1
|
Chabanol E, Gendrin M. Insects and microbes: best friends from the nursery. CURRENT OPINION IN INSECT SCIENCE 2024; 66:101270. [PMID: 39293738 DOI: 10.1016/j.cois.2024.101270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
Insects host microbes and interact with them throughout their life cycle. This microbiota is an important, if not essential, partner participating in many aspects of insect physiology. Recent omics studies have contributed to considerable advances in the current understanding of the molecular implications of microbiota during insect development. In this review, we present an overview of the current knowledge about the mechanisms underlying interactions between developing insects and their microbial companions. The microbiota is implicated in nutrition, both via compensating for metabolic pathways lacking in the host and via regulating host metabolism. Furthermore, the microbiota plays a protective role, enhancing the insect's tolerance to, or resistance against, various environmental stresses.
Collapse
Affiliation(s)
- Estelle Chabanol
- Microbiota of Insect Vectors Group, Institut Pasteur de la Guyane, GF-97300 Cayenne, French Guiana
| | - Mathilde Gendrin
- Microbiota of Insect Vectors Group, Institut Pasteur de la Guyane, GF-97300 Cayenne, French Guiana.
| |
Collapse
|
2
|
Barrajon-Santos V, Nepel M, Hausmann B, Voglmayr H, Woebken D, Mayer VE. Dynamics and drivers of fungal communities in a multipartite ant-plant association. BMC Biol 2024; 22:112. [PMID: 38745290 PMCID: PMC11093746 DOI: 10.1186/s12915-024-01897-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 04/18/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Fungi and ants belong to the most important organisms in terrestrial ecosystems on Earth. In nutrient-poor niches of tropical rainforests, they have developed steady ecological relationships as a successful survival strategy. In tropical ant-plant mutualisms worldwide, where resident ants provide the host plants with defense and nutrients in exchange for shelter and food, fungi are regularly found in the ant nesting space, inhabiting ant-made dark-colored piles ("patches"). Unlike the extensively investigated fungus-growing insects, where the fungi serve as the primary food source, the purpose of this ant-fungi association is less clear. To decipher the roles of fungi in these structures within ant nests, it is crucial to first understand the dynamics and drivers that influence fungal patch communities during ant colony development. RESULTS In this study, we investigated how the ant colony age and the ant-plant species affect the fungal community in the patches. As model we selected one of the most common mutualisms in the Tropics of America, the Azteca-Cecropia complex. By amplicon sequencing of the internal transcribed spacer 2 (ITS2) region, we analyzed the patch fungal communities of 93 Azteca spp. colonies inhabiting Cecropia spp. trees. Our study demonstrates that the fungal diversity in patches increases as the ant colony grows and that a change in the prevalent fungal taxa occurs between initial and established patches. In addition, the ant species significantly influences the composition of the fungal community in established ant colonies, rather than the host plant species. CONCLUSIONS The fungal patch communities become more complex as the ant colony develops, due to an acquisition of fungi from the environment and a substrate diversification. Our results suggest a successional progression of the fungal communities in the patches during ant colony growth and place the ant colony as the main driver shaping such communities. The findings of this study demonstrate the unexpectedly complex nature of ant-plant mutualisms in tropical regions at a micro scale.
Collapse
Affiliation(s)
- Veronica Barrajon-Santos
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria.
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria.
| | - Maximilian Nepel
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
- Present Address: Plant Health and Environment Laboratory, Ministry for Primary Industries, Auckland, New Zealand
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Department of Laboratory Medicine Division of Clinical Microbiology, Medical University of Vienna, Vienna, Austria
| | - Hermann Voglmayr
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Dagmar Woebken
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Veronika E Mayer
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Siedlecki I, Piątek M, Majchrowska M, Okrasińska A, Owczarek-Kościelniak M, Pawłowska J. Discovery of Formicomyces microglobosus gen. et sp. nov. strengthens the hypothesis of independent evolution of ant-associated fungi in Trichomeriaceae. Fungal Biol 2023; 127:1466-1474. [PMID: 38097320 DOI: 10.1016/j.funbio.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/26/2023] [Accepted: 10/23/2023] [Indexed: 12/18/2023]
Abstract
Different groups of fungi have been reported to interact with ants. Recent studies have shown that fungi of the order Chaetothyriales are important components of ant-fungus networks, including members of the family Trichomeriaceae, which is particularly rich in fungi isolated from carton ants nests. One of the still understudied ant-related environments are ants' infrabuccal pockets and pellets, which often contain fungal matter. The aim of this work was to determine the systematic and phylogenetic position of two slow growing strains of Trichomeriaceae isolated from infrabuccal pellets of Formica polyctena ants. Molecular analyses based on maximum likelihood and bayesian inference, using sequences of two ribosomal DNA markers: ITS and LSU have shown that the isolated strains form a monophyletic clade within the family Trichomeriaceae, sister to a clade formed by representatives of the genus Trichomerium. Morphological analyses additionally justified distinctiveness of the isolated strains, which have different morphology of conidia and conidiophores than Trichomerium representatives. Therefore, our results show that the isolated strains represent a new species within a not yet described fungal genus. Due to the strains' isolation source and their close relatedness to a fungal strain isolated from a carton nest of Lasius fuliginosus, we propose a name Formicomyces microglobosus Siedlecki & Piątek for this fungus. While our discovery strengthens a hypothesis of the multiple, independent evolution of ant-associated fungi in the family Trichomeriaceae, the ecology of F. microglobosus still remains to be characterized.
Collapse
Affiliation(s)
- Igor Siedlecki
- University of Warsaw Botanic Garden, Aleje Ujazdowskie 4, 00-478, Warsaw, Poland; Institute of Evolutionary Biology, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-089, Warsaw, Poland.
| | - Marcin Piątek
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512, Kraków, Poland.
| | - Maria Majchrowska
- Institute of Evolutionary Biology, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-089, Warsaw, Poland.
| | - Alicja Okrasińska
- Institute of Evolutionary Biology, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-089, Warsaw, Poland.
| | | | - Julia Pawłowska
- Institute of Evolutionary Biology, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-089, Warsaw, Poland.
| |
Collapse
|
4
|
Nepel M, Mayer VE, Barrajon-Santos V, Woebken D. Bacterial diversity in arboreal ant nesting spaces is linked to colony developmental stage. Commun Biol 2023; 6:1217. [PMID: 38036598 PMCID: PMC10689775 DOI: 10.1038/s42003-023-05577-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
The omnipresence of ants is commonly attributed to their eusocial organization and division of labor, however, bacteria in their nests may facilitate their success. Like many other arboreal ants living in plant-provided cavities, Azteca ants form dark-colored "patches" in their nesting space inside Cecropia host plants. These patches are inhabited by bacteria, fungi and nematodes and appear to be essential for ant colony development. Yet, detailed knowledge of the microbial community composition and its consistency throughout the life cycle of ant colonies was lacking. Amplicon sequencing of the microbial 16S rRNA genes in patches from established ant colonies reveals a highly diverse, ant species-specific bacterial community and little variation within an individual ant colony, with Burkholderiales, Rhizobiales and Chitinophagales being most abundant. In contrast, bacterial communities of early ant colony stages show low alpha diversity and no ant species-specific community composition. We suggest a substrate-caused bottleneck after vertical transmission of the bacterial patch community from mother to daughter colonies. The subsequent ecological succession is driven by environmental parameters and influenced by ant behavior. Our study provides key information for future investigations determining the functions of these bacteria, which is essential to understand the ubiquity of such patches among arboreal ants.
Collapse
Affiliation(s)
- Maximilian Nepel
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria.
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria.
| | - Veronika E Mayer
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria.
| | - Veronica Barrajon-Santos
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria
| | - Dagmar Woebken
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Mayer VE, Voglmayr H, Blatrix R, Orivel J, Leroy C. Fungi as mutualistic partners in ant-plant interactions. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1213997. [PMID: 37850069 PMCID: PMC10577302 DOI: 10.3389/ffunb.2023.1213997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/11/2023] [Indexed: 10/19/2023]
Abstract
Associations between fungi and ants living in mutualistic relationship with plants ("plant-ants") have been known for a long time. However, only in recent years has the mutualistic nature, frequency, and geographical extent of associations between tropical arboreal ants with fungi of the ascomycete order Chaetothyriales and Capnodiales (belonging to the so-called "Black Fungi") become clear. Two groups of arboreal ants displaying different nesting strategies are associated with ascomycete fungi: carton-building ants that construct nest walls and galleries on stems, branches or below leaves which are overgrown by fungal hyphae, and plant-ants that make their nests inside living plants (myrmecophytes) in plant provided cavities (domatia) where ants cultivate fungi in small delimited "patches". In this review we summarize the current knowledge about these unsuspected plant-ant-fungus interactions. The data suggest, that at least some of these ant-associated fungi seem to have coevolved with ants over a long period of time and have developed specific adaptations to this lifestyle.
Collapse
Affiliation(s)
- Veronika E. Mayer
- Department of Botany and Biodiversity Research – Division of Structural and Functional Botany, University of Vienna, Wien, Austria
| | - Hermann Voglmayr
- Department of Botany and Biodiversity Research – Mycology Research Group, University of Vienna, Wien, Austria
| | - Rumsais Blatrix
- CEFE, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Jérôme Orivel
- EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou, France
| | - Céline Leroy
- EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou, France
- AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| |
Collapse
|
6
|
Dejean A, Azémar F, Naskrecki P, Tindo M, Rossi V, Faucher C, Gryta H. Mutualistic interactions between ants and fungi: A review. Ecol Evol 2023; 13:e10386. [PMID: 37529578 PMCID: PMC10375366 DOI: 10.1002/ece3.10386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023] Open
Abstract
The large amount of dead plant biomass caused by the final extinction events triggered a fungi proliferation that mostly differentiated into saprophytes degrading organic matter; others became parasites, predators, likely commensals, and mutualists. Among the last, many have relationships with ants, the most emblematic seen in the Neotropical myrmicine Attina that cultivate Basidiomycota for food. Among them, leaf-cutting, fungus-growing species illustrate an ecological innovation because they grow fungal gardens from fresh plant material rather than arthropod frass and plant debris. Myrmecophytes shelter "plant-ants" in hollow structures, the domatia, whose inner walls are lined with thin-walled Ascomycota hyphae that, in certain cases, are eaten by the ants, showing a form of convergence. Typically, these Ascomycota have antibacterial properties illustrating cases of farming for protection. Ant gardens, or mutualistic associations between certain ant species and epiphytes, shelter endophytic fungi that promote the growth of the epiphytes. Because the cell walls of certain Ascomycota hyphae remain sturdy after the death of the mycelium, they form resistant fibers used by ants to reinforce their constructions (e.g., galleries, shelters for tended hemipterans, and carton nests). Thus, we saw cases of "true" fungal agriculture involving planting, cultivating, and harvesting Basidiomycota for food with Attina. A convergence with "plant-ants" feeding on Ascomycota whose antibacterial activity is generally exploited (i.e., farming for protection). The growth of epiphytes was promoted by endophytic fungi in ant gardens. Finally, farming for structural materials occurred with, in one case, a leaf-cutting, fungus-growing ant using Ascomycota fibers to reinforce its nests.
Collapse
Affiliation(s)
- Alain Dejean
- Laboratoire Écologie Fonctionnelle et EnvironnementUniversité de Toulouse, CNRS, Toulouse INP, Université Toulouse 3 – Paul Sabatier (UPS)ToulouseFrance
- UMR EcoFoG, AgroParisTechCirad, CNRS, INRA, Université des Antilles, Université de GuyaneKourouFrance
| | - Frédéric Azémar
- Laboratoire Écologie Fonctionnelle et EnvironnementUniversité de Toulouse, CNRS, Toulouse INP, Université Toulouse 3 – Paul Sabatier (UPS)ToulouseFrance
| | - Piotr Naskrecki
- Museum of Comparative ZoologyHarvard UniversityCambridgeMassachusettsUSA
| | - Maurice Tindo
- Laboratory of Biology and Physiology of Animal Organisms, Faculty of ScienceUniversity of DoualaDoualaCameroon
| | - Vivien Rossi
- Remote Sensing and Forest Ecology Lab, Higher Teacher's Training CollegeMarien Ngouabi UniversityBrazzavilleDemocratic Republic of the Congo
- R U Forests and Societies, CIRADBrazzavilleDemocratic Republic of the Congo
| | - Christian Faucher
- Laboratoire Evolution & Diversité Biologique (EDB UMR 5174) CNRSIRD, Université Toulouse 3ToulouseFrance
| | - Hervé Gryta
- Laboratoire Evolution & Diversité Biologique (EDB UMR 5174) CNRSIRD, Université Toulouse 3ToulouseFrance
| |
Collapse
|
7
|
Gegenbauer C, Bellaire A, Schintlmeister A, Schmid MC, Kubicek M, Voglmayr H, Zotz G, Richter A, Mayer VE. Exo- and endophytic fungi enable rapid transfer of nutrients from ant waste to orchid tissue. THE NEW PHYTOLOGIST 2023; 238:2210-2223. [PMID: 36683444 PMCID: PMC10962571 DOI: 10.1111/nph.18761] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/05/2023] [Indexed: 05/04/2023]
Abstract
The epiphytic orchid Caularthron bilamellatum sacrifices its water storage tissue for nutrients from the waste of ants lodging inside its hollow pseudobulb. Here, we investigate whether fungi are involved in the rapid translocation of nutrients. Uptake was analysed with a 15 N labelling experiment, subsequent isotope ratio mass spectrometry (IRMS) and secondary ion mass spectrometry (ToF-SIMS and NanoSIMS). We encountered two hyphae types: a thick melanized type assigned to 'black fungi' (Chaetothyriales, Cladosporiales, and Mycosphaerellales) in ant waste, and a thin endophytic type belonging to Hypocreales. In few cell layers, both hyphae types co-occurred. 15 N accumulation in both hyphae types was conspicuous, while for translocation to the vessels only Hypocreales were involved. There is evidence that the occurrence of the two hyphae types results in a synergism in terms of nutrient uptake. Our study provides the first evidence that a pseudobulb (=stem)-born endophytic network of Hypocreales is involved in the rapid translocation of nitrogen from insect-derived waste to the vegetative and reproductive tissue of the host orchid. For C. bilamellatum that has no contact with the soil, ant waste in the hollow pseudobulbs serves as equivalent to soil in terms of nutrient sources.
Collapse
Affiliation(s)
- Christian Gegenbauer
- Division of Structural and Functional Botany, Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 141030WienAustria
- Division of Terrestrial Ecosystem Research, Centre for Microbiology and Ecosystem ScienceUniversity of ViennaDjerassiplatz 11030WienAustria
| | - Anke Bellaire
- Division of Structural and Functional Botany, Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 141030WienAustria
| | - Arno Schintlmeister
- Division of Microbial Ecology and Large‐Instrument Facility of Environmental and Isotope Mass Spectrometry, Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaDjerassiplatz 11030ViennaAustria
| | - Markus C. Schmid
- Division of Microbial Ecology and Large‐Instrument Facility of Environmental and Isotope Mass Spectrometry, Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaDjerassiplatz 11030ViennaAustria
| | - Markus Kubicek
- Institute of Chemical Technologies and Analytics, TU WienGetreidemarkt 9/1641060ViennaAustria
| | - Hermann Voglmayr
- Mycology Research Group, Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 141030WienAustria
- Institute of Forest Entomology, Forest Pathology and Forest ProtectionUniversity of Natural Resources and Life Sciences, Vienna (BOKU)Peter‐Jordan‐Strasse 821190WienAustria
| | - Gerhard Zotz
- Institute for Biology and Environmental SciencesCarl von Ossietzky University OldenburgOldenburgGermany
- Smithsonian Tropical Research InstituteApdo 2072BalboaPanama
| | - Andreas Richter
- Division of Terrestrial Ecosystem Research, Centre for Microbiology and Ecosystem ScienceUniversity of ViennaDjerassiplatz 11030WienAustria
| | - Veronika E. Mayer
- Division of Structural and Functional Botany, Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 141030WienAustria
| |
Collapse
|
8
|
Dejean A, Naskrecki P, Faucher C, Azémar F, Tindo M, Manzi S, Gryta H. An Old World leaf-cutting, fungus-growing ant: A case of convergent evolution. Ecol Evol 2023; 13:e9904. [PMID: 36937071 PMCID: PMC10015377 DOI: 10.1002/ece3.9904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/18/2023] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
The African myrmicine ant Crematogaster clariventris is a territorially dominant arboreal species that constructs very hard carton nests. Noting that workers cut off leaves from different plant species while building or repairing their nests, we asked ourselves if there was a correlation. We conducted scanning electron microscopic observations of nest walls that revealed the presence of fungal mycelia. As the presence of filamentous Ascomycota has been shown on arboreal ant nests worldwide, we used a metabarcoding approach and, indeed, noted the presence of Operational Taxonomic Unit (OTU) Cre_006041 of the Capnodiales known to reinforce large nests of an unidentified African Crematogaster. This OTU was also recorded in the workers' bodies. At a very low level, we also noted OTU Cre_320021 of the Chaetothyriales known for their relationships with the African plant-ant species C. margaritae. Therefore, by cutting leaves and growing fungus, C. clariventris illustrates a case of convergent evolution with higher New World leaf-cutting, fungus-growing Attina of the genera Acromyrmex, Amoimyrmex and Atta. However, there are notable differences. Leaf-cutting Attina cultivate Agaricaceae (Basidiomycota) for food, whereas C. clariventris uses Capnodiales to reinforce their nests (i.e., after the mycelium died, the hyphae's cell walls remained sturdy forming a natural composite material), have a distinct geographical origin (i.e., New World vs. Old World) and belong to a distinct ant tribe in the subfamily Myrmicinae (i.e., Attini vs. Crematogastrini). Furthermore, leaf-cutting Attina evolved an efficacious means of cutting leaves by using their mandibles asymmetrically, whereas C. clariventris workers, typically, use their mandibles symmetrically.
Collapse
Affiliation(s)
- A. Dejean
- Laboratoire écologie fonctionnelle et environnementUniversité de Toulouse, CNRS, Toulouse INP, Université Toulouse 3 – Paul Sabatier (UPS)ToulouseFrance
- UMR EcoFoG, AgroParisTech, Cirad, CNRS, INRAUniversité des Antilles, Université de GuyaneKourouFrance
| | - P. Naskrecki
- Museum of Comparative ZoologyHarvard UniversityCambridgeMassachusettsUSA
| | - C. Faucher
- Laboratoire Evolution & Diversité Biologique, Université de Toulouse, CNRS, IRDUniversité Toulouse 3 ‐ Paul Sabatier, 118 route de NarbonneToulouseFrance
| | - F. Azémar
- Laboratoire écologie fonctionnelle et environnementUniversité de Toulouse, CNRS, Toulouse INP, Université Toulouse 3 – Paul Sabatier (UPS)ToulouseFrance
| | - M. Tindo
- Laboratory of Animal Biology and Physiology, Faculty of ScienceUniversity of DoualaDoualaCameroon
| | - S. Manzi
- Laboratoire Evolution & Diversité Biologique, Université de Toulouse, CNRS, IRDUniversité Toulouse 3 ‐ Paul Sabatier, 118 route de NarbonneToulouseFrance
- Present address:
Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRSUniversité ToulouseToulouse CedexFrance
| | - H. Gryta
- Laboratoire Evolution & Diversité Biologique, Université de Toulouse, CNRS, IRDUniversité Toulouse 3 ‐ Paul Sabatier, 118 route de NarbonneToulouseFrance
| |
Collapse
|
9
|
The origin of human pathogenicity and biological interactions in Chaetothyriales. FUNGAL DIVERS 2023. [DOI: 10.1007/s13225-023-00518-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
AbstractFungi in the order Chaetothyriales are renowned for their ability to cause human infections. Nevertheless, they are not regarded as primary pathogens, but rather as opportunists with a natural habitat in the environment. Extremotolerance is a major trend in the order, but quite different from black yeasts in Capnodiales which focus on endurance, an important additional parameter is advancing toxin management. In the ancestral ecology of rock colonization, the association with metabolite-producing lichens is significant. Ant-association, dealing with pheromones and repellents, is another mainstay in the order. The phylogenetically derived family, Herpotrichiellaceae, shows dual ecology in monoaromatic hydrocarbon assimilation and the ability to cause disease in humans and cold-blooded vertebrates. In this study, data on ecology, phylogeny, and genomics were collected and analyzed in order to support this hypothesis on the evolutionary route of the species of Chaetothyriales. Comparing the ribosomal tree with that of enzymes involved in toluene degradation, a significant expansion of cytochromes is observed and the toluene catabolism is found to be complete in some of the Herpotrichiellaceae. This might enhance human systemic infection. However, since most species have to be traumatically inoculated in order to cause disease, their invasive potential is categorized as opportunism. Only in chromoblastomycosis, true pathogenicity might be surmised. The criterion would be the possible escape of agents of vertebrate disease from the host, enabling dispersal of adapted genotypes to subsequent generations.
Collapse
|
10
|
Diehl JMC, Kowallik V, Keller A, Biedermann PHW. First experimental evidence for active farming in ambrosia beetles and strong heredity of garden microbiomes. Proc Biol Sci 2022; 289:20221458. [PMID: 36321493 PMCID: PMC9627711 DOI: 10.1098/rspb.2022.1458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Fungal cultivation is a defining feature for advanced agriculture in fungus-farming ants and termites. In a third supposedly fungus-farming group, wood-colonizing ambrosia beetles, an experimental proof for the effectiveness of beetle activity for selective promotion of their food fungi over others is lacking and farming has only been assumed based on observations of social and hygienic behaviours. Here, we experimentally removed mothers and their offspring from young nests of the fruit-tree pinhole borer, Xyleborinus saxesenii. By amplicon sequencing of bacterial and fungal communities of nests with and without beetles we could show that beetles are indeed able to actively shift symbiont communities. Although being consumed, the Raffaelea food fungi were more abundant when beetles were present while a weed fungus (Chaetomium sp.) as well as overall bacterial diversity were reduced in comparison to nests without beetles. Core symbiont communities were generally of low diversity and there were strong signs for vertical transmission not only for the cultivars, but also for secondary symbionts. Our findings verify the existence of active farming, even though the exact mechanisms underlying the selective promotion and/or suppression of symbionts need further investigation.
Collapse
Affiliation(s)
- Janina M. C. Diehl
- Chair of Forest Entomology and Protection, Institute of Forestry, University of Freiburg, Fohrenbühl 27, 79252 Stegen-Wittental, Germany
| | - Vienna Kowallik
- Chair of Forest Entomology and Protection, Institute of Forestry, University of Freiburg, Fohrenbühl 27, 79252 Stegen-Wittental, Germany
| | - Alexander Keller
- Cellular and Organismic Networks, Faculty of Biology, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2-4, 82152 Planegg-Martinsried, Germany
| | - Peter H. W. Biedermann
- Chair of Forest Entomology and Protection, Institute of Forestry, University of Freiburg, Fohrenbühl 27, 79252 Stegen-Wittental, Germany
| |
Collapse
|
11
|
Müller AT, Reichelt M, Cosio EG, Salinas N, Nina A, Wang D, Moossen H, Geilmann H, Gershenzon J, Köllner TG, Mithöfer A. Combined -omics framework reveals how ant symbionts benefit the Neotropical ant-plant Tococa quadrialata at different levels. iScience 2022; 25:105261. [PMID: 36274949 PMCID: PMC9579026 DOI: 10.1016/j.isci.2022.105261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/06/2022] [Accepted: 09/26/2022] [Indexed: 10/25/2022] Open
Abstract
Ant-plant defensive mutualism is a widely studied phenomenon, where ants protect their host plants (myrmecophytes) against herbivores in return for the provision of nesting sites and food. However, few studies addressed the influence of ant colonization and herbivory on the plant's metabolism. We chose the Amazonian plant Tococa quadrialata, living in association with Azteca cf. tonduzi ants for an ant-exclusion study to reveal the chemistry behind this symbiosis. We found that colonized plants did not only benefit from protection but also from increased amino acid and nitrogen content, enabling better performance even in an herbivore-free environment. In contrast, ant-deprived T. quadrialata plants accumulated more ellagitannins, a major class of constitutive defense compounds. Moreover, herbivory-induced jasmonate-mediated defense responses, including the upregulation of signaling and defense genes and the emission of volatiles irrespective of colonization status. Altogether, we show how ant-colonization can influence the general and defense-related metabolism and performance of myrmecophytes.
Collapse
Affiliation(s)
- Andrea T. Müller
- Max Planck Institute for Chemical Ecology, Research Group Plant Defense Physiology, 07745 Jena, Germany
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, 07745 Jena, Germany
- Pontifical Catholic University of Peru, Institute for Nature Earth and Energy (INTE-PUCP), San Miguel, 15088 Lima, Peru
| | - Michael Reichelt
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, 07745 Jena, Germany
| | - Eric G. Cosio
- Pontifical Catholic University of Peru, Institute for Nature Earth and Energy (INTE-PUCP), San Miguel, 15088 Lima, Peru
| | - Norma Salinas
- Pontifical Catholic University of Peru, Institute for Nature Earth and Energy (INTE-PUCP), San Miguel, 15088 Lima, Peru
| | - Alex Nina
- Pontifical Catholic University of Peru, Institute for Nature Earth and Energy (INTE-PUCP), San Miguel, 15088 Lima, Peru
| | - Ding Wang
- Max Planck Institute for Chemical Ecology, Research Group Plant Defense Physiology, 07745 Jena, Germany
| | - Heiko Moossen
- Max Planck Institute for Biogeochemistry, Stable Isotope Laboratory (BGC-IsoLab), 07745 Jena, Germany
| | - Heike Geilmann
- Max Planck Institute for Biogeochemistry, Stable Isotope Laboratory (BGC-IsoLab), 07745 Jena, Germany
| | - Jonathan Gershenzon
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, 07745 Jena, Germany
| | - Tobias G. Köllner
- Max Planck Institute for Chemical Ecology, Department of Natural Product Biosynthesis, 07745 Jena, Germany
| | - Axel Mithöfer
- Max Planck Institute for Chemical Ecology, Research Group Plant Defense Physiology, 07745 Jena, Germany
| |
Collapse
|
12
|
Nepel M, Pfeifer J, Oberhauser FB, Richter A, Woebken D, Mayer VE. Nitrogen fixation by diverse diazotrophic communities can support population growth of arboreal ants. BMC Biol 2022; 20:135. [PMID: 35681192 PMCID: PMC9185989 DOI: 10.1186/s12915-022-01289-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/31/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Symbiotic ant-plant associations, in which ants live on plants, feed on plant-provided food, and protect host trees against threats, are ubiquitous across the tropics, with the Azteca-Cecropia associations being amongst the most widespread interactions in the Neotropics. Upon colonization of Cecropia's hollow internodes, Azteca queens form small patches with plant parenchyma, which are then used as waste piles when the colony grows. Patches-found in many ant-plant mutualisms-are present throughout the colony life cycle and may supplement larval food. Despite their initial nitrogen (N)-poor substrate, patches in Cecropia accommodate fungi, nematodes, and bacteria. In this study, we investigated the atmospheric N2 fixation as an N source in patches of early and established ant colonies. RESULTS Via 15N2 tracer assays, N2 fixation was frequently detected in all investigated patch types formed by three Azteca ant species. Quantified fixation rates were similar in early and established ant colonies and higher than in various tropical habitats. Based on amplicon sequencing, the identified microbial functional guild-the diazotrophs-harboring and transcribing the dinitrogenase reductase (nifH) gene was highly diverse and heterogeneous across Azteca colonies. The community composition differed between early and established ant colonies and partly between the ant species. CONCLUSIONS Our data show that N2 fixation can result in reasonable amounts of N in ant colonies, which might not only enable bacterial, fungal, and nematode growth in the patch ecosystems but according to our calculations can even support the growth of ant populations. The diverse and heterogeneous diazotrophic community implies a functional redundancy, which could provide the ant-plant-patch system with a higher resilience towards changing environmental conditions. Hence, we propose that N2 fixation represents a previously unknown potential to overcome N limitations in arboreal ant colonies.
Collapse
Affiliation(s)
- Maximilian Nepel
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria.
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
| | - Josephine Pfeifer
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Felix B Oberhauser
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| | - Andreas Richter
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Dagmar Woebken
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
| | - Veronika E Mayer
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Barcoto MO, Rodrigues A. Lessons From Insect Fungiculture: From Microbial Ecology to Plastics Degradation. Front Microbiol 2022; 13:812143. [PMID: 35685924 PMCID: PMC9171207 DOI: 10.3389/fmicb.2022.812143] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Anthropogenic activities have extensively transformed the biosphere by extracting and disposing of resources, crossing boundaries of planetary threat while causing a global crisis of waste overload. Despite fundamental differences regarding structure and recalcitrance, lignocellulose and plastic polymers share physical-chemical properties to some extent, that include carbon skeletons with similar chemical bonds, hydrophobic properties, amorphous and crystalline regions. Microbial strategies for metabolizing recalcitrant polymers have been selected and optimized through evolution, thus understanding natural processes for lignocellulose modification could aid the challenge of dealing with the recalcitrant human-made polymers spread worldwide. We propose to look for inspiration in the charismatic fungal-growing insects to understand multipartite degradation of plant polymers. Independently evolved in diverse insect lineages, fungiculture embraces passive or active fungal cultivation for food, protection, and structural purposes. We consider there is much to learn from these symbioses, in special from the community-level degradation of recalcitrant biomass and defensive metabolites. Microbial plant-degrading systems at the core of insect fungicultures could be promising candidates for degrading synthetic plastics. Here, we first compare the degradation of lignocellulose and plastic polymers, with emphasis in the overlapping microbial players and enzymatic activities between these processes. Second, we review the literature on diverse insect fungiculture systems, focusing on features that, while supporting insects' ecology and evolution, could also be applied in biotechnological processes. Third, taking lessons from these microbial communities, we suggest multidisciplinary strategies to identify microbial degraders, degrading enzymes and pathways, as well as microbial interactions and interdependencies. Spanning from multiomics to spectroscopy, microscopy, stable isotopes probing, enrichment microcosmos, and synthetic communities, these strategies would allow for a systemic understanding of the fungiculture ecology, driving to application possibilities. Detailing how the metabolic landscape is entangled to achieve ecological success could inspire sustainable efforts for mitigating the current environmental crisis.
Collapse
Affiliation(s)
- Mariana O. Barcoto
- Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, Brazil
- Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Andre Rodrigues
- Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, Brazil
- Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, Brazil
| |
Collapse
|
14
|
Wang C, Cocco A, Lin CC, Billen J. Morphology and ultrastructure of the infrabuccal pocket in Strumigenys ants. ARTHROPOD STRUCTURE & DEVELOPMENT 2022; 68:101154. [PMID: 35452912 DOI: 10.1016/j.asd.2022.101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/11/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
The morphology of the infrabuccal pocket has been studied with light and electron microscopy (SEM, TEM) in 19 species of Strumigenys ants. The structural organization is similar in workers, queens and males, and supports the involvement of the pocket in the filtration of food particles before they can enter the digestive tract. A carpet of posteriorly oriented bristle hairs on the hypopharynx first guide ingested food into the pocket, where large solid particles are compacted into a pellet that will be regurgitated. The remaining products enter the digestive tract through a filtering wall of parallel hair combs lining the pharynx interior that are directed against the food flow. This mechanical filtering allows only liquids and sufficiently small food particles to enter the digestive system. The wall of the infrabuccal pocket is differentiated into a conspicuous glandular epithelium, of which the ultrastructural characteristics can be understood as an adaptation against the frequent shape changes of the pocket. The gland elaborates a non-proteinaceous secretion, although its functional significance still remains unknown.
Collapse
Affiliation(s)
- Chu Wang
- Zoological Institute, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium.
| | - Alessio Cocco
- Zoological Institute, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium.
| | - Chung-Chi Lin
- National Changhua University of Education, Department of Biology, Changhua 50007, Taiwan, R.O.C.
| | - Johan Billen
- Zoological Institute, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium.
| |
Collapse
|
15
|
Quan Y, da Silva NM, de Souza Lima BJF, de Hoog S, Vicente VA, Mayer V, Kang Y, Shi D. Black fungi and ants: a genomic comparison of species inhabiting carton nests versus domatia. IMA Fungus 2022; 13:4. [PMID: 35256015 PMCID: PMC8900376 DOI: 10.1186/s43008-022-00091-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/23/2022] [Indexed: 11/10/2022] Open
Abstract
Some members of Chaetothyriales, an order containing potential agents of opportunistic infections in humans, have a natural habitat in nests of tropical arboreal ants. In these black fungi, two types of ant symbiosis are known, i.e. occurrence in domatia inside living plants, or as components of carton constructions made of ant-chewed plant tissue. In order to explain differences between strains from these types of association, we sequenced and annotated genomes of two newly described carton species, Incumbomyces lentus and Incumbomyces delicatus, and compared these with genomes of four domatia species and related Chaetothyriales. General genomic characteristics, CYP genes, carbohydrate-active enzymes (CAZymes), secondary metabolism, and sex-related genes were included in the study.
Collapse
|
16
|
Volatile Organic Compounds in the Azteca/ Cecropia Ant-Plant Symbiosis and the Role of Black Fungi. J Fungi (Basel) 2021; 7:jof7100836. [PMID: 34682257 PMCID: PMC8539435 DOI: 10.3390/jof7100836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 12/01/2022] Open
Abstract
Black fungi of the order Chaetothyriales are grown by many tropical plant-mutualistic ants as small so-called “patches” in their nests, which are located inside hollow structures provided by the host plant (“domatia”). These fungi are introduced and fostered by the ants, indicating that they are important for the colony. As several species of Chaetothyriales tolerate, adsorb, and metabolize toxic volatiles, we investigated the composition of volatile organic compounds (VOCs) of selected domatia in the Azteca/Cecropia ant-plant mutualism. Concentrations of VOCs in ant-inhabited domatia, empty domatia, and background air were compared. In total, 211 compounds belonging to 19 chemical families were identified. Ant-inhabited domatia were dominated by ketones with 2-heptanone, a well-known ant alarm semiochemical, as the most abundant volatile. Empty domatia were characterized by relatively high concentrations of the monoterpenes d-limonene, p-cymene and β-phellandrene, as well as the heterocyclic sulphur-containing compound, benzothiazole. These compounds have biocidal properties and are primarily biosynthesized by plants as a defense mechanism. Interestingly, most of the latter compounds were present at lower concentrations in ant inhabited domatia than in non-colonized ones. We suggest that Chaetothyriales may play a role in reducing the VOCs, underlining that the mutualistic nature of these fungi as VOCs accumulation might be detrimental for the ants, especially the larvae.
Collapse
|
17
|
Dejean A, Petitclerc F, Azémar F, Rossi V. Nutrient provisioning of its host myrmecophytic tree by a temporary social parasite of a plant-ant. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
One of the most advanced ant–plant mutualisms is represented by myrmecophytes sheltering colonies of some plant-ant species in hollow structures called domatia. In turn, the myrmecophytes benefit from biotic protection and sometimes nutrient provisioning (myrmecotrophy). Furthermore, over the course of evolution, some ant species have become social parasites of others. In this general context, we studied the relationship between its host trees and Azteca andreae (Dolichoderinae), a temporary social parasite of the plant-ant Azteca ovaticeps, and, as such, obligatorily associated with myrmecophytic Cecropia obtusa trees (Urticaceae). A first experiment showed that the δ15N values of the young leaves of Cecropia sheltering a mature A. andreae colony were very similar to those for trees sheltering Azteca alfari or A. ovaticeps, two typical Cecropia mutualists for which myrmecotrophy is known. In a second experiment, by injecting a 15N-labelled glycine solution into locusts given as prey to A. andreae colonies, we triggered an increase in δ15N in the young leaves of their host Cecropia. Thus, 15N passed from the prey to the host trees, explaining the outcomes of the first experiment. We discuss these results in light of the notion of ‘by-product benefits’.
Collapse
Affiliation(s)
- Alain Dejean
- Laboratoire écologie fonctionnelle et environnement, Université de Toulouse, CNRS, Toulouse INP, Université Toulouse 3 – Paul Sabatier (UPS), Toulouse, France
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRA, Université des Antilles, Université de Guyane, 97310 Kourou, France
| | - Frédéric Petitclerc
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRA, Université des Antilles, Université de Guyane, 97310 Kourou, France
| | - Frédéric Azémar
- Laboratoire écologie fonctionnelle et environnement, Université de Toulouse, CNRS, Toulouse INP, Université Toulouse 3 – Paul Sabatier (UPS), Toulouse, France
| | - Vivien Rossi
- Plant Systematic and Ecology Laboratory (LaBosystE), Department of Biology, Higher Teachers’ Training College, University of Yaoundé I, PO Box 047, Yaoundé, Cameroon
- RU Forests and Societies, CIRAD Yaoundé, Cameroon
| |
Collapse
|
18
|
The symbiosis between Philidris ants and the ant-plant Dischidia major includes fungal and algal associates. Symbiosis 2021. [DOI: 10.1007/s13199-021-00751-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Quan Y, Ahmed SA, Menezes da Silva N, Al-Hatmi AMS, Mayer VE, Deng S, Kang Y, Sybren de Hoog G, Shi D. Novel black yeast-like species in chaetothyriales with ant-associated life styles. Fungal Biol 2021; 125:276-284. [PMID: 33766306 DOI: 10.1016/j.funbio.2020.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/15/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022]
Abstract
Among ancestral fungi in Chaetothyriales, several groups have a life style in association with tropical ants, either in domatia or in carton-nests. In the present study, two strains collected from ant carton in Thailand and Malaysia were found to represent hitherto undescribed species. Morphological, physiological, phylogenetic data and basic genome information are provided for their classification. Because of the relatively large phylogenetic distances with known species confirmed by overall genome data, large subunit (LSU) and Internal Transcribed Spacer (ITS) ribosomal DNA sequences were sufficient for taxonomic circumscription of the species. The analyzed strains clustered with high statistical support as a clade in the family Trichomeriaceae. Morphologically they were rather similar, lacking sporulation in vitro. In conclusion, Incumbomyces delicatus and Incumbomyces lentus were described as new species based on morphological, physiological and phylogenetic analysis.
Collapse
Affiliation(s)
- Yu Quan
- Center of Expertise in Mycology of Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, the Netherlands; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Guizhou Talent Base for Microbiology and Human Health, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China; College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, China
| | - Sarah A Ahmed
- Center of Expertise in Mycology of Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, the Netherlands; Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Nickolas Menezes da Silva
- Engineering Bioprocess and Biotechnology Post-Graduation Program, Department of Bioprocess Engineering and Biotechnology, Federal University of Parana, Curitiba, Brazil
| | - Abdullah M S Al-Hatmi
- Center of Expertise in Mycology of Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, the Netherlands; Ministry of Health, Directorate General of Health Services, Ibri, Oman
| | - Veronika E Mayer
- Division of Structural and Functional Botany, Department of Botany and Biodiversity Research, University of Vienna, Wien, Austria
| | - Shuwen Deng
- Department of Medical Microbiology, People's Hospital of Suzhou National New & Hi-Tech Industrial Development Zone, Jiangsu, China
| | - Yingqian Kang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Guizhou Talent Base for Microbiology and Human Health, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - G Sybren de Hoog
- Center of Expertise in Mycology of Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, the Netherlands; Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan.
| | - Dongmei Shi
- Department of Dermatology & Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Shandong, China.
| |
Collapse
|
20
|
Chance or Necessity-The Fungi Co-Occurring with Formica polyctena Ants. INSECTS 2021; 12:insects12030204. [PMID: 33670956 PMCID: PMC7997191 DOI: 10.3390/insects12030204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 11/29/2022]
Abstract
Simple Summary There are about 13,800 species of ants living around the world, but only some of them have been extensively studied in the context of their non−antagonistic relationships with fungi. The best−known example is the symbiosis between leaf−cutting ants and fungi serving them as food. Others include the relationship between ants living in carton nests in the trees’ canopy with fungi increasing the durability of the nest. Do ants utilize fungi in the northern hemisphere and cooler climatic zone? This question is still open. Our goal was to study the less−obvious interactions between ants and common fungi in temperate climates. In our study, we characterized the mycobiota of the surroundings of Formica polyctena ants. We identified nearly 600 strains and investigated their taxonomic affinity. The most abundant fungi in F. polyctena nests are strains belonging to Penicillium—a genus well−known as an antibiotic producer. Other common and widespread fungi related to Penicillium, such as the toxin−producing Aspergillus species, were isolated very rarely. Additionally, the high diversity and high frequency of Penicillium colonies isolated from ants in this study suggest that certain representatives of this genus may be adapted to survive in ant nests, or that they are preferentially sustained by the insects. Abstract Studies on carton nesting ants and domatia−dwelling ants have shown that ant–fungi interactions may be much more common and widespread than previously thought. Until now, studies focused predominantly on parasitic and mutualistic fungi–ant interactions occurring mostly in the tropics, neglecting less−obvious interactions involving the fungi common in ants’ surroundings in temperate climates. In our study, we characterized the mycobiota of the surroundings of Formica polyctena ants by identifying nearly 600 fungal colonies that were isolated externally from the bodies of F. polyctena workers. The ants were collected from mounds found in northern and central Poland. Isolated fungi were assigned to 20 genera via molecular identification (ITS rDNA barcoding). Among these, Penicillium strains were the most frequent, belonging to eight different taxonomic sections. Other common and widespread members of Eurotiales, such as Aspergillus spp., were isolated very rarely. In our study, we managed to characterize the genera of fungi commonly present on F. polyctena workers. Our results suggest that Penicillium, Trichoderma, Mucor, Schwanniomyces and Entomortierella are commonly present in F. polyctena surroundings. Additionally, the high diversity and high frequency of Penicillium colonies isolated from ants in this study suggest that representatives of this genus may be adapted to survive in ant nests environment better than the other fungal groups, or that they are preferentially sustained by the insects in nests.
Collapse
|
21
|
Ruiz-González MX, Leroy C, Dejean A, Gryta H, Jargeat P, Armijos Carrión AD, Orivel J. Do Host Plant and Associated Ant Species Affect Microbial Communities in Myrmecophytes? INSECTS 2019; 10:insects10110391. [PMID: 31698729 PMCID: PMC6920819 DOI: 10.3390/insects10110391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/31/2019] [Accepted: 11/02/2019] [Indexed: 11/16/2022]
Abstract
Ant-associated microorganisms can play crucial and often overlooked roles, and given the diversity of interactions that ants have developed, the study of the associated microbiomes is of interest. We focused here on specialist plant-ant species of the genus Allomerus that grow a fungus to build galleries on their host-plant stems. Allomerus-inhabited domatia, thus, might be a rich arena for microbes associated with the ants, the plant, and the fungus. We investigated the microbial communities present in domatia colonised by four arboreal ants: Allomerus decemarticulatus, A. octoarticulatus, A. octoarticulatus var. demerarae, and the non-fungus growing plant-ant Azteca sp. cf. depilis, inhabiting Hirtella physophora or Cordia nodosa in French Guiana. We hypothesized that the microbial community will differ among these species. We isolated microorganisms from five colonies of each species, sequenced the 16S rRNA or Internal TranscribedSpacer (ITS) regions, and described both the alpha and beta diversities. We identified 69 microbial taxa, which belong to five bacterial and two fungal phyla. The most diverse phyla were Proteobacteria and Actinobacteria. The microbial community of Azteca cf. depilis and Allomerus spp. differed in composition and richness. Geographical distance affected microbial communities and richness but plant species did not. Actinobacteria were only associated with Allomerus spp.
Collapse
Affiliation(s)
- Mario X. Ruiz-González
- Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 1101608, Ecuador
- Correspondence: (M.X.R.-G.); (J.O.); Tel.: +593-7-3701444 (M.X.R.-G.); +594-594-32-92-96 (J.O.)
| | - Céline Leroy
- AMAP, IRD, CIRAD, CNRS, INRA, Université de Montpellier, 34000 Montpellier, France;
- CNRS, UMR EcoFoG, Agroparistech, CIRAD, INRA, Université de Guyane, Université des Antilles, Campus Agronomique, 97379 Kourou, France
| | - Alain Dejean
- CNRS, UMR EcoFoG, Agroparistech, CIRAD, INRA, Université de Guyane, Université des Antilles, Campus Agronomique, 97379 Kourou, France
- Ecolab, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse, France;
| | - Hervé Gryta
- Laboratoire Evolution & Diversité Biologique (EDB UMR 5174), CNRS, IRD, Université de Toulouse, 31062 Toulouse, France; (H.G.); (P.J.)
| | - Patricia Jargeat
- Laboratoire Evolution & Diversité Biologique (EDB UMR 5174), CNRS, IRD, Université de Toulouse, 31062 Toulouse, France; (H.G.); (P.J.)
| | - Angelo D. Armijos Carrión
- Biodiversity Genomics Team, Plant Ecophysiology & Evolution Group, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Daxuedonglu 100, Nanning 530005, Guangxi, China;
| | - Jérôme Orivel
- CNRS, UMR EcoFoG, Agroparistech, CIRAD, INRA, Université de Guyane, Université des Antilles, Campus Agronomique, 97379 Kourou, France
- Correspondence: (M.X.R.-G.); (J.O.); Tel.: +593-7-3701444 (M.X.R.-G.); +594-594-32-92-96 (J.O.)
| |
Collapse
|
22
|
Lucas JM, Madden AA, Penick CA, Epps MJ, Marting PR, Stevens JL, Fergus DJ, Dunn RR, Meineke EK. Azteca ants maintain unique microbiomes across functionally distinct nest chambers. Proc Biol Sci 2019; 286:20191026. [PMID: 31387509 DOI: 10.1098/rspb.2019.1026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The microbiome of built structures has considerable influence over an inhabitant's well-being, yet the vast majority of research has focused on human-built structures. Ants are well-known architects, capable of constructing elaborate dwellings, the microbiome of which is underexplored. Here, we explore the bacterial and fungal microbiomes in functionally distinct chambers within and outside the nests of Azteca alfari ants in Cecropia peltata trees. We predicted that A. alfari colonies (1) maintain distinct microbiomes within their nests compared to the surrounding environment, (2) maintain distinct microbiomes among nest chambers used for different functions, and (3) limit both ant and plant pathogens inside their nests. In support of these predictions, we found that internal and external nest sampling locations had distinct microbial communities, and A. alfari maintained lower bacterial richness in their 'nurseries'. While putative animal pathogens were suppressed in chambers that ants actively inhabited, putative plant pathogens were not, which does not support our hypothesis that A. alfari defends its host trees against microbial antagonists. Our results show that ants influence microbial communities inside their nests similar to studies of human homes. Unlike humans, ants limit the bacteria in their nurseries and potentially prevent the build-up of insect-infecting pathogens. These results highlight the importance of documenting how indoor microbiomes differ among species, which might improve our understanding of how to promote indoor health in human dwellings.
Collapse
Affiliation(s)
- Jane M Lucas
- Department of Soil and Water Systems, University of Idaho, Moscow, ID 83844, USA
| | - Anne A Madden
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA
| | - Clint A Penick
- The Biomimicry Center, Arizona State University, Tempe, AZ 85287, USA
| | - Mary Jane Epps
- Department of Biology, Mary Baldwin University, Staunton, VA 24401, USA
| | - Peter R Marting
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | | | - Daniel J Fergus
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA
| | - Robert R Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA.,Natural History Museum, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Emily K Meineke
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Cambridge, MA 02138, USA
| |
Collapse
|
23
|
Abstract
A holistic understanding of superorganism biology requires study of colony sociometry, or the quantitative relationships among growth, nest architecture, morphology, and behavior. For ant colonies that obligately nest within plant hosts, their sociometry is likely intertwined with the plant, which has implications for the evolution, strength, and stability of the mutualism. In the Azteca-Cecropia mutualism, plants provide ants with food rewards and hollow stems for nesting in return for protection from herbivores. Several interesting questions arise when considering ant-plant sociometry: are colony growth and plant growth synchronized? How do colonies distribute themselves within the stem of their host plant? How do plant traits influence worker morphology? How is collective personality related to tree structure, nest organization, and worker morphology? To address these questions, we investigated patterns within and relationships among five major sociometric categories of colonies in the field - plant traits, colony size, nest organization, worker morphology, and collective personality. We found that colony sociometry was intimately intertwined with host plant traits. Colony and plant growth rates were synchronized, suggesting that positive feedback between plant and colony growth stabilizes the mutualism. The colony's distribution inside the host tree tended to follow leaf growth, with most workers, brood, and the queen in the top half of the tree. Worker morphology correlated with plant size instead of colony size or age, which suggests that plant traits influence worker development. Colony personality was independent of colony distribution and tree structure but may correlate with worker size such that colonies with smaller, less variable workers had more aggressive personalities. This study provides insights into how ant-plant structural relationships may contribute to plant protection and the strength of mutualisms.
Collapse
|