1 ± 3.32 nm with PDI around 0.20 which indicates homogenous particles distribution. Also, RP-LNCs, DFO-LNCs and RP/DFO-LNCs displayed surface charges of +16.6 ± 6.9, -13.3 ± 5.82 and - 20.2 ± 5.40 mV, respectively. The obtained LNCs conferred a high potent cytotoxic effect against MCF7 cancer cells as compared to parent drugs, with IC50 of 10.86 ± 0.89, 3.34 ± 0.99 and 2.24 ± 0.97 μg/mL for RP-LNCs, DFO-LNCs and RP/DFO-LNCs, respectively. The in-vivo pharmacodynamics effect of the developed nano-formulations showed superior antitumor effect for the individual drugs rather than their combinations as compared to the control group. The current study confirmed the potential of RP and DFO nanoforms as promising therapeutic agents for BC treatment.
Collapse
Affiliation(s)
- Mohamed Fawzi Kabil
- Nanomedicine Research Labs, Center for Materials Science, Zewail City of Science and Technology, 6th of October City, Giza, Egypt
| | - Mohamed Y Mahmoud
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Alaa F Bakr
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Dalia Zaafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Ibrahim M El-Sherbiny
- Nanomedicine Research Labs, Center for Materials Science, Zewail City of Science and Technology, 6th of October City, Giza, Egypt.
| |
Collapse
|
26
|
Jampilek J. Drug repurposing to overcome microbial resistance. Drug Discov Today 2022; 27:2028-2041. [PMID: 35561965 DOI: 10.1016/j.drudis.2022.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 12/15/2022]
Abstract
Infections are a growing global threat, and the number of resistant species of microbial pathogens is alarming. However, the rapid development of cross-resistant or multidrug-resistant strains and the development of so-called 'superbugs' are in stark contrast to the number of newly launched anti-infectives on the market. In this review, I summarize the causes of antimicrobial resistance, briefly discuss different approaches to the discovery and development of new anti-infective drugs, and focus on drug repurposing strategy, which is discussed from all possible perspectives. A comprehensive overview of drugs of other indications tested for their in vitro antimicrobial activity to support existing anti-infective therapeutics is provided, including several critical remarks on this strategy of repurposing non-antibiotics to antibacterial drugs.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia; Department of Chemical Biology, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
27
|
The Atypical Antipsychotic Quetiapine Promotes Multiple Antibiotic Resistance in Escherichia coli. J Bacteriol 2022; 204:e0010222. [PMID: 35416690 DOI: 10.1128/jb.00102-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Atypical antipsychotic (AAP) medication is a critical tool for treating symptoms of psychiatric disorders. While AAPs primarily target dopamine (D2) and serotonin (5HT2A and 5HT1A) receptors, they also exhibit intrinsic antimicrobial activity as an off-target effect. Because AAPs are often prescribed to patients for many years, a potential risk associated with long-term AAP use is the unintended emergence of bacteria with antimicrobial resistance (AMR). Here, we show that exposure to the AAP quetiapine at estimated gut concentrations promotes AMR in Escherichia coli after 6 weeks. Quetiapine-exposed isolates exhibited an increase in MICs for ampicillin, tetracycline, ceftriaxone, and levofloxacin. By whole-genome sequencing analysis, we identified mutations in genes that confer AMR, including the repressor for the multiple antibiotic resistance mar operon (marR), and real-time reverse transcription-quantitative PCR (RT-qPCR) analysis showed increased levels of marA, acrA, and tolC mRNAs and reduced levels of ompF mRNA in the isolates carrying marR mutations. To determine the contribution of each marR mutation to AMR, we constructed isogenic strains carrying individual mutant marR alleles in the parent background and reevaluated their resistance phenotypes using MIC and RT-qPCR assays. While marR mutations induced robust activity of the mar operon, they resulted in only modest increases in MICs. Interestingly, although these marR mutations did not fully recapitulate the AMR phenotype of the quetiapine-exposed isolates, we show that marR mutations promote growth fitness in the presence of quetiapine. Our findings revealed an important link between the use of AAPs and AMR development in E. coli. IMPORTANCE AAP medication is a cornerstone in the treatment of serious psychiatric disease. The AAPs are known to exhibit antimicrobial activity; therefore, a potential unintended risk of long-term AAP use may be the emergence of AMR, although such risk has received little attention. In this study, we describe the development of multidrug antibiotic resistance in Escherichia coli after 6 weeks of exposure to the AAP quetiapine. Investigation of mutations in the marR gene, which encodes a repressor for the multiple antibiotic resistance (mar) operon, reveals a potential mechanism that increases the fitness of E. coli in the presence of quetiapine. Our findings establish a link between the use of AAPs and AMR development in bacteria.
Collapse
|
28
|
Shoubridge AP, Choo JM, Martin AM, Keating DJ, Wong ML, Licinio J, Rogers GB. The gut microbiome and mental health: advances in research and emerging priorities. Mol Psychiatry 2022; 27:1908-1919. [PMID: 35236957 DOI: 10.1038/s41380-022-01479-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/17/2022] [Accepted: 02/08/2022] [Indexed: 12/19/2022]
Abstract
The gut microbiome exerts a considerable influence on human neurophysiology and mental health. Interactions between intestinal microbiology and host regulatory systems have now been implicated both in the development of psychiatric conditions and in the efficacy of many common therapies. With the growing acceptance of the role played by the gut microbiome in mental health outcomes, the focus of research is now beginning to shift from identifying relationships between intestinal microbiology and pathophysiology, and towards using this newfound insight to improve clinical outcomes. Here, we review recent advances in our understanding of gut microbiome-brain interactions, the mechanistic underpinnings of these relationships, and the ongoing challenge of distinguishing association and causation. We set out an overarching model of the evolution of microbiome-CNS interaction and examine how a growing knowledge of these complex systems can be used to determine disease susceptibility and reduce risk in a targeted manner.
Collapse
Affiliation(s)
- Andrew P Shoubridge
- Microbiome and Host Health, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia.,Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Jocelyn M Choo
- Microbiome and Host Health, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia.,Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Alyce M Martin
- Neuroscience, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Damien J Keating
- Neuroscience, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Ma-Li Wong
- Department of Psychiatry and Behavioral Sciences and Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - Julio Licinio
- Department of Psychiatry and Behavioral Sciences and Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA.,Department of Psychiatry, Flinders University College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Geraint B Rogers
- Microbiome and Host Health, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia. .,Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia.
| |
Collapse
|
29
|
Analysis of Gut Microbiota in Patients with Exacerbated Symptoms of Schizophrenia following Therapy with Amisulpride: A Pilot Study. Behav Neurol 2022; 2022:4262094. [PMID: 35287288 PMCID: PMC8917950 DOI: 10.1155/2022/4262094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 02/18/2022] [Indexed: 11/24/2022] Open
Abstract
Evidence is mounting that the gut microbiome is related to the underlying pathogenesis of schizophrenia. However, effects of amisulpride on gut microbiota are poorly defined. This study was aimed at analyzing cytokines and fecal microbiota in patients with exacerbated symptoms of schizophrenia treated with amisulpride during four weeks of their hospital stay. In the present study, feces collected from patients with schizophrenia were analyzed using 16S rRNA pyrosequencing and bioinformatic analyses to ascertain gut microbiome composition and fasting peripheral blood cytokines. We found that patients undergoing treatment of schizophrenia with amisulpride had distinct changes in gut microbial composition at the genus level, increased levels of short-chain fatty acid-producing bacteria (Dorea and Butyricicoccus), and reduced levels of pathogenic bacteria (Actinomyces and Porphyromonas), but the level of Desulfovibrio was still high. We also found a significant downregulation of butanoate metabolism based on functional analysis of the microbiome. After treatment, elevated levels of interleukin- (IL-) 4 and decreased levels of IL-6 were found. Our findings extend prior work and suggest a possible pharmacological mechanism of amisulpride treatment for schizophrenia, which acts via mediation of the gut microbiome.
Collapse
|
30
|
Ronco T, Kappel LH, Aragao MF, Biagi N, Svenningsen S, Christensen JB, Permin A, Saaby L, Holmstrøm K, Klitgaard JK, Sabat AJ, Akkerboom V, Monaco M, Tinelli M, Friedrich AW, Jana B, Olsen RH. Insight Into the Anti-staphylococcal Activity of JBC 1847 at Sub-Inhibitory Concentration. Front Microbiol 2022; 12:786173. [PMID: 35069485 PMCID: PMC8766816 DOI: 10.3389/fmicb.2021.786173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Multidrug-resistant pathogens constitute a serious global issue and, therefore, novel antimicrobials with new modes of action are urgently needed. Here, we investigated the effect of a phenothiazine derivative (JBC 1847) with high antimicrobial activity on Staphylococcus aureus, using a wide range of in vitro assays, flow cytometry, and RNA transcriptomics. The flow cytometry results showed that JBC 1847 rapidly caused depolarization of the cell membrane, while the macromolecule synthesis inhibition assay showed that the synthesis rates of DNA, RNA, cell wall, and proteins, respectively, were strongly decreased. Transcriptome analysis of S. aureus exposed to sub-inhibitory concentrations of JBC 1847 identified a total of 78 downregulated genes, whereas not a single gene was found to be significantly upregulated. Most importantly, there was downregulation of genes involved in adenosintrifosfat (ATP)-dependent pathways, including histidine biosynthesis, which is likely to correlate with the observed lower level of intracellular ATP in JBC 1847-treated cells. Furthermore, we showed that JBC 1847 is bactericidal against both exponentially growing cells and cells in a stationary growth phase. In conclusion, our results showed that the antimicrobial properties of JBC 1847 were primarily caused by depolarization of the cell membrane resulting in dissipation of the proton motive force (PMF), whereby many essential bacterial processes are affected. JBC 1847 resulted in lowered intracellular levels of ATP followed by decreased macromolecule synthesis rate and downregulation of genes essential for the amino acid metabolism in S. aureus. Bacterial compensatory mechanisms for this proposed multi-target activity of JBC 1847 seem to be limited based on the observed very low frequency of resistance toward the compound.
Collapse
Affiliation(s)
- Troels Ronco
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Line H. Kappel
- Research Unit of Molecular Microbiology, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Maria F. Aragao
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niccolo Biagi
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Svenningsen
- Department of Chemistry, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jørn B. Christensen
- Department of Chemistry, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | - Janne K. Klitgaard
- Research Unit of Molecular Microbiology, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- Research Unit of Clinical Microbiology, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Artur J. Sabat
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Viktoria Akkerboom
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Monica Monaco
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Marco Tinelli
- Division of Infectious and Tropical Diseases, Hospital of Lodi, Lodi, Italy
| | - Alexander W. Friedrich
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Bimal Jana
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Rikke H. Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
31
|
A Double-Edged Sword: Thioxanthenes Act on Both the Mind and the Microbiome. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010196. [PMID: 35011432 PMCID: PMC8746497 DOI: 10.3390/molecules27010196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022]
Abstract
The rising tide of antibacterial drug resistance has given rise to the virtual elimination of numerous erstwhile antibiotics, intensifying the urgent demand for novel agents. A number of drugs have been found to possess potent antimicrobial action during the past several years and have the potential to supplement or even replace the antibiotics. Many of these ‘non-antibiotics’, as they are referred to, belong to the widely used class of neuroleptics, the phenothiazines. Another chemically and pharmacologically related class is the thioxanthenes, differing in that the aromatic N of the central phenothiazine ring has been replaced by a C atom. Such “carbon-analogues” were primarily synthesized with the hope that these would be devoid of some of the toxic effects of phenothiazines. Intensive studies on syntheses, as well as chemical and pharmacological properties of thioxanthenes, were initiated in the late 1950s. Although a rather close parallelism with respect to structure activity relationships could be observed between phenothiazines and thioxanthenes; several thioxanthenes were synthesized in pharmaceutical industries and applied for human use as neuroleptics. Antibacterial activities of thioxanthenes came to be recognized in the early 1980s in Europe. During the following years, many of these drugs were found not only to be antibacterial agents but also to possess anti-mycobacterial, antiviral (including anti-HIV and anti-SARS-CoV-2) and anti-parasitic properties. Thus, this group of drugs, which has an inhibitory effect on the growth of a wide variety of microorganisms, needs to be explored for syntheses of novel antimicrobial agents. The purpose of this review is to summarize the neuroleptic and antimicrobial properties of this exciting group of bioactive molecules with a goal of identifying potential structures worthy of future exploration.
Collapse
|
32
|
Repurposing diphenylbutylpiperidine-class antipsychotic drugs for host-directed therapy of Mycobacterium tuberculosis and Salmonella enterica infections. Sci Rep 2021; 11:19634. [PMID: 34608194 PMCID: PMC8490354 DOI: 10.1038/s41598-021-98980-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/06/2021] [Indexed: 02/08/2023] Open
Abstract
The persistent increase of multidrug-resistant (MDR) Mycobacterium tuberculosis (Mtb) infections negatively impacts Tuberculosis treatment outcomes. Host-directed therapies (HDT) pose an complementing strategy, particularly since Mtb is highly successful in evading host-defense by manipulating host-signaling pathways. Here, we screened a library containing autophagy-modulating compounds for their ability to inhibit intracellular Mtb-bacteria. Several active compounds were identified, including two drugs of the diphenylbutylpiperidine-class, Fluspirilene and Pimozide, commonly used as antipsychotics. Both molecules inhibited intracellular Mtb in pro- as well as anti-inflammatory primary human macrophages in a host-directed manner and synergized with conventional anti-bacterials. Importantly, these inhibitory effects extended to MDR-Mtb strains and the unrelated intracellular pathogen, Salmonella enterica serovar Typhimurium (Stm). Mechanistically Fluspirilene and Pimozide were shown to regulate autophagy and alter the lysosomal response, partly correlating with increased bacterial localization to autophago(lyso)somes. Pimozide's and Fluspirilene's efficacy was inhibited by antioxidants, suggesting involvement of the oxidative-stress response in Mtb growth control. Furthermore, Fluspirilene and especially Pimozide counteracted Mtb-induced STAT5 phosphorylation, thereby reducing Mtb phagosome-localized CISH that promotes phagosomal acidification. In conclusion, two approved antipsychotic drugs, Pimozide and Fluspirilene, constitute highly promising and rapidly translatable candidates for HDT against Mtb and Stm and act by modulating the autophagic/lysosomal response by multiple mechanisms.
Collapse
|
33
|
Kelly JR, Minuto C, Cryan JF, Clarke G, Dinan TG. The role of the gut microbiome in the development of schizophrenia. Schizophr Res 2021; 234:4-23. [PMID: 32336581 DOI: 10.1016/j.schres.2020.02.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
Schizophrenia is a heterogeneous neurodevelopmental disorder involving the convergence of a complex and dynamic bidirectional interaction of genetic expression and the accumulation of prenatal and postnatal environmental risk factors. The development of the neural circuitry underlying social, cognitive and emotional domains requires precise regulation from molecular signalling pathways, especially during critical periods or "windows", when the brain is particularly sensitive to the influence of environmental input signalling. Many of the brain regions involved, and the molecular substrates sub-serving these domains are responsive to life-long microbiota-gut-brain (MGB) axis signalling. This intricate microbial signalling system communicates with the brain via the vagus nerve, immune system, enteric nervous system, enteroendocrine signalling and production of microbial metabolites, such as short-chain fatty acids. Preclinical data has demonstrated that MGB axis signalling influences neurotransmission, neurogenesis, myelination, dendrite formation and blood brain barrier development, and modulates cognitive function and behaviour patterns, such as, social interaction, stress management and locomotor activity. Furthermore, preliminary clinical studies suggest altered gut microbiota profiles in schizophrenia. Unravelling MGB axis signalling in the context of an evolving dimensional framework in schizophrenia may provide a more complete understanding of the neurobiological architecture of this complex condition and offers the possibility of translational interventions.
Collapse
Affiliation(s)
- John R Kelly
- Department of Psychiatry, Trinity College Dublin, Ireland
| | - Chiara Minuto
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Timothy G Dinan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland.
| |
Collapse
|
34
|
Foletto VS, da Rosa TF, Serafin MB, Bottega A, Hörner R. Repositioning of non-antibiotic drugs as an alternative to microbial resistance: a systematic review. Int J Antimicrob Agents 2021; 58:106380. [PMID: 34166776 DOI: 10.1016/j.ijantimicag.2021.106380] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/10/2021] [Accepted: 06/10/2021] [Indexed: 01/19/2023]
Abstract
The global spread of microbial resistance coupled with high costs and slow pace in the discovery of a new antibiotic have made drug repositioning an attractive and promising alternative in the treatment of infections caused by multidrug resistant (MDR) microorganisms. The reuse involves the production of compounds with lower costs and development time, using diversified production technologies. The present systematic review aimed to present a selection of studies published in the last 20 years, which report the antimicrobial activity of non-antibiotic drugs that are candidates for repositioning, which could be used against the current microbial multidrug resistance. A search was performed in the PubMed, SciELO and Google Scholar databases using the following search strategies: [(drug repurposing) OR (drug repositioning) OR (repositioning) AND (non-antibiotic) AND (antibacterial activity) AND (antimicrobial activity)]. Overall, 112 articles were included, which explored the antimicrobial activity in antidepressants, antihypertensives, anti-inflammatories, antineoplastics, hypoglycemic agents, among other drugs. It was concluded that they have significant antimicrobial activity in vitro and in vivo, against standard strain and clinical isolates (Gram-negative and Gram-positive) and fungi. When associated with antibacterials, most of these drugs had their antibacterial activity enhanced. It was also a consensus of the studies included in this review that the presence of aromatic rings in the molecular structure contributes to antimicrobial activity. This review highlights the potential repositioning of several classes of non-antibiotic drugs as promising candidates for repositioning in the treatment of severe bacterial infections of MDR bacteria, extensively resistant (XDR) and pan-resistant (PDR) to drugs.
Collapse
Affiliation(s)
- Vitória S Foletto
- Universidade Federal de Santa Maria, Programa de Pós-Graduação em Ciências Farmacêuticas, Santa Maria, RS, Brasil
| | - Taciéli F da Rosa
- Universidade Federal de Santa Maria, Programa de Pós-Graduação em Ciências Farmacêuticas, Santa Maria, RS, Brasil
| | - Marissa B Serafin
- Universidade Federal de Santa Maria, Programa de Pós-Graduação em Ciências Farmacêuticas, Santa Maria, RS, Brasil
| | - Angelita Bottega
- Universidade Federal de Santa Maria, Programa de Pós-Graduação em Ciências Farmacêuticas, Santa Maria, RS, Brasil
| | - Rosmari Hörner
- Universidade Federal de Santa Maria, Programa de Pós-Graduação em Ciências Farmacêuticas, Santa Maria, RS, Brasil; Universidade Federal de Santa Maria, Departamento de Análises Clínicas e Toxicológicas, Santa Maria, RS, Brasil.
| |
Collapse
|
35
|
Antoszczak M, Markowska A, Markowska J, Huczyński A. Antidepressants and Antipsychotic Agents as Repurposable Oncological Drug Candidates. Curr Med Chem 2021; 28:2137-2174. [PMID: 32895037 DOI: 10.2174/0929867327666200907141452] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/26/2020] [Accepted: 06/10/2020] [Indexed: 11/22/2022]
Abstract
Drug repurposing, also known as drug repositioning/reprofiling, is a relatively new strategy for the identification of alternative uses of well-known therapeutics that are outside the scope of their original medical indications. Such an approach might entail a number of advantages compared to standard de novo drug development, including less time needed to introduce the drug to the market, and lower costs. The group of compounds that could be considered as promising candidates for repurposing in oncology include the central nervous system drugs, especially selected antidepressant and antipsychotic agents. In this article, we provide an overview of some antidepressants (citalopram, fluoxetine, paroxetine, sertraline) and antipsychotics (chlorpromazine, pimozide, thioridazine, trifluoperazine) that have the potential to be repurposed as novel chemotherapeutics in cancer treatment, as they have been found to exhibit preventive and/or therapeutic action in cancer patients. Nevertheless, although drug repurposing seems to be an attractive strategy to search for oncological drugs, we would like to clearly indicate that it should not replace the search for new lead structures, but only complement de novo drug development.
Collapse
Affiliation(s)
- Michał Antoszczak
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| | - Anna Markowska
- \Department of Perinatology and Women's Diseases, Poznań University of Medical Sciences, Poznan, Poland
| | - Janina Markowska
- Department of Oncology, Poznań University of Medical Sciences, Poznan, Poland
| | - Adam Huczyński
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
36
|
Escudero J, Muñoz JL, Morera-Herreras T, Hernandez R, Medrano J, Domingo-Echaburu S, Barceló D, Orive G, Lertxundi U. Antipsychotics as environmental pollutants: An underrated threat? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144634. [PMID: 33485196 DOI: 10.1016/j.scitotenv.2020.144634] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
The heterogeneous class of what we nowadays call antipsychotics was born almost 70 years ago with the serendipitous discovery of chlorpromazine. Their utilization is constantly growing because they are used to treat a diverse group of diseases and patients across all age groups: schizophrenia, bipolar disease, depression, autism, attention deficit hyperactivity disorder, behavioural and psychological symptoms in dementia, among others. They possess a complex pharmacological profile, acting on multiple receptors: dopaminergic, serotoninergic, histaminergic, adrenergic, and cholinergic, leading scientists to call them "agents with rich pharmacology" or "dirty drugs". Serotonin, dopamine, acetylcholine, noradrenaline, histamine and their respective receptors are evolutionary ancient compounds, and as such, are found in many different living beings in the environment. Antipsychotics do not disappear once excreted by patient's urine or faeces and are transported to wastewater treatment plants. But as these plant's technology is not designed to eliminate drugs and their metabolites, a variable proportion of the administered dose ends up in the environment, where they have been found in almost every matrix: municipal wastewater, hospital sewage, rivers, lakes, sea and even drinking water. We believe that reported concentrations found in the environment might be high enough to exert significant effect to aquatic wildlife. Besides, recent studies suggest antipsychotics, among others, are very likely bioaccumulating through the web food. Crucially, psychotropics may provoke behavioural changes affecting populations' dynamics at lower concentrations. We believe that so far, antipsychotics have not received the attention they deserve with regards to drug pollution, and that their role as environmental pollutants has been underrated.
Collapse
Affiliation(s)
- J Escudero
- Bioaraba Health Research Institute, Epidemiology and Public Health, Vitoria-Gasteiz, Spain
| | - J L Muñoz
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - T Morera-Herreras
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative Diseases Group, BioCruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| | - R Hernandez
- Internal Medicine Service, Araba Psychiatric Hospital, Araba Mental Health Network, C/Álava 43, 01006 Vitoria-Gasteiz, Alava, Spain
| | - J Medrano
- Biocruces Bizkaia Health Research Institute, Mental Health Network Research Group, Osakidetza, Bizkaia, Spain
| | - S Domingo-Echaburu
- Pharmacy Service, Alto Deba-Integrated Health Care Organization, Arrasate, Gipuzkoa, Spain
| | - D Barceló
- Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, C/Jordi Girona 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research (ICRA), C/Emili Grahit 101, 17003 Girona, Spain
| | - G Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore.; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - U Lertxundi
- Bioaraba Health Research Institute; Osakidetza Basque Health Service, Araba Mental Health Network, Araba Psychiatric Hospital, Pharmacy Service, c/Alava 43, 01006 Vitoria-Gasteiz, Alava, Spain.
| |
Collapse
|
37
|
Seeman MV. The gut microbiome and antipsychotic treatment response. Behav Brain Res 2021; 396:112886. [PMID: 32890599 DOI: 10.1016/j.bbr.2020.112886] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/21/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
Patients with psychosis usually respond to one antipsychotic drug and not to another; one third fail to respond to any. Some patients, who initially do well, stop responding. Some develop serious side effects even at low doses. While several of the reasons for this variability are known, many are not. The aim of this review is to explore the potential role of intestinal organisms in response/non-response to antipsychotics. Much of the literature in this field is relatively new and still, for the most part, theoretical. A growing number of animal experiments and clinical trials are starting to point, however, to substantial effects of antipsychotics on the composition of gut bacteria and, reciprocally, to the effects of microbiota on the pharmacokinetics of antipsychotic medication. Because so many factors influence the constituents of the human intestine, it is difficult, at present, to sort out how much one or more either enhance or dampen the benefits of antipsychotics or the character/severity of the adverse effects they induce. Dietary and other therapies are being devised to reverse dysbiosis. If successful, such therapies plus the modification of factors that, together, are known to determine the composition of microbiota could help to maximize the effectiveness of currently available antipsychotic therapy.
Collapse
Affiliation(s)
- Mary V Seeman
- Department of Psychiatry, University pf Toronto, Suite #605 260 Heath St. West, Toronto, Ontario, M5P 3L6, Canada.
| |
Collapse
|
38
|
Laser-Irradiated Chlorpromazine as a Potent Anti-Biofilm Agent for Coating of Biomedical Devices. COATINGS 2020. [DOI: 10.3390/coatings10121230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nowadays, antibiotic resistance has become increasingly common, triggering a global health crisis, immediately needing alternative, including repurposed drugs with potent bactericidal effects. We demonstrated that chlorpromazine aqueous solutions exposed to laser radiation exhibited visible activity against various microorganisms. The aim of this study was to investigate the quantitative antimicrobial activity of chlorpromazine in non-irradiated and 4-h laser irradiated form. Also, we examined the effect of both solutions impregnated on a cotton patch, cannula, and urinary catheter against Gram-positive Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa and Escherichia coli. In all experimental versions, the chlorpromazine antimicrobial activity was enhanced by laser exposure. Besides the experimental results, the in silico analyses using molecular docking proved that the improved antimicrobial activity of the irradiated compound was a result of the combined action of the photoproducts on the biological target (s). Our results show that laser radiation could alter the molecular structure of various drugs and their effects, proving to be a promising strategy to halt antibiotic resistance, by repurposing current medicines for new antimicrobial strategies, thereby decreasing the costs and time for the development of more efficient drugs.
Collapse
|
39
|
Halverson T, Alagiakrishnan K. Gut microbes in neurocognitive and mental health disorders. Ann Med 2020; 52:423-443. [PMID: 32772900 PMCID: PMC7877977 DOI: 10.1080/07853890.2020.1808239] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION As individuals age, the prevalence of neurocognitive and mental health disorders increases. Current biomedical treatments do not completely address the management of these conditions. Despite new pharmacological therapy the challenges of managing these diseases remain.There is increasing evidence that the Gut Microbiome (GM) and microbial dysbiosis contribute to some of the more prevalent mental health and neurocognitive disorders, such as depression, anxiety, obsessive-compulsive disorder (OCD), post-traumatic stress disorder (PTSD), schizophrenia, bipolar disorder (BP), and dementia as well as the behavioural and psychological symptoms of dementia (BPSD) through the microbiota-gut-brain axis. Methodology: Scoping review about the effect of gut microbiota on neurocognitive and mental health disorders. RESULTS This scoping review found there is an evolving evidence of the involvement of the gut microbiota in the pathophysiology of neurocognitive and mental health disorders. This manuscript also discusses how the psychotropics used to treat these conditions may have an antimicrobial effect on GM, and the potential for new strategies of management with probiotics and faecal transplantation. CONCLUSIONS This understanding can open up the need for a gut related approach in these disorders as well as unlock the door for the role of gut related microbiota management. KEY MESSAGES Challenges of managing mental health conditions remain in spite of new pharmacological therapy. Gut dysbiosis is seen in various mental health conditions. Various psychotropic medications can have an influence on the gut microbiota by their antimicrobial effect.
Collapse
Affiliation(s)
- Tyler Halverson
- Department of Medicine, Division of Psychiatry, University of Alberta, Edmonton, Alberta Canada
| | - Kannayiram Alagiakrishnan
- Department of Medicine, Division of Geriatric Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
40
|
Shaheen MA, Elmeadawy SH, Bazeed FB, Anees MM, Saleh NM. Innovative coenzyme Q 10-loaded nanoformulation as an adjunct approach for the management of moderate periodontitis: preparation, evaluation, and clinical study. Drug Deliv Transl Res 2020; 10:548-564. [PMID: 31953677 DOI: 10.1007/s13346-019-00698-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Periodontal diseases are worldwide chronic inflammatory conditions that are associated with heavy production of reactive oxygen species followed by damage of the tooth-supporting tissues. Although the mechanical approach of scaling and root planing (SRP) for removing of plaque is considered as the key element for controlling periodontitis, the anatomical complexity of the teeth hinders accessibility to deeper points. The aim of this study was to design a micellar nanocarrier of coenzyme Q10 (Q10) to support the management of moderate periodontitis. Q10 was formulated in nanomicelles (NMQ10) and evaluated regarding encapsulation efficiency, loading efficiency, percent yield, hydrodynamic size (Dh), polydispersity index (PDI), and zeta potential (ζ potential). NMQ10 was incorporated to in situ gelling systems and the in vitro release of Q10 was studied. A clinical study including evaluation of periodontal parameters and biochemical assay of total antioxidant capacity (T-AOC) and lipid peroxide was achieved. Results revealed that Q10 was efficiently entrapped in spherical-shaped stable NMQ10 with Dh, PDI, and ζ potential of 154.0 nm, 0.108, and - 31.67 mV, respectively. The clinical study revealed that SRP only exhibited improvement of the periodontal parameters. Also, assay of T-AOC and lipid peroxide revealed that their values diminished by 21.5 and 23.8%, respectively. On the other hand, SRP combined with local application of NMQ10 resulted in a significant management of the periodontal parameters, and likewise, the assayed biomarkers proved enhanced antioxidant activity over SRP alone. In conclusion, NMQ10 can be suggested as a promising nanosystem as an approach to support the management of chronic periodontitis. Such results could be used to conduct larger clinical studies. Graphical abstrac.
Collapse
Affiliation(s)
| | - Samah H Elmeadawy
- Department of Oral Medicine and Periodontology, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Fagr B Bazeed
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed M Anees
- Department of Oral Medicine and Periodontology, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Noha M Saleh
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Gomhoreyah St., Mansoura, 35516, Egypt.
| |
Collapse
|
41
|
Ronco T, Jørgensen NS, Holmer I, Kromann S, Sheikhsamani E, Permin A, Svenningsen SW, Christensen JB, Olsen RH. A Novel Promazine Derivative Shows High in vitro and in vivo Antimicrobial Activity Against Staphylococcus aureus. Front Microbiol 2020; 11:560798. [PMID: 33101232 PMCID: PMC7555839 DOI: 10.3389/fmicb.2020.560798] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 09/01/2020] [Indexed: 12/29/2022] Open
Abstract
The emergence of multidrug-resistant bacteria constitutes a significant public health issue worldwide. Consequently, there is an urgent clinical need for novel treatment solutions. It has been shown in vitro that phenothiazines can act as adjuvants to antibiotics whereby the minimum inhibitory concentration (MIC) of the antibiotic is decreased. However, phenothiazines do not perform well in vivo, most likely because they can permeate the blood-brain (BBB) barrier and cause severe side-effects to the central nervous system. Therefore, the aim of this study was to synthesize a promazine derivate that would not cross the BBB but retain its properties as antimicrobial helper compound. Surprisingly, in vitro studies showed that the novel compound, JBC 1847 exhibited highly increased antimicrobial activity against eight Gram-positive pathogens (MIC, 0.5-2 mg/L), whereas a disc diffusion assay indicated that the properties as an adjuvant were lost. JBC 1847 showed significant (P < 0.0001) activity against a Staphylococcus aureus strain compared with the vehicle, in an in vivo wound infection model. However, both in vitro and in silico analyses showed that JBC 1847 possesses strong affinity for human plasma proteins and an Ames test showed that generally, it is a non-mutagenic compound. Finally, in silico predictions suggested that the compound was not prone to pass the BBB and had a suitable permeability to the skin. In conclusion, JBC 1847 is therefore suggested to hold potential as a novel topical agent for the clinical treatment of S. aureus skin and soft tissue infections, but pharmacokinetics and pharmacodynamics need to be further investigated.
Collapse
Affiliation(s)
- Troels Ronco
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nadia S Jørgensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Iben Holmer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sofie Kromann
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ehsan Sheikhsamani
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University, Mashhad, Iran
| | | | - Søren W Svenningsen
- Department of Chemistry, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jørn B Christensen
- Department of Chemistry, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Rikke H Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
42
|
Pieroni M. Nitric oxide-releasing cyclodextrins as biodegradable antibacterial scaffolds: a patent evaluation of US2019343869(A1). Expert Opin Ther Pat 2020; 30:901-905. [PMID: 32901572 DOI: 10.1080/13543776.2020.1822328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Antimicrobial resistance is one of the major scourges for health care worldwide; therefore, novel investigational approaches are needed to potentiate and preserve the current antibacterial arsenal. Cyclodextrins are known to improve the formulability of several different therapeutic agents. When functionalized with nitric oxide (NO) releasing groups, and suitably loaded with an antibacterial or antitumoral agents, they can exert additive activity, especially toward certain bacterial strains and cell cancer lines. AREAS COVERED US2019343869 describes NO-releasing cyclodextrins, a method for their synthesis, a composition that is based on them, and their application as anticancer or antibacterial agents, especially toward planktonic P. aeruginosa and the biofilm resulting from infection. Anticancer activity is measured against A549 cells. The amount of NO released is in the range of 0.5 μmol to 2.5 μmol per milligram of functionalized cyclodextrin with a half-life for NO release in a range of between about 0.7-4.2 hours. EXPERT OPINION The results support the use of NO-releasing cyclodextrins as a matrix for the delivery of antibacterial and anticancer drugs in a suitable formulation. However, antibacterial activity seems to be weak, and more focused studies are needed.
Collapse
Affiliation(s)
- Marco Pieroni
- P4T Group, University of Parma , Parma, Italy.,Department of Food and Drug, University of Parma , Parma, Italy
| |
Collapse
|
43
|
Mohammed MA, Ahmed MT, Anwer BE, Aboshanab KM, Aboulwafa MM. Propranolol, chlorpromazine and diclofenac restore susceptibility of extensively drug-resistant (XDR)-Acinetobacter baumannii to fluoroquinolones. PLoS One 2020; 15:e0238195. [PMID: 32845920 PMCID: PMC7449414 DOI: 10.1371/journal.pone.0238195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022] Open
Abstract
Nosocomial infections caused by extensively drug-resistant (XDR) or Pan-Drug resistant (PDR) Acinetobacter (A.) baumannii have recently increased dramatically creating a medical challenge as therapeutic options became very limited. The aim of our study was to investigate the antibiotic-resistance profiles and evaluate the various combinations of ciprofloxacin (CIP) or levofloxacin (LEV) with antimicrobial agents and non-antimicrobial agents to combat antimicrobial resistance of XDR A. baumannii. A total of 100 (6.25%) A. baumannii clinical isolates were recovered from 1600 clinical specimens collected from hospitalized patients of two major university hospitals in Upper Egypt. Antimicrobial susceptibility tests were carried out according to CLSI guidelines. Antimicrobial susceptibility testing of the respective isolates showed a high percentage of bacterial resistance to 19 antimicrobial agents ranging from 76 to99%. However, a lower percentage of resistance was observed for only colistin (5%) and doxycycline (57%). The isolates were categorized as PDR (2; 2%), XDR (68; 68%), and multi-drug resistant (MDR) (30; 30%). Genotypic analysis using ERIC-PCR on 2 PDR and 32 selected XDR isolates showed that they were not clonal. Combinations of CIP or LEV with antibiotics (including, ampicillin, ceftriaxone, amikacin, or doxycycline) were tested on these A. baumannii non-clonal isolates using standard protocols where fractional inhibitory concentrations (-FICs) were calculated. Results of the respective combinations showed synergism in 23.5%, 17.65%, 32.35%, 17.65% and 26.47%, 8.28%, 14.71%, 26.47%, of the tested isolates, respectively. CIP or LEV combinations with either chlorpromazine (CPZ) 200 μg/ml, propranolol (PR) in two concentrations, 0.5 mg/ml and 1.0 mg/ml or diclofenac (DIC) 4 mg/ml were carried out and the MIC decrease factor (MDF) of each isolate was calculated and results showed synergism in 44%, 50%, 100%, 100% and 94%, 85%, 100%, 100%, of the tested isolates, respectively. In conclusion, combinations of CIP or LEV with CPZ, PR, or DIC showed synergism in most of the selected PDR and XDR A. baumannii clinical isolates. However, these combinations have to be re-evaluated in vivo using appropriate animal models infected by XDR- or PDR- A. baumannii.
Collapse
Affiliation(s)
- Mostafa A. Mohammed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al Azhar University, Assiut, Egypt
| | - Mohammed T. Ahmed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al Azhar University, Assiut, Egypt
| | - Bahaa E. Anwer
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al Azhar University, Assiut, Egypt
| | - Khaled M. Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohammad M. Aboulwafa
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
44
|
Hussein M, Hu X, Paulin OK, Crawford S, Tony Zhou Q, Baker M, Schneider-Futschik EK, Zhu Y, Li J, Velkov T. Polymyxin B combinations with FDA-approved non-antibiotic phenothiazine drugs targeting multi-drug resistance of Gram-negative pathogens. Comput Struct Biotechnol J 2020; 18:2247-2258. [PMID: 32952938 PMCID: PMC7481501 DOI: 10.1016/j.csbj.2020.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/08/2020] [Accepted: 08/09/2020] [Indexed: 12/19/2022] Open
Abstract
The status quo for combating uprising antibacterial resistance is to employ synergistic combinations of antibiotics. Nevertheless, the currently available combination therapies are fast becoming untenable. Combining antibiotics with various FDA-approved non-antibiotic drugs has emerged as a novel strategy against otherwise untreatable multi-drug resistant (MDR) pathogens. The apex of this study was to investigate the mechanisms of antibacterial synergy of the combination of polymyxin B with the phenothiazines against the MDR Gram-negative pathogens Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa. The synergistic antibacterial effects were tested using checkerboard and static time-kill assays. Electron microscopy (EM) and untargeted metabolomics were used to ascertain the mechanism(s) of the antibacterial synergy. The combination of polymyxin B and the phenothiazines showed synergistic antibacterial activity in checkerboard and static time-kill assays at clinically relevant concentrations against both polymyxin-susceptible and polymyxin-resistant isolates. EM revealed that the polymyxin B-prochlorperazine combination resulted in greater damage to the bacterial cell compared to each drug monotherapy. In metabolomics, at 0.5 h, polymyxin B monotherapy and the combination (to a greatest extent) disorganised the bacterial cell envelope as manifested by a major perturbation in bacterial membrane lipids (glycerophospholipids and fatty acids), peptidoglycan and lipopolysaccharide (LPS) biosynthesis. At the late time exposure (4 h), the aforementioned effects (except LPS biosynthesis) perpetuated mainly with the combination therapy, indicating the disorganising bacterial membrane biogenesis is potentially behind the mechanisms of antibacterial synergy. In conclusion, the study highlights the potential usefulness of the combination of polymyxin B with phenothiazines for the treatment of polymyxin-resistant Gram-negative infections (e.g. CNS infections).
Collapse
Affiliation(s)
- Maytham Hussein
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Xiaohan Hu
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Olivia K.A. Paulin
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Simon Crawford
- The Monash Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, Victoria 3800, Australia
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907-2091, USA
| | - Mark Baker
- Discipline of Biological Sciences, Priority Research Centre in Reproductive Biology, Faculty of Science and IT, University of Newcastle, University Drive, Callaghan NSW, 2308, Australia
| | - Elena K. Schneider-Futschik
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Yan Zhu
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
45
|
Grimsey EM, Piddock LJV. Do phenothiazines possess antimicrobial and efflux inhibitory properties? FEMS Microbiol Rev 2020; 43:577-590. [PMID: 31216574 DOI: 10.1093/femsre/fuz017] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/12/2019] [Indexed: 12/30/2022] Open
Abstract
Antibiotic resistance is a global health concern; the rise of drug-resistant bacterial infections is compromising the medical advances that resulted from the introduction of antibiotics at the beginning of the 20th century. Considering that the presence of mutations within individuals in a bacterial population may allow a subsection to survive and propagate in response to selective pressure, as long as antibiotics are used in the treatment of bacterial infections, development of resistance is an inevitable evolutionary outcome. This, combined with the lack of novel antibiotics being released to the clinical market, means the need to develop alternative strategies to treat these resistant infections is critical. We discuss how the use of antibiotic adjuvants can minimise the appearance and impact of resistance. To this effect, several phenothiazine-derived drugs have been shown to potentiate the activities of antibiotics used to treat infections caused by Gram-positive and Gram-negative bacteria. Outside of their role as antipsychotic medications, we review the evidence to suggest that phenothiazines possess inherent antibacterial and efflux inhibitory properties enabling them to potentially combat drug resistance. We also discuss that understanding their mode of action is essential to facilitate the design of new phenothiazine derivatives or novel agents for use as antibiotic adjuvants.
Collapse
Affiliation(s)
- Elizabeth M Grimsey
- Institute of Microbiology & Infection, College of Medical & Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Laura J V Piddock
- Institute of Microbiology & Infection, College of Medical & Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| |
Collapse
|
46
|
Intranasal lipid nanocapsules for systemic delivery of nimodipine into the brain: In vitro optimization and in vivo pharmacokinetic study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111236. [PMID: 32806316 DOI: 10.1016/j.msec.2020.111236] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 11/23/2022]
Abstract
Nimodipine (NM) is FDA-approved drug for treating subarachnoid haemorrhage induced vasospasm. Intravenous (IV) administration, the most common route of NM, causes several side effects such as hypotension, bradycardia, arrhythmias and inflammation at site of administration. The aim of this study was to investigate the capability of intranasal (IN) lipid nanocapsules (LNCs) for effective delivery of NM into the brain. NM LNCs were prepared by solvent free phase inversion temperature technique using D-Optimal mixture design studying the effects of three formulation variables on the properties of the prepared LNCs. The prepared particles were evaluated for particle size, drug payload, PDI, Zeta potential and in-vitro drug release. The optimized NM loaded LNC showed particle size of 35.94 ± 0.14 nm and PDI of 0.146 ± 0.045. The in-vivo pharmacokinetic behaviour of IN NM loaded LNC in blood and brain was compared with NM-solution after IV administration in rats. Results show that IN NM loaded LNC was capable to deliver the same amount of NM at brain tissue with lower drug levels in blood compared with IV administration of the NM solution which is greatly beneficial to minimize the cardiovascular side effects of NM. Contrary to most IN nanocarriers, systemic pathway rather than olfactory pathway plays the major role in brain delivery following IN administration of LNCs. The appropriate brain delivery with lower blood levels and slow elimination propose that intranasal LNCs could provide effective systemic delivery of NM into brain with lower frequency of administration and minimal side effects.
Collapse
|
47
|
A Novel Derivative of Thioridazine Shows Low Toxicity and Efficient Activity against Gram-Positive Pathogens. Antibiotics (Basel) 2020; 9:antibiotics9060327. [PMID: 32549350 PMCID: PMC7344759 DOI: 10.3390/antibiotics9060327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 12/11/2022] Open
Abstract
Thioridazine hydrochloride (HCl) has been suggested as a promising antimicrobial helper compound for the treatment of infections with antimicrobial-resistant bacteria. Unfortunately, the therapeutic concentration of thioridazine HCl is generally higher than what can be tolerated clinically, in part due to its toxic side effects on the central nervous system. Therefore, we aimed to synthesize a less toxic thioridazine derivative that would still retain its properties as a helper compound. This resulted in a compound designated 1-methyl-2-(2-(2-(methylthio)-10H-phenothiazin-10-yl)ethyl)-1-pentylpiperidin-1-ium bromide (abbreviated T5), which exhibited low blood–brain barrier permeability. The lowest minimal inhibitory concentration (MIC) against Staphylococcus aureus exposed to the novel compound was reduced 32-fold compared to thioridazine HCl (from 32 µg/mL to 1 µg/mL). The MIC values for T5 against five Gram-positive pathogens ranged from 1 µg/mL to 8 µg/mL. In contrast to thioridazine HCl, T5 does not act synergistically with oxacillin. In silico predictive structure analysis of T5 suggests that an acceptably low toxicity and lack of induced cytotoxicity was demonstrated by a lactate dehydrogenase assay. Conclusively, T5 is suggested as a novel antimicrobial agent against Gram-positive bacteria. However, future pharmacokinetic and pharmacodynamic studies are needed to clarify the clinical potential of this novel discovery.
Collapse
|
48
|
Abstract
Efflux is an important mechanism in Gram-negative bacteria conferring multidrug resistance. Inhibition of efflux is an encouraging strategy to restore the antibacterial activity of antibiotics. Chlorpromazine and amitriptyline have been shown to behave as efflux inhibitors. However, their mode of action is poorly understood. Exposure of Salmonella enterica serovar Typhimurium and Escherichia coli to chlorpromazine selected for mutations within genes encoding RamR and MarR, regulators of the multidrug tripartite efflux pump AcrAB-TolC. Further experiments with S. Typhimurium containing AcrB D408A (a nonfunctional efflux pump) and chlorpromazine or amitriptyline resulted in the reversion of the mutant acrB allele to the wild type. Together, this suggests these drugs are AcrB efflux substrates. Subsequent docking studies with AcrB from S. Typhimurium and E. coli, followed by molecular dynamics simulations and free energy calculations showed that chlorpromazine and amitriptyline bind at the hydrophobic trap, a preferred binding site for substrates and inhibitors within the distal binding pocket of AcrB. Based on these simulations, we suggest that chlorpromazine and amitriptyline inhibit AcrB-mediated efflux by interfering with substrate binding. Our findings provide evidence that these drugs are substrates and inhibitors of AcrB, yielding molecular details of their mechanism of action and informing drug discovery of new efflux inhibitors.IMPORTANCE Efflux pumps of the resistance nodulation-cell division (RND) superfamily are major contributors to multidrug resistance for most of the Gram-negative ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens. The development of inhibitors of these pumps would be highly desirable; however, several issues have thus far hindered all efforts at designing new efflux inhibitory compounds devoid of adverse effects. An alternative route to de novo design relies on the use of marketed drugs, for which side effects on human health have been already assessed. In this work, we provide experimental evidence that the antipsychotic drugs chlorpromazine and amitriptyline are inhibitors of the AcrB transporter, the engine of the major RND efflux pumps in Escherichia coli and Salmonella enterica serovar Typhimurium. Furthermore, in silico calculations have provided a molecular-level picture of the inhibition mechanism, allowing rationalization of experimental data and paving the way for similar studies with other classes of marketed compounds.
Collapse
|
49
|
Umerska A, Sapin-Minet A, Parent M, Tajber L, Maincent P, Boudier A. Understanding the Thermodynamic Mechanisms Leading to the Binding of Albumin to Lipid Nanocapsules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4165-4173. [PMID: 32223171 DOI: 10.1021/acs.langmuir.9b03147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lipid nanocapsules (LNCs) are drug delivery platforms designed for different administration routes including intravenous delivery. Nanocarrier binding with plasma proteins such as albumin is an important factor that influences the pharmacokinetics of the drug and the drug delivery system. The aim of this paper was to characterize LNCs with different surface compositions and hydrophobicities to study their interactions with albumin: binary LNCs [oil-glyceryl trioctanoate (TG) and PEGylated surfactant macrogol 15-hydroxystearate (MHS)] and ternary LNCs (TG, MHS, and Span 80). Span was found to stabilize and decrease the LNC size. The formation of a stable LNC/albumin complex in the ground state was demonstrated. Thermodynamic parameters indicated that complex formation was exothermic and spontaneous, and the interactions involved van der Waals forces and hydrogen bond formation. Ternary LNCs showed higher affinity for albumin than did binary LNCs (affinity constant 10-fold higher). This study is the first report on the thermodynamic mechanisms that lead to the formation of a complex between albumin and organic nanoparticles with different surface architectures.
Collapse
Affiliation(s)
- Anita Umerska
- Université de Lorraine, CITHEFOR, F-54000 Nancy, France
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, 2 Dublin, Ireland
| | | | | | - Lidia Tajber
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, 2 Dublin, Ireland
| | | | | |
Collapse
|
50
|
Umerska A, Mugheirbi NA, Kasprzak A, Saulnier P, Tajber L. Carbohydrate-based Trojan microparticles as carriers for pulmonary delivery of lipid nanocapsules using dry powder inhalation. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.02.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|