1
|
Mustaklem B, Loghmani MT, Waterfill AK, Caron M, Glore DA, Meyer NR, Shelton LD, Day EA, Marciano C, Gepfert A, Wakefield CC, Brown H, Street S, Sasse MM, Snyder J, Hiland T, Hum JM, Eland DC, Chu TMG, Lowery JW. Soft tissue manipulation enhances recovery of muscle mass in a disuse model of sarcopenia. J Osteopath Med 2025:jom-2024-0247. [PMID: 40073288 DOI: 10.1515/jom-2024-0247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/13/2025] [Indexed: 03/14/2025]
Abstract
CONTEXT Sarcopenia is a disease characterized by low muscle mass and function that places individuals at greater risk of disability, loss of independence, and death. Current therapies include addressing underlying performance issues, resistance training, and/or nutritional strategies. However, these approaches have significant limitations, and chronic inflammation associated with sarcopenia may blunt the anabolic response to exercise and nutrition. This presents an unmet need for treatment strategies that promote gains in muscle function. One such possibility is soft tissue manipulation (STM), which is a noninvasive, nonpharmacological mechanotherapy employed by osteopathic physicians, physiotherapists, and massage therapists, wherein soft tissues are subjected to mechanical forces delivered by hand or by an instrument. However, the molecular effects of STM in sarcopenia remain largely unknown. OBJECTIVES In the present study, we utilized a rat model of sarcopenia due to disuse atrophy and examined the effects of STM on recovery of muscle mass and regulation of pro-/anti-inflammatory cytokines. METHODS Ten-week-old male Brown Norway rats were subjected to 2-week hindlimb suspension (HLS) and then allowed to re-ambulate for 8 days with or without instrument-assisted soft tissue manipulation (IASTM) applied to the right hindlimb. Muscle weights were determined for treated and nontreated hindlimbs, and membrane-based cytokine arrays were performed on treated tissue and serum. RESULTS Following suspension, IASTM enhanced the effectiveness of re-ambulation (Re-A) on muscle mass recovery in both treated and contralateral limbs. This was associated with changes in numerous cytokines in treated skeletal muscle and sera. Several factors we observe to be regulated were also shown to be regulated by STM in other studies, including ciliary neurotrophic factor (CNTF), IL-1β, IL-2, IL-3, IL-13, ICAM-1, and tumor necrosis factor alpha (TNF-α), whereas others are reported for the first time. CONCLUSIONS Our study adds further support for the role of manual therapy in musculoskeletal health and details molecular-level effects in both target tissue and circulation. STM may hold promise for recovering muscle mass and function related in conditions of atrophy such as age-related sarcopenia.
Collapse
Affiliation(s)
- Basil Mustaklem
- Wood College of Osteopathic Medicine, Marian University, Indianapolis, IN, USA
- Bone & Muscle Research Group, Marian University, Indianapolis, IN, USA
| | - Mary Terry Loghmani
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Abigail K Waterfill
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN, USA
| | - Mackenzie Caron
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN, USA
| | - Daren A Glore
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN, USA
| | - Nathaniel R Meyer
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN, USA
| | - Luke D Shelton
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN, USA
| | - Elicza A Day
- Wood College of Osteopathic Medicine, Marian University, Indianapolis, IN, USA
- Bone & Muscle Research Group, Marian University, Indianapolis, IN, USA
| | - Carmela Marciano
- Wood College of Osteopathic Medicine, Marian University, Indianapolis, IN, USA
- Bone & Muscle Research Group, Marian University, Indianapolis, IN, USA
| | - Addison Gepfert
- Wood College of Osteopathic Medicine, Marian University, Indianapolis, IN, USA
- Bone & Muscle Research Group, Marian University, Indianapolis, IN, USA
| | - Connor C Wakefield
- Wood College of Osteopathic Medicine, Marian University, Indianapolis, IN, USA
- Bone & Muscle Research Group, Marian University, Indianapolis, IN, USA
| | - Hailey Brown
- Wood College of Osteopathic Medicine, Marian University, Indianapolis, IN, USA
- Bone & Muscle Research Group, Marian University, Indianapolis, IN, USA
| | - Sierra Street
- Wood College of Osteopathic Medicine, Marian University, Indianapolis, IN, USA
- Bone & Muscle Research Group, Marian University, Indianapolis, IN, USA
| | - Madeline M Sasse
- Wood College of Osteopathic Medicine, Marian University, Indianapolis, IN, USA
- Bone & Muscle Research Group, Marian University, Indianapolis, IN, USA
| | - Jacob Snyder
- Wood College of Osteopathic Medicine, Marian University, Indianapolis, IN, USA
- Bone & Muscle Research Group, Marian University, Indianapolis, IN, USA
| | - Taylor Hiland
- Wood College of Osteopathic Medicine, Marian University, Indianapolis, IN, USA
- Bone & Muscle Research Group, Marian University, Indianapolis, IN, USA
| | - Julia M Hum
- Wood College of Osteopathic Medicine, Marian University, Indianapolis, IN, USA
- Bone & Muscle Research Group, Marian University, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - David C Eland
- Wood College of Osteopathic Medicine, Marian University, Indianapolis, IN, USA
| | - Tien-Min Gabe Chu
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA
- Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Jonathan W Lowery
- Wood College of Osteopathic Medicine, Marian University, Indianapolis, IN, USA
| |
Collapse
|
2
|
Cordeiro-Santanach A, Morales F, Parquet MDC, Uaesoontrachoon K, Rowsell J, Warford J, Wu W, Elustondo P, Hoffman EP, Nagaraju K. The effect of IL-1β inhibitor canakinumab (Ilaris®) on IL-6 production in human skeletal muscle cells. PLoS One 2025; 20:e0316110. [PMID: 40048444 PMCID: PMC11884680 DOI: 10.1371/journal.pone.0316110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/05/2024] [Indexed: 03/09/2025] Open
Abstract
Muscle inflammation is one of the hallmarks of Duchenne muscular dystrophy (DMD). Dystrophin-deficient skeletal muscle cells produce higher levels of pro-inflammatory cytokines such as interleukin 1β (IL-1β) in response to toll-like receptor stimulation compared to normal muscle skeletal cells. IL- 1β induces the human skeletal muscle secretion of the myokine Interleukin-6 (IL-6). Here, we evaluated the effect of a human IgG1κ monoclonal antibody (canakinumab (Ilaris®)) that specifically blocks the IL-1β effect on IL-6 secretion by human skeletal muscle cells. Canakinumab is an excellent candidate for therapeutic repositioning to treat DMD because it is an FDA-approved drug to treat periodic fever syndromes and systemic juvenile idiopathic arthritis. Unlike previous generations of IL-1 inhibitors, canakinumab is highly specific for the IL-1β ligand, has a longer half-life, and does not interfere with other IL-1-activated inflammatory pathways. Following cell culture optimization and viability assays to assess toxicity, skeletal muscle cells were stimulated with IL-1β (10 ng/mL) for 48 hours in the presence of nine concentrations of canakinumab ranging from 0.001 nM to 1000 nM, and IL-6 production was measured with an enzyme-linked immunosorbent assay. Pre-incubation of myoblasts with canakinumab before IL-1β-stimulation, significantly reduced IL-6 production at concentrations of 1, 10, 100, 250, and 1000 nM relative to controls, yielding an IC50 of 0.264 nM. On the other hand, co-incubation of canakinumab with IL-1β before addition to myoblasts resulted in a significant inhibition with the IC50 reducing to 0.126 nM, less than half of the previous method. Canakinumab also did not affect myotube viability at 10 nM and was also able to significantly reduce the production of IL-6, when the cells were stimulated with IL-1β (10 ng/ml). Taken together, our results show that canakinumab is a potent inhibitor of IL-1β signaling in muscle cells. These results align with previously published pre-clinical work with other IL-1 inhibitors in the mdx mouse model and support further investigation into the clinical utility of repositioning canakinumab to treat DMD.
Collapse
Affiliation(s)
| | | | | | | | - Joyce Rowsell
- AGADA Biosciences Inc., Halifax, Nova Scotia, Canada
| | | | - Wilson Wu
- AGADA Biosciences Inc., Halifax, Nova Scotia, Canada
| | - Pia Elustondo
- AGADA Biosciences Inc., Halifax, Nova Scotia, Canada
| | - Eric P. Hoffman
- AGADA Biosciences Inc., Halifax, Nova Scotia, Canada
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, State University of New York, New York, United States of America
| | - Kanneboyina Nagaraju
- AGADA Biosciences Inc., Halifax, Nova Scotia, Canada
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, State University of New York, New York, United States of America
| |
Collapse
|
3
|
Lee J, Lee SH, Kim H, Chung SW. Effect of electrical muscle stimulation on the improvement of deltoid muscle atrophy in a rat shoulder immobilization model. J Orthop Res 2024; 42:2634-2645. [PMID: 39097824 DOI: 10.1002/jor.25943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/24/2024] [Accepted: 07/09/2024] [Indexed: 08/05/2024]
Abstract
Immobilization following trauma or surgery induces skeletal muscle atrophy, and improvement in the muscle atrophy is critical for successful clinical outcomes. The purpose of this study is to evaluate the effect of electrical muscle stimulation (EMS) on muscle atrophy. The study design is a controlled laboratory study. Eighty rats (56 to establish the deltoid muscle atrophy [DMA] model and 24 to evaluate the effect of EMS on the model) were used. DMA was induced by completely immobilizing the right shoulder of each rat by placing sutures between the scapula and humeral shaft, with the left shoulder as a control. After establishing the DMA model, rats were randomly assigned into three groups: low-frequency EMS (L-EMS, 10 Hz frequency), medium-frequency EMS (M-EMS, 50 Hz frequency), and control (eight rats per group). After 3 weeks, the deltoid muscles of each rat were harvested, alterations in gene expression and muscle cell size were evaluated, and immunohistochemical analysis was performed. DMA was most prominent 3 weeks after shoulder immobilization. Murf1 and Atrogin were significantly induced at the initial phase and gradually decreased at approximately 3 weeks; however, MyoD expressed an inverse relationship with Murf1 and Atrogin. IL6 expression was prominent at 1 week. The time point for the EMS effect evaluation was selected at 3 weeks, when the DMA was the most prominent with a change in relevant gene expression. The M-EMS group cell size was significantly larger than that of L-EMS and control group in both the immobilized and intact shoulders (all p < 0.05), without significant differences between the L-EMS and control groups. The M-EMS group showed significantly lower mRNA expressions of Murf1 and Atrogin and higher expressions of MyoD and Col1A1 than that of the control group (all p < 0.05). In immunohistochemical analysis, similar results were observed with lower Atrogin staining and higher MyoD and Col1A1 staining in the M-EMS group. DMA model was established by complete shoulder immobilization, with the most prominent muscle atrophy observed at 3 weeks. M-EMS improved DMA with changes in the expression of relevant genes. M-EMS might be a solution for strengthening atrophied skeletal muscles and facilitating rehabilitation after trauma or surgery.
Collapse
Affiliation(s)
- Jeongkun Lee
- Department of Orthopaedic Surgery, School of Medicine, Konkuk University, Seoul, Korea
| | - Su Hyun Lee
- Department of Orthopaedic Surgery, School of Medicine, Konkuk University, Seoul, Korea
| | - Hyuntae Kim
- Department of Orthopaedic Surgery, School of Medicine, Konkuk University, Seoul, Korea
| | - Seok Won Chung
- Department of Orthopaedic Surgery, School of Medicine, Konkuk University, Seoul, Korea
| |
Collapse
|
4
|
Li L, Ling ZQ. Mechanisms of cancer cachexia and targeted therapeutic strategies. Biochim Biophys Acta Rev Cancer 2024; 1879:189208. [PMID: 39542382 DOI: 10.1016/j.bbcan.2024.189208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024]
Abstract
Tumor cachexia is a multifactorial syndrome characterized by systemic dysfunction, including anorexia and severe weight loss that is resistant to standard nutritional interventions. It is estimated that approximately 20 % of cancer patients succumb to cachexia in the later stages of their disease. Thus, understanding its pathogenesis is vital for improving therapeutic outcomes. Recent research has focused on the imbalance between energy intake and expenditure in cachexia. Clinically, cachexia presents with anorexia, adipose tissue atrophy, and skeletal muscle wasting, each driven by distinct mechanisms. Anorexia arises primarily from tumor-secreted factors and cancer-induced hormonal disruptions that impair hypothalamic regulation of appetite. Adipose tissue atrophy is largely attributed to enhanced lipolysis, driven by increased activity of enzymes such as adipose triglyceride lipase and hormone-sensitive lipase, coupled with decreased lipoprotein lipase activity. The browning of white adipose tissue, facilitated by uncoupling protein 1, further accelerates fat breakdown by increasing energy expenditure. Skeletal muscle atrophy, a hallmark of cachexia, results from dysregulated protein turnover via the ubiquitin-proteasome and autophagy-lysosomal pathways, as well as mitochondrial dysfunction. Additionally, chemotherapy can exacerbate cachexia. This review examines the molecular mechanisms underlying cancer cachexia and discusses current therapeutic strategies, aiming to inform future research and improve treatment approaches.
Collapse
Affiliation(s)
- Long Li
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; The Second School of Clinical Medicine, Wenzhou Medical University, No. 109 Xueyuan West Road, Wenzhou 325027, Zhejiang, China
| | - Zhi-Qiang Ling
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
5
|
Liu X, Wen Y, Lu Y. Targeting MuRF1 to Combat Skeletal Muscle Wasting in Cardiac Cachexia: Mechanisms and Therapeutic Prospects. Med Sci Monit 2024; 30:e945211. [PMID: 39434377 PMCID: PMC11512513 DOI: 10.12659/msm.945211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 09/04/2024] [Indexed: 10/23/2024] Open
Abstract
Cardiac cachexia, the terminal stage of chronic heart failure, is characterized by severe systemic metabolic imbalances and significant weight loss, primarily resulting from skeletal muscle mass depletion. Despite the detrimental consequences, there is no standardized and clinically-approved intervention currently available for cardiac cachexia. In the context of cardiac cachexia, accelerated protein turnover, that is, inhibited protein synthesis and enhanced protein degradation, plays a crucial role in skeletal muscle wasting. This process is primarily mediated by various proteins encoded by atrogenes. Among them, the atrogene Trim63 (tripartite motif family 63) and its encoded protein MuRF1 have been extensively studied. This review article aims to elucidate the pathogenic mechanisms underlying skeletal muscle wasting in cardiac cachexia, describe the biochemical characteristics of MuRF1, and provide an overview of the investigation into MuRF1-targeting inhibitors. The ultimate goal is to offer novel strategies for the clinical treatment for skeletal muscle wasting associated with cardiac cachexia.
Collapse
Affiliation(s)
- Xiaotong Liu
- Department of Cardiac Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, PR China
| | - Ya Wen
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Yanmei Lu
- Department of Cardiac Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, PR China
| |
Collapse
|
6
|
Gao X, Chen Y, Cheng P. Unlocking the potential of exercise: harnessing myokines to delay musculoskeletal aging and improve cognitive health. Front Physiol 2024; 15:1338875. [PMID: 39286235 PMCID: PMC11402696 DOI: 10.3389/fphys.2024.1338875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Objectives This review aims to summarize the common physiological mechanisms associated with both mild cognitive impairment (MCI) and musculoskeletal aging while also examining the relevant literature on how exercise regulation influences the levels of shared myokines in these conditions. Methods The literature search was conducted via databases such as PubMed (including MEDLINE), EMBASE, and the Cochrane Library of Systematic Reviews. The searches were limited to full-text articles published in English, with the most recent search conducted on 16 July 2024. The inclusion criteria for this review focused on the role of exercise and myokines in delaying musculoskeletal aging and enhancing cognitive health. The Newcastle‒Ottawa Scale (NOS) was utilized to assess the quality of nonrandomized studies, and only those studies with moderate to high quality scores, as per these criteria, were included in the final analysis. Data analysis was performed through narrative synthesis. Results The primary outcome of this study was the evaluation of myokine expression, which included IL-6, IGF-1, BDNF, CTSB, irisin, and LIF. A total of 16 studies involving 633 older adults met the inclusion criteria. The current exercise modalities utilized in these studies primarily consisted of resistance training and moderate-to high-intensity cardiovascular exercise. The types of interventions included treadmill training, elastic band training, aquatic training, and Nordic walking training. The results indicated that both cardiovascular exercise and resistance exercise could delay musculoskeletal aging and enhance the cognitive functions of the brain. Additionally, different types and intensities of exercise exhibited varying effects on myokine expression. Conclusion Current evidence suggests that exercise mediates the secretion of specific myokines, including IL-6, IGF-1, BDNF, CTSB, irisin, and LIF, which establish self-regulatory circuits between the brain and muscle. This interaction enhances cognitive function in the brain and improves skeletal muscle function. Future research should focus on elucidating the exact mechanisms that govern the release of myokines, the correlation between the intensity of exercise and the secretion of these myokines, and the distinct processes by which myokines influence the interaction between muscle and the brain.
Collapse
Affiliation(s)
- Xing Gao
- Graduate School, Wuhan Sports University, Wuhan, China
| | - Yiyan Chen
- Department of Physical Education, Suzhou Vocational University, Suzhou, China
| | - Peng Cheng
- Department of Basic Teaching, Suzhou City University, Suzhou, China
| |
Collapse
|
7
|
Shen L, Zong Y, Zhao J, Yang Y, Li L, Li N, Gao Y, Xie X, Bao Q, Jiang L, Hu W. Characterizing the skeletal muscle immune microenvironment for sarcopenia: insights from transcriptome analysis and histological validation. Front Immunol 2024; 15:1414387. [PMID: 39026669 PMCID: PMC11254692 DOI: 10.3389/fimmu.2024.1414387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Background Sarcopenia is a condition characterized by the age-related loss of skeletal muscle mass and function. The pathogenesis of the disease is influenced by chronic low-grade inflammation. However, the specific changes in the immune landscape changes of sarcopenic muscle are not yet fully understood. Methods To gain insights into the immune cell composition and interactions, we combined single-nucleus RNA sequencing data, bulk RNA sequencing dataset, and comprehensive bioinformatic analyses on the skeletal muscle samples from young, aged, and sarcopenic individuals. Histological staining was then performed on skeletal muscles to validate the distribution of immune cells in clinical samples. Results We analyzed the transcriptomes of 101,862 single nuclei, revealing a total of 10 major cell types and 6 subclusters of immune cell types within the human skeletal muscle tissues. Notable variations were identified in the immune microenvironment between young and aged skeletal muscle. Among the immune cells from skeletal muscle microenvironment, macrophages constituted the largest fraction. A specific marker gene LYVE1 for skeletal muscle resident macrophages was further identified. Cellular subclasses included four distinct groups of resident macrophages, which play different roles in physiological or non-physiological conditions. Utilizing bulk RNA sequencing data, we observed a significant enrichment of macrophage-rich inflammation in sarcopenia. Conclusions Our findings demonstrate age-related changes in the composition and cross-talk of immune cells in human skeletal muscle microenvironment, which contribute to chronic inflammation in aged or sarcopenia muscle. Furthermore, macrophages emerge as a potential therapeutic target, thus advancing our understanding of the pathogenesis of sarcopenia.
Collapse
Affiliation(s)
- Linhui Shen
- Department of Geriatrics, Ruijin hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Zong
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiawen Zhao
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Yang
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Li
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Li
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yiming Gao
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Xianfei Xie
- Hainan Branch, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Qionghai, China
- Department of Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiyuan Bao
- Department of Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liting Jiang
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Weiguo Hu
- Department of Geriatrics, Ruijin hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Lan XQ, Deng CJ, Wang QQ, Zhao LM, Jiao BW, Xiang Y. The role of TGF-β signaling in muscle atrophy, sarcopenia and cancer cachexia. Gen Comp Endocrinol 2024; 353:114513. [PMID: 38604437 DOI: 10.1016/j.ygcen.2024.114513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/24/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Skeletal muscle, comprising a significant proportion (40 to 50 percent) of total body weight in humans, plays a critical role in maintaining normal physiological conditions. Muscle atrophy occurs when the rate of protein degradation exceeds protein synthesis. Sarcopenia refers to age-related muscle atrophy, while cachexia represents a more complex form of muscle wasting associated with various diseases such as cancer, heart failure, and AIDS. Recent research has highlighted the involvement of signaling pathways, including IGF1-Akt-mTOR, MuRF1-MAFbx, and FOXO, in regulating the delicate balance between muscle protein synthesis and breakdown. Myostatin, a member of the TGF-β superfamily, negatively regulates muscle growth and promotes muscle atrophy by activating Smad2 and Smad3. It also interacts with other signaling pathways in cachexia and sarcopenia. Inhibition of myostatin has emerged as a promising therapeutic approach for sarcopenia and cachexia. Additionally, other TGF-β family members, such as TGF-β1, activin A, and GDF11, have been implicated in the regulation of skeletal muscle mass. Furthermore, myostatin cooperates with these family members to impair muscle differentiation and contribute to muscle loss. This review provides an overview of the significance of myostatin and other TGF-β signaling pathway members in muscular dystrophy, sarcopenia, and cachexia. It also discusses potential novel therapeutic strategies targeting myostatin and TGF-β signaling for the treatment of muscle atrophy.
Collapse
Affiliation(s)
- Xin-Qiang Lan
- Metabolic Control and Aging Group, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Cheng-Jie Deng
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Qi-Quan Wang
- Metabolic Control and Aging Group, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Li-Min Zhao
- Senescence and Cancer Group, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Bao-Wei Jiao
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Yang Xiang
- Metabolic Control and Aging Group, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China.
| |
Collapse
|
9
|
Hashimoto S, Hosoi T, Yakabe M, Matsumoto S, Hashimoto M, Akishita M, Ogawa S. Exercise-induced vitamin D receptor and androgen receptor mediate inhibition of IL-6 and STAT3 in muscle. Biochem Biophys Rep 2024; 37:101621. [PMID: 38205185 PMCID: PMC10776921 DOI: 10.1016/j.bbrep.2023.101621] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/01/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Background Skeletal muscle produces interleukin-6 (IL-6) during exercise as a myokine. Although IL-6 is required for skeletal muscle regeneration, its action increases the expression of myostatin and other proteins involved in muscle atrophy, resulting in skeletal muscle atrophy. In this study, we clarified the effects exercise-induced vitamin D receptor (VDR) and androgen receptor (AR) expression on IL-6 and signal transducer and activator of transcription 3 (STAT3) in vivo and in vitro. Method C2C12 myotubes were subjected to electric pulse stimulation (EPS) in vitro. To evaluate VDR and AR function, a VDR/AR agonist and antagonist were administered before EPS to C2C12 myotubes. C57BL6 mice underwent 4 weeks of exercise. The expression levels of proteolytic-associated genes, including CCAAT/enhancer-binding protein delta (C/EBPδ) and myostatin, were measured by quantitative real-time polymerase chain reaction, and phosphorylated and total STAT3 levels were measured by Western blot analysis. Result The expression of VDR and AR mRNA was induced following EPS in C2C12 myotubes. IL-6 mRNA expression was also increased with a peak at 6 h after EPS and p-STAT3/STAT3 ratio reciprocally decreased. Although VDR/AR agonist administration decreased IL-6 mRNA expression and p-STAT3/STAT3 ratio, these two endpoints increased after treatment with VDR/AR antagonist, respectively. Exercise in mice also increased the expression of VDR/AR and IL-6 mRNA and decreased p-STAT3/STAT3 ratio. Conclusion Exercise-induced VDR and AR expression results in the suppression of IL-6 mRNA and STAT3 phosphorylation in skeletal muscle.
Collapse
Affiliation(s)
- Seiji Hashimoto
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tatsuya Hosoi
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Mitsutaka Yakabe
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Shoya Matsumoto
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Masayoshi Hashimoto
- Department of General Medicine, Graduate School of Medicine and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Masahiro Akishita
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Sumito Ogawa
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
10
|
Meas SJ, Daire GM, Friedman MA, DeNapoli R, Ghosh P, Farr JN, Donahue HJ. A comparison of bone microarchitectural and transcriptomic changes in murine long bones in response to hindlimb unloading and aging. Bone 2024; 179:116973. [PMID: 37996046 PMCID: PMC11651238 DOI: 10.1016/j.bone.2023.116973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Age- and disuse-related bone loss both result in decreases in bone mineral density, cortical thickness, and trabecular thickness and connectivity. Disuse induces changes in the balance of bone formation and bone resorption like those seen with aging. There is a need to experimentally compare these two mechanisms at a structural and transcriptomic level to better understand how they may be similar or different. Bone microarchitecture and biomechanical properties were compared between 6- and 22-month-old C57BL/6 J male control mice and 6-month-old mice that were hindlimb unloaded (HLU) for 3 weeks. Epiphyseal trabecular bone was the compartment most affected by HLU and demonstrated an intermediate bone phenotype between age-matched controls and aged controls. RNA extracted from whole-bone marrow-flushed tibiae was sequenced and analyzed. Differential gene expression analysis additionally included 4-month-old male mice unloaded for 3 weeks compared to age-matched controls. Gene ontology analysis demonstrated that there were age-dependent differences in differentially expressed genes in young adult mice. Genes related to downregulation of cellular processes were most affected in 4-month-old mice after disuse whereas those related to mitochondrial function were most affected in 6-month-old mice. Cell-cycle transition was downregulated with aging. A publicly available dataset (GSE169292) from 3-month female C57BL/6 N mice unloaded for 7 days was included in ingenuity pathway analysis (IPA) with the other datasets. IPA was used to identify the leading canonical pathways and upstream regulators in each HLU age group. IPA identified "Senescence Pathway" as the second leading canonical pathway enriched in mice exposed to HLU. HLU induced activation of the senescence pathway in 3-month and 4-month-old mice but inhibited it in 6-month-old mice. In conclusion, we demonstrate that hindlimb unloading and aging initiate similar changes in bone microarchitecture and gene expression. However, aging is responsible for more significant transcriptome and tissue-level changes compared to hindlimb unloading.
Collapse
Affiliation(s)
- Steven J Meas
- Virginia Commonwealth University, Richmond, VA 23284, USA.
| | | | | | | | - Preetam Ghosh
- Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - Joshua N Farr
- Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | |
Collapse
|
11
|
Zhang J, Gao Y, Yan J. Roles of Myokines and Muscle-Derived Extracellular Vesicles in Musculoskeletal Deterioration under Disuse Conditions. Metabolites 2024; 14:88. [PMID: 38392980 PMCID: PMC10891558 DOI: 10.3390/metabo14020088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
Prolonged inactivity and disuse conditions, such as those experienced during spaceflight and prolonged bedrest, are frequently accompanied by detrimental effects on the motor system, including skeletal muscle atrophy and bone loss, which greatly increase the risk of osteoporosis and fractures. Moreover, the decrease in glucose and lipid utilization in skeletal muscles, a consequence of muscle atrophy, also contributes to the development of metabolic syndrome. Clarifying the mechanisms involved in disuse-induced musculoskeletal deterioration is important, providing therapeutic targets and a scientific foundation for the treatment of musculoskeletal disorders under disuse conditions. Skeletal muscle, as a powerful endocrine organ, participates in the regulation of physiological and biochemical functions of local or distal tissues and organs, including itself, in endocrine, autocrine, or paracrine manners. As a motor organ adjacent to muscle, bone tissue exhibits a relative lag in degenerative changes compared to skeletal muscle under disuse conditions. Based on this phenomenon, roles and mechanisms involved in the communication between skeletal muscle and bone, especially from muscle to bone, under disuse conditions have attracted widespread attention. In this review, we summarize the roles and regulatory mechanisms of muscle-derived myokines and extracellular vesicles (EVs) in the occurrence of muscle atrophy and bone loss under disuse conditions, as well as discuss future perspectives based on existing research.
Collapse
Affiliation(s)
- Jie Zhang
- Institute of Special Medicine, Shanxi Medical University, Jinzhong 030619, China;
| | - Yunfang Gao
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Jiangwei Yan
- Institute of Special Medicine, Shanxi Medical University, Jinzhong 030619, China;
| |
Collapse
|
12
|
Greco A, Mul K, Jaeger MH, Dos Santos JC, Koenen H, de Jong L, Mann R, Fütterer J, Netea MG, Pruijn GJM, van Engelen BGM, Joosten LAB. IL-6 and TNF are Potential Inflammatory Biomarkers in Facioscapulohumeral Muscular Dystrophy. J Neuromuscul Dis 2024; 11:327-347. [PMID: 38250782 DOI: 10.3233/jnd-230063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Background FSHD is a highly prevalent inherited myopathy with a still poorly understood pathology. Objective To investigate whether proinflammatory cytokines are associated with FSHD and which specific innate immune cells are involved in its pathology. Methods First, we measured circulating cytokines in serum samples: IL-6 (FSHD, n = 150; HC, n = 98); TNF (FSHD, n = 150; HC, n = 59); IL-1α (FSHD, n = 150; HC, n = 66); IL-1β (FSHD, n = 150; HC, n = 98); MCP-1 (FSHD, n = 14; HC, n = 14); VEGF-A (FSHD, n = 14; HC, n = 14). Second, we tested trained immunity in monocytes (FSHD, n = 15; HC, n = 15) and NK cells (FSHD, n = 11; HC, n = 11). Next, we explored the cytokine production capacity of NK cells in response to different stimuli (FSHD, n = 39; HC, n = 22). Lastly, we evaluated the cytokine production of ex vivo stimulated MRI guided inflamed (TIRM+) and paired MRI guided non inflamed (TIRM-) muscle biopsies of 21 patients and of 8 HC muscle biopsies. Results We included a total of 190 FSHD patients (N = 190, 48±14 years, 49% men) and of 135 HC (N = 135, 44±15 years, 47% men). We found that FSHD patients had higher concentrations of IL-6 and TNF measured (a) in the circulation, (b) after ex-vivo stimulation of NK cells, and (c) in muscle specimens. Besides, IL-6 circulating concentrations, as well as its production by NK cells and IL-6 content of FSHD muscle specimens, showed a mild correlation with disease duration, disease severity, and muscle weakness. Conclusion These results show that IL-6 and TNF may contribute to FSHD pathology and suggest novel therapeutic targets. Additionally, the activation of NK cells in FSHD may be a novel pathway contributing to FSHD pathology.
Collapse
Affiliation(s)
- Anna Greco
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Karlien Mul
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martin H Jaeger
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jéssica C Dos Santos
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hans Koenen
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Leon de Jong
- Department of Radiology, Nuclear Medicine and Anatomy, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ritse Mann
- Department of Radiology, Nuclear Medicine and Anatomy, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jurgen Fütterer
- Department of Radiology, Nuclear Medicine and Anatomy, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ger J M Pruijn
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Baziel G M van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
13
|
Zaripova KA, Belova SP, Kostrominova TY, Shenkman BS, Nemirovskaya TL. P2Y1 and P2Y2 receptors differ in their role in the regulation of signaling pathways during unloading-induced rat soleus muscle atrophy. Arch Biochem Biophys 2024; 751:109844. [PMID: 38043889 DOI: 10.1016/j.abb.2023.109844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/02/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
The current study aimed to investigate the hypothesis that purinergic receptors P2Y1 and P2Y2 play a regulatory role in gene expression in unloaded muscle. ATP is released from cells through pannexin channels, and it interacts with P2Y1 and P2Y2 receptors, leading to the activation of markers of protein catabolism and a reduction in protein synthesis. To test this hypothesis thirty-two rats were randomly divided into four groups (8 per group): a non-treated control group (C), a group subjected to three days of hindlimb unloading with a placebo (HS), a group subjected to three days of hindlimb unloading treated with a P2Y1 receptor inhibitor, MRS2179 (HSM), and a group subjected to three days of hindlimb unloading treated with a P2Y2 receptor inhibitor, AR-C 118925XX (HSA). This study revealed several key findings following three days of soleus muscle unloading: 1: Inhibition of P2Y1 or P2Y2 receptors prevented the accumulation of ATP, the increase in IP3 receptor content, and the decrease in the phosphorylation of GSK-3beta. This inhibition also mitigated the reduction in the rate of protein synthesis. However, it had no significant effect on the markers of mTORC1-dependent signaling. 2: Blocking P2Y1 receptors prevented the unloading-induced upregulation of phosphorylated p38MAPK and partially reduced the increase in MuRF1mRNA expression. 3: Blocking P2Y2 receptors prevented muscle atrophy during unloading, partially maintained the levels of phosphorylated ERK1/2, reduced the increase in mRNA expression of MAFbx, ubiquitin, and IL-6 receptor, prevented the decrease in phosphorylated AMPK, and attenuated the increase in phosphorylated p70S6K. Taken together, these results suggest that the prevention of muscle atrophy during unloading, as achieved by the P2Y2 receptor inhibitor, is likely mediated through a reduction in catabolic processes and maintenance of energy homeostasis. In contrast, the P2Y1 receptor appears to play a relatively minor role in muscle atrophy during unloading.
Collapse
Affiliation(s)
- Ksenia A Zaripova
- Myology Laboratory, Institute of Biomedical Problems, RAS, Moscow, Russia
| | - Svetlana P Belova
- Myology Laboratory, Institute of Biomedical Problems, RAS, Moscow, Russia
| | - Tatiana Y Kostrominova
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine-Northwest, Gary, IN, USA
| | - Boris S Shenkman
- Myology Laboratory, Institute of Biomedical Problems, RAS, Moscow, Russia
| | | |
Collapse
|
14
|
Zhang H, Du Y, Tang W, Chen M, Yu W, Ke Z, Dong S, Cheng Q. Eldecalcitol prevents muscle loss and osteoporosis in disuse muscle atrophy via NF-κB signaling in mice. Skelet Muscle 2023; 13:22. [PMID: 38115079 PMCID: PMC10729577 DOI: 10.1186/s13395-023-00332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023] Open
Abstract
We investigated the effect of eldecalcitol on disuse muscle atrophy. C57BL/6J male mice aged 6 weeks were randomly assigned to control, tail suspension (TS), and TS-eldecalcitol-treated groups and were injected intraperitoneally twice a week with either vehicle (control and TS) or eldecalcitol at 3.5 or 5 ng for 3 weeks. Grip strength and muscle weights of the gastrocnemius (GAS), tibialis anterior (TA), and soleus (SOL) were determined. Oxidative stress was evaluated by malondialdehyde, superoxide dismutase, glutathione peroxidase, and catalase. Bone microarchitecture was analyzed using microcomputed tomography. The effect of eldecalcitol on C2C12 myoblasts was analyzed by measuring myofibrillar protein MHC and the atrophy markers Atrogin-1 and MuRF-1 using immunofluorescence. The influence of eldecalcitol on NF-κB signaling pathway and vitamin D receptor (VDR) was assessed through immunofluorescence, (co)-immunoprecipitation, and VDR knockdown studies. Eldecalcitol increased grip strength (P < 0.01) and restored muscle loss in GAS, TA, and SOL (P < 0.05 to P < 0.001) induced by TS. An improvement was noted in bone mineral density and bone architecture in the eldecalcitol group. The impaired oxidative defense system was restored by eldecalcitol (P < 0.05 to P < 0.01 vs. TS). Eldecalcitol (10 nM) significantly inhibited the expression of MuRF-1 (P < 0.001) and Atrogin-1 (P < 0.01), increased the diameter of myotubes (P < 0.05), inhibited the expression of P65 and P52 components of NF-κB and P65 nuclear location, thereby inhibiting NF-κB signaling. Eldecalcitol promoted VDR binding to P65 and P52. VDR signaling is required for eldecalcitol-mediated anti-atrophy effects. In conclusion, eldecalcitol exerted its beneficial effects on disuse-induced muscle atrophy via NF-κB inhibition.
Collapse
Affiliation(s)
- Haichao Zhang
- Department of Osteoporosis and Bone Disease, Huadong Hospital Affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Shanghai, 200040, People's Republic of China
| | - Yanping Du
- Department of Osteoporosis and Bone Disease, Huadong Hospital Affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Shanghai, 200040, People's Republic of China
| | - Wenjing Tang
- Department of Osteoporosis and Bone Disease, Huadong Hospital Affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Shanghai, 200040, People's Republic of China
| | - Minmin Chen
- Department of Osteoporosis and Bone Disease, Huadong Hospital Affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Shanghai, 200040, People's Republic of China
| | - Weijia Yu
- Department of Osteoporosis and Bone Disease, Huadong Hospital Affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Shanghai, 200040, People's Republic of China
| | - Zheng Ke
- Medical Division, Chugai Pharma China Co., Ltd., Shanghai, 200021, People's Republic of China
| | - Shuangshuang Dong
- Medical Division, Chugai Pharma China Co., Ltd., Shanghai, 200021, People's Republic of China
| | - Qun Cheng
- Department of Osteoporosis and Bone Disease, Huadong Hospital Affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Shanghai, 200040, People's Republic of China.
| |
Collapse
|
15
|
Sasaki T, Yamada E, Uehara R, Okada S, Chikuda H, Yamada M. Role of Fyn and the interleukin-6-STAT-3-autophagy axis in sarcopenia. iScience 2023; 26:107717. [PMID: 37744036 PMCID: PMC10515305 DOI: 10.1016/j.isci.2023.107717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 07/31/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Sarcopenia is the progressive loss of muscle mass wherein Fyn regulates STAT3 to decrease autophagy. To elucidate the role of inflammation in Fyn-STAT3-dependent autophagy and sarcopenia, here we aimed to investigate the underlying mechanisms using two mouse models of primary and secondary sarcopenia: (1) tail suspension and (2) sciatic denervation. In wild-type mice, the expression of Fyn and IL-6 increased significantly. The expression and phosphorylation levels of STAT3 were also significantly augmented, while autophagic activity was abolished. To investigate Fyn-dependency, we used tail suspension with Fyn-null mice. In tail-suspended wild-type mice, IL-6 expression was increased; however, it was abolished in Fyn-null mice, which maintained autophagy and the expression and ablation of STAT3 phosphorylation. In conclusion, Fyn was found to be associated with the IL-6-STAT3-autophagy axis in sarcopenia. This finding permits a better understanding of sarcopenia-associated metabolic diseases and the possible development of therapeutic interventions.
Collapse
Affiliation(s)
- Tsuyoshi Sasaki
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Eijiro Yamada
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Ryota Uehara
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Shuichi Okada
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hirotaka Chikuda
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Masanobu Yamada
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
16
|
Meas SJ, Daire GM, Friedman MA, DeNapoli R, Ghosh P, Farr JN, Donahue HJ. Hindlimb Unloading Induces Bone Microarchitectural and Transcriptomic Changes in Murine Long Bones in an Age-Dependent Manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.09.561510. [PMID: 37873408 PMCID: PMC10592678 DOI: 10.1101/2023.10.09.561510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Age and disuse-related bone loss both result in decreases in bone mineral density, cortical thickness, and trabecular thickness and connectivity. Disuse induces physiological changes in bone like those seen with aging. Bone microarchitecture and biomechanical properties were compared between 6- and 22-month-old C57BL/6J male control mice and 6-month-old mice that were hindlimb unloaded (HLU) for 3 weeks. Epiphyseal trabecular bone was the compartment most affected by HLU and demonstrated an intermediate bone phenotype between age-matched controls and aged controls. RNA extracted from whole-bone marrow-flushed tibiae was sequenced and analyzed. Differential gene expression analysis additionally included 4-month-old male mice unloaded for 3 weeks compared to age-matched controls. Gene ontology analysis demonstrated that there were age-dependent differences in differentially expressed genes. Genes related to downregulation of cellular processes were most affected in 4-month-old mice after disuse whereas those related to mitochondrial function were most affected in 6- month-old mice. Cell-cycle transition was downregulated with aging. A publicly available dataset (GSE169292) from 3-month female C57BL/6N mice unloaded for 7 days was included in ingenuity pathway analysis with the other datasets. IPA was used to identify the leading canonical pathways and upstream regulators in each HLU age group. IPA identified "Senescence Pathway" as the second leading canonical pathway enriched in mice exposed to HLU. HLU induced activation of the senescence pathway in 3- month and 4-month-old mice but inhibited it in 6-month-old mice. In conclusion, we demonstrate that hindlimb unloading and aging initiate similar changes in bone microarchitecture and gene expression. However, aging is responsible for more significant transcriptome and tissue-level changes compared to hindlimb unloading. Highlights Epiphyseal trabecular bone is most susceptible to hindlimb unloading.Hindlimb unloaded limbs resemble an intermediate phenotype between age-matched and aged controls.Hindlimb unloading induces gene expression changes that are age dependent and may lead to inflammation and/or mitochondrial dysfunction depending on context.Younger mice (3-4 months) activate the senescence pathway upon hindlimb unloading, whereas skeletally mature (6 months) mice inhibit it.
Collapse
|
17
|
Mirzoev TM. The emerging role of Piezo1 channels in skeletal muscle physiology. Biophys Rev 2023; 15:1171-1184. [PMID: 37975010 PMCID: PMC10643716 DOI: 10.1007/s12551-023-01154-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/25/2023] [Indexed: 11/19/2023] Open
Abstract
Piezo1 channels are mechanically activated (MA) cation channels that are involved in sensing of various mechanical perturbations, such as membrane stretch and shear stress, and play a crucial role in cell mechanotransduction. In response to mechanical stimuli, these channels open up and allow cations to travel into the cell and induce biochemical reactions that can change the cell's metabolism and function. Skeletal muscle cells/fibers inherently depend upon mechanical cues in the form of fluid shear stress and contractions (physical exercise). For example, an exposure of skeletal muscles to chronic mechanical loading leads to increased anabolism and fiber hypertrophy, while prolonged mechanical unloading results in muscle atrophy. MA Piezo1 channels have recently emerged as key mechanosensors that are capable of linking mechanical signals and intramuscular signaling in skeletal muscle cells/fibers. This review will summarize the emerging role of Piezo1 channels in the development and regeneration of skeletal muscle tissue as well as in the regulation of skeletal muscle atrophy. In addition, an overview of potential Piezo1-related signaling pathways underlying anabolic and catabolic processes will be provided. A better understanding of Piezo1's role in skeletal muscle mechanotransduction may represent an important basis for the development of therapeutic strategies for maintaining muscle functions under disuse conditions and in some disease states.
Collapse
Affiliation(s)
- Timur M. Mirzoev
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow, Russia
| |
Collapse
|
18
|
Kutz L, Zhou T, Chen Q, Zhu H. A Surgical Approach to Hindlimb Suspension: A Mouse Model of Disuse-Induced Atrophy. Methods Mol Biol 2023; 2597:1-9. [PMID: 36374409 DOI: 10.1007/978-1-0716-2835-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hindlimb suspension is a well-established rodent model of disuse-induced atrophy and is commonly used to simulate the effects of bed rest and space flight on humans. Over the decades, this method has undergone many changes to reduce the stress response on the animals and improve the reliability of the data. Here, we detail our method of performing hindlimb suspension in mice that minimizes stress, maximizes the replicability of the data, and uses space efficiently.
Collapse
Affiliation(s)
- Laura Kutz
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Qi Chen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, USA
| | - Hua Zhu
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
19
|
Yakabe M, Hosoi T, Sasakawa H, Akishita M, Ogawa S. Kampo formula hochu-ekki-to (Bu-Zhong-Yi-Qi-Tang, TJ-41) ameliorates muscle atrophy by modulating atrogenes and AMPK in vivo and in vitro. BMC Complement Med Ther 2022; 22:341. [PMID: 36578084 PMCID: PMC9795672 DOI: 10.1186/s12906-022-03812-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 11/28/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Muscle disuse results in loss of skeletal muscle mass and function. Hochu-ekki-to (TJ-41; Bu-Zhong-Yi-Qi-Tang in Chinese) is an herbal medicinal formulation used to treat patients with frailty, fatigue and appetite loss. It has been suggested that two atrogenes, atrogin-1 and muscle Ring finger 1 (MuRF1), are ubiquitin ligases involved in disuse-induced muscle atrophy and that 5' adenosine monophosphate-activated protein kinase (AMPK) is involved in skeletal muscle metabolism. Effects of TJ-41 on disuse-induced muscle atrophy are unclear. METHODS We subjected differentiated C2C12 myotubes to serum starvation, then examined the effects of TJ-41 on atrogenes expression, AMPK activity and the morphology of the myotubes. Male C57BL/6J mice were subjected to tail-suspension to induce hindlimb atrophy. We administered TJ-41 by gavage to the control group and the tail-suspended group, then examined the effects of TJ-41 on atrogene expression, AMPK activity, and the muscle weight. RESULTS Serum starvation induced the expression of atrogin-1 and MuRF1 in C2C12 myotubes, and TJ-41 significantly downregulated the expression of atrogin-1. Tail-suspension of the mice induced the expression of atrogin-1 and MuRF1 in skeletal muscle as well as its muscle atrophy, whereas TJ-41 treatment significantly downregulated the expression of atrogin-1 and ameliorated the loss of the muscle weight. In addition, TJ-41 also activated AMPK and inactivated Akt and mTOR in skeletal muscle in vivo. CONCLUSION TJ-41 inhibited atrogenes in an Akt-independent manner as well as activating AMPK in skeletal muscles in vivo, further implying the therapeutic potential of TJ-41 against disuse-induced muscle atrophy and other atrogenes-dependent atrophic conditions.
Collapse
Affiliation(s)
- Mitsutaka Yakabe
- grid.26999.3d0000 0001 2151 536XDepartment of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7- 3-1, Hongo, Bunkyo-ku, 113-8655 Tokyo, Japan
| | - Tatsuya Hosoi
- grid.26999.3d0000 0001 2151 536XDepartment of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7- 3-1, Hongo, Bunkyo-ku, 113-8655 Tokyo, Japan
| | - Hiroko Sasakawa
- grid.26999.3d0000 0001 2151 536XDepartment of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7- 3-1, Hongo, Bunkyo-ku, 113-8655 Tokyo, Japan
| | - Masahiro Akishita
- grid.26999.3d0000 0001 2151 536XDepartment of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7- 3-1, Hongo, Bunkyo-ku, 113-8655 Tokyo, Japan
| | - Sumito Ogawa
- grid.26999.3d0000 0001 2151 536XDepartment of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7- 3-1, Hongo, Bunkyo-ku, 113-8655 Tokyo, Japan
| |
Collapse
|
20
|
Zaripova KА, Belova SP, Shenkman BS, Nemirovskaya TL. The Role of P2Y Receptors in the Regulation of Atrophic Processes in Rat Skeletal Muscles under Unloading. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022060047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Wang R, Kumar B, Doud EH, Mosley AL, Alexander MS, Kunkel LM, Nakshatri H. Skeletal muscle-specific overexpression of miR-486 limits mammary tumor-induced skeletal muscle functional limitations. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:231-248. [PMID: 35402076 PMCID: PMC8971682 DOI: 10.1016/j.omtn.2022.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/12/2022] [Indexed: 11/28/2022]
Abstract
miR-486 is a myogenic microRNA, and its reduced skeletal muscle expression is observed in muscular dystrophy. Transgenic overexpression of miR-486 using muscle creatine kinase promoter (MCK-miR-486) partially rescues muscular dystrophy phenotype. We had previously demonstrated reduced circulating and skeletal muscle miR-486 levels with accompanying skeletal muscle defects in mammary tumor models. To determine whether skeletal muscle miR-486 is functionally similar in dystrophies and cancer, we performed functional limitations and biochemical studies of skeletal muscles of MMTV-Neu mice that mimic HER2+ breast cancer and MMTV-PyMT mice that mimic luminal subtype B breast cancer and these mice crossed to MCK-miR-486 mice. miR-486 significantly prevented tumor-induced reduction in muscle contraction force, grip strength, and rotarod performance in MMTV-Neu mice. In this model, miR-486 reversed cancer-induced skeletal muscle changes, including loss of p53, phospho-AKT, and phospho-laminin alpha 2 (LAMA2) and gain of hnRNPA0 and SRSF10 phosphorylation. LAMA2 is a part of the dystrophin-associated glycoprotein complex, and its loss of function causes congenital muscular dystrophy. Complementing these beneficial effects on muscle, miR-486 indirectly reduced tumor growth and improved survival, which is likely due to systemic effects of miR-486 on production of pro-inflammatory cytokines such as IL-6. Thus, similar to dystrophy, miR-486 has the potential to reverse skeletal muscle defects and cancer burden.
Collapse
Affiliation(s)
- Ruizhong Wang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brijesh Kumar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Emma H. Doud
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Amber L. Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Matthew S. Alexander
- Department of Pediatrics, Division of Neurology, University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294, USA
| | - Louis M. Kunkel
- Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
22
|
IL-6 Deficiency Attenuates Skeletal Muscle Atrophy by Inhibiting Mitochondrial ROS Production through the Upregulation of PGC-1α in Septic Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9148246. [PMID: 35528525 PMCID: PMC9068301 DOI: 10.1155/2022/9148246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/13/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023]
Abstract
Current evidences indicate that both inflammation and oxidative stress contribute to the pathogenesis of sepsis-associated skeletal muscle atrophy. However, the interaction between inflammation and oxidative stress has not been completely understood in sepsis-associated skeletal muscle atrophy. Here in the present study, a murine model of sepsis has been established by cecal ligation and puncture (CLP) with wild-type and interleukin- (IL-) 6 knockout (KO) mice. Our results suggested that IL-6 KO largely attenuated skeletal muscle atrophy as reflected by reduced protein degradation, increased cross-sectional area (CSA) of myofibers, and improved muscle contractile function (all
). In addition, we observed that IL-6 KO promoted the expression of peroxisome proliferator-activated receptor γ coactivator–1alpha (PGC–1α) and inhibited CLP-induced mitochondrial reactive oxygen species (ROS) production in skeletal muscles (all
). However, the knockdown of PGC–1α abolished the protective effects of IL-6 KO in CLP-induced skeletal muscle atrophy and reversed the changes in mitochondrial ROS production (all
). Ex vivo experiments found that exogenous IL-6 inhibited PGC–1α expression, promoted mitochondrial ROS production, and induced proteolysis in C2C12 cells (all
). Together, these results suggested that IL-6 deficiency attenuated skeletal muscle atrophy by inhibiting mitochondrial ROS production through the upregulation of PGC–1α expression in septic mice.
Collapse
|
23
|
Hirata Y, Nomura K, Kato D, Tachibana Y, Niikura T, Uchiyama K, Hosooka T, Fukui T, Oe K, Kuroda R, Hara Y, Adachi T, Shibasaki K, Wake H, Ogawa W. A Piezo1/KLF15/IL-6 axis mediates immobilization-induced muscle atrophy. J Clin Invest 2022; 132:1-13. [PMID: 35290243 PMCID: PMC9159676 DOI: 10.1172/jci154611] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/01/2022] [Indexed: 11/17/2022] Open
Abstract
Although immobility is a common cause of muscle atrophy, the mechanism underlying this causality is unclear. We here show that Krüppel-like factor 15 (KLF15) and IL-6 are upregulated in skeletal muscle of limb-immobilized mice and that mice with KLF15 deficiency in skeletal muscle or with systemic IL-6 deficiency are protected from immobility-induced muscle atrophy. A newly developed Ca2+ bioimaging revealed that the cytosolic Ca2+ concentration ([Ca2+]i) of skeletal muscle is reduced to below the basal level by immobilization, which is associated with the downregulation of Piezo1. Acute disruption of Piezo1 in skeletal muscle induced Klf15 and Il6 expression as well as muscle atrophy, which was prevented by antibodies against IL-6. A role for the Piezo1/KLF15/IL-6 axis in immobility-induced muscle atrophy was validated in human samples. Our results thus uncover a paradigm for Ca2+ signaling in that a decrease in [Ca2+]i from the basal level triggers a defined biological event.
Collapse
Affiliation(s)
- Yu Hirata
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazuhiro Nomura
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Daisuke Kato
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihisa Tachibana
- Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takahiro Niikura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kana Uchiyama
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tetsuya Hosooka
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoaki Fukui
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Keisuke Oe
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuji Hara
- Department of Integrative Physiology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Takahiro Adachi
- Department of Precision Health, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koji Shibasaki
- Laboratory of Neurochemistry, Graduate School of Human Health Science, University of Nagasaki, Nagasaki, Japan
| | - Hiroaki Wake
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Wataru Ogawa
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
24
|
Lee PHU, Chung M, Ren Z, Mair DB, Kim DH. Factors mediating spaceflight-induced skeletal muscle atrophy. Am J Physiol Cell Physiol 2022; 322:C567-C580. [PMID: 35171699 DOI: 10.1152/ajpcell.00203.2021] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Skeletal muscle atrophy is a well-known consequence of spaceflight. Because of the potential significant impact of muscle atrophy and muscle dysfunction on astronauts and to their mission, a thorough understanding of the mechanisms of this atrophy and the development of effective countermeasures is critical. Spaceflight-induced muscle atrophy is similar to atrophy seen in many terrestrial conditions, and therefore our understanding of this form of atrophy may also contribute to the treatment of atrophy in humans on Earth. The unique environmental features humans encounter in space include the weightlessness of microgravity, space radiation, and the distinctive aspects of living in a spacecraft. The disuse and unloading of muscles in microgravity are likely the most significant factors that mediate spaceflight-induced muscle atrophy, and have been extensively studied and reviewed. However, there are numerous other direct and indirect effects on skeletal muscle that may be contributing factors to the muscle atrophy and dysfunction seen as a result of spaceflight. This review offers a novel perspective on the issue of muscle atrophy in space by providing a comprehensive overview of the unique aspects of the spaceflight environment and the various ways in which they can lead to muscle atrophy. We systematically review the potential contributions of these different mechanisms of spaceflight-induced atrophy and include findings from both actual spaceflight and ground-based models of spaceflight in humans, animals, and in vitro studies.
Collapse
Affiliation(s)
- Peter H U Lee
- Department of Cardiothoracic Surgery, Southcoast Health, Fall River, MA, United States.,Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | | | - Zhanping Ren
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Devin B Mair
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
25
|
Transcriptional responses of skeletal stem/progenitor cells to hindlimb unloading and recovery correlate with localized but not systemic multi-systems impacts. NPJ Microgravity 2021; 7:49. [PMID: 34836964 PMCID: PMC8626488 DOI: 10.1038/s41526-021-00178-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Disuse osteoporosis (DO) results from mechanical unloading of weight-bearing bones and causes structural changes that compromise skeletal integrity, leading to increased fracture risk. Although bone loss in DO results from imbalances in osteoblast vs. osteoclast activity, its effects on skeletal stem/progenitor cells (SSCs) is indeterminate. We modeled DO in mice by 8 and 14 weeks of hindlimb unloading (HU) or 8 weeks of unloading followed by 8 weeks of recovery (HUR) and monitored impacts on animal physiology and behavior, metabolism, marrow adipose tissue (MAT) volume, bone density and micro-architecture, and bone marrow (BM) leptin and tyrosine hydroxylase (TH) protein expression, and correlated multi-systems impacts of HU and HUR with the transcript profiles of Lin-LEPR+ SSCs and mesenchymal stem cells (MSCs) purified from BM. Using this integrative approach, we demonstrate that prolonged HU induces muscle atrophy, progressive bone loss, and MAT accumulation that paralleled increases in BM but not systemic leptin levels, which remained low in lipodystrophic HU mice. HU also induced SSC quiescence and downregulated bone anabolic and neurogenic pathways, which paralleled increases in BM TH expression, but had minimal impacts on MSCs, indicating a lack of HU memory in culture-expanded populations. Although most impacts of HU were reversed by HUR, trabecular micro-architecture remained compromised and time-resolved changes in the SSC transcriptome identified various signaling pathways implicated in bone formation that were unresponsive to HUR. These findings indicate that HU-induced alterations to the SSC transcriptome that persist after reloading may contribute to poor bone recovery.
Collapse
|
26
|
Identification of a KLF5-dependent program and drug development for skeletal muscle atrophy. Proc Natl Acad Sci U S A 2021; 118:2102895118. [PMID: 34426497 DOI: 10.1073/pnas.2102895118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Skeletal muscle atrophy is caused by various conditions, including aging, disuse related to a sedentary lifestyle and lack of physical activity, and cachexia. Our insufficient understanding of the molecular mechanism underlying muscle atrophy limits the targets for the development of effective pharmacologic treatments and preventions. Here, we identified Krüppel-like factor 5 (KLF5), a zinc-finger transcription factor, as a key mediator of the early muscle atrophy program. KLF5 was up-regulated in atrophying myotubes as an early response to dexamethasone or simulated microgravity in vitro. Skeletal muscle-selective deletion of Klf5 significantly attenuated muscle atrophy induced by mechanical unloading in mice. Transcriptome- and genome-wide chromatin accessibility analyses revealed that KLF5 regulates atrophy-related programs, including metabolic changes and E3-ubiquitin ligase-mediated proteolysis, in coordination with Foxo1. The synthetic retinoic acid receptor agonist Am80, a KLF5 inhibitor, suppressed both dexamethasone- and microgravity-induced muscle atrophy in vitro and oral Am80 ameliorated disuse- and dexamethasone-induced atrophy in mice. Moreover, in three independent sets of transcriptomic data from human skeletal muscle, KLF5 expression significantly increased with age and the presence of sarcopenia and correlated positively with the expression of the atrophy-related ubiquitin ligase genes FBXO32 and TRIM63 These findings demonstrate that KLF5 is a key transcriptional regulator mediating muscle atrophy and that pharmacological intervention with Am80 is a potentially preventive treatment.
Collapse
|
27
|
Xiong J, Le Y, Rao Y, Zhou L, Hu Y, Guo S, Sun Y. RANKL Mediates Muscle Atrophy and Dysfunction in a Cigarette Smoke-induced Model of Chronic Obstructive Pulmonary Disease. Am J Respir Cell Mol Biol 2021; 64:617-628. [PMID: 33689672 DOI: 10.1165/rcmb.2020-0449oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle dysfunction is one of the important comorbidities of chronic obstructive pulmonary disease (COPD); however, the underlying mechanisms remain largely unknown. RANKL (receptor activator of nuclear factor κB ligand), a key mediator in osteoclast differentiation, was also found to play a role in skeletal muscle pathogenesis. Whether RANKL is involved in COPD-related skeletal muscle dysfunction is as-of-yet unknown. We examined the expression of RANKL/RANK in skeletal muscles from mice exposed to cigarette smoke (CS) for 24 weeks. Grip strength and exercise capacity as well as muscular morphology were evaluated in CS-exposed mice with or without anti-RANKL treatment. The expressions of protein synthesis- or muscle growth-related molecules (IGF-1, myogenin, and myostatin), muscle-specific ubiquitin E3 ligases (MuRF1 and atrogin-1), and the NF-κb inflammatory pathway were also evaluated in skeletal muscles. The effect of CS extract on RANKL/RANK expression and that of exogenous RANKL on the ubiquitin-proteasome pathway in C2C12 myotubes were investigated in vitro. Long-term CS exposure induced skeletal muscle dysfunction and atrophy together with upregulation of RANKL/RANK expression in a well-established mouse model of COPD. RANKL neutralization prevented skeletal muscle dysfunction and atrophy. RANKL inhibition decreased expressions of myostatin and MuRF1/Atrogin1 and suppressed the NF-κb pathway in skeletal muscles from CS-exposed mice. In in vitro experiments with C2C12 myotubes, CS extract induced expression of RANKL/RANK, and exogenous RANKL induced activation of the ubiquitin-proteasome pathway and NF-κb pathway via RANK. Our results revealed an important role of the RANKL/RANK pathway in muscle atrophy induced by CS exposure, suggesting that RANKL may be a potential therapeutic target in COPD-related skeletal muscle dysfunction.
Collapse
Affiliation(s)
- Jing Xiong
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China; and
| | - Yanqing Le
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China; and
| | - Yafei Rao
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China; and
| | - Lu Zhou
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China; and
| | - Yuhan Hu
- Department of Respiratory Medicine, and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Suliang Guo
- Department of Respiratory Medicine, and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yongchang Sun
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China; and
| |
Collapse
|
28
|
Sumi K, Sakuda M, Munakata K, Nakamura K, Ashida K. α-Hydroxyisocaproic Acid Decreases Protein Synthesis but Attenuates TNFα/IFNγ Co-Exposure-Induced Protein Degradation and Myotube Atrophy via Suppression of iNOS and IL-6 in Murine C2C12 Myotube. Nutrients 2021; 13:nu13072391. [PMID: 34371902 PMCID: PMC8308709 DOI: 10.3390/nu13072391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/25/2022] Open
Abstract
There is ongoing debate as to whether or not α-hydroxyisocaproic acid (HICA) positively regulates skeletal muscle protein synthesis resulting in the gain or maintenance of skeletal muscle. We investigated the effects of HICA on mouse C2C12 myotubes under normal conditions and during cachexia induced by co-exposure to TNFα and IFNγ. The phosphorylation of AMPK or ERK1/2 was significantly altered 30 min after HICA treatment under normal conditions. The basal protein synthesis rates measured by a deuterium-labeling method were significantly lowered by the HICA treatment under normal and cachexic conditions. Conversely, myotube atrophy induced by TNFα/IFNγ co-exposure was significantly improved by the HICA pretreatment, and this improvement was accompanied by the inhibition of iNOS expression and IL-6 production. Moreover, HICA also suppressed the TNFα/IFNγ co-exposure-induced secretion of 3-methylhistidine. These results demonstrated that HICA decreases basal protein synthesis under normal or cachexic conditions; however, HICA might attenuate skeletal muscle atrophy via maintaining a low level of protein degradation under cachexic conditions.
Collapse
|
29
|
Letarouilly JG, Flipo RM, Cortet B, Tournadre A, Paccou J. Body composition in patients with rheumatoid arthritis: a narrative literature review. Ther Adv Musculoskelet Dis 2021; 13:1759720X211015006. [PMID: 34221129 PMCID: PMC8221676 DOI: 10.1177/1759720x211015006] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 04/13/2021] [Indexed: 01/09/2023] Open
Abstract
There is growing interest in the alterations in body composition (BC) that accompany rheumatoid arthritis (RA). The purpose of this review is to (i) investigate how BC is currently measured in RA patients, (ii) describe alterations in body composition in RA patients and (iii) evaluate the effect on nutrition, physical training, and treatments; that is, corticosteroids and biologic Disease Modifying Anti-Rheumatic Disease (bDMARDs), on BC in RA patients. The primary-source literature for this review was acquired using PubMed, Scopus and Cochrane database searches for articles published up to March 2021. The Medical Subject Headings (MeSH) terms used were 'Arthritis, Rheumatoid', 'body composition', 'sarcopenia', 'obesity', 'cachexia', 'Absorptiometry, Photon' and 'Electric Impedance'. The titles and abstracts of all articles were reviewed for relevant subjects. Whole-BC measurements were usually performed using dual energy x-ray absorptiometry (DXA) to quantify lean- and fat-mass parameters. In RA patients, lean mass is lower and adiposity is higher than in healthy controls, both in men and women. The prevalence of abnormal BC conditions such as overfat, sarcopenia and sarcopenic obesity is significantly higher in RA patients than in healthy controls; these alterations in BC are observed even at an early stage of the disease. Data on the effect treatments on BC in RA patients are scarce. In the few studies published, (a) creatine supplementation and progressive resistance training induce a slight and temporary increase in lean mass, (b) exposure to corticosteroids induces a gain in fat mass and (c) tumour necrosis factor alpha (TNFα) inhibitors might be associated with a gain in fat mass, while tocilizumab might be associated with a gain in lean mass. The available data clearly demonstrate that alterations in BC occur in RA patients, but data on the effect of treatments, especially bDMARDs, are inconsistent and further studies are needed in this area.
Collapse
Affiliation(s)
- Jean-Guillaume Letarouilly
- University of Lille F-59000 Lille, CHU Lille F-59000 Lille, France; University of Littoral Côte d'Opale F-62200 Boulogne-sur-Mer, France; Marrow Adiposity and Bone Lab - MABLab ULR4490Lille, France
| | - René-Marc Flipo
- Department of Rheumatology, University of Lille, CHU Lille, F-59000 Lille, France
| | - Bernard Cortet
- University of Lille F-59000 Lille, CHU Lille F-59000 Lille, France; University of Littoral Côte d'Opale F-62200 Boulogne-sur-Mer, France; Marrow Adiposity and Bone Lab - MABLab ULR4490Lille, France
| | - Anne Tournadre
- University of Clermont Auvergne, CHU Clermont-Ferrand, UNH-UMR 1019, INRA Department of Rheumatology, F-63003 Clermont-Ferrand, France
| | - Julien Paccou
- MABlab ULR 4490, Department of Rheumatology, CHU Lille, 2, Avenue Oscar Lambret - 59037 Lille Cedex
| |
Collapse
|
30
|
Matsukawa S, Kai S, Seo H, Suzuki K, Fukuda K. Activation of the β-adrenergic receptor exacerbates lipopolysaccharide-induced wasting of skeletal muscle cells by increasing interleukin-6 production. PLoS One 2021; 16:e0251921. [PMID: 34003837 PMCID: PMC8130926 DOI: 10.1371/journal.pone.0251921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/05/2021] [Indexed: 11/18/2022] Open
Abstract
The skeletal muscle mass has been shown to be affected by catecholamines, such as epinephrine (Epi), norepinephrine (NE), and isoproterenol (ISO). On the other hand, lipopolysaccharide (LPS), one of the causative substances of sepsis, induces muscle wasting via toll-like receptors expressed in skeletal muscle. Although catecholamines are frequently administered to critically ill patients, it is still incompletely understood how these drugs affect skeletal muscle during critical illness, including sepsis. Herein, we examined the direct effects of catecholamines on LPS-induced skeletal muscle wasting using the C2C12 myoblast cell line. Muscle wasting induced by catecholamines and/or LPS was analyzed by the use of the differentiated C2C12 myotubes, and its underlying mechanism was explored by immunoblotting analysis, quantitative reverse transcription polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assay (ELISA), and the TransAM kit for p-65 NF-κB. Epi augmented myosin heavy chain (MHC) protein loss and reduction of the myotube diameter induced by LPS. LPS induced C/EBPδ protein, Atrogin-1 and inteleukin-6 (IL-6), and these responses were potentiated by Epi. An IL-6 inhibitor, LMT28, suppressed the potentiating effect of Epi on the LPS-induced responses. NF-κB activity was induced by LPS, but was not affected by Epi and recombinant IL-6, and the NF-κB inhibitor, Bay 11–7082, abolished Atrogin-1 mRNA expression induced by LPS with or without Epi. NE and ISO also potentiated LPS-induced IL-6 and Atroign-1 mRNA expression. Carvedilol, a nonselective β-adrenergic receptor antagonist, suppressed the facilitating effects of Epi on the Atrogin-1 mRNA induction by LPS, and abolished the effects of Epi on the MHC protein loss in the presence of LPS. It was concluded that Epi activates the β-adrenergic receptors in C2C12 myotubes and the IL-6-STAT3 pathway, leading to the augmentation of LPS-induced activation of the NF-κB- C/EBPδ-Atrogin-1 pathway and to the exacerbation of myotube wasting.
Collapse
Affiliation(s)
- Shino Matsukawa
- Department of Anesthesia, Kyoto University Hospital, Kyoto, Japan
| | - Shinichi Kai
- Department of Anesthesia, Kyoto University Hospital, Kyoto, Japan
- * E-mail:
| | - Hideya Seo
- Department of Anesthesia, Kyoto University Hospital, Kyoto, Japan
| | - Kengo Suzuki
- Department of Anesthesia, Kyoto University Hospital, Kyoto, Japan
| | - Kazuhiko Fukuda
- Department of Anesthesia, Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
31
|
Knuth CM, Auger C, Jeschke MG. Burn-induced hypermetabolism and skeletal muscle dysfunction. Am J Physiol Cell Physiol 2021; 321:C58-C71. [PMID: 33909503 DOI: 10.1152/ajpcell.00106.2021] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Critical illnesses, including sepsis, cancer cachexia, and burn injury, invoke a milieu of systemic metabolic and inflammatory derangements that ultimately results in increased energy expenditure leading to fat and lean mass catabolism. Burn injuries present a unique clinical challenge given the magnitude and duration of the hypermetabolic response compared with other forms of critical illness, which drastically increase the risk of morbidity and mortality. Skeletal muscle metabolism is particularly altered as a consequence of burn-induced hypermetabolism, as it primarily provides a main source of fuel in support of wound healing. Interestingly, muscle catabolism is sustained long after the wound has healed, indicating that additional mechanisms beyond wound healing are involved. In this review, we discuss the distinctive pathophysiological response to burn injury with a focus on skeletal muscle function and metabolism. We first examine the diverse consequences on skeletal muscle dysfunction between thermal, electrical, and chemical burns. We then provide a comprehensive overview of the known mechanisms underlying skeletal muscle dysfunction that may be attributed to hypermetabolism. Finally, we review the most promising current treatment options to mitigate muscle catabolism, and by extension improve morbidity and mortality, and end with future directions that have the potential to significantly improve patient care.
Collapse
Affiliation(s)
- Carly M Knuth
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Christopher Auger
- Department of Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Marc G Jeschke
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| |
Collapse
|
32
|
Mônico-Neto M, Lee KS, da Luz MHM, Pino JMV, Ribeiro DA, Cardoso CM, Sueur-Maluf LL, Tufik S, Antunes HKM. Histopathological changes and oxidative damage in type I and type II muscle fibers in rats undergoing paradoxical sleep deprivation. Cell Signal 2021; 81:109939. [PMID: 33529759 DOI: 10.1016/j.cellsig.2021.109939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND previous studies have shown that muscle atrophy is observed after sleep deprivation (SD) protocols; however, the mechanisms responsible are not fully understood. Muscle trophism can be modulated by several factors, including energy balance (positive or negative), nutritional status, oxidative stress, the level of physical activity, and disuse. The metabolic differences that exist in different types of muscle fiber may also be the result of different adaptive responses. To better understand these mechanisms, we evaluated markers of oxidative damage and histopathological changes in different types of muscle fibers in sleep-deprived rats. METHODS Twenty male Wistar EPM-1 rats were randomly allocated in two groups: a control group (CTL group; n = 10) and a sleep deprived group (SD group; n = 10). The SD group was submitted to continuous paradoxical SD for 96 h; the soleus (type I fibers) and plantar (type II fiber) muscles were analyzed for histopathological changes, trophism, lysosomal activity, and oxidative damage. Oxidative damage was assessed by lipid peroxidation and nuclear labeling of 8-OHdG. RESULTS The data demonstrated that SD increased the nuclear labeling of 8-OHdG and induced histopathological changes in both muscles, being more evident in the soleus muscle. In the type I fibers there was signs of tissue degeneration, inflammatory infiltrate and tissue edema. Muscle atrophy was observed in both muscles. The concentration of malondialdehyde, and cathepsin L activity only increased in type I fibers after SD. CONCLUSION These data indicate that the histopathological changes observed after 96 h of SD in the skeletal muscle occur by different processes, according to the type of muscle fiber, with muscles predominantly composed of type I fibers undergoing greater oxidative damage and catabolic activity, as evidenced by a larger increase in 8-OHdG labeling, lipid peroxidation, and lysosomal activity.
Collapse
Affiliation(s)
- Marcos Mônico-Neto
- Department of Psychobiology, Universidade Federal de São Paulo, SP, Brazil; Department of Biosciences, Post Graduate Program of Interdisciplinary Health Sciences, Universidade Federal de São Paulo, Santos, Brazil
| | - Kil Sun Lee
- Department of Biochemistry, Universidade Federal de São Paulo, SP, Brazil
| | | | | | - Daniel Araki Ribeiro
- Department of Biosciences, Post Graduate Program of Interdisciplinary Health Sciences, Universidade Federal de São Paulo, Santos, Brazil; Department of Pathology, Universidade Federal de São Paulo, SP, Brazil
| | | | - Luciana Le Sueur-Maluf
- Department of Biosciences, Post Graduate Program of Interdisciplinary Health Sciences, Universidade Federal de São Paulo, Santos, Brazil
| | - Sergio Tufik
- Department of Psychobiology, Universidade Federal de São Paulo, SP, Brazil
| | - Hanna Karen Moreira Antunes
- Department of Biosciences, Post Graduate Program of Interdisciplinary Health Sciences, Universidade Federal de São Paulo, Santos, Brazil.
| |
Collapse
|
33
|
Peris-Moreno D, Cussonneau L, Combaret L, Polge C, Taillandier D. Ubiquitin Ligases at the Heart of Skeletal Muscle Atrophy Control. Molecules 2021; 26:molecules26020407. [PMID: 33466753 PMCID: PMC7829870 DOI: 10.3390/molecules26020407] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle loss is a detrimental side-effect of numerous chronic diseases that dramatically increases mortality and morbidity. The alteration of protein homeostasis is generally due to increased protein breakdown while, protein synthesis may also be down-regulated. The ubiquitin proteasome system (UPS) is a master regulator of skeletal muscle that impacts muscle contractile properties and metabolism through multiple levers like signaling pathways, contractile apparatus degradation, etc. Among the different actors of the UPS, the E3 ubiquitin ligases specifically target key proteins for either degradation or activity modulation, thus controlling both pro-anabolic or pro-catabolic factors. The atrogenes MuRF1/TRIM63 and MAFbx/Atrogin-1 encode for key E3 ligases that target contractile proteins and key actors of protein synthesis respectively. However, several other E3 ligases are involved upstream in the atrophy program, from signal transduction control to modulation of energy balance. Controlling E3 ligases activity is thus a tempting approach for preserving muscle mass. While indirect modulation of E3 ligases may prove beneficial in some situations of muscle atrophy, some drugs directly inhibiting their activity have started to appear. This review summarizes the main signaling pathways involved in muscle atrophy and the E3 ligases implicated, but also the molecules potentially usable for future therapies.
Collapse
|
34
|
Nay K, Martin D, Orfila L, Saligaut D, Martin B, Horeau M, Cavey T, Kenawi M, Island ML, Ropert M, Loréal O, Koechlin-Ramonatxo C, Derbré F. Intermittent reloading does not prevent reduction in iron availability and hepcidin upregulation caused by hindlimb unloading. Exp Physiol 2021; 106:28-36. [PMID: 32281155 DOI: 10.1113/ep088339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 04/09/2020] [Indexed: 01/06/2023]
Abstract
NEW FINDINGS What is the central question of this study? Could skeletal muscle be involved in microgravity-induced iron misdistribution by modulating expression of hepcidin, the master regulator of iron metabolism? What is the main finding and its importance? We demonstrate, in rats, that hepcidin upregulation is not a transient adaptation associated with early exposure to microgravity and that intermittent reloading does not limit microgravity-induced iron misdistribution despite having a beneficial effect on soleus muscle wasting. ABSTRACT In humans, exposure to microgravity during spaceflight causes muscle atrophy, changes in iron storage and a reduction in iron availability. We previously observed that during 7 days of simulated microgravity in rats, hepcidin plays a key role in iron misdistribution, and we suggested that a crosstalk between skeletal muscle and liver could regulate hepcidin synthesis in this context. In the present study in rats, we investigated the medium-term effects of simulated microgravity on iron metabolism. We also tested whether intermittent reloading (IR) to target skeletal muscle atrophy limits iron misdistribution efficiently. For this purpose, Wistar rats underwent 14 days of hindlimb unloading (HU) combined or not combined with daily IR. At the end of this period, the serum iron concentration and transferrin saturation were significantly reduced, whereas hepatic hepcidin mRNA was upregulated. However, the main signalling pathways involved in hepcidin synthesis in the liver (BMP-small mothers against decapentaplegic (SMAD), interleukin-6-STAT3 and ERK1/2) were unaffected. Unlike what was observed after 7 days of HU, the iron concentration in the spleen, liver and skeletal muscle was comparable between control animals and those that underwent HU or HU plus IR for 14 days. Despite its beneficial effect on soleus muscle atrophy and slow-to-fast myosin heavy chain distribution, IR did not significantly prevent a reduction in iron availability and hepcidin upregulation. Altogether, these results highlight that iron availability is durably reduced during longer exposure to simulated microgravity and that the related hepcidin upregulation is not a transient adaptation to these conditions. The results also suggest that skeletal muscle does not necessarily play a key role in the iron misdistribution that occurs during simulated microgravity.
Collapse
Affiliation(s)
- Kévin Nay
- Laboratory 'Movement Sport and Health Sciences' EA7470, University of Rennes/ENS Rennes, France
- DMEM, Univ Montpellier, INRAE, Montpellier, France
| | - David Martin
- Laboratory 'Movement Sport and Health Sciences' EA7470, University of Rennes/ENS Rennes, France
| | - Luz Orfila
- Laboratory 'Movement Sport and Health Sciences' EA7470, University of Rennes/ENS Rennes, France
| | - Dany Saligaut
- Laboratory 'Movement Sport and Health Sciences' EA7470, University of Rennes/ENS Rennes, France
| | - Brice Martin
- Laboratory 'Movement Sport and Health Sciences' EA7470, University of Rennes/ENS Rennes, France
| | - Mathieu Horeau
- Laboratory 'Movement Sport and Health Sciences' EA7470, University of Rennes/ENS Rennes, France
| | - Thibaut Cavey
- INSERM 1241, University of Rennes, Nutrition Metabolisms and Cancer (NuMeCan), Rennes, France
- Department of Biochemistry, CHU, Rennes, France
| | - Moussa Kenawi
- INSERM 1241, University of Rennes, Nutrition Metabolisms and Cancer (NuMeCan), Rennes, France
| | - Marie-Laure Island
- INSERM 1241, University of Rennes, Nutrition Metabolisms and Cancer (NuMeCan), Rennes, France
- Department of Biochemistry, CHU, Rennes, France
| | - Martine Ropert
- INSERM 1241, University of Rennes, Nutrition Metabolisms and Cancer (NuMeCan), Rennes, France
- Department of Biochemistry, CHU, Rennes, France
| | - Olivier Loréal
- INSERM 1241, University of Rennes, Nutrition Metabolisms and Cancer (NuMeCan), Rennes, France
| | | | - Frédéric Derbré
- Laboratory 'Movement Sport and Health Sciences' EA7470, University of Rennes/ENS Rennes, France
| |
Collapse
|
35
|
Mirzoev TM. Skeletal Muscle Recovery from Disuse Atrophy: Protein Turnover Signaling and Strategies for Accelerating Muscle Regrowth. Int J Mol Sci 2020; 21:ijms21217940. [PMID: 33114683 PMCID: PMC7663166 DOI: 10.3390/ijms21217940] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/08/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022] Open
Abstract
Skeletal muscle fibers have a unique capacity to adjust their metabolism and phenotype in response to alternations in mechanical loading. Indeed, chronic mechanical loading leads to an increase in skeletal muscle mass, while prolonged mechanical unloading results in a significant decrease in muscle mass (muscle atrophy). The maintenance of skeletal muscle mass is dependent on the balance between rates of muscle protein synthesis and breakdown. While molecular mechanisms regulating protein synthesis during mechanical unloading have been relatively well studied, signaling events implicated in protein turnover during skeletal muscle recovery from unloading are poorly defined. A better understanding of the molecular events that underpin muscle mass recovery following disuse-induced atrophy is of significant importance for both clinical and space medicine. This review focuses on the molecular mechanisms that may be involved in the activation of protein synthesis and subsequent restoration of muscle mass after a period of mechanical unloading. In addition, the efficiency of strategies proposed to improve muscle protein gain during recovery is also discussed.
Collapse
Affiliation(s)
- Timur M Mirzoev
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow 123007, Russia
| |
Collapse
|
36
|
The Extract of Arctium lappa L. Fruit (Arctii Fructus) Improves Cancer-Induced Cachexia by Inhibiting Weight Loss of Skeletal Muscle and Adipose Tissue. Nutrients 2020; 12:nu12103195. [PMID: 33086629 PMCID: PMC7603378 DOI: 10.3390/nu12103195] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/24/2022] Open
Abstract
Background: Cachexia induced by cancer is a systemic wasting syndrome and it accompanies continuous body weight loss with the exhaustion of skeletal muscle and adipose tissue. Cancer cachexia is not only a problem in itself, but it also reduces the effectiveness of treatments and deteriorates quality of life. However, effective treatments have not been found yet. Although Arctii Fructus (AF) has been studied about several pharmacological effects, there were no reports on its use in cancer cachexia. Methods: To induce cancer cachexia in mice, we inoculated CT-26 cells to BALB/c mice through subcutaneous injection and intraperitoneal injection. To mimic cancer cachexia in vitro, we used conditioned media (CM), which was CT-26 colon cancer cells cultured medium. Results: In in vivo experiments, AF suppressed expression of interleukin (IL)-6 and atrophy of skeletal muscle and adipose tissue. As a result, the administration of AF decreased mortality by preventing weight loss. In adipose tissue, AF decreased expression of uncoupling protein 1 (UCP1) by restoring AMP-activated protein kinase (AMPK) activation. In in vitro model, CM increased muscle degradation factors and decreased adipocytes differentiation factors. However, these tendencies were ameliorated by AF treatment in C2C12 myoblasts and 3T3-L1 cells. Conclusion: Taken together, our study demonstrated that AF could be a therapeutic supplement for patients suffering from cancer cachexia.
Collapse
|
37
|
Howard EE, Margolis LM, Berryman CE, Lieberman HR, Karl JP, Young AJ, Montano MA, Evans WJ, Rodriguez NR, Johannsen NM, Gadde KM, Harris MN, Rood JC, Pasiakos SM. Testosterone supplementation upregulates androgen receptor expression and translational capacity during severe energy deficit. Am J Physiol Endocrinol Metab 2020; 319:E678-E688. [PMID: 32776828 PMCID: PMC7750513 DOI: 10.1152/ajpendo.00157.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/23/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022]
Abstract
Testosterone supplementation during energy deficit promotes whole body lean mass accretion, but the mechanisms underlying that effect remain unclear. To elucidate those mechanisms, skeletal muscle molecular adaptations were assessed from muscle biopsies collected before, 1 h, and 6 h after exercise and a mixed meal (40 g protein, 1 h postexercise) following 14 days of weight maintenance (WM) and 28 days of an exercise- and diet-induced 55% energy deficit (ED) in 50 physically active nonobese men treated with 200 mg testosterone enanthate/wk (TEST) or placebo (PLA) during the ED. Participants (n = 10/group) exhibiting substantial increases in leg lean mass and total testosterone (TEST) were compared with those exhibiting decreases in both of these measures (PLA). Resting androgen receptor (AR) protein content was higher and fibroblast growth factor-inducible 14 (Fn14), IL-6 receptor (IL-6R), and muscle ring-finger protein-1 gene expression was lower in TEST vs. PLA during ED relative to WM (P < 0.05). Changes in inflammatory, myogenic, and proteolytic gene expression did not differ between groups after exercise and recovery feeding. Mechanistic target of rapamycin signaling (i.e., translational efficiency) was also similar between groups at rest and after exercise and the mixed meal. Muscle total RNA content (i.e., translational capacity) increased more during ED in TEST than PLA (P < 0.05). These findings indicate that attenuated proteolysis at rest, possibly downstream of AR, Fn14, and IL-6R signaling, and increased translational capacity, not efficiency, may drive lean mass accretion with testosterone administration during energy deficit.
Collapse
Affiliation(s)
- Emily E Howard
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee
- University of Connecticut, Storrs, Connecticut
| | - Lee M Margolis
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Claire E Berryman
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee
- Florida State University, Tallahassee, Florida
| | - Harris R Lieberman
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - J Philip Karl
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Andrew J Young
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee
| | - Monty A Montano
- MyoSyntax Corporation, Worcester, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Brigham and Women's Hospital, Boston, Massachusetts
| | - William J Evans
- University of California at Berkeley, Berkeley, California
- Duke University, Durham, North Carolina
| | | | - Neil M Johannsen
- Louisiana State University's Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Kishore M Gadde
- Louisiana State University's Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Melissa N Harris
- Louisiana State University's Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Jennifer C Rood
- Louisiana State University's Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Stefan M Pasiakos
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| |
Collapse
|
38
|
Nonaka K, Akiyama J, Yoshikawa Y, Une S, Ito K. 1,25-Dihydroxyvitamin D 3 Inhibits Lipopolysaccharide-Induced Interleukin-6 Production by C2C12 Myotubes. ACTA ACUST UNITED AC 2020; 56:medicina56090450. [PMID: 32899782 PMCID: PMC7558322 DOI: 10.3390/medicina56090450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/31/2022]
Abstract
Background and Objective: 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) inhibits proinflammatory cytokines in microglial cells and monocytes. However, it is unclear whether 1,25(OH)2D3 inhibits proinflammatory cytokines in muscle cells. This study was conducted to investigate whether 1,25(OH)2D3 inhibits the production of proinflammatory cytokines, resulting in inhibition of the protein expression of E3 ubiquitin ligases and muscle protein loss. Materials and Methods: C2C12 myoblasts were proliferated in Dulbecco’s modified Eagle medium (DMEM) containing 10% fetal bovine serum, and myoblasts were differentiated into myotubes in DMEM containing 2% horse serum. Myotubes were treated with 1,25(OH)2D3 for 24 h, followed by lipopolysaccharide (LPS) stimulation for 48 h. Results: Interleukin (IL)-6 protein concentrations were higher in the culture supernatant following LPS stimulation compared to that without LPS stimulation (p < 0.001). However, the IL-6 concentration was significantly lower in C2C12 myotubes following 1,25(OH)2D3 treatment than in C2C12 myotubes without 1,25(OH)2D3 treatment (p < 0.001). The myosin heavy chain (MHC), muscle atrophy F-box, and muscle ring-finger protein-1 protein levels did not significantly differ (P = 0.324, 0.552, and 0.352, respectively). We could not compare tumor necrosis factor α (TNFα) protein levels because they were below the limit of detection of our assay in many supernatant samples, including in LPS-stimulated samples. Conclusions: 1,25(OH)2D3 inhibited increases in IL-6 protein concentrations in muscle cells stimulated by LPS, suggesting that 1,25(OH)2D3 inhibits inflammation in muscle cells. The findings suggest that 1,25(OH)2D3 can prevent or improve sarcopenia, which is associated with IL-6. The TNFα protein content could not be measured, and MHC was not decreased despite LPS stimulation of C2C12 myotubes. Further studies are needed to examine the effects of higher doses of LPS stimulation on muscle cells and use more sensitive methods for measuring TNFα protein to investigate the preventive effects of 1,25(OH)2D3 on increased TNFα and muscle proteolysis.
Collapse
Affiliation(s)
- Koji Nonaka
- Faculty of Health Sciences, Naragakuen University, Nara, Nara 631-8524, Japan; (Y.Y.); (K.I.)
- Correspondence: ; Tel.: +81-742-93-5425
| | - Junichi Akiyama
- Department of Physical Therapy, School of Health Care and Social Welfare, Kibi International University, Takahashi, Okayama 716-8508, Japan;
| | - Yoshiyuki Yoshikawa
- Faculty of Health Sciences, Naragakuen University, Nara, Nara 631-8524, Japan; (Y.Y.); (K.I.)
| | - Satsuki Une
- Faculty of Education, Kagawa University, Takamatsu 760-8521, Japan;
| | - Kenichi Ito
- Faculty of Health Sciences, Naragakuen University, Nara, Nara 631-8524, Japan; (Y.Y.); (K.I.)
| |
Collapse
|
39
|
Scalabrin M, Adams V, Labeit S, Bowen TS. Emerging Strategies Targeting Catabolic Muscle Stress Relief. Int J Mol Sci 2020; 21:E4681. [PMID: 32630118 PMCID: PMC7369951 DOI: 10.3390/ijms21134681] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 12/21/2022] Open
Abstract
Skeletal muscle wasting represents a common trait in many conditions, including aging, cancer, heart failure, immobilization, and critical illness. Loss of muscle mass leads to impaired functional mobility and severely impedes the quality of life. At present, exercise training remains the only proven treatment for muscle atrophy, yet many patients are too ill, frail, bedridden, or neurologically impaired to perform physical exertion. The development of novel therapeutic strategies that can be applied to an in vivo context and attenuate secondary myopathies represents an unmet medical need. This review discusses recent progress in understanding the molecular pathways involved in regulating skeletal muscle wasting with a focus on pro-catabolic factors, in particular, the ubiquitin-proteasome system and its activating muscle-specific E3 ligase RING-finger protein 1 (MuRF1). Mechanistic progress has provided the opportunity to design experimental therapeutic concepts that may affect the ubiquitin-proteasome system and prevent subsequent muscle wasting, with novel advances made in regards to nutritional supplements, nuclear factor kappa-light-chain-enhancer of activated B cells (NFB) inhibitors, myostatin antibodies, β2 adrenergic agonists, and small-molecules interfering with MuRF1, which all emerge as a novel in vivo treatment strategies for muscle wasting.
Collapse
Affiliation(s)
- Mattia Scalabrin
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK;
| | - Volker Adams
- Department of Experimental and Molecular Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany;
- Dresden Cardiovascular Research Institute and Core Laboratories GmbH, 01067 Dresden, Germany
| | - Siegfried Labeit
- Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany;
- Myomedix GmbH, Im Biengarten 36, 69151 Neckargemünd, Germany
| | - T. Scott Bowen
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK;
| |
Collapse
|
40
|
Shukla SK, Markov SD, Attri KS, Vernucci E, King RJ, Dasgupta A, Grandgenett PM, Hollingsworth MA, Singh PK, Yu F, Mehla K. Macrophages potentiate STAT3 signaling in skeletal muscles and regulate pancreatic cancer cachexia. Cancer Lett 2020; 484:29-39. [PMID: 32344015 DOI: 10.1016/j.canlet.2020.04.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/06/2020] [Accepted: 04/20/2020] [Indexed: 12/25/2022]
Abstract
Incidence of cachexia is highly prevalent in pancreatic ductal adenocarcinoma (PDAC); advanced disease stage directly correlates with decreased muscle and fat mass in PDAC patients. The pancreatic tumor microenvironment is central to the release of systemic factors that govern lipolysis, proteolysis, and muscle and fat degeneration leading to the cachectic phenotype in cancer patients. The current study explores the role of macrophages, a key immunosuppressive player in the pancreatic tumor microenvironment, in regulating cancer cachexia. We observed a negative correlation between CD163-positive macrophage infiltration and muscle-fiber cross sectional area in human PDAC patients. To investigate the role of macrophages in myodegeneration, we utilized conditioned media transplant assays and orthotopic models of PDAC-induced cachexia in immune-competent mice with and without macrophage depletion. We observed that macrophage-derived conditioned medium, in combination with tumor cell-conditioned medium, promoted muscle atrophy through STAT3 signaling. Furthermore, macrophage depletion attenuated systemic inflammation and muscle wasting in pancreatic tumor-bearing mice. Targeting macrophage-mediated STAT3 activation or macrophage-derived interleukin-1 alpha or interleukin-6 diminished myofiber atrophy. Taken together, the current study identified the critical association between macrophages and cachexia phenotype in pancreatic cancer.
Collapse
Affiliation(s)
- Surendra K Shukla
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Spas D Markov
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kuldeep S Attri
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Enza Vernucci
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ryan J King
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Aneesha Dasgupta
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Paul M Grandgenett
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael A Hollingsworth
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pankaj K Singh
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Fang Yu
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kamiya Mehla
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
41
|
Belova SP, Mochalova EP, Kostrominova TY, Shenkman BS, Nemirovskaya TL. P38α-MAPK Signaling Inhibition Attenuates Soleus Atrophy during Early Stages of Muscle Unloading. Int J Mol Sci 2020; 21:ijms21082756. [PMID: 32326654 PMCID: PMC7215762 DOI: 10.3390/ijms21082756] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 01/24/2023] Open
Abstract
To test the hypothesis that p38α-MAPK plays a critical role in the regulation of E3 ligase expression and skeletal muscle atrophy during unloading, we used VX-745, a selective p38α inhibitor. Three groups of rats were used: non-treated control (C), 3 days of unloading/hindlimb suspension (HS), and 3 days HS with VX-745 inhibitor (HSVX; 10 mg/kg/day). Total weight of soleus muscle in HS group was reduced compared to C (72.3 ± 2.5 vs 83.0 ± 3 mg, respectively), whereas muscle weight in the HSVX group was maintained (84.2 ± 5 mg). The expression of muscle RING-finger protein-1 (MuRF1) mRNA was significantly increased in the HS group (165%), but not in the HSVX group (127%), when compared with the C group. The expression of muscle-specific E3 ubiquitin ligases muscle atrophy F-box (MAFbx) mRNA was increased in both HS and HSVX groups (294% and 271%, respectively) when compared with C group. The expression of ubiquitin mRNA was significantly higher in the HS (423%) than in the C and HSVX (200%) groups. VX-745 treatment blocked unloading-induced upregulation of calpain-1 mRNA expression (HS: 120%; HSVX: 107%). These results indicate that p38α-MAPK signaling regulates MuRF1 but not MAFbx E3 ligase expression and inhibits skeletal muscle atrophy during early stages of unloading.
Collapse
Affiliation(s)
- Svetlana P. Belova
- Institute of Biomedical Problems, RAS, Moscow 123007, Russia; (S.P.B.); (E.P.M.); (B.S.S.)
| | - Ekaterina P. Mochalova
- Institute of Biomedical Problems, RAS, Moscow 123007, Russia; (S.P.B.); (E.P.M.); (B.S.S.)
| | - Tatiana Y. Kostrominova
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine-Northwest, Gary, IN 46408, USA;
| | - Boris S. Shenkman
- Institute of Biomedical Problems, RAS, Moscow 123007, Russia; (S.P.B.); (E.P.M.); (B.S.S.)
| | - Tatiana L. Nemirovskaya
- Institute of Biomedical Problems, RAS, Moscow 123007, Russia; (S.P.B.); (E.P.M.); (B.S.S.)
- Correspondence:
| |
Collapse
|
42
|
Hitachi K, Nakatani M, Funasaki S, Hijikata I, Maekawa M, Honda M, Tsuchida K. Expression Levels of Long Non-Coding RNAs Change in Models of Altered Muscle Activity and Muscle Mass. Int J Mol Sci 2020; 21:ijms21051628. [PMID: 32120896 PMCID: PMC7084395 DOI: 10.3390/ijms21051628] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle is a highly plastic organ that is necessary for homeostasis and health of the human body. The size of skeletal muscle changes in response to intrinsic and extrinsic stimuli. Although protein-coding RNAs including myostatin, NF-κβ, and insulin-like growth factor-1 (IGF-1), have pivotal roles in determining the skeletal muscle mass, the role of long non-coding RNAs (lncRNAs) in the regulation of skeletal muscle mass remains to be elucidated. Here, we performed expression profiling of nine skeletal muscle differentiation-related lncRNAs (DRR, DUM1, linc-MD1, linc-YY1, LncMyod, Neat1, Myoparr, Malat1, and SRA) and three genomic imprinting-related lncRNAs (Gtl2, H19, and IG-DMR) in mouse skeletal muscle. The expression levels of these lncRNAs were examined by quantitative RT-PCR in six skeletal muscle atrophy models (denervation, casting, tail suspension, dexamethasone-administration, cancer cachexia, and fasting) and two skeletal muscle hypertrophy models (mechanical overload and deficiency of the myostatin gene). Cluster analyses of these lncRNA expression levels were successfully used to categorize the muscle atrophy models into two sub-groups. In addition, the expression of Gtl2, IG-DMR, and DUM1 was altered along with changes in the skeletal muscle size. The overview of the expression levels of lncRNAs in multiple muscle atrophy and hypertrophy models provides a novel insight into the role of lncRNAs in determining the skeletal muscle mass.
Collapse
Affiliation(s)
- Keisuke Hitachi
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (M.N.)
| | - Masashi Nakatani
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (M.N.)
| | - Shiori Funasaki
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (M.N.)
| | - Ikumi Hijikata
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (M.N.)
| | - Mizuki Maekawa
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (M.N.)
| | - Masahiko Honda
- Department of Biochemistry, Kindai University Faculty of Medicine, Osaka-Sayama 589-8511, Japan;
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center Research Institute, Suita 564-8565, Japan
| | - Kunihiro Tsuchida
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (M.N.)
- Correspondence: ; Tel.: +81-562-93-9384
| |
Collapse
|
43
|
Targeting Age-Dependent Functional and Metabolic Decline of Human Skeletal Muscle: The Geroprotective Role of Exercise, Myokine IL-6, and Vitamin D. Int J Mol Sci 2020; 21:ijms21031010. [PMID: 32033000 PMCID: PMC7037081 DOI: 10.3390/ijms21031010] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 02/06/2023] Open
Abstract
In the elderly, whole-body health largely relies on healthy skeletal muscle, which controls body stability, locomotion, and metabolic homeostasis. Age-related skeletal muscle structural/functional deterioration is associated with a higher risk of severe comorbid conditions and poorer outcomes, demanding major socioeconomic costs. Thus, the need for efficient so-called geroprotective strategies to improve resilience and ensure a good quality of life in older subjects is urgent. Skeletal muscle senescence and metabolic dysregulation share common cellular/intracellular mechanisms, potentially representing targets for intervention to preserve muscle integrity. Many factors converge in aging, and multifaceted approaches have been proposed as interventions, although they have often been inconclusive. Physical exercise can counteract aging and metabolic deficits, not only in maintaining tissue mass, but also by preserving tissue secretory function. Indeed, skeletal muscle is currently considered a proper secretory organ controlling distant organ functions through immunoactive regulatory small peptides called myokines. This review provides a current perspective on the main biomolecular mechanisms underlying age-dependent and metabolic deterioration of skeletal muscle, herein discussed as a secretory organ, the functional integrity of which largely depends on exercise and myokine release. In particular, muscle-derived interleukin (IL)-6 is discussed as a nutrient-level biosensor. Overall, exercise and vitamin D are addressed as optimal geroprotective strategies in view of their multi-target effects.
Collapse
|
44
|
Buvinic S, Balanta-Melo J, Kupczik K, Vásquez W, Beato C, Toro-Ibacache V. Muscle-Bone Crosstalk in the Masticatory System: From Biomechanical to Molecular Interactions. Front Endocrinol (Lausanne) 2020; 11:606947. [PMID: 33732211 PMCID: PMC7959242 DOI: 10.3389/fendo.2020.606947] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/31/2020] [Indexed: 12/12/2022] Open
Abstract
The masticatory system is a complex and highly organized group of structures, including craniofacial bones (maxillae and mandible), muscles, teeth, joints, and neurovascular elements. While the musculoskeletal structures of the head and neck are known to have a different embryonic origin, morphology, biomechanical demands, and biochemical characteristics than the trunk and limbs, their particular molecular basis and cell biology have been much less explored. In the last decade, the concept of muscle-bone crosstalk has emerged, comprising both the loads generated during muscle contraction and a biochemical component through soluble molecules. Bone cells embedded in the mineralized tissue respond to the biomechanical input by releasing molecular factors that impact the homeostasis of the attaching skeletal muscle. In the same way, muscle-derived factors act as soluble signals that modulate the remodeling process of the underlying bones. This concept of muscle-bone crosstalk at a molecular level is particularly interesting in the mandible, due to its tight anatomical relationship with one of the biggest and strongest masticatory muscles, the masseter. However, despite the close physical and physiological interaction of both tissues for proper functioning, this topic has been poorly addressed. Here we present one of the most detailed reviews of the literature to date regarding the biomechanical and biochemical interaction between muscles and bones of the masticatory system, both during development and in physiological or pathological remodeling processes. Evidence related to how masticatory function shapes the craniofacial bones is discussed, and a proposal presented that the masticatory muscles and craniofacial bones serve as secretory tissues. We furthermore discuss our current findings of myokines-release from masseter muscle in physiological conditions, during functional adaptation or pathology, and their putative role as bone-modulators in the craniofacial system. Finally, we address the physiological implications of the crosstalk between muscles and bones in the masticatory system, analyzing pathologies or clinical procedures in which the alteration of one of them affects the homeostasis of the other. Unveiling the mechanisms of muscle-bone crosstalk in the masticatory system opens broad possibilities for understanding and treating temporomandibular disorders, which severely impair the quality of life, with a high cost for diagnosis and management.
Collapse
Affiliation(s)
- Sonja Buvinic
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Center for Exercise, Metabolism and Cancer Studies CEMC2016, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- *Correspondence: Sonja Buvinic,
| | - Julián Balanta-Melo
- School of Dentistry, Faculty of Health, Universidad del Valle, Cali, Colombia
- Evidence-Based Practice Unit Univalle, Hospital Universitario del Valle, Cali, Colombia
- Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Kornelius Kupczik
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Walter Vásquez
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Carolina Beato
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Viviana Toro-Ibacache
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
45
|
Adams V, Bowen TS, Werner S, Barthel P, Amberger C, Konzer A, Graumann J, Sehr P, Lewis J, Provaznik J, Benes V, Büttner P, Gasch A, Mangner N, Witt CC, Labeit D, Linke A, Labeit S. Small-molecule-mediated chemical knock-down of MuRF1/MuRF2 and attenuation of diaphragm dysfunction in chronic heart failure. J Cachexia Sarcopenia Muscle 2019; 10:1102-1115. [PMID: 31140761 PMCID: PMC6818456 DOI: 10.1002/jcsm.12448] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Chronic heart failure (CHF) leads to diaphragm myopathy that significantly impairs quality of life and worsens prognosis. In this study, we aimed to assess the efficacy of a recently discovered small-molecule inhibitor of MuRF1 in treating CHF-induced diaphragm myopathy and loss of contractile function. METHODS Myocardial infarction was induced in mice by ligation of the left anterior descending coronary artery. Sham-operated animals (sham) served as controls. One week post-left anterior descending coronary artery ligation animals were randomized into two groups-one group was fed control rodent chow, whereas the other group was fed a diet containing 0.1% of the compound ID#704946-a recently described MuRF1-interfering small molecule. Echocardiography confirmed development of CHF after 10 weeks. Functional and molecular analysis of the diaphragm was subsequently performed. RESULTS Chronic heart failure induced diaphragm fibre atrophy and contractile dysfunction by ~20%, as well as decreased activity of enzymes involved in mitochondrial energy production (P < 0.05). Treatment with compound ID#704946 in CHF mice had beneficial effects on the diaphragm: contractile function was protected, while mitochondrial enzyme activity and up-regulation of the MuRF1 and MuRF2 was attenuated after infarct. CONCLUSIONS Our murine CHF model presented with diaphragm fibre atrophy, impaired contractile function, and reduced mitochondrial enzyme activities. Compound ID#704946 rescued from this partially, possibly by targeting MuRF1/MuRF2. However, at this stage of our study, we refrain to claim specific mechanism(s) and targets of compound ID#704946, because the nature of changes after 12 weeks of feeding is likely to be complex and is not necessarily caused by direct mechanistic effects.
Collapse
Affiliation(s)
- Volker Adams
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, Dresden, Germany
| | - T Scott Bowen
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - Sarah Werner
- University Clinic of Cardiology, Heart Center Leipzig, Leipzig, Germany
| | - Peggy Barthel
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, Dresden, Germany
| | | | - Anne Konzer
- Scientific Service Group Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Rhine-Main, Germany
| | - Johannes Graumann
- Scientific Service Group Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Rhine-Main, Germany
| | - Peter Sehr
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Joe Lewis
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jan Provaznik
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Vladimir Benes
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Petra Büttner
- University Clinic of Cardiology, Heart Center Leipzig, Leipzig, Germany
| | - Alexander Gasch
- Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Norman Mangner
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, Dresden, Germany
| | - Christian C Witt
- Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Dittmar Labeit
- Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.,Myomedix GmbH, Neckargemünd, Germany
| | - Axel Linke
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, Dresden, Germany
| | - Siegfried Labeit
- Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.,Myomedix GmbH, Neckargemünd, Germany
| |
Collapse
|
46
|
Seldeen KL, Pang M, Leiker MM, Bard JE, Rodríguez-Gonzalez M, Hernandez M, Sheridan Z, Nowak N, Troen BR. Chronic vitamin D insufficiency impairs physical performance in C57BL/6J mice. Aging (Albany NY) 2019; 10:1338-1355. [PMID: 29905532 PMCID: PMC6046224 DOI: 10.18632/aging.101471] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/04/2018] [Indexed: 12/31/2022]
Abstract
Vitamin D insufficiency (serum 25-OH vitamin D < 30 ng/ml) affects 70-80% of the general population, yet the long-term impacts on physical performance and the progression of sarcopenia are poorly understood. We therefore followed 6-month-old male C57BL/6J mice (n=6) consuming either sufficient (STD, 1000 IU) or insufficient (LOW, 125 IU) vitamin D3/kg chow for 12 months (equivalent to 20-30 human years). LOW supplemented mice exhibited a rapid decline of serum 25-OH vitamin D levels by two weeks that remained between 11-15 ng/mL for all time points thereafter. After 12 months LOW mice displayed worse grip endurance (34.6 ± 14.1 versus 147.5 ± 50.6 seconds, p=0.001), uphill sprint speed (16.0 ± 1.0 versus 21.8 ± 2.4 meters/min, p=0.0007), and stride length (4.4 ± 0.3 versus 5.1 ± 0.3, p=0.002). LOW mice also showed less lean body mass after 8 months (57.5% ± 5.1% versus 64.5% ± 4.0%, p=0.023), but not after 12 months of supplementation, as well as greater protein expression of atrophy pathway gene atrogin‑1. Additionally, microRNA sequencing revealed differential expression of mIR‑26a in muscle tissue of LOW mice. These data suggest chronic vitamin D insufficiency may be an important factor contributing to functional decline and sarcopenia.
Collapse
Affiliation(s)
- Kenneth L Seldeen
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY 14203, USA
| | - Manhui Pang
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY 14203, USA
| | - Merced M Leiker
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY 14203, USA
| | - Jonathan E Bard
- New York State Center of Excellence in Bioinformatics and Life Sciences and Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Maria Rodríguez-Gonzalez
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY 14203, USA
| | - Mireya Hernandez
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY 14203, USA
| | - Zachary Sheridan
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY 14203, USA
| | - Norma Nowak
- New York State Center of Excellence in Bioinformatics and Life Sciences and Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Bruce R Troen
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY 14203, USA
| |
Collapse
|
47
|
Multi-Staged Regulation of Lipid Signaling Mediators during Myogenesis by COX-1/2 Pathways. Int J Mol Sci 2019; 20:ijms20184326. [PMID: 31487817 PMCID: PMC6769623 DOI: 10.3390/ijms20184326] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 01/04/2023] Open
Abstract
Cyclooxygenases (COXs), including COX-1 and -2, are enzymes essential for lipid mediator (LMs) syntheses from arachidonic acid (AA), such as prostaglandins (PGs). Furthermore, COXs could interplay with other enzymes such as lipoxygenases (LOXs) and cytochrome P450s (CYPs) to regulate the signaling of LMs. In this study, to comprehensively analyze the function of COX-1 and -2 in regulating the signaling of bioactive LMs in skeletal muscle, mouse primary myoblasts and C2C12 cells were transfected with specific COX-1 and -2 siRNAs, followed by targeted lipidomic analysis and customized quantitative PCR gene array analysis. Knocking down COXs, particularly COX-1, significantly reduced the release of PGs from muscle cells, especially PGE2 and PGF2α, as well as oleoylethanolamide (OEA) and arachidonoylethanolamine (AEA). Moreover, COXs could interplay with LOXs to regulate the signaling of hydroxyeicosatetraenoic acids (HETEs). The changes in LMs are associated with the expression of genes, such as Itrp1 (calcium signaling) and Myh7 (myogenic differentiation), in skeletal muscle. In conclusion, both COX-1 and -2 contribute to LMs production during myogenesis in vitro, and COXs could interact with LOXs during this process. These interactions and the fine-tuning of the levels of these LMs are most likely important for skeletal muscle myogenesis, and potentially, muscle repair and regeneration.
Collapse
|
48
|
Ma W, Zhang R, Huang Z, Zhang Q, Xie X, Yang X, Zhang Q, Liu H, Ding F, Zhu J, Sun H. PQQ ameliorates skeletal muscle atrophy, mitophagy and fiber type transition induced by denervation via inhibition of the inflammatory signaling pathways. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:440. [PMID: 31700876 DOI: 10.21037/atm.2019.08.101] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Skeletal muscle atrophy involves and requires widespread changes in skeletal muscle gene expression and signaling pathway, resulting in excessive loss of muscle mass and strength, which is associated with poor prognosis and the decline of life quality in several diseases. However, the treatment of skeletal muscle atrophy remains an unresolved challenge to this day. The aim of the present study was to investigate the influence of pyrroloquinoline quinone (PQQ), a redox-active o-quinone found in various foods and mammalian tissues, on skeletal muscle atrophy, and to explore the underlying molecular mechanism. Methods After denervation, mice were injected intraperitoneally with saline plus PQQ (5 mg/kg/d) or saline only for 14 days. The level of inflammatory cytokines in tibialis anterior (TA) muscles was determined by quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA), and the level of signaling proteins of Janus kinase 2/signal transduction and activator of transcription 3 (Jak2/STAT3), TGF-β1/Smad3, JNK/p38 MAPK, and nuclear factor κB (NF-κB) signaling pathway were detected by Western blot. The skeletal muscle atrophy was evaluated by muscle wet weight ratio and cross-sectional areas (CSAs) of myofibers. The mitophagy was observed through transmission electron microscopy (TEM) analysis, and muscle fiber type transition was analyzed through fast myosin skeletal heavy chain antibody staining. Results The proinflammatory cytokines IL-6, IL-1β and TNF-α were largely induced in TA muscles after sciatic nerve transection. PQQ can significantly reverse this phenomenon, as evidenced by the decreased levels of proinflammatory cytokines IL-6, IL-1β and TNF-α. Moreover, PQQ could significantly attenuate the signal activation of Jak2/STAT3, TGF-β1/Smad3, JNK/p38 MAPK, and NF-κB in skeletal muscles after sciatic nerve transection. Furthermore, PQQ alleviated skeletal muscle atrophy, mitigated mitophagy and inhibited slow-to-fast muscle fiber type transition. Conclusions These results suggested that PQQ could attenuate denervation-induced skeletal muscle atrophy, mitophagy and fiber type transition through suppressing the Jak2/STAT3, TGF-β1/Smad3, JNK/p38 MAPK, and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Wenjing Ma
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Ru Zhang
- Department of Imaging, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China
| | - Ziwei Huang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Qiuyu Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiaoying Xie
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiaoming Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Qi Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Hua Liu
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Haian 226600, China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Jianwei Zhu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| |
Collapse
|
49
|
Muyayalo KP, Huang X, Qian Z, Li Z, Mor G, Liao A. Low circulating levels of vitamin D may contribute to the occurrence of preeclampsia through deregulation of Treg /Th17 cell ratio. Am J Reprod Immunol 2019; 82:e13168. [DOI: 10.1111/aji.13168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/04/2019] [Accepted: 07/06/2019] [Indexed: 12/13/2022] Open
Affiliation(s)
- Kahindo P. Muyayalo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Xiao‐Bo Huang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Zhu Qian
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Zhi‐Hui Li
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Gil Mor
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- C.S. Mott Center for Human Growth and Development Wayne State University School of Medicine Detroit MI USA
| | - Ai‐Hua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
50
|
Cui W, Liu CX, Zhang YC, Shen Q, Feng ZH, Wang J, Lu SF, Wu J, Li JX. A novel oleanolic acid derivative HA-19 ameliorates muscle atrophy via promoting protein synthesis and preventing protein degradation. Toxicol Appl Pharmacol 2019; 378:114625. [PMID: 31201822 DOI: 10.1016/j.taap.2019.114625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/18/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022]
Abstract
Muscle atrophy refers to a decrease in the size of muscles in the body, occurs in certain muscles with inactivity in many diseases and lacks effective therapies up to date. Natural products still play an important role in drug discovery. In the present study, derivatives of a natural product, oleanolic acid, were screened with myoblast differentiation and myotube atrophy assays, respectively. Results revealed that one of the derivatives, HA-19 showed the most potent anti-muscle atrophy activity, and was used for further studies. We demonstrated that HA-19 led to the increase of the protein synthesis by activating mechanistic target of rapamycin complex 1 (mTORC1)/p70 S6K pathways, and also enhanced myoblast proliferation and terminal differentiation via up-regulating of the myogenic transcription factors Pax7, MyoD and Myogenin. The interesting thing was that HA-19 also suppressed protein degradation to prevent myotube atrophy by down-regulating negative growth factors, FoxO1, MuRF1 and Atrogin-1. The results were also supported by puromycin labelling and protein ubiquitination assays. These data revealed that HA-19 possessed a "dual effect" on inhibition of muscle atrophy. In disuse-induced muscle atrophy mice model, HA-19 treatment significantly increased the weights of bilateral tibialis anterior (TA), gastrocnemius (Gastroc.), quadriceps (Quad.), suggesting the effectiveness of HA-19 to remit disuse-induced muscle atrophy. Our finding demonstrated that HA-19 has a great potential as an inhibitor or lead compound for the anti-muscle atrophy drug discovery.
Collapse
Affiliation(s)
- Wei Cui
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chen-Xi Liu
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yu-Chao Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qi Shen
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhen-Hua Feng
- The Center of Diagnosis and Treatment for Joint Disease, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing 210008, China
| | - Jie Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Sheng-Feng Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jing Wu
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Jian-Xin Li
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|