1
|
Tariq H, Noreen Z, Ahmad A, Khan L, Ali M, Malik M, Javed A, Rasheed F, Fatima A, Kocagoz T, Sezerman U, Bokhari H. Colibactin possessing E. coli isolates in association with colorectal cancer and their genetic diversity among Pakistani population. PLoS One 2022; 17:e0262662. [PMID: 36367873 PMCID: PMC9651576 DOI: 10.1371/journal.pone.0262662] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent cause of tumorigenesis and several pathogenic bacteria have been correlated with aggressive cases of cancer i.e., genotoxin (colibactin) producing Escherichia coli (E. coli). This study was designed to investigate the genetic diversity of clb+clb+E. coli strains and their association with CRC. Pathogenic E. coli isolates from colorectal biopsies were characterized based on phylotypes, antibiotic resistance pattern, and (Enterobacterial Repetitive Intergenic Consensus Sequence-based Polymerase Chain Reaction) ERIC-PCR. Furthermore, isolates were screened for the presence of the Pks (polyketide synthase) Island specifically targeting colibactin genes A and Q. The selective clb+clb+ isolates were subjected to cytotoxicity assay using Human embryonic kidney (HEK) cell lines. We revealed that 43.47% of the cancer-associated E. coli isolates were from phylogroup B2 comparatively more pathogenic than rest while in the case of healthy controls no isolate was found from B2. Moreover, 90% were found positive for colibactin and pks (polyketide synthase) island, while none of the healthy controls were found positive for colibactin genes. All healthy and cancer-associated isolates were tested against 15 antibiotic agents, we observed that cancer-associated isolates showed a wide range of resistance from 96% against Nalidixic acid to 48% against Doxycycline. Moreover, E. coli isolates were further genotyped using ERIC-PCR, and selected clb+clb+E. coli isolates were subjected to cytotoxicity assay. We recorded the significant cytotoxic activity of clb+clb+ E. coli phylogroup B2 isolates that might have contributed towards the progression of CRC or dysbiosis of healthy gut microbiota protecting against CRC pathogenesis. Our results revealed a significant p<0.023 association of dietary habits and hygiene p<0.001with CRC. This is the first study to report the prevalence of E. coli phylogroups and the role of colibactin most virulent phylogroup B2 among Pakistani individuals from low socioeconomic setup.
Collapse
Affiliation(s)
- Habiba Tariq
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Zobia Noreen
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Aftab Ahmad
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
- Department of Microbiology, Kohsar University Murree, Punjab, Pakistan
| | - Laraib Khan
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Mashhood Ali
- Department of Gastroenterology, Pakistan Institute of Medical Sciences (PIMS), Islamabad, Pakistan
| | - Muhammad Malik
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Aneela Javed
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Faisal Rasheed
- Department of Microbiology, Quaid-e-Azam University, Islamabad, Pakistan
| | - Alina Fatima
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Tanil Kocagoz
- Department of Medical Microbiology, Acibadem University, Istanbul, Turkey
| | - Ugur Sezerman
- Department of Biostatics and Medical Informatics, Acibadem University, Istanbul Turkey
| | - Habib Bokhari
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
- Department of Microbiology, Kohsar University Murree, Punjab, Pakistan
- * E-mail: ,
| |
Collapse
|
2
|
Meng X, Chen Y, Wang P, Xia P, Wang J, He M, Zhu C, Wang H, Zhu G. Phosphopantetheinyl transferase ClbA contributes to the virulence of avian pathogenic Escherichia coli in meningitis infection of mice. PLoS One 2022; 17:e0269102. [PMID: 35900973 PMCID: PMC9333332 DOI: 10.1371/journal.pone.0269102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/13/2022] [Indexed: 11/24/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC), which has potential zoonotic risk, can cause severe systemic infections such as septicemia and meningitis in poultry. Colibactin is a hybrid non-ribosomal peptide/polyketide secondary metabolite produced by bacteria, which induces double-strand DNA breaks and chromosome instability in eukaryotic cells. ClbA is a 4’-phosphopantetheinyl transferase (PPTase) that is essential for colibactin and plays a role in siderophore synthesis. However, whether ClbA is associated with meningitis development in APEC is unclear. In this study, we abolished the clbA gene in the APEC XM strain, investigated the effect of clbA on colibactin synthesis and evaluated the pathogenic capacity of colibactin on meningitis development. Deletion of clbA reduced DNA damage to cells and hindered the normal synthesis of colibactin. Compared with the mice infected by wild-type APEC XM, the clbA deletion mutant infected mice had significant reduction in a series of characteristics associated with meningitis including clinical symptoms, bacterial loads of blood and brain, disruption of the blood brain barrier and the expression of inflammatory factors in the brain tissue. Complementation of ClbA recovered some APEC XM virulence. We conclude that ClbA is obligatory for the synthesis of colibactin and is responsible for the development of meningitis in mice infected by APEC.
Collapse
Affiliation(s)
- Xia Meng
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, Jiangsu, China
- * E-mail:
| | - Yanfei Chen
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases, Yangzhou University, Yangzhou, Jiangsu, China
| | - Peili Wang
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases, Yangzhou University, Yangzhou, Jiangsu, China
| | - Pengpeng Xia
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, Jiangsu, China
| | - Jinqiu Wang
- Department of Animal Husbandry and Veterinary Medicine, Beijing Agricultural Vocational College, Beijing, China
| | - Mengping He
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, Jiangsu, China
| | - Chunhong Zhu
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu, China
| | - Heng Wang
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, Jiangsu, China
| | - Guoqiang Zhu
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, Jiangsu, China
| |
Collapse
|
3
|
Rawson A, Saxena V, Gao H, Hooks J, Xuei X, McGuire P, Hato T, Hains DS, Anderson RM, Schwaderer AL. A Pilot Single Cell Analysis of the Zebrafish Embryo Cellular Responses to Uropathogenic Escherichia coli Infection. Pathog Immun 2022; 7:1-18. [PMID: 35178490 PMCID: PMC8843076 DOI: 10.20411/pai.v7i1.479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/06/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Uropathogenic Escherichia coli (UPEC) infections are common and when they disseminate can be of high morbidity.
Methods: We studied the effects of UPEC infection using single cell RNA sequencing (scRNAseq) in zebrafish. Bulk RNA sequencing has historically been used to evaluate gene expression patterns, but scRNAseq allows gene expression to be evaluated at the single cell level and is optimal for evaluating heterogeneity within cell types and rare cell types. Zebrafish cohorts were injected with either saline or UPEC,and scRNAseq and canonical pathway analyses were performed.
Results: Canonical pathway analysis of scRNAseq data provided key information regarding innate immune pathways in the cells determined to be thymus cells, ionocytes, macrophages/monocytes, and pronephros cells. Pathways activated in thymus cells included interleukin 6 (IL-6) signaling and production of reactive oxygen species. Fc receptor-mediated phagocytosis was a leading canonical pathway in the pronephros and macrophages. Genes that were downregulated in UPEC vs saline exposed embryos involved the cellular response to the Gram-negative endotoxin lipopolysaccharide (LPS) and included Forkhead Box O1a (Foxo1a), Tribbles Pseudokinase 3 (Trib3), Arginase 2 (Arg2) and Polo Like Kinase 3 (Plk3).
Conclusions: Because 4-day post fertilization zebrafish embryos only have innate immune systems, the scRNAseq provides insights into pathways and genes that cell types utilize in the bacterial response. Based on our analysis, we have identified genes and pathways that might serve as genetic targets for treatment and further investigation in UPEC infections at the single cell level.
Collapse
Affiliation(s)
- Ashley Rawson
- Indiana University School of Medicine, Department of Pediatrics, Division of Nephrology
| | - Vijay Saxena
- Indiana University School of Medicine, Department of Pediatrics, Division of Nephrology
| | - Hongyu Gao
- Indiana University School of Medicine, Department of Medical & Molecular Genetics
| | - Jenaya Hooks
- Indiana University School of Medicine, Department of Pediatrics, Division of Nephrology
| | - Xiaoling Xuei
- Indiana University School of Medicine, Department of Medical & Molecular Genetics
| | - Patrick McGuire
- Indiana University School of Medicine, Department of Medical & Molecular Genetics
| | - Takashi Hato
- Indiana University School of Medicine, Department of Medicine, Division of Nephrology
| | - David S. Hains
- Indiana University School of Medicine, Department of Pediatrics, Division of Nephrology
| | - Ryan M. Anderson
- University of Chicago, Section of Endocrinology, Diabetes and Metabolism
- CORRESPONDING AUTHOR Andrew Schwaderer, Indiana University School of Medicine, Riley Hospital for Children, 699 Riley Hospital Dr., RR230, Indianapolis, IN 46202; Phone: 317-274-2527;
| | - Andrew L. Schwaderer
- Indiana University School of Medicine, Department of Pediatrics, Division of Nephrology
- CORRESPONDING AUTHOR Ryan M Anderson, University of Chicago, Medicine-Endocrinology, Chicago, IL 60637;
| |
Collapse
|
4
|
Lopez Chiloeches M, Bergonzini A, Frisan T. Bacterial Toxins Are a Never-Ending Source of Surprises: From Natural Born Killers to Negotiators. Toxins (Basel) 2021; 13:426. [PMID: 34204481 PMCID: PMC8235270 DOI: 10.3390/toxins13060426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
The idea that bacterial toxins are not only killers but also execute more sophisticated roles during bacteria-host interactions by acting as negotiators has been highlighted in the past decades. Depending on the toxin, its cellular target and mode of action, the final regulatory outcome can be different. In this review, we have focused on two families of bacterial toxins: genotoxins and pore-forming toxins, which have different modes of action but share the ability to modulate the host's immune responses, independently of their capacity to directly kill immune cells. We have addressed their immuno-suppressive effects with the perspective that these may help bacteria to avoid clearance by the host's immune response and, concomitantly, limit detrimental immunopathology. These are optimal conditions for the establishment of a persistent infection, eventually promoting asymptomatic carriers. This immunomodulatory effect can be achieved with different strategies such as suppression of pro-inflammatory cytokines, re-polarization of the immune response from a pro-inflammatory to a tolerogenic state, and bacterial fitness modulation to favour tissue colonization while preventing bacteraemia. An imbalance in each of those effects can lead to disease due to either uncontrolled bacterial proliferation/invasion, immunopathology, or both.
Collapse
Affiliation(s)
| | | | - Teresa Frisan
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87 Umeå, Sweden; (M.L.C.); (A.B.)
| |
Collapse
|
5
|
Oliero M, Calvé A, Fragoso G, Cuisiniere T, Hajjar R, Dobrindt U, Santos MM. Oligosaccharides increase the genotoxic effect of colibactin produced by pks+ Escherichia coli strains. BMC Cancer 2021; 21:172. [PMID: 33596864 PMCID: PMC7890614 DOI: 10.1186/s12885-021-07876-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/03/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Colibactin is a genotoxin that induces DNA double-strand breaks that may lead to carcinogenesis and is produced by Escherichia coli strains harboring the pks island. Human and animal studies have shown that colibactin-producing gut bacteria promote carcinogenesis and enhance the progression of colorectal cancer through cellular senescence and chromosomal abnormalities. In this study, we investigated the impact of prebiotics on the genotoxicity of colibactin-producing E. coli strains Nissle 1917 and NC101. METHODS Bacteria were grown in medium supplemented with 20, 30 and 40 mg/mL of prebiotics inulin or galacto-oligosaccharide, and with or without 5 μM, 25 μM and 125 μM of ferrous sulfate. Colibactin expression was assessed by luciferase reporter assay for the clbA gene, essential for colibactin production, in E. coli Nissle 1917 and by RT-PCR in E. coli NC101. The human epithelial colorectal adenocarcinoma cell line, Caco-2, was used to assess colibactin-induced megalocytosis by methylene blue binding assay and genotoxicity by γ-H2AX immunofluorescence analysis. RESULTS Inulin and galacto-oligosaccharide enhanced the expression of clbA in pks+ E. coli. However, the addition of 125 μM of ferrous sulfate inhibited the expression of clbA triggered by oligosaccharides. In the presence of either oligosaccharide, E. coli NC101 increased dysplasia and DNA double-strand breaks in Caco-2 cells compared to untreated cells. CONCLUSION Our results suggest that, in vitro, prebiotic oligosaccharides exacerbate DNA damage induced by colibactin-producing bacteria. Further studies are necessary to establish whether oligosaccharide supplementation may lead to increased colorectal tumorigenesis in animal models colonized with pks+ E. coli.
Collapse
Affiliation(s)
- Manon Oliero
- Nutrition and Microbiome Laboratory, Institut du cancer de Montréal, Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), 900 Rue Saint Denis, Montreal, QC H2X 0A9 Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, 2900 boulevard Édouard-Montpetit, Montréal, QC H3T 1J4 Canada
| | - Annie Calvé
- Nutrition and Microbiome Laboratory, Institut du cancer de Montréal, Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), 900 Rue Saint Denis, Montreal, QC H2X 0A9 Canada
| | - Gabriela Fragoso
- Nutrition and Microbiome Laboratory, Institut du cancer de Montréal, Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), 900 Rue Saint Denis, Montreal, QC H2X 0A9 Canada
| | - Thibault Cuisiniere
- Nutrition and Microbiome Laboratory, Institut du cancer de Montréal, Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), 900 Rue Saint Denis, Montreal, QC H2X 0A9 Canada
| | - Roy Hajjar
- Nutrition and Microbiome Laboratory, Institut du cancer de Montréal, Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), 900 Rue Saint Denis, Montreal, QC H2X 0A9 Canada
- Department of Surgery, Faculty of Medicine, Université de Montréal, 2900 boulevard Édouard-Montpetit, Montréal, QC H3T 1J4 Canada
| | - Ulrich Dobrindt
- Institute of Hygiene, Section Microbial Genome Plasticity, University of Münster, Mendelstraße 7, 48149 Münster, Germany
| | - Manuela M. Santos
- Nutrition and Microbiome Laboratory, Institut du cancer de Montréal, Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), 900 Rue Saint Denis, Montreal, QC H2X 0A9 Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, 2900 boulevard Édouard-Montpetit, Montréal, QC H3T 1J4 Canada
| |
Collapse
|
6
|
García A, Fox JG. A One Health Perspective for Defining and Deciphering Escherichia coli Pathogenic Potential in Multiple Hosts. Comp Med 2021; 71:3-45. [PMID: 33419487 PMCID: PMC7898170 DOI: 10.30802/aalas-cm-20-000054] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/17/2020] [Accepted: 09/19/2020] [Indexed: 11/05/2022]
Abstract
E. coli is one of the most common species of bacteria colonizing humans and animals. The singularity of E. coli 's genus and species underestimates its multifaceted nature, which is represented by different strains, each with different combinations of distinct virulence factors. In fact, several E. coli pathotypes, or hybrid strains, may be associated with both subclinical infection and a range of clinical conditions, including enteric, urinary, and systemic infections. E. coli may also express DNA-damaging toxins that could impact cancer development. This review summarizes the different E. coli pathotypes in the context of their history, hosts, clinical signs, epidemiology, and control. The pathotypic characterization of E. coli in the context of disease in different animals, including humans, provides comparative and One Health perspectives that will guide future clinical and research investigations of E. coli infections.
Collapse
Key Words
- aa, aggregative adherence
- a/e, attaching and effacing
- aepec, atypical epec
- afa, afimbrial adhesin
- aida-i, adhesin involved in diffuse adherence
- aiec, adherent invasive e. coli
- apec, avian pathogenic e. coli
- atcc, american type culture collection
- bfp, bundle-forming pilus
- cd, crohn disease
- cdt, cytolethal distending toxin gene
- clb, colibactin
- cnf, cytotoxic necrotizing factor
- cs, coli surface (antigens)
- daec, diffusely adhering e. coli
- db, dutch belted
- eae, e. coli attaching and effacing gene
- eaec, enteroaggregative e. coli
- eaf, epec adherence factor (plasmid)
- eahec, entero-aggregative-hemorrhagic e. coli
- east-1, enteroaggregative e. coli heat-stable enterotoxin
- e. coli, escherichia coli
- ed, edema disease
- ehec, enterohemorrhagic e. coli
- eiec, enteroinvasive e. coli
- epec, enteropathogenic e. coli
- esbl, extended-spectrum β-lactamase
- esp, e. coli secreted protein
- etec, enterotoxigenic e. coli
- expec, extraintestinal pathogenic e. coli
- fyua, yersiniabactin receptor gene
- gi, gastrointestinal
- hly, hemolysin
- hus, hemolytic uremic syndrome
- ibd, inflammatory bowel disease
- la, localized adherence
- lee, locus of enterocyte effacement
- lpf, long polar fimbriae
- lt, heat-labile (enterotoxin)
- mlst, multilocus sequence typing
- ndm, new delhi metallo-β-lactamase
- nzw, new zealand white
- pap, pyelonephritis-associated pilus
- pks, polyketide synthase
- sfa, s fimbrial adhesin
- slt, shiga-like toxin
- st, heat-stable (enterotoxin)
- stec, stx-producing e. coli
- stx, shiga toxin
- tepec, typical epec
- upec, uropathogenic e. coli
- uti, urinary tract infection
Collapse
Affiliation(s)
- Alexis García
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico; Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts; Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts;,
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
7
|
Cytotoxic Escherichia coli strains encoding colibactin, cytotoxic necrotizing factor, and cytolethal distending toxin colonize laboratory common marmosets (Callithrix jacchus). Sci Rep 2021; 11:2309. [PMID: 33504843 PMCID: PMC7841143 DOI: 10.1038/s41598-020-80000-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/08/2020] [Indexed: 11/09/2022] Open
Abstract
Cyclomodulins are virulence factors that modulate cellular differentiation, apoptosis, and proliferation. These include colibactin (pks), cytotoxic necrotizing factor (cnf), and cytolethal distending toxin (cdt). Pathogenic pks+, cnf+, and cdt+ E. coli strains are associated with inflammatory bowel disease (IBD) and colorectal cancer in humans and animals. Captive marmosets are frequently afflicted with IBD-like disease, and its association with cyclomodulins is unknown. Cyclomodulin-encoding E. coli rectal isolates were characterized using PCR-based assays in healthy and clinically affected marmosets originating from three different captive sources. 139 E. coli isolates were cultured from 122 of 143 marmosets. The pks gene was detected in 56 isolates (40%), cnf in 47 isolates (34%), and cdt in 1 isolate (0.7%). The prevalences of pks+ and cnf+ E. coli isolates were significantly different between the three marmoset colonies. 98% of cyclomodulin-positive E. coli belonged to phylogenetic group B2. Representative isolates demonstrated cyclomodulin cytotoxicity, and serotyping and whole genome sequencing were consistent with pathogenic E. coli strains. However, the presence of pks+, cnf+, or cdt+ E. coli did not correlate with clinical gastrointestinal disease in marmosets. Cyclomodulin-encoding E. coli colonize laboratory common marmosets in a manner dependent on the source, potentially impacting reproducibility in marmoset models.
Collapse
|
8
|
Ge Z, Carrasco SE, Feng Y, Bakthavatchalu V, Annamalai D, Kramer R, Muthupalani S, Fox JG. Identification of a new strain of mouse kidney parvovirus associated with inclusion body nephropathy in immunocompromised laboratory mice. Emerg Microbes Infect 2020; 9:1814-1823. [PMID: 32686622 PMCID: PMC7473309 DOI: 10.1080/22221751.2020.1798288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 07/14/2020] [Indexed: 12/18/2022]
Abstract
Inclusion body nephropathy (IBN) and kidney fibrosis in aged immunodeficient mice and, to lesser extent, in immunocompetent mice have been recently linked to infection of mouse kidney parvovirus (MKPV), also known as murine chapparvovirus (MuCPV). Knowledge about its prevalence and the complete genome sequence of more MKPV strains is essential for understanding phylogenetic relationships and pathogenicity among MKPV strains. In the present study using PCR and genome walking, we determined the complete 4440-nucleotide genome of a new MKPV strain, namely MIT-WI1, which was identified in IBN-affected Il2rg-/-Rag2-/- c-Kit W-sh/W-sh mice housed in the vivarium at Whitehead Institute for Biomedical Research (WI). The overall nucleotide (>94%) and deduced amino acid sequences (>98%) of p10, p15, NS1 (replicase), NS2 and VP1 (capsid protein) within the MIT-WI1 genome, are closely related to MKPV/MuCPV strains described in laboratory and wild Mus musculus mice. In addition, PCR and qPCR assays using newly designed primers conserved among the known MKPV/MuCPV genomes were developed and utilized to assess MKPV status in selected laboratory mice. MKPV was also detected in immunodeficient (NSG) and immunocompetent (Crl:CD1(ICR), UTXflox) mouse strains/stocks. The abundance of the MKPV genome copies was significantly correlated with the severity of IBN. Our data indicate that MKPV is present in selected mouse strains/stocks, and provides new insights into the genome evolution of MKPV.
Collapse
Affiliation(s)
- Zhongming Ge
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sebastian E. Carrasco
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yan Feng
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Damodaran Annamalai
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robin Kramer
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - James G. Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
9
|
Cohen MA, Zhang S, Sengupta S, Ma H, Bell GW, Horton B, Sharma B, George RE, Spranger S, Jaenisch R. Formation of Human Neuroblastoma in Mouse-Human Neural Crest Chimeras. Cell Stem Cell 2020; 26:579-592.e6. [PMID: 32142683 DOI: 10.1016/j.stem.2020.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 10/04/2019] [Accepted: 02/03/2020] [Indexed: 12/15/2022]
Abstract
Neuroblastoma (NB), derived from the neural crest (NC), is the most common pediatric extracranial solid tumor. Here, we establish a platform that allows the study of human NBs in mouse-human NC chimeras. Chimeric mice were produced by injecting human NC cells carrying NB relevant oncogenes in utero into gastrulating mouse embryos. The mice developed tumors composed of a heterogenous cell population that resembled that seen in primary NBs of patients but were significantly different from homogeneous tumors formed in xenotransplantation models. The human tumors emerged in immunocompetent hosts and were extensively infiltrated by mouse cytotoxic T cells, reflecting a vigorous host anti-tumor immune response. However, the tumors blunted the immune response by inducing infiltration of regulatory T cells and expression of immune-suppressive molecules similar to escape mechanisms seen in human cancer patients. Thus, this experimental platform allows the study of human tumor initiation, progression, manifestation, and tumor-immune-system interactions in an animal model system.
Collapse
Affiliation(s)
- Malkiel A Cohen
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Shupei Zhang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Satyaki Sengupta
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Haiting Ma
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - George W Bell
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Brendan Horton
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Bandana Sharma
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Rani E George
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.
| | - Stefani Spranger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
10
|
Fabian NJ, Mannion AJ, Feng Y, Madden CM, Fox JG. Intestinal colonization of genotoxic Escherichia coli strains encoding colibactin and cytotoxic necrotizing factor in small mammal pets. Vet Microbiol 2019; 240:108506. [PMID: 31902483 DOI: 10.1016/j.vetmic.2019.108506] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 12/15/2022]
Abstract
Escherichia coli encoding colibactin (clb), cytolethal distending toxin (cdt), and hemolysin-associated cytotoxic necrotizing factor (cnf) are associated with various intestinal and extra-intestinal diseases in humans and animals. Small mammal pets are not evaluated for genotoxin-encoding E. coli. Thus, the prevalence of such strains is unknown. The objective of this study was to isolate and characterize genotoxin-encoding E. coli from healthy and ill small mammal pets examined at a veterinary clinic and at two animal adoption centers. E. coli isolates were cultured from fecal samples and biochemically characterized. A total of 65 animals, including mice, rats, rabbits, guinea pigs, and hedgehogs, were screened. Twenty-six E. coli isolates were obtained from 24 animals. Twelve of the 26 isolates (46.2 %) were PCR-positive for the pks genes clbA and clbQ. Two isolates (7.7 %) were PCR-positive for cnf. All isolates were PCR-negative for cdt. All genotoxin-encoding isolates belonged to the pathogen-associated phylogenetic group B2. Representative genotoxin-encoding isolates had serotypes previously associated with clinical disease in humans and animals. Isolates encoding pks or cnf induced megalocytosis and cytotoxicity to HeLa cells in vitro. Although most isolates were obtained from healthy pets, two guinea pigs with diarrhea had pks-positive isolates cultured from their feces. Whole genome sequencing on four representative isolates confirmed the presence of pks and cnf genes and identified other virulence factors associated with pathogenicity in animals and humans. Our results suggest that small mammalian pets may serve as a reservoir for potentially pathogenic E. coli and implicate a zoonotic risk.
Collapse
Affiliation(s)
- Niora J Fabian
- Division of Comparative Medicine, Massachusetts Institute of Technology, Building 16-825, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139, USA.
| | - Anthony J Mannion
- Division of Comparative Medicine, Massachusetts Institute of Technology, Building 16-825, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139, USA.
| | - Yan Feng
- Division of Comparative Medicine, Massachusetts Institute of Technology, Building 16-825, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139, USA.
| | - Carolyn M Madden
- Division of Comparative Medicine, Massachusetts Institute of Technology, Building 16-825, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139, USA.
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Building 16-825, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139, USA.
| |
Collapse
|