1
|
Yanai R, Yasunaga G, Tsuji S, Honda T, Iwata A, Miyagawa E, Yoshida K, Kishimoto M, Sakai H, Fujise Y, Asagiri M, Mitamura Y. Dietary intake of whale oil-containing ω-3 long-chain polyunsaturated fatty acids attenuates choroidal neovascularization in mice. FASEB J 2025; 39:e70378. [PMID: 39937567 PMCID: PMC11818653 DOI: 10.1096/fj.202402041r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 01/16/2025] [Accepted: 01/28/2025] [Indexed: 02/13/2025]
Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness in Western and developing countries. Since antivascular endothelial growth factor (VEGF) therapy is available for the regression of choroidal neovascularization (CNV), it does not work for the pathophysiology of AMD so a cure is increasingly demanded. Whale oil promotes various bodily functions, such as anti-inflammatory effects for cardiovascular disease, but its physiological mechanisms are still unclarified. Here, we examined the effects of whale oil on a mouse model of AMD. The area of CNV measured in choroidal flat-mount preparations at 7 days after laser photocoagulation was significantly smaller in mice fed whale oil compared with control mice free of ω-3 long-chain polyunsaturated fatty acids (LCPUFAs). The plasma concentrations of ω-3 LCPUFAs were higher, whereas those of ω-6 LCPUFAs were lower in mice fed the diet containing whale oil than in those fed the control diet. The concentrations of various inflammatory cytokines and chemokines in the retina or choroid at 3 or 7 days after CNV induction differed between the two groups of mice. Furthermore, the concentration of VEGF was decreased in the retina but increased in the choroid at 7 or 3 days after photocoagulation, respectively. Our results thus show that dietary intake of whale oil-containing ω-3 LCPUFAs attenuated CNV in association with changes in inflammatory mediator levels and VEGF expression in the retina and choroid of mice, and it, therefore, warrants further study as a means to protect against AMD in humans.
Collapse
Affiliation(s)
- Ryoji Yanai
- Department of Ophthalmology, Institute of Biomedical SciencesTokushima University Graduate SchoolTokushimaJapan
| | | | - Shunya Tsuji
- Department of PharmacologyYamaguchi University Graduate School of MedicineUbeYamaguchiJapan
| | - Takeshi Honda
- Department of PharmacologyYamaguchi University Graduate School of MedicineUbeYamaguchiJapan
| | - Arihiro Iwata
- Yamaguchi Prefectural Industrial Technology InstituteUbeYamaguchiJapan
| | - Eiji Miyagawa
- Yamaguchi Prefectural Industrial Technology InstituteUbeYamaguchiJapan
| | - Koji Yoshida
- Yoshida General Techno Co., Ltd.ShimonosekiYamaguchiJapan
| | | | | | | | - Masataka Asagiri
- Department of PharmacologyYamaguchi University Graduate School of MedicineUbeYamaguchiJapan
| | - Yoshinori Mitamura
- Department of Ophthalmology, Institute of Biomedical SciencesTokushima University Graduate SchoolTokushimaJapan
| |
Collapse
|
2
|
Salas A, Badia A, Fontrodona L, Zapata M, García-Arumí J, Duarri A. Neovascular Progression and Retinal Dysfunction in the Laser-Induced Choroidal Neovascularization Mouse Model. Biomedicines 2023; 11:2445. [PMID: 37760886 PMCID: PMC10525599 DOI: 10.3390/biomedicines11092445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
The mouse model of laser-induced choroidal neovascularization (LI-CNV) has been widely used to study neovascular age-related macular degeneration; however, it still lacks a comprehensive characterization. Here, CNV was induced in the eyes of 12-week-old C57BL/6J male mice by argon laser irradiation. We studied the CNV lesion progression of an LI-CNV mouse cohort by using multimodal imaging (color fundus, optical coherence tomography (OCT), and fluorescence angiography, focal electroretinography features for 14 days, and related cytokines, angiogenic factors, and reactive gliosis for 5 days. CNV lesions involving the rupture of the Bruch's membrane were confirmed using funduscopy and OCT after laser photocoagulation. During the initial stage, from the CNV induction until day 7, CNV lesions presented leakage observed by using fluorescence angiography and a typical hyperreflective area with cell infiltration, subretinal leakage, and degeneration of photoreceptors observed through OCT. This correlated with decreased retinal responses to light. Moreover, inflammatory and angiogenic markers were reduced to basal levels in the first 5 days of CNV progression. In contrast, reactive gliosis and the VEGF expression in retinal sections were sustained, with infiltration of endothelial cells in the subretinal space. In the second stage, between days 7 and 14 post-induction, we observed stabilization of the CNV lesions, a hyperfluorescent area corresponding to the formation of fibrosis, and a partial rescue of retinal function. These findings suggest that the LI-CNV lesion development goes through an acute phase during the first seven days following induction, and then the CNV lesion stabilizes. According to these results, this model is suitable for screening anti-inflammatory and anti-angiogenic drugs in the early stages of LI-CNV. At the same time, it is more convenient for screening anti-fibrotic compounds in the later stages.
Collapse
Affiliation(s)
- Anna Salas
- Ophthalmology Research Group, Vall d’Hebron Institut de Recerca, 08035 Barcelona, Spain
| | - Anna Badia
- Ophthalmology Research Group, Vall d’Hebron Institut de Recerca, 08035 Barcelona, Spain
| | - Laura Fontrodona
- Ophthalmology Research Group, Vall d’Hebron Institut de Recerca, 08035 Barcelona, Spain
| | - Miguel Zapata
- Ophthalmology Research Group, Vall d’Hebron Institut de Recerca, 08035 Barcelona, Spain
- Department of Ophthalmology, Vall d’Hebron Hospital Universitari, 08035 Barcelona, Spain
| | - José García-Arumí
- Ophthalmology Research Group, Vall d’Hebron Institut de Recerca, 08035 Barcelona, Spain
- Department of Ophthalmology, Vall d’Hebron Hospital Universitari, 08035 Barcelona, Spain
| | - Anna Duarri
- Ophthalmology Research Group, Vall d’Hebron Institut de Recerca, 08035 Barcelona, Spain
| |
Collapse
|
3
|
Metabolomics and Biomarkers in Retinal and Choroidal Vascular Diseases. Metabolites 2022; 12:metabo12090814. [PMID: 36144219 PMCID: PMC9503269 DOI: 10.3390/metabo12090814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
The retina is one of the most important structures in the eye, and the vascular health of the retina and choroid is critical to visual function. Metabolomics provides an analytical approach to endogenous small molecule metabolites in organisms, summarizes the results of “gene-environment interactions”, and is an ideal analytical tool to obtain “biomarkers” related to disease information. This study discusses the metabolic changes in neovascular diseases involving the retina and discusses the progress of the study from the perspective of metabolomics design and analysis. This study advocates a comparative strategy based on existing studies, which encompasses optimization of the performance of newly identified biomarkers and the consideration of the basis of existing studies, which facilitates quality control of newly discovered biomarkers and is recommended as an additional reference strategy for new biomarker discovery. Finally, by describing the metabolic mechanisms of retinal and choroidal neovascularization, based on the results of existing studies, this study provides potential opportunities to find new therapeutic approaches.
Collapse
|
4
|
Ren J, Ren A, Deng X, Huang Z, Jiang Z, Li Z, Gong Y. Long-Chain Polyunsaturated Fatty Acids and Their Metabolites Regulate Inflammation in Age-Related Macular Degeneration. J Inflamm Res 2022; 15:865-880. [PMID: 35173457 PMCID: PMC8842733 DOI: 10.2147/jir.s347231] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/20/2022] [Indexed: 12/24/2022] Open
Abstract
Age-related macular degeneration (AMD) is a blinding eye disease, whose incidence strongly increases with ages. The etiology of AMD is complex, including aging, abnormal lipid metabolism, chronic inflammation and oxidative stress. Long-chain polyunsaturated fatty acids (LCPUFA) are essential for ocular structures and functions. This review summarizes the regulatory effects of LCPUFA on inflammation in AMD. LCPUFA are related to aging, autophagy and chronic inflammation. They are metabolized to pro- and anti-inflammatory metabolites by various enzymes. These metabolites stimulate inflammation in response to oxidative stress, causing innate and acquired immune responses. This review also discusses the possible clinical applications, which provided novel targets for the prevention and treatment of AMD and other age-related diseases.
Collapse
Affiliation(s)
- Jiangbo Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Anli Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Xizhi Deng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Zhengrong Huang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Ziyu Jiang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Zhi Li
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Human Genetics Resource Preservation Center of Wuhan University, Wuhan University, Wuhan, Hubei, People’s Republic of China
- Correspondence: Yan Gong; Zhi Li, Tel +86 27 6781 1461; +86 27 6781 2622, Fax +86 27 6781 1471; +86 27 6781 3133, Email ;
| |
Collapse
|
5
|
Cao Y, Li Y, Gkerdi A, Reilly J, Tan Z, Shu X. Association of Nutrients, Specific Dietary Patterns, and Probiotics with Age-related Macular Degeneration. Curr Med Chem 2022; 29:6141-6158. [PMID: 35546762 DOI: 10.2174/0929867329666220511142817] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/09/2022] [Accepted: 03/15/2022] [Indexed: 11/22/2022]
Abstract
Age-related macular degeneration (AMD) is a complex disease that mainly affects people over 50 years of age. Even though management of the vascularisation associated with the "wet" form of AMD is effective using anti-VEGF drugs, there is currently no treatment for the "dry" form of AMD. Given this, it is imperative to develop methods for disease prevention and treatment. For this review, we searched scientific articles via PubMed and Google Scholar, and considered the impact of nutrients, specific dietary patterns, and probiotics on the incidence and progression of AMD. Many studies revealed that regular consumption of foods that contain ω-3 fatty acids is associated with a lower risk for late AMD. Particular dietary patterns, such as the Mediterranean diet that contains ω-3 FAs-rich foods (nuts, olive oil, and fish), seem to be protective against AMD progression compared to Western diets that are rich in fats and carbohydrates. Furthermore, randomized controlled trials that investigated the role of nutrient supplementation in AMD have shown that treatment with antioxidants, such as lutein/zeaxanthin, zinc, and carotenoids, may be effective against AMD progression. More recent studies have investigated the association of the antioxidant properties of gut bacteria, such as Bacteroides and Eysipelotrichi, with lower AMD risk in individuals whose microbiota is enriched with them. These are promising fields of research that may yield the capacity to improve the quality of life for millions of people, allowing them to live with a clear vision for longer and avoiding the high cost of vision-saving surgery.
Collapse
Affiliation(s)
- Yanqun Cao
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, P.R. China
| | - Yuli Li
- College of Chinese Medicine,Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Antonia Gkerdi
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, United Kingdom
| | - James Reilly
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, United Kingdom
| | - Zhoujin Tan
- College of Chinese Medicine,Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Xinhua Shu
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, P.R. China
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, United Kingdom
- Department of Vision Science, Glasgow Caledonian University, Glasgow, G4 0BA, United Kingdom
| |
Collapse
|
6
|
Landowski M, Bowes Rickman C. Targeting Lipid Metabolism for the Treatment of Age-Related Macular Degeneration: Insights from Preclinical Mouse Models. J Ocul Pharmacol Ther 2021; 38:3-32. [PMID: 34788573 PMCID: PMC8817708 DOI: 10.1089/jop.2021.0067] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Age-related macular degeneration (AMD) is a major leading cause of irreversible visual impairment in the world with limited therapeutic interventions. Histological, biochemical, genetic, and epidemiological studies strongly implicate dysregulated lipid metabolism in the retinal pigmented epithelium (RPE) in AMD pathobiology. However, effective therapies targeting lipid metabolism still need to be identified and developed for this blinding disease. To test lipid metabolism-targeting therapies, preclinical AMD mouse models are needed to establish therapeutic efficacy and the role of lipid metabolism in the development of AMD-like pathology. In this review, we provide a comprehensive overview of current AMD mouse models available to researchers that could be used to provide preclinical evidence supporting therapies targeting lipid metabolism for AMD. Based on previous studies of AMD mouse models, we discuss strategies to modulate lipid metabolism as well as examples of studies evaluating lipid-targeting therapeutics to restore lipid processing in the RPE. The use of AMD mouse models may lead to worthy lipid-targeting candidate therapies for clinical trials to prevent the blindness caused by AMD.
Collapse
Affiliation(s)
- Michael Landowski
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA.,McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Catherine Bowes Rickman
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
7
|
Santana-Garrido Á, Reyes-Goya C, Fernández-Bobadilla C, Blanca AJ, André H, Mate A, Vázquez CM. NADPH oxidase-induced oxidative stress in the eyes of hypertensive rats. Mol Vis 2021; 27:161-178. [PMID: 33907371 PMCID: PMC8056463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 03/31/2021] [Indexed: 11/18/2022] Open
Abstract
Purpose Increased reactive oxygen species (ROS) released by NADPH oxidase and inflammation are associated with arterial hypertension and eye diseases associated with high blood pressure, including glaucoma, retinopathies (e.g., age-related macular degeneration), and choroidopathies affecting ocular function; however, the mechanisms underlying these adverse outcomes remain undefined. The present study was designed to highlight the importance of oxidative stress in severe hypertension-related eye damage. Methods Male Wistar rats (n = 7, unless otherwise specified for specific experiments) were administered an oral dose of 30 mg of Nω-nitro-L-arginine methyl ester (L-NAME) per kilogram of bodyweight and day for 3 weeks; chronic administration with L-NAME is a validated experimental approach resulting in severe hypertension secondary to nitric oxide (NO) depletion and subsequent vasoconstriction in the systemic circulation. Upon treatment completion, histomorphometric studies, NADPH oxidase activity, and ROS production were measured in eyecup homogenates and paraffin-embedded sections from control and L-NAME-treated animals. In addition, immunohistofluorescence, western blotting, and real-time PCR (RT-qPCR) analyses were performed in the eye and the retina to evaluate the expression of i) NADPH oxidase main isoforms (NOX1, NOX2, and NOX4) and subunits (p22phox and p47phox); ii) glial fibrillary acidic protein (GFAP), as a marker of microglial activation in the retina; iii) antioxidant enzymes; and iv) endothelial constitutive (eNOS) and inflammation inducible (iNOS) nitric oxide synthase isoforms, and nitrotyrosine as a versatile biomarker of oxidative stress. Results Increased activity of NADPH oxidase and superoxide anion production, accompanied by transcriptional upregulation of this enzyme isoforms, was found in the retina and choroid of the hypertensive rats in comparison with the untreated controls. Histomorphometric analyses revealed a significant reduction in the thickness of the ganglion cell layer and the outer retinal layers in the hypertensive animals, which also showed a positive strong signal of GFAP in the retinal outer segment and plexiform layers. In addition, L-NAME-treated animals presented with upregulation of nitric oxide synthase (including inducible and endothelial isoforms) and abnormally elevated nitrotyrosine levels. Experiments on protein and mRNA expression of antioxidant enzymes revealed depletion of superoxide dismutase and glutathione peroxidase in the eyes of the hypertensive animals; however, glutathione reductase was significantly higher than in the normotensive controls. Conclusions The present study demonstrated structural changes in the retinas of the L-NAME-treated hypertensive animals and strengthens the importance of NADPH oxidase as a major ROS-generating enzyme system in the oxidative and inflammatory processes surrounding hypertensive eye diseases. These observations might contribute to unveiling pathogenic mechanisms responsible for developing ocular disturbances in the context of severe hypertension.
Collapse
Affiliation(s)
- Álvaro Santana-Garrido
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla. CL Profesor García González, Sevilla, Spain,Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío – Consejo Superior de Investigaciones Científicas – Universidad de Sevilla. Avda. Manuel Siurot s/n, Sevilla, Spain
| | - Claudia Reyes-Goya
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla. CL Profesor García González, Sevilla, Spain
| | - Carmen Fernández-Bobadilla
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla. CL Profesor García González, Sevilla, Spain
| | - Antonio J. Blanca
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla. CL Profesor García González, Sevilla, Spain
| | - Helder André
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Alfonso Mate
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla. CL Profesor García González, Sevilla, Spain,Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío – Consejo Superior de Investigaciones Científicas – Universidad de Sevilla. Avda. Manuel Siurot s/n, Sevilla, Spain
| | - Carmen M. Vázquez
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla. CL Profesor García González, Sevilla, Spain,Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío – Consejo Superior de Investigaciones Científicas – Universidad de Sevilla. Avda. Manuel Siurot s/n, Sevilla, Spain
| |
Collapse
|
8
|
Shah S, Bhanderi B, Soniwala M, Chavda J. Lutein-Loaded Solid Lipid Nanoparticles for Ocular Delivery: Statistical Optimization and Ex Vivo Evaluation. J Pharm Innov 2021. [DOI: 10.1007/s12247-021-09537-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Beyond AREDS Formulations, What Is Next for Intermediate Age-Related Macular Degeneration (iAMD) Treatment? Potential Benefits of Antioxidant and Anti-inflammatory Apocarotenoids as Neuroprotectors. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4984927. [PMID: 33520083 PMCID: PMC7803142 DOI: 10.1155/2020/4984927] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/21/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
Age-related macular degeneration (AMD) is the commonest cause of severe visual loss and blindness in developed countries among individuals aged 60 and older. AMD slowly progresses from early AMD to intermediate AMD (iAMD) and ultimately late-stage AMD. Late AMD encompasses either neovascular AMD (nAMD) or geographic atrophy (GA). nAMD is defined by choroidal neovascularization (CNV) and hemorrhage in the subretinal space at the level of the macula. This induces a rapid visual impairment caused by the death of photoreceptor cells. Intravitreal injection of anti-vascular endothelial growth factor (VEGF) antibodies is the standard treatment of nAMD but adds to the burden of patient care. GA is characterized by slowly expanding photoreceptor, and retinal pigment epithelium (RPE) degeneration patches progressively leading to blindness. There is currently no therapy to cure GA. Late AMD continues to be an unmet medical need representing a major health problem with millions of patients worldwide. Oxidative stress and inflammation are recognized as some of the main risk factors to developing late AMD. The antioxidant formulation AREDS (Age-Related Eye Disease Studies), contains β-carotene, which has been replaced by lutein and zeaxanthin in AREDS2, are given to patients with iAMD but have a limited effect on the incidence of nAMD and GA. Thus, to avoid or slowdown the development of late stages of AMD (nAMD or GA), new therapies targeting iAMD are needed such as crocetin obtained through hydrolysis of crocin, an important component of saffron (Crocus sativus L.), and norbixin derived from bixin extracted from Bixa orellana seeds. We have shown that these apocarotenoids preserved more effectively RPE cells against apoptosis following blue light exposure in the presence of A2E than lutein and zeaxanthin. In this review, we will discuss the potential use of apocarotenoids to slowdown the progression of iAMD, to reduce the incidence of both forms of late AMD.
Collapse
|
10
|
Bosch-Morell F, Villagrasa V, Ortega T, Acero N, Muñoz-Mingarro D, González-Rosende ME, Castillo E, Sanahuja MA, Soriano P, Martínez-Solís I. Medicinal plants and natural products as neuroprotective agents in age-related macular degeneration. Neural Regen Res 2020; 15:2207-2216. [PMID: 32594032 PMCID: PMC7749482 DOI: 10.4103/1673-5374.284978] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/12/2019] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
Abstract
The retina may suffer neurodegenerative damages, as other tissues of the central nervous system do, and serious eye diseases may develop. One of them is age-related macular degeneration, which causes progressive loss of vision due to retina degeneration. Treatment of age-related macular degeneration focuses on antioxidant agents and anti-vascular endothelial growth factor compounds, among others, that prevent/diminish oxidative stress and reduce neovascularisation respectively. The phytochemicals, medicinal plants and/or plant-diet supplements might be a useful adjunct in prevention or treatment of age-related macular degeneration owing to their antioxidant and anti-vascular endothelial growth factor properties. This review article presents the most investigated plants and natural products in relation to age-related macular degeneration, such as saffron, ginkgo, bilberry and blueberry, curcuma or turmeric, carotenoids, polyphenols, and vitamins C and E. This study provides up-to-date information on the effects, treatments, safety and efficiency of these phytotherapy products.
Collapse
Affiliation(s)
- Francisco Bosch-Morell
- Biomedical Sciences Institute, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Valencia, Spain
- Department of Biomedical Sciences, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Valencia, Spain
| | - Victoria Villagrasa
- Department of Pharmacy, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Valencia, Spain
| | - Teresa Ortega
- Department of Pharmacology, Pharmacognosy and Botany, Universidad Complutense de Madrid, Madrid, Spain
| | - Nuria Acero
- Department of Pharmaceutical and Health Sciences, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Dolores Muñoz-Mingarro
- Department of Chemistry and Biochemistry, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - M. Eugenia González-Rosende
- Department of Pharmacy, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Valencia, Spain
| | - Encarna Castillo
- Department of Pharmacy, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Valencia, Spain
| | - M. Amparo Sanahuja
- Department of Pharmacy, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Valencia, Spain
| | - Pilar Soriano
- ICBiBE-Botanical Garden, University of Valencia, Valencia, Spain
| | - Isabel Martínez-Solís
- Biomedical Sciences Institute, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Valencia, Spain
- Department of Pharmacy, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Valencia, Spain
- ICBiBE-Botanical Garden, University of Valencia, Valencia, Spain
| |
Collapse
|
11
|
Park SJ, Park DH. REvisiting Lipids in REtinal Diseases: A Focused Review on Age-related Macular Degeneration and Diabetic Retinopathy. J Lipid Atheroscler 2020; 9:406-418. [PMID: 33024733 PMCID: PMC7521975 DOI: 10.12997/jla.2020.9.3.406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 12/24/2022] Open
Abstract
Dyslipidemia refers to an abnormal amount of lipid in the blood, and the total cholesterol level is defined as the sum of high-density lipoprotein cholesterol, low-density lipoprotein (LDL) cholesterol, and very-LDL cholesterol concentrations. In Korea, the westernization of lifestyle habits in recent years has caused an increase in the incidence of dyslipidemia, which is an important risk factor of cardiovascular disease (CVD). Several studies have been conducted on how dyslipidemia affects not only CVD, but also chorioretinal diseases such as age-related macular degeneration (AMD) and diabetic retinopathy. Recently, a pathological model of AMD was proposed under the assumption that AMD proceeds through a mechanism similar to that of atherosclerotic CVD. However, controversy remains regarding the relationship between chorioretinal diseases and lipid levels in the blood, and the effects of lipid-lowering agents. Herein, we summarize the role of lipids in chorioretinal diseases. In addition, the effects of lipid-lowering agents on the prevention and progression of chorioretinal diseases are presented.
Collapse
Affiliation(s)
- Su Jin Park
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea
| | - Dong Ho Park
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea
| |
Collapse
|
12
|
Update on the Effects of Antioxidants on Diabetic Retinopathy: In Vitro Experiments, Animal Studies and Clinical Trials. Antioxidants (Basel) 2020; 9:antiox9060561. [PMID: 32604941 PMCID: PMC7346101 DOI: 10.3390/antiox9060561] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
Current therapies for diabetic retinopathy (DR) incorporate blood glucose and blood pressure control, vitrectomy, photocoagulation, and intravitreal injections of anti-vascular endothelial growth factors or corticosteroids. Nonetheless, these techniques have not been demonstrated to completely stop the evolution of this disorder. The pathophysiology of DR is not fully known, but there is more and more evidence indicating that oxidative stress is an important mechanism in the progression of DR. In this sense, antioxidants have been suggested as a possible therapy to reduce the complications of DR. In this review we aim to assemble updated information in relation to in vitro experiments, animal studies and clinical trials dealing with the effect of the antioxidants on DR.
Collapse
|
13
|
Lutein and zeaxanthin attenuates VEGF-induced neovascularisation in human retinal microvascular endothelial cells through a Nox4-dependent pathway. Exp Eye Res 2020; 197:108104. [PMID: 32522479 DOI: 10.1016/j.exer.2020.108104] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/15/2020] [Accepted: 06/01/2020] [Indexed: 01/08/2023]
Abstract
Age-related macular degeneration (AMD) and proliferative diabetic retinopathy (DR) are two of the most common and severe causes of vision loss in the population. Both conditions are associated with excessive levels of vascular endothelial growth factor (VEGF) in the eye which results in an increase in the formation of new blood vessels through a process called neovascularisation. As such, anti-VEGF therapies are currently utilised as a treatment for patients with AMD however they are associated with painful administration of injections and potential degeneration of healthy endothelium. There is therefore growing interest in alternate treatment options to reduce neovascularisation in the eye. The use of carotenoids, lutein (L) and zeaxanthin (Z), has been shown to improve vision loss parameters in patients with AMD, however the underlying mechanisms are not well-understood. We studied the impact of these compounds on neovascularisation processes using an in vitro cell model of the retinal microvascular endothelium. Our findings show that L and Z reduced VEGF-induced tube formation whilst, in combination (5:1 ratio), the compounds significantly blocked VEGF-induced neovascularisation. The carotenoids, individually and in combination, reduced VEGF-induced oxidative stress concomitant with increased activity of the NADPH oxidase, Nox4. We further demonstrated that the Nox4 inhibitor, GLX7013114, attenuated the protective effect of L and Z. Taken together, these findings indicate the protective effect of the carotenoids, L and Z, in reducing VEGF-mediated neovascularisation via a Nox4-dependent pathway. These studies implicate the potential for these compounds to be used as a therapeutic approach for patients suffering from AMD and proliferative DR.
Collapse
|
14
|
Feng L, Nie K, Jiang H, Fan W. Effects of lutein supplementation in age-related macular degeneration. PLoS One 2019; 14:e0227048. [PMID: 31887124 PMCID: PMC6936877 DOI: 10.1371/journal.pone.0227048] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 12/11/2019] [Indexed: 02/05/2023] Open
Abstract
The purpose of this meta-analysis was to evaluate the effects of lutein supplementation on macular pigment optical density (MPOD) in randomized controlled trials involving patients with age-related macular degeneration (AMD). A comprehensive search of the literature was performed in PubMed, Cochrane Library, Web of Science, China National Knowledge Infrastructure, Chinese Biomedical Literature Database, and Wan Fang database through December 2018. Nine randomized controlled trials involving 920 eyes (855 with AMD) were included. Meta-analysis suggested that lutein supplementation (10 or 20 mg per day) was associated with an increase in MPOD (mean difference (MD) 0.07; 95% confidence interval (CI) 0.03 to 0.10), visual acuity (MD 0.28; 95%CI 0.06 to 0.50) and contrast sensitivity (MD 0.26; 95%CI 0.22 to 0.30). Stratified analyses showed the increase in MPOD to be faster and greater with higher dose and longer treatment. The available evidence suggests that dietary lutein may be beneficial to AMD patients and the higher dose could make MPOD increase in a shorter time.
Collapse
Affiliation(s)
- Liwen Feng
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Kailai Nie
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Jiang
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Wei Fan
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
- * E-mail:
| |
Collapse
|
15
|
Cissé Y, Bai L, Chen MT. LncRNAs in ocular neovascularizations. Int J Ophthalmol 2019; 12:1959-1965. [PMID: 31850182 PMCID: PMC6901876 DOI: 10.18240/ijo.2019.12.19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022] Open
Abstract
The prevalence of eye diseases worldwide is dramatically increasing and represents a major concern in underdeveloped and developed regions. Ocular diseases, previously associated with a higher depression risk, also impose a substantial economic burden on affected families, thus early detection and/or accurate treatment in order to avoid and prevent blindness should be emphasized. Ocular neovascularization (NV), the leading cause of blindness in a variety of eye diseases, is a pathologic process characterized by the formation, proliferation and infiltration of anomalous, tiny and leaky fragile blood vessels within the eye. Genetics have been suspected to play an important role in the occurrence of eye diseases, with the detection of a numbers of specific gene mutations. Long non-coding RNA (lncRNAs) are novel class of regulatory molecules previously associated with various biological processes and diseases, however the nature of the relation and pathways by which they might contribute to the development of corneal, choroidal and retinal NV have not yet been completely elucidated. In this review, we focus on the regulation and characteristics of lncRNAs, summarize results from ocular NV-related studies and discuss the implication of lncRNAs in ocular NV development.
Collapse
Affiliation(s)
- Yacouba Cissé
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Lang Bai
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Min-Ting Chen
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| |
Collapse
|
16
|
Dendritic cells mediate the anti-inflammatory action of omega-3 long-chain polyunsaturated fatty acids in experimental autoimmune uveitis. PLoS One 2019; 14:e0219405. [PMID: 31335861 PMCID: PMC6650034 DOI: 10.1371/journal.pone.0219405] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/21/2019] [Indexed: 12/14/2022] Open
Abstract
We previously showed that dietary omega (ω)–3 long-chain polyunsaturated fatty acids (LCPUFAs) suppress inflammation in mice with experimental autoimmune uveitis (EAU). We have now investigated the role of antigen presenting cells (APCs) in this action of ω-3 LCPUFAs. C57BL/6 mice were fed a diet supplemented with ω-3 or ω-6 LCPUFAs for 2 weeks, after which splenocytes were isolated from the mice and cocultured with CD4+ T cells isolated from mice with EAU induced by injection of a human interphotoreceptor retinoid-binding protein peptide together with complete Freund’s adjuvant. The proliferation of and production of interferon-γ and interleukin-17 by T cells from EAU mice in vitro were attenuated in the presence of splenocytes from ω-3 LCPUFA–fed mice as compared with those from mice fed ω-6 LCPUFAs. Splenocyte fractionation by magnetic-activated cell sorting revealed that, among APCs, dendritic cells (DCs) were the target of ω-3 LCPUFAs. Adoptive transfer of DCs from mice fed ω-3 LCPUFAs attenuated disease progression in EAU mice as well as the production of pro-inflammatory cytokines by T cells isolated from these latter animals. The proliferation of T cells from control Balb/c mice was also attenuated in the presence of DCs from ω-3 LCPUFA–fed mice as compared with those from ω-6 LCPUFA–fed mice. Furthermore, T cell proliferation in such a mixed lymphocyte reaction was inhibited by prior exposure of DCs from mice fed an ω-6 LCPUFA diet to ω-3 LCPUFAs in vitro. Our results thus suggest that DCs mediate the anti-inflammatory action of dietary ω-3 LCPUFAs in EAU.
Collapse
|
17
|
Cunningham F, Van Bergen T, Canning P, Lengyel I, Feyen JHM, Stitt AW. The Placental Growth Factor Pathway and Its Potential Role in Macular Degenerative Disease. Curr Eye Res 2019; 44:813-822. [PMID: 31055948 DOI: 10.1080/02713683.2019.1614197] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There is growing evidence that placental growth factor (PlGF) is an important player in multiple pathologies, including tumorigenesis, inflammatory disorders and degenerative retinopathies. PlGF is a member of the vascular endothelial growth factor (VEGF) family and in the retina, binding of this growth factor to specific receptors is associated with pathological angiogenesis, vascular leakage, neurodegeneration and inflammation. Although they share some receptor signalling pathways, many of the actions of PlGF are distinct from VEGF and this has revealed the enticing prospect that it could be a useful therapeutic target for treating early and late stages of diabetic retinopathy (DR) and neovascular age-related macular degeneration (AMD). Recent research suggests that modulation of PlGF could also be important in the geographic atrophy (GA) form of late AMD by protecting the outer retina and the retinal pigment epithelium (RPE). This review discusses PlGF and its signalling pathways and highlights the potential of blocking the bioactivity of this growth factor to treat irreversible visual loss due to the two main forms of AMD.
Collapse
Affiliation(s)
- Fiona Cunningham
- a Centre for Experimental Medicine, Queen's University Belfast , Belfast , Northern Ireland
| | | | - Paul Canning
- a Centre for Experimental Medicine, Queen's University Belfast , Belfast , Northern Ireland
| | - Imre Lengyel
- a Centre for Experimental Medicine, Queen's University Belfast , Belfast , Northern Ireland
| | | | - Alan W Stitt
- a Centre for Experimental Medicine, Queen's University Belfast , Belfast , Northern Ireland
| |
Collapse
|
18
|
Rossino MG, Casini G. Nutraceuticals for the Treatment of Diabetic Retinopathy. Nutrients 2019; 11:nu11040771. [PMID: 30987058 PMCID: PMC6520779 DOI: 10.3390/nu11040771] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/19/2019] [Accepted: 03/28/2019] [Indexed: 02/07/2023] Open
Abstract
Diabetic retinopathy (DR) is one of the most common complications of diabetes mellitus and is characterized by degeneration of retinal neurons and neoangiogenesis, causing a severe threat to vision. Nowadays, the principal treatment options for DR are laser photocoagulation, vitreoretinal surgery, or intravitreal injection of drugs targeting vascular endothelial growth factor. However, these treatments only act at advanced stages of DR, have short term efficacy, and cause side effects. Treatment with nutraceuticals (foods providing medical or health benefits) at early stages of DR may represent a reasonable alternative to act upstream of the disease, preventing its progression. In particular, in vitro and in vivo studies have revealed that a variety of nutraceuticals have significant antioxidant and anti-inflammatory properties that may inhibit the early diabetes-driven molecular mechanisms that induce DR, reducing both the neural and vascular damage typical of DR. Although most studies are limited to animal models and there is the problem of low bioavailability for many nutraceuticals, the use of these compounds may represent a natural alternative method to standard DR treatments.
Collapse
Affiliation(s)
| | - Giovanni Casini
- Department of Biology, University of Pisa, via San Zeno 31, 56127 Pisa, Italy.
- Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, 56124 Pisa, Italy.
| |
Collapse
|
19
|
Yu M, Yan W, Beight C. Lutein and Zeaxanthin Isomers Reduce Photoreceptor Degeneration in the Pde6b rd10 Mouse Model of Retinitis Pigmentosa. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4374087. [PMID: 30643804 PMCID: PMC6311858 DOI: 10.1155/2018/4374087] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/29/2018] [Indexed: 11/20/2022]
Abstract
PURPOSE Lutein, RR-zeaxanthin, and RS-zeaxanthin (L-Z) are antioxidants which can reduce endoplasmic reticulum stress (ERS) and oxidative stress (OS), and ameliorate neurodegenerative diseases. However, their treatment effect in the Pde6b rd10 (rd10) mouse model of retinitis pigmentosa (RP) and the underlying cellular mechanisms have not been studied. ERS is an important factor which causes photoreceptor apoptosis. The aim of the current project is to test the treatment effect of L-Z in rd10 mice and to investigate the underlying molecular mechanisms of ERS. METHODS L-Z (Lutemax 2020, 10 mg/kg) diluted in sunflower oil (SFO, 1 mg/ml) or the same volume of SFO was administrated via gavage from postnatal day 6 (P6) to P20 daily in L-Z group (n=5) or SFO group (n=6) of rd10 mice. At P21, electroretinography (ERG) was performed to show the functional change of retinas. 78 kDa glucose-regulated protein (GRP78) and endoplasmic reticulum protein 29 (ERp29) were tested by western blot and immunostaining. RESULTS The ERG amplitudes were larger in the L-Z group than those of the SFO group in all flash luminances of dark-adapted and light-adapted ERG (all p < 0.01). Western blot revealed that GRP78 in the retinas of the L-Z group was significantly downregulated compared to that of the SFO group (p < 0.01). Meanwhile, the retinal ERp29 protein was significantly upregulated in the L-Z treatment group than that of the SFO group (p < 0.01). CONCLUSIONS L-Z provide protection to the photoreceptors of rd10 mouse model of RP, which is probably associated with the reduction of ERS.
Collapse
Affiliation(s)
- Minzhong Yu
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Weiming Yan
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Clinical Medicine, Faculty of Aerospace Medicine, Key Laboratory of Aerospace Medicine of the National Education Ministry, Fourth Military University, Xi'an, China
| | - Craig Beight
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| |
Collapse
|
20
|
Use of Nutraceuticals in Angiogenesis-Dependent Disorders. Molecules 2018; 23:molecules23102676. [PMID: 30340320 PMCID: PMC6222874 DOI: 10.3390/molecules23102676] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/11/2018] [Accepted: 10/16/2018] [Indexed: 12/13/2022] Open
Abstract
The term of angiogenesis refers to the growth of new vessels from pre-existing capillaries. The phenomenon is necessary for physiological growth, repair and functioning of our organs. When occurring in a not regulated manner, it concurs to pathological conditions as tumors, eye diseases, chronic degenerative disorders. On the contrary insufficient neovascularization or endothelial disfunction accompanies ischemic and metabolic disorders. In both the cases an inflammatory and oxidative condition exists in supporting angiogenesis deregulation and endothelial dysfunction. The use of nutraceuticals with antioxidant and anti-inflammatory activities can be a therapeutic option to maintain an adequate vascularization and endothelial cell proper functioning or to blunt aberrant angiogenesis. A revision of the updated literature reports on nutraceuticals to guide endothelial cell wellness and to restore physiological tissue vascularization is the objective of this paper. The critical aspects as well as lacking data for human use will be explored from a pharmacological perspective.
Collapse
|
21
|
Ding D, Zhu M, Liu X, Jiang L, Xu J, Chen L, Liang J, Li L, Zhou T, Wang Y, Shi H, Yuan Y, Song E. Inhibition of TRAF6 alleviates choroidal neovascularization in vivo. Biochem Biophys Res Commun 2018; 503:2742-2748. [PMID: 30103950 DOI: 10.1016/j.bbrc.2018.08.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/04/2018] [Indexed: 12/14/2022]
Abstract
Choroidal neovascularization (CNV) is a type of wet age-related macular degeneration (AMD) which is a major cause of blindness in elder patients. Tumor necrosis factor receptor-associated factor 6 (TRAF6) promotes tumor angiogenesis via upregulating the expression of hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF). Additionally, TRAF6 facilitates the inflammatory response in macrophages and microglia. Here, using mouse laser-induced CNV model and TRAF6 siRNA, the study shows that TRAF6 is a critical player in CNV. The expression of TRAF6, HIF-1α, and VEGF increased in the model. TFAF6 siRNA intravitreal (IVT) injection inhibited CNV formation, as well as expression of HIF-1α and VEGF, activation of macrophages and microglia. Together, our data suggest that TFAF6 inhibition reduces CNV formation via down-regulating expression of HIF-1α and VEGF and activation of macrophages and microglia, demonstrating the unique advantages of TRAF6 inhibition in the alleviation of AMD.
Collapse
Affiliation(s)
- Dongmei Ding
- Department of Ophthalmology, Laizhou City People's Hospital, Yantai, Shandong, China
| | - Manhui Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaojuan Liu
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, Jiangsu, China
| | - Li Jiang
- Department of Ophthalmology, Laizhou City People's Hospital, Yantai, Shandong, China
| | - Jiaowen Xu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lili Chen
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Juan Liang
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lele Li
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Taohu Zhou
- Medical College, Nantong University, Nantong, Jiangsu, China
| | - Ying Wang
- Department of Ophthalmology, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Hao Shi
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - You Yuan
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - E Song
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|