1
|
Hara D, Sasaki K, Doi S, Ike T, Maeda K, Yoshida M, Takahashi A, Osaki Y, Ishiuchi N, Maeoka Y, Doi T, Chiba T, Nakashima A, Masaki T. Targeting MLL1/WDR5-Mediated Epigenetic Regulation Mitigates Peritoneal Fibrosis by Reducing p16 INK4a. FASEB J 2025; 39:e70543. [PMID: 40232893 PMCID: PMC12059782 DOI: 10.1096/fj.202402382r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/24/2025] [Accepted: 04/07/2025] [Indexed: 04/17/2025]
Abstract
Peritoneal fibrosis poses a significant challenge to the long-term efficacy of peritoneal dialysis (PD), with emerging evidence highlighting the role of cellular senescence in its pathogenesis. p16INK4a is a cell cycle regulator that has been implicated in cellular senescence. Mixed-lineage leukemia 1 (MLL1) forms a complex with WD-40 repeat protein 5 (WDR5) and exhibits histone H3K4 methyltransferase activity. We have previously shown that inhibition of the MLL1/WDR5 complex reduces p16INK4a expression and attenuates renal senescence after injury in mice. This study aimed to investigate whether inhibiting MLL1/WDR5 attenuates peritoneal senescence, inflammation, and fibrosis in both human samples and in mice with methylglyoxal (MGO)-induced peritoneal fibrosis (MGO-injected mice), while also exploring the associated underlying mechanisms. MLL1/WDR5, histone 3 lysine 4 trimethylation (H3K4me3), and p16INK4a expression were elevated in TGF-β1-stimulated human peritoneal mesothelial cells (HPMCs), non-adherent cells obtained from patients undergoing PD, and the submesothelial compact zones of MGO-injected mice. Notably, p16INK4a expression in these cells was positively correlated with the dialysate/plasma creatinine ratio. Treatment with the MLL1/WDR5 protein-protein interaction inhibitors MM-102 and OICR-9429 reduced H3K4me3 levels and p16INK4a expression, suppressing fibrosis in HPMCs as well as peritoneal fibrosis and inflammation in MGO-injected mice. These inhibitors also improved peritoneal function in MGO-injected mice. Additionally, we demonstrated that MLL1/WDR5-induced H3K4me3 directly regulates p16INK4a gene transcription, and that inhibiting MLL1/WDR5 reduces H3K4me3, thereby suppressing p16INK4a gene transcription. These findings suggest that targeting MLL1/WDR5 activation alleviates peritoneal senescence, inflammation, and fibrosis, highlighting its potential as a promising therapeutic strategy for peritoneal fibrosis.
Collapse
Affiliation(s)
- Daisuke Hara
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Kensuke Sasaki
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Shigehiro Doi
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Takeshi Ike
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Kazuya Maeda
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Maria Yoshida
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Akira Takahashi
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Yosuke Osaki
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Naoki Ishiuchi
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Yujiro Maeoka
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Toshiki Doi
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
- Division of Nephrology, Ichiyokai Harada Hospital, Hiroshima, Japan
| | - Takuto Chiba
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ayumu Nakashima
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
2
|
Zhang BW, Huang T, Yang YF, Li MY, Shao GB. Lysine methyltransferase SETD7 in cancer: functions, molecular mechanisms and therapeutic implications. Mol Biol Rep 2025; 52:389. [PMID: 40232640 DOI: 10.1007/s11033-025-10494-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 04/07/2025] [Indexed: 04/16/2025]
Abstract
Since its discovery as a histone methyltransferase, SETD7 has been implicated in many signaling pathways and carcinogenesis. SETD7 catalyzes the methylation of histone H3 and non-histone proteins, regulating their translation, stability and activity. SETD7 is frequently abnormally expressed and has a significant influence on cell proliferation, invasion, autophagy and immune response. As cancer is a complex disease, an outstanding concept in cancer biology is the "hallmarks of cancer". In this review, we focus on the involvement of SETD7 in the hallmarks of cancer, describing its functions and underlying mechanisms in detail. Additionally, we discuss non-coding RNAs and chemical inhibitors targeting SETD7, highlighting the potential and importance of SETD7 in cancer therapy.
Collapse
Affiliation(s)
- Bo-Wen Zhang
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Ting Huang
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Yi-Fan Yang
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Ming-Yang Li
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Gen-Bao Shao
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
- Present Address: Jiangsu University, No.301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu province, China.
| |
Collapse
|
3
|
Sasaki K, Masaki T. Epigenetic histone modifications in kidney disease and epigenetic memory. Clin Exp Nephrol 2025:10.1007/s10157-025-02668-x. [PMID: 40186651 DOI: 10.1007/s10157-025-02668-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/18/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Epigenetic mechanisms, including DNA methylation, histone modifications, and non-coding RNAs, are influenced by environmental factors and play a central role in the progression and therapeutic targeting of kidney diseases, such as diabetic kidney disease (DKD), chronic kidney disease (CKD), and hypertension. These epigenetic changes are also preserved as cellular memory, with this "epigenetic memory" known to have long-term effects on such chronic diseases. Histone modifications are readily reversible epigenetic changes that regulate gene expression by altering chromatin structure or providing docking sites for transcriptional regulators. From a disease perspective, the involvement of epigenetics and "epigenetic memory" in DKD, CKD, senescence, and hypertension has been increasingly studied in recent years. Targeting epigenetic mechanisms is, thus, expected to offer novel therapeutic strategies for these diseases. Advances in treatment include histone deacetylase inhibitors and methyltransferase inhibitors, their applications of which have expanded from oncology to nephrology. However, challenges such as long-term toxicity and off-target effects remain significant. Further elucidation of kidney-specific epigenetic pathways and memory mechanisms may pave the way for precision epigenetic therapies, enabling the reversal of pathological epigenetic signatures and the mitigation of disease progression. CONCLUSION This review integrates recent advancements, highlighting functional evidence that histone modifications, particularly histone tail methylation, are involved in the pathogenesis of kidney diseases. It also emphasizes the translational significance of these findings, underlining the potential of epigenetics-based therapies to transform the management of kidney diseases.
Collapse
Affiliation(s)
- Kensuke Sasaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan.
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan.
| |
Collapse
|
4
|
Shinkai Y, Sasaki K, Tamura R, Ike T, Takahashi A, Osaki Y, Ishiuchi N, Maeoka Y, Nakashima A, Masaki T. Selective activation of PPARα by pemafibrate mitigates peritoneal inflammation and fibrosis through suppression of NLRP3 inflammasome and modulation of inflammation. Sci Rep 2024; 14:23816. [PMID: 39394435 PMCID: PMC11470028 DOI: 10.1038/s41598-024-74340-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/25/2024] [Indexed: 10/13/2024] Open
Abstract
Peritoneal inflammation and fibrosis remain major challenges to the long-term maintenance of peritoneal dialysis. Pemafibrate, a selective peroxisome proliferator-activated receptor α (PPARα) modulator, has been implicated in the management of fibrosis-related disorders. We investigated whether pemafibrate ameliorates peritoneal inflammation and fibrosis and explored the underlying mechanisms in mice with methylglyoxal (MGO)-induced peritoneal fibrosis (MGO mice). MGO mice exhibited peritoneal fibrosis with increased expression of mesenchymal markers, transforming growth factor-β1 (TGF-β1), and substantial deposition of extracellular matrix (ECM) proteins. Additionally, MGO mice exhibited peritoneal inflammation as indicated by elevated tumor necrosis factor-α expression and macrophage infiltration in peritoneal tissue. These effects were mitigated by pemafibrate treatment, which also restored peritoneal membrane function. Furthermore, pemafibrate promoted anti-inflammatory macrophage polarization in both mice and THP-1 cells. In human peritoneal mesothelial cells (HPMCs), pemafibrate effectively inhibited interferon-γ-induced production of TGF-β1 and ECM while suppressing the proinflammatory cytokines nuclear factor-κB (NF-κB) and activator protein 1. The NF-κB inhibitory effect of pemafibrate involved stabilization of the NF-κB inhibitory protein IkBα. Notably, pemafibrate hindered activation of the NLR family pyrin domain containing 3/caspase-1 axis in interferon-γ-stimulated THP-1 cells. These findings suggest that pemafibrate ameliorates peritoneal inflammation and fibrosis, making it a promising candidate for peritoneal fibrosis therapy.
Collapse
Affiliation(s)
- Yutaka Shinkai
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kensuke Sasaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Ryo Tamura
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Takeshi Ike
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Akira Takahashi
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yosuke Osaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Naoki Ishiuchi
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yujiro Maeoka
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Ayumu Nakashima
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| |
Collapse
|
5
|
Li J, Li X, Wang Y, Meng L, Cui W. Zinc: a potential star for regulating peritoneal fibrosis. Front Pharmacol 2024; 15:1436864. [PMID: 39301569 PMCID: PMC11411568 DOI: 10.3389/fphar.2024.1436864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
Peritoneal dialysis (PD) is a commonly used renal replacement therapy for patients with end-stage renal disease (ESRD). During PD, the peritoneum (PM), a semi-permeable membrane, is exposed to nonbiocompatible PD solutions. Peritonitis can occur, leading to structural and functional PM disorders, resulting in peritoneal fibrosis and ultrafiltration failure, which are important reasons for patients with ESRD to discontinue PD. Increasing evidence suggests that oxidative stress (OS) plays a key role in the pathogenesis of peritoneal fibrosis. Furthermore, zinc deficiency is often present to a certain extent in patients undergoing PD. As an essential trace element, zinc is also an antioxidant, potentially playing an anti-OS role and slowing down peritoneal fibrosis progression. This study summarises and analyses recent research conducted by domestic and foreign scholars on the possible mechanisms through which zinc prevents peritoneal fibrosis.
Collapse
Affiliation(s)
- Jian Li
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Xinyang Li
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Yangwei Wang
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Lingfei Meng
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Wenpeng Cui
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Sankrityayan H, Kale A, Shelke V, Gaikwad AB. Cyproheptadine, a SET7/9 inhibitor, reduces hyperglycaemia-induced ER stress alleviating inflammation and fibrosis in renal tubular epithelial cells. Arch Physiol Biochem 2024; 130:411-419. [PMID: 35913792 DOI: 10.1080/13813455.2022.2105365] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/05/2022] [Accepted: 07/19/2022] [Indexed: 11/02/2022]
Abstract
CONTEXT Persistent hyperglycaemia increases SET7/9 expression and endoplasmic reticulum (ER) stress which causes inflammation, apoptosis, and fibrosis in renal tubular epithelial cells leading to diabetic kidney disease (DKD). OBJECTIVE Current study explores the renoprotective potential of a novel SET7/9 inhibitor, Cyproheptadine, and the underlying molecular mechanisms in hyperglycaemia-induced renal tubular epithelial cell injury. METHODS Change in expression of SET7/9, histone H3 lysine (K4) monomethylation (H3K4Me1), inflammatory, fibrotic, and ER stress proteins were evaluated in-vivo and in-vitro. NRK-52E cells were used to study the preventive effect of Cyproheptadine against hyperglycaemia-induced ER stress and subsequent inflammation and fibrosis. RESULTS SET7/9 and H3K4Me1 expression significantly increased with ER stress, inflammation, apoptosis, and fibrosis, in-vivo and in-vitro under hyperglycaemia. However, the cells treated with Cyproheptadine showed significant suppression of H3K4Me1 and reduction in ER stress, inflammation, apoptosis, and fibrosis. CONCLUSION Cyproheptadine prevented hyperglycaemia-induced renal fibrosis and inflammation by reducing H3K4Me1 expression and ER stress.
Collapse
Affiliation(s)
- Himanshu Sankrityayan
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, India
| | - Ajinath Kale
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, India
| | - Vishwadeep Shelke
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, India
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, India
| |
Collapse
|
7
|
Visamol S, Palaga T, Saonanon P, Pruksakorn V, Hirankarn N, van Hagen PM, Dik WA, Virakul S. EZH2 as a major histone methyltransferase in PDGF-BB-activated orbital fibroblast in the pathogenesis of Graves' ophthalmopathy. Sci Rep 2024; 14:7947. [PMID: 38575707 PMCID: PMC10994939 DOI: 10.1038/s41598-024-57926-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 03/22/2024] [Indexed: 04/06/2024] Open
Abstract
Graves' ophthalmopathy (GO) is an extra-thyroidal complication of Graves' disease which can lead to vision loss in severe cases. Currently, treatments of GO are not sufficiently effective, so novel therapeutic strategies are needed. As platelet-derived growth factor (PDGF)-BB induces several effector mechanisms in GO orbital fibroblasts including cytokine production and myofibroblast activation, this study aims to investigate the roles of histone lysine methyltransferases (HKMTs) in PDGF-BB-activated GO orbital fibroblasts by screening with HKMTs inhibitors library. From the total of twelve selective HKMT inhibitors in the library, EZH2, G9a and DOT1L inhibitors, DZNeP, BIX01294 and Pinometostat, respectively, prevented PDGF-BB-induced proliferation and hyaluronan production by GO orbital fibroblasts. However, only EZH2 inhibitor, DZNeP, significantly blocked pro-inflammatory cytokine production. For the HKMTs expression in GO orbital fibroblasts, PDGF-BB significantly and time-dependently induced EZH2, G9a and DOT1L mRNA expression. To confirm the role of EZH2 in PDGF-BB-induced orbital fibroblast activation, EZH2 silencing experiments revealed suppression of PDGF-BB-induced collagen type I and α-SMA expression along with decreasing histone H3 lysine 27 trimethylation (H3K27me3) level. In a more clinically relevant model than orbital fibroblast culture experiments, DZNeP treated GO orbital tissues significantly reduced pro-inflammatory cytokine production while slightly reduced ACTA2 mRNA expression. Our data is the first to demonstrate that among all HKMTs EZH2 dominantly involved in the expression of myofibroblast markers in PDGF-BB-activated orbital fibroblast from GO presumably via H3K27me3. Thus, EZH2 may represent a novel therapeutics target for GO.
Collapse
Affiliation(s)
- Sopita Visamol
- Medical Microbiology, Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Preamjit Saonanon
- Department of Ophthalmology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Vannakorn Pruksakorn
- Department of Ophthalmology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nattiya Hirankarn
- Department of Microbiology, Faculty of Medicine, Center of Excellence in Immunology and Immune Mediated Disease, Chulalongkorn University, Bangkok, Thailand
| | - P Martin van Hagen
- Department of Microbiology, Faculty of Medicine, Center of Excellence in Immunology and Immune Mediated Disease, Chulalongkorn University, Bangkok, Thailand
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Division of Clinical Immunology, and Immunology, Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Willem A Dik
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Sita Virakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
8
|
Liu R, Li Y, Zheng Q, Ding M, Zhou H, Li X. Epigenetic modification in liver fibrosis: Promising therapeutic direction with significant challenges ahead. Acta Pharm Sin B 2024; 14:1009-1029. [PMID: 38486982 PMCID: PMC10935124 DOI: 10.1016/j.apsb.2023.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 03/17/2024] Open
Abstract
Liver fibrosis, characterized by scar tissue formation, can ultimately result in liver failure. It's a major cause of morbidity and mortality globally, often associated with chronic liver diseases like hepatitis or alcoholic and non-alcoholic fatty liver diseases. However, current treatment options are limited, highlighting the urgent need for the development of new therapies. As a reversible regulatory mechanism, epigenetic modification is implicated in many biological processes, including liver fibrosis. Exploring the epigenetic mechanisms involved in liver fibrosis could provide valuable insights into developing new treatments for chronic liver diseases, although the current evidence is still controversial. This review provides a comprehensive summary of the regulatory mechanisms and critical targets of epigenetic modifications, including DNA methylation, histone modification, and RNA modification, in liver fibrotic diseases. The potential cooperation of different epigenetic modifications in promoting fibrogenesis was also highlighted. Finally, available agonists or inhibitors regulating these epigenetic mechanisms and their potential application in preventing liver fibrosis were discussed. In summary, elucidating specific druggable epigenetic targets and developing more selective and specific candidate medicines may represent a promising approach with bright prospects for the treatment of chronic liver diseases.
Collapse
Affiliation(s)
- Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102400, China
| | - Yajing Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102400, China
| | - Qi Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102400, China
| | - Mingning Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102400, China
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 22460, USA
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102400, China
| |
Collapse
|
9
|
Marchant V, Trionfetti F, Tejedor-Santamaria L, Rayego-Mateos S, Rotili D, Bontempi G, Domenici A, Menè P, Mai A, Martín-Cleary C, Ortiz A, Ramos AM, Strippoli R, Ruiz-Ortega M. BET Protein Inhibitor JQ1 Ameliorates Experimental Peritoneal Damage by Inhibition of Inflammation and Oxidative Stress. Antioxidants (Basel) 2023; 12:2055. [PMID: 38136175 PMCID: PMC10740563 DOI: 10.3390/antiox12122055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Peritoneal dialysis (PD) is a current replacement therapy for end-stage kidney diseases (ESKDs). However, long-term exposure to PD fluids may lead to damage of the peritoneal membrane (PM) through mechanisms involving the activation of the inflammatory response and mesothelial-to-mesenchymal transition (MMT), leading to filtration failure. Peritoneal damage depends on a complex interaction among external stimuli, intrinsic properties of the PM, and subsequent activities of the local innate-adaptive immune system. Epigenetic drugs targeting bromodomain and extra-terminal domain (BET) proteins have shown beneficial effects on different experimental preclinical diseases, mainly by inhibiting proliferative and inflammatory responses. However the effect of BET inhibition on peritoneal damage has not been studied. To this aim, we have evaluated the effects of treatment with the BET inhibitor JQ1 in a mouse model of peritoneal damage induced by chlorhexidine gluconate (CHX). We found that JQ1 ameliorated the CHX-induced PM thickness and inflammatory cell infiltration. Moreover, JQ1 decreased gene overexpression of proinflammatory and profibrotic markers, together with an inhibition of the nuclear factor-κB (NF-κB) pathway. Additionally, JQ1 blocked the activation of nuclear factor erythroid 2-related factor 2 (NRF2) and restored changes in the mRNA expression levels of NADPH oxidases (NOX1 and NOX4) and NRF2/target antioxidant response genes. To corroborate the in vivo findings, we evaluated the effects of the BET inhibitor JQ1 on PD patients' effluent-derived primary mesothelial cells and on the MeT-5A cell line. JQ1 inhibited tumor necrosis factor-α (TNF-α)-induced proinflammatory gene upregulation and restored MMT phenotype changes, together with the downmodulation of oxidative stress. Taken together, these results suggest that BET inhibitors may be a potential therapeutic option to ameliorate peritoneal damage.
Collapse
Affiliation(s)
- Vanessa Marchant
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (V.M.); (L.T.-S.); (S.R.-M.)
- RICORS2040, 28029 Madrid, Spain; (A.O.); (A.M.R.)
| | - Flavia Trionfetti
- Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (F.T.); (G.B.); (R.S.)
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Lucia Tejedor-Santamaria
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (V.M.); (L.T.-S.); (S.R.-M.)
- RICORS2040, 28029 Madrid, Spain; (A.O.); (A.M.R.)
| | - Sandra Rayego-Mateos
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (V.M.); (L.T.-S.); (S.R.-M.)
- RICORS2040, 28029 Madrid, Spain; (A.O.); (A.M.R.)
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy; (D.R.); (A.M.)
| | - Giulio Bontempi
- Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (F.T.); (G.B.); (R.S.)
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Alessandro Domenici
- Renal Unit, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00189 Rome, Italy; (A.D.); (P.M.)
| | - Paolo Menè
- Renal Unit, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00189 Rome, Italy; (A.D.); (P.M.)
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy; (D.R.); (A.M.)
| | - Catalina Martín-Cleary
- Laboratory of Nephrology, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain;
| | - Alberto Ortiz
- RICORS2040, 28029 Madrid, Spain; (A.O.); (A.M.R.)
- Laboratory of Nephrology, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain;
| | - Adrian M. Ramos
- RICORS2040, 28029 Madrid, Spain; (A.O.); (A.M.R.)
- Laboratory of Nephrology, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain;
| | - Raffaele Strippoli
- Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (F.T.); (G.B.); (R.S.)
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Marta Ruiz-Ortega
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (V.M.); (L.T.-S.); (S.R.-M.)
- RICORS2040, 28029 Madrid, Spain; (A.O.); (A.M.R.)
| |
Collapse
|
10
|
Monteiro FL, Góis A, Direito I, Melo T, Neves B, Alves MI, Batista I, Domingues MDR, Helguero LA. Inhibiting SETD7 methyl-transferase activity impairs differentiation, lipid metabolism and lactogenesis in mammary epithelial cells. FEBS Lett 2023; 597:2656-2671. [PMID: 37723127 DOI: 10.1002/1873-3468.14737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/18/2023] [Accepted: 07/21/2023] [Indexed: 09/20/2023]
Abstract
SETD7 (SET7/9, KMT7) is a lysine methyltransferase that targets master regulators of cell proliferation and differentiation. Here, the impact of inhibiting SETD7 catalytic activity on mammary epithelial cell differentiation was studied by focusing on genes associated with epithelial differentiation, lactogenesis, and lipid metabolism in HC11 and EpH4 cell lines. Setd7 mRNA and protein levels were induced upon lactogenic differentiation in both cell lines. Inhibition of SETD7 activity by the compound (R)-PFI-2 increased cell proliferation and downregulated E-cadherin, beta-catenin, lactoferrin, insulin-like growth factor binding protein 5, and beta-casein levels. In addition, inhibition of SETD7 activity affected the lipid profile and altered the mRNA expression of the phospholipid biosynthesis-related genes choline phosphotransferase 1, and ethanolamine-phosphate cytidylyltransferase. Altogether, the results suggest that inhibiting SETD7 catalytic activity impairs mammary epithelial and lactogenic differentiation.
Collapse
Affiliation(s)
- Fátima Liliana Monteiro
- Institute of Biomedicine (IBIMED), Department of Medical Sciences (DCM), Universidade de Aveiro, Portugal
| | - André Góis
- Institute of Biomedicine (IBIMED), Department of Medical Sciences (DCM), Universidade de Aveiro, Portugal
| | - Inês Direito
- Institute of Biomedicine (IBIMED), Department of Medical Sciences (DCM), Universidade de Aveiro, Portugal
| | - Tânia Melo
- Department of Chemistry, Mass Spectrometry Centre & LAQV-REQUIMTE, University of Aveiro, Portugal
| | - Bruna Neves
- Department of Chemistry, Mass Spectrometry Centre & LAQV-REQUIMTE, University of Aveiro, Portugal
- Department of Chemistry, CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Portugal
| | - Mariana I Alves
- Institute of Biomedicine (IBIMED), Department of Medical Sciences (DCM), Universidade de Aveiro, Portugal
| | - Inês Batista
- Institute of Biomedicine (IBIMED), Department of Medical Sciences (DCM), Universidade de Aveiro, Portugal
| | | | - Luisa A Helguero
- Institute of Biomedicine (IBIMED), Department of Medical Sciences (DCM), Universidade de Aveiro, Portugal
| |
Collapse
|
11
|
Kumar P, Brooks HL. Sex-specific epigenetic programming in renal fibrosis and inflammation. Am J Physiol Renal Physiol 2023; 325:F578-F594. [PMID: 37560775 PMCID: PMC11550885 DOI: 10.1152/ajprenal.00091.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023] Open
Abstract
The growing prevalence of hypertension, heart disease, diabetes, and obesity along with an aging population is leading to a higher incidence of renal diseases in society. Chronic kidney disease (CKD) is characterized mainly by persistent inflammation, fibrosis, and gradual loss of renal function leading to renal failure. Sex is a known contributor to the differences in incidence and progression of CKD. Epigenetic programming is an essential regulator of renal physiology and is critically involved in the pathophysiology of renal injury and fibrosis. Epigenetic signaling integrates intrinsic and extrinsic signals onto the genome, and various environmental and hormonal stimuli, including sex hormones, which regulate gene expression and downstream cellular responses. The most extensively studied epigenetic alterations that play a critical role in renal damage include histone modifications and DNA methylation. Notably, these epigenetic alterations are reversible, making them candidates for potential therapeutic targets for the treatment of renal diseases. Here, we will summarize the current knowledge on sex differences in epigenetic modulation of renal fibrosis and inflammation and highlight some possible epigenetic therapeutic strategies for CKD treatment.
Collapse
Affiliation(s)
- Prerna Kumar
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Heddwen L Brooks
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| |
Collapse
|
12
|
Dwivedi S, Chavan A, Paul AT. SET7, a lysine-specific methyl transferase: An intriguing epigenetic target to combat diabetic nephropathy. Drug Discov Today 2023; 28:103754. [PMID: 37648018 DOI: 10.1016/j.drudis.2023.103754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/14/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
Diabetic nephropathy (DN) is a dreadful complication of diabetes that affects ∼50% of diabetics and is a leading cause of end-stage renal disease (ESRD). Studies have linked aberrant expression of lysine methyltransferases (KMTs) to the onset and progression of DN. SET7 is a KMT that methylates specific lysine residues of the histone and nonhistone proteins. It plays an important role in the transforming growth factor-β (TGF-β)-induced upregulation of extracellular matrix (ECM)-associated genes that are responsible for the inflammatory cascade observed in DN. Inhibiting SET7 has potential to attenuate renal disorders in animal studies. This review will focus on the role of SET7 in DN and its potential as a therapeutic target to combat DN.
Collapse
Affiliation(s)
- Samarth Dwivedi
- Natural Product Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (Pilani Campus), Pilani 333031, Rajasthan, India
| | - Atharva Chavan
- Natural Product Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (Pilani Campus), Pilani 333031, Rajasthan, India
| | - Atish T Paul
- Natural Product Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (Pilani Campus), Pilani 333031, Rajasthan, India.
| |
Collapse
|
13
|
Suryantoro SD, Thaha M, Sutanto H, Firdausa S. Current Insights into Cellular Determinants of Peritoneal Fibrosis in Peritoneal Dialysis: A Narrative Review. J Clin Med 2023; 12:4401. [PMID: 37445436 DOI: 10.3390/jcm12134401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Peritoneal fibrosis is the final process of progressive changes in the peritoneal membrane due to chronic inflammation and infection. It is one of the main causes of discontinuation of peritoneal dialysis (PD), apart from peritonitis and cardiovascular complications. Over time, morphological changes occur in the peritoneal membranes of patients who use PD. Of those are mesothelial-to-mesenchymal transition (MMT), neoangiogenesis, sub-mesothelial fibrosis, and hyalinizing vasculopathy. Several key molecules are involved in the complex pathophysiology of peritoneal fibrosis, including advanced glycosylation end products (AGEs), transforming growth factor beta (TGF-β), and vascular endothelial growth factor (VEGF). This narrative review will first discuss the physiology of the peritoneum and PD. Next, the multifaceted pathophysiology of peritoneal fibrosis, including the effects of hyperglycemia and diabetes mellitus on the peritoneal membrane, and the promising biomarkers of peritoneal fibrosis will be reviewed. Finally, the current and future management of peritoneal fibrosis will be discussed, including the potential benefits of new-generation glucose-lowering medications to prevent or slow down the progression of peritoneal fibrosis.
Collapse
Affiliation(s)
- Satriyo Dwi Suryantoro
- Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
- Universitas Airlangga Hospital, Surabaya 60115, Indonesia
| | - Mochammad Thaha
- Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
- Universitas Airlangga Hospital, Surabaya 60115, Indonesia
| | - Henry Sutanto
- Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Sarah Firdausa
- Department of Internal Medicine, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| |
Collapse
|
14
|
Trionfetti F, Marchant V, González-Mateo GT, Kawka E, Márquez-Expósito L, Ortiz A, López-Cabrera M, Ruiz-Ortega M, Strippoli R. Novel Aspects of the Immune Response Involved in the Peritoneal Damage in Chronic Kidney Disease Patients under Dialysis. Int J Mol Sci 2023; 24:5763. [PMID: 36982834 PMCID: PMC10059714 DOI: 10.3390/ijms24065763] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Chronic kidney disease (CKD) incidence is growing worldwide, with a significant percentage of CKD patients reaching end-stage renal disease (ESRD) and requiring kidney replacement therapies (KRT). Peritoneal dialysis (PD) is a convenient KRT presenting benefices as home therapy. In PD patients, the peritoneum is chronically exposed to PD fluids containing supraphysiologic concentrations of glucose or other osmotic agents, leading to the activation of cellular and molecular processes of damage, including inflammation and fibrosis. Importantly, peritonitis episodes enhance peritoneum inflammation status and accelerate peritoneal injury. Here, we review the role of immune cells in the damage of the peritoneal membrane (PM) by repeated exposure to PD fluids during KRT as well as by bacterial or viral infections. We also discuss the anti-inflammatory properties of current clinical treatments of CKD patients in KRT and their potential effect on preserving PM integrity. Finally, given the current importance of coronavirus disease 2019 (COVID-19) disease, we also analyze here the implications of this disease in CKD and KRT.
Collapse
Affiliation(s)
- Flavia Trionfetti
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| | - Vanessa Marchant
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
- REDINREN/RICORS2040, 28029 Madrid, Spain
| | - Guadalupe T. González-Mateo
- Cell-Cell Communication & Inflammation Unit, Centre for Molecular Biology “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain
- Premium Research, S.L., 19005 Guadalajara, Spain
| | - Edyta Kawka
- Department of Pathophysiology, Poznan University of Medical Sciences, 10 Fredry St., 61-701 Poznan, Poland
| | - Laura Márquez-Expósito
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
- REDINREN/RICORS2040, 28029 Madrid, Spain
| | - Alberto Ortiz
- IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| | - Manuel López-Cabrera
- Cell-Cell Communication & Inflammation Unit, Centre for Molecular Biology “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
- REDINREN/RICORS2040, 28029 Madrid, Spain
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| |
Collapse
|
15
|
Liang C, Xie RJ, Wang JL, Zhang YW, Zhang JY, Yang Q, Han B. Roles of C/EBP-homologous protein and histone H3 lysine 4 methylation in arsenic-induced mitochondrial apoptosis in hepatocytes. Toxicol Ind Health 2022; 38:745-756. [DOI: 10.1177/07482337221127148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
C/EBP-homologous protein (CHOP) and histone H3 lysine 4 (H3K4) methylation have been verified to be correlated with apoptosis, whereas their biological function in arsenic-induced hepatocyte apoptosis through the mitochondrial pathway is still unclear. This study aimed to explore the specific regulatory mechanism of CHOP and H3K4me1/2 in arsenic-induced mitochondrial apoptosis in hepatocytes. Apoptosis and proliferation results showed arsenic promoted apoptosis and inhibited cell growth in BRL-3A cells. Meanwhile, arsenic treatment significantly upregulated the 78-kDa glucose-regulated protein (GRP78), CHOP, su(var)-3-9,enhancer-of-zeste,trithorax (SET) domain containing 7/9 (SET7/9), H3K4me1/2, BIM and BAX expression, while markedly downregulated lysine-specific histone demethylase 1 (LSD1) and BCL2 expression. After down-regulating CHOP, LSD1, and (su(var)-3-9,enhancer-of-zeste,trithorax) domain-containing protein 7/9 (SET7/9) in BRL-3A cells by siRNA, silencing CHOP and SET7/9 notably attenuated the pro-apoptotic and anti-proliferative effects of arsenic treatment on BRL-3A cells, which was reversed after inhibiting LSD1. In addition, our results suggested that knockdown of CHOP altered the expression of mitochondrial-associated proteins BCL2 and BIM, whereas knockdown of LSD1 and SET7/8 regulated the level of H3K4me1/2 modification and BAX protein. Coupled with chromatin immunoprecipitation results, we found that the level of CHOP in the promoter regions of BCL2 and BIM was significantly increased in BRL-3A cells exposed to 30 µmol/L NaAsO2 for 24 h, whereas the levels of H3K4me1/2 in the promoter regions of BAX were unchanged. Collectively, these data indicated that arsenic triggered the mitochondrial pathway to induce hepatocyte apoptosis by up-regulating the levels of CHOP and H3K4me1/2.
Collapse
Affiliation(s)
- Cai Liang
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ru-Jia Xie
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jun-Li Wang
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ying-Wan Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jia-Yuan Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Qin Yang
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Bing Han
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
16
|
Pan X, Fan J, Peng F, Xiao L, Yang Z. SET domain containing 7 promotes oxygen-glucose deprivation/reoxygenation-induced PC12 cell inflammation and oxidative stress by regulating Keap1/Nrf2/ARE and NF-κB pathways. Bioengineered 2022; 13:7253-7261. [PMID: 35259059 PMCID: PMC8974222 DOI: 10.1080/21655979.2022.2045830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Oxidative stress and inflammation are implicated in the pathogenesis of cerebral ischemia-reperfusion (I/R) injury. SETD7 (SET Domain Containing 7) functions as a histone lysine methyltransferase, participates in cardiac lineage commitment, and silence of SETD7 exerts anti-inflammatory or antioxidant capacities. The effect of SETD7 in in vitro cell model of cerebral I/R injury was investigated in this study. Firstly, adrenal pheochromocytoma cell (PC12) was conducted with oxygen-glucose deprivation/reoxygenation (OGD/R) to establish cell model of cerebral I/R injury. OGD/R-enhanced SETD7 expression in PC12 cells. Cell viability of OGD/R-induced PC12 was reduced, while the apoptosis was promoted. Secondly, knockdown of SETD7 reversed the effect of OGD/R on cell viability and apoptosis of PC12. Moreover, OGD/R-induced inflammation in PC12 with decreased interleukin (IL)-10, increased IL-6, IL-1β, tumor necrosis factor-α (TNF-α), and cyclooxygenase 2 (COX-2) were restored by knockdown of SETD7. Thirdly, knockdown of SETD7 attenuated OGD/R-induced decrease of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT), as well as increase of malondialdehyde (MDA) and reactive oxygen species (ROS) in PC12. Lastly, OGD/R-induced decrease of NF-κB inhibitor α (IκBα), increase of phosphorylated (p)-p65, p-IκBα, and Keap1 (Kelch-like ECH-associated protein 1) were reversed by silence of SETD7. Silence of SETD7 increased heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2) expression in OGD/R-induced PC12. In conclusion, suppression of SETD7 ameliorated OGD/R-induced inflammation and oxidative stress in PC12 cell through inactivation of NF-κB and activation of Keap1/Nrf2/ARE pathway.
Collapse
Affiliation(s)
- Xianfang Pan
- Department of Neurology, The General Hospital of Western Theater Command, Chengdu, Sichuan Province, China
| | - Jin Fan
- Department of Neurology, The General Hospital of Western Theater Command, Chengdu, Sichuan Province, China
| | - Fang Peng
- Department of Neurology, The General Hospital of Western Theater Command, Chengdu, Sichuan Province, China
| | - Li Xiao
- Department of Neurology, Chengdu Shuangliu First People's Hospital, Chengdu, Sichuan Province, China
| | - Zhiyi Yang
- Department of Neurology, The General Hospital of Western Theater Command, Chengdu, Sichuan Province, China
| |
Collapse
|
17
|
Cai Q, Gan C, Tang C, Wu H, Gao J. Mechanism and Therapeutic Opportunities of Histone Modifications in Chronic Liver Disease. Front Pharmacol 2021; 12:784591. [PMID: 34887768 PMCID: PMC8650224 DOI: 10.3389/fphar.2021.784591] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/08/2021] [Indexed: 02/05/2023] Open
Abstract
Chronic liver disease (CLD) represents a global health problem, accounting for the heavy burden of disability and increased health care utilization. Epigenome alterations play an important role in the occurrence and progression of CLD. Histone modifications, which include acetylation, methylation, and phosphorylation, represent an essential part of epigenetic modifications that affect the transcriptional activity of genes. Different from genetic mutations, histone modifications are plastic and reversible. They can be modulated pharmacologically without changing the DNA sequence. Thus, there might be chances to establish interventional solutions by targeting histone modifications to reverse CLD. Here we summarized the roles of histone modifications in the context of alcoholic liver disease (ALD), metabolic associated fatty liver disease (MAFLD), viral hepatitis, autoimmune liver disease, drug-induced liver injury (DILI), and liver fibrosis or cirrhosis. The potential targets of histone modifications for translation into therapeutics were also investigated. In prospect, high efficacy and low toxicity drugs that are selectively targeting histone modifications are required to completely reverse CLD and prevent the development of liver cirrhosis and malignancy.
Collapse
Affiliation(s)
- Qiuyu Cai
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Can Gan
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Chengwei Tang
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Wu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhang Gao
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Yang Y, Luan Y, Yuan RX, Luan Y. Histone Methylation Related Therapeutic Challenge in Cardiovascular Diseases. Front Cardiovasc Med 2021; 8:710053. [PMID: 34568453 PMCID: PMC8458636 DOI: 10.3389/fcvm.2021.710053] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
The epidemic of cardiovascular diseases (CVDs) is predicted to spread rapidly in advanced countries accompanied by the high prevalence of risk factors. In terms of pathogenesis, the pathophysiology of CVDs is featured by multiple disorders, including vascular inflammation accompanied by simultaneously perturbed pathways, such as cell death and acute/chronic inflammatory reactions. Epigenetic alteration is involved in the regulation of genome stabilization and cellular homeostasis. The association between CVD progression and histone modifications is widely known. Among the histone modifications, histone methylation is a reversible process involved in the development and homeostasis of the cardiovascular system. Abnormal methylation can promote CVD progression. This review discusses histone methylation and the enzymes involved in the cardiovascular system and determine the effects of histone methyltransferases and demethylases on the pathogenesis of CVDs. We will further demonstrate key proteins mediated by histone methylation in blood vessels and review histone methylation-mediated cardiomyocytes and cellular functions and pathways in CVDs. Finally, we will summarize the role of inhibitors of histone methylation and demethylation in CVDs and analyze their therapeutic potential, based on previous studies.
Collapse
Affiliation(s)
- Yang Yang
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Luan
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Rui-Xia Yuan
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Luan
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Han B, Yang Y, Tang L, Yang Q, Xie R. Roles of SET7/9 and LSD1 in the Pathogenesis of Arsenic-induced Hepatocyte Apoptosis. J Clin Transl Hepatol 2021; 9:364-372. [PMID: 34221922 PMCID: PMC8237132 DOI: 10.14218/jcth.2020.00185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/22/2021] [Accepted: 03/11/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND AIMS Multiple regulatory mechanisms play an important role in arsenic-induced liver injury. To investigate whether histone H3 lysine 4 (H3K4) methyltransferase (SET7/9) and histone H3K4 demethyltransferase (LSD1/KDM1A) can regulate endoplasmic reticulum stress (ERS)-related apoptosis by modulating the changes of H3K4 methylations in liver cells treated with arsenic. METHODS Apoptosis, proliferation and cell cycles were quantified by flow cytometry and real-time cell analyzer. The expression of ERS- and epigenetic-related proteins was detected by Western blot analysis. The antisense SET7/9 expression vector and the overexpressed LSD1 plasmid were used for transient transfection of LO2 cells. The effects of NaAsO2 on the methylation of H3 in the promoter regions of 78 kDa glucose-regulated protein, activating transcription factor 4 and C/EBP-homologous protein were evaluated by chromatin immunoprecipitation assay. RESULTS The protein expression of LSD1 (1.25±0.08 vs. 1.77±0.08, p=0.02) was markedly decreased by treatment with 100 µM NaAsO2, whereas the SET7/9 (0.68±0.05 vs. 1.10±0.13, p=0.002) expression level was notably increased, which resulted in increased H3K4me1/2 (0.93±0.64, 1.19±0.22 vs. 0.71±0.13, 0.84±0.13, p=0.03 and p=0.003). After silencing SET7/9 and overexpressing LSD1 by transfection, apoptosis rate (in percentage: 3.26±0.34 vs. 7.04±0.42, 4.80±0.32 vs. 7.52±0.38, p=0.004 and p=0.02) was significantly decreased and proliferation rate was notably increased, which is reversed after inhibiting LSD1 (in percentage: 9.31±0.40 vs. 7.52±0.38, p=0.03). Furthermore, the methylation levels of H3 in the promoter regions of GRP78 (20.80±2.40 vs. 11.75±2.47, 20.46±2.23 vs. 14.37±0.91, p=0.03 and p=0.01) and CHOP (48.67±4.04 vs. 16.67±7.02, 59.33±4.51 vs. 20.67±3.06, p=0.004 and p=0.001) were significantly increased in LO2 cells exposed to 100 µM NaAsO2 for 24 h. CONCLUSIONS Histone methyltransferase SET7/9 and histone demethyltransferase LSD1 jointly regulate the changes of H3K4me1/me2 levels in arsenic-induced apoptosis. NaAsO2 induces apoptosis in LO2 cells by activating the ERS-mediated apoptotic signaling pathway, at least partially by enhancing the methylation of H3 on the promoter regions of ERS-associated genes, including GRP78 and CHOP.
Collapse
Affiliation(s)
- Bing Han
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yi Yang
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Lei Tang
- Medical College of Guizhou University, Guiyang, Guizhou, China
| | - Qin Yang
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Rujia Xie
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
- Correspondence to: Rujia Xie, Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550000, China. ORCID: https://orcid.org/0000-0001-5991-2678. Tel: +86-13985441220, E-mail:
| |
Collapse
|
20
|
Shi Y, Ni J, Tao M, Ma X, Wang Y, Zang X, Hu Y, Qiu A, Zhuang S, Liu N. Elevated expression of HDAC6 in clinical peritoneal dialysis patients and its pathogenic role on peritoneal angiogenesis. Ren Fail 2021; 42:890-901. [PMID: 32862739 PMCID: PMC7472510 DOI: 10.1080/0886022x.2020.1811119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Peritoneal dialysis (PD) is an important renal replacement therapy for end-stage renal disease (ESRD) patients. However, its complications, such as peritoneal fibrosis (PF) and angiogenesis can cause ultrafiltration failure and PD termination. Histone deacetylase 6 (HDAC6) has been demonstrated to be involved in PF. However, its underlying role in peritoneal angiogenesis is still unknown and clinical value needs to be explored. In this study, we analyzed the expression of HDAC6 in the peritoneum from patients with non-PD and PD-related peritonitis and dialysis effluent from stable PD patients. Our study revealed that HDAC6 expressed highly in the peritoneum with peritonitis and co-stained with α-smooth muscle actin (α-SMA), a biomarker of the myofibroblast. And the level of HDAC6 in the dialysate increased with time and positively correlated with transforming growth factor-β1 (TGF-β1), interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF), and negatively with cancer antigen 125 (CA125). In vitro, blockading HDAC6 with a selective inhibitor tubastatin A (TA) or silencing HDAC6 with a small interfering RNA (siRNA) prominently decreased IL-6-stimulated VEGF expression in cultured human peritoneal mesothelial cells (HPMCs), and inhibited proliferation and vasoformation of human umbilical vein endothelial cells (HUVECs). TA or HDAC6 siRNA also suppressed the expression of Wnt1, β-catenin, and the phosphorylation of STAT3 in IL-6-treated HPMCs. In summary, HDAC6 inhibition protects against PD-induced angiogenesis through suppression of IL-6/STAT3 and Wnt1/β-catenin signaling pathway, subsequently reducing the VEGF production and angiogenesis. It could become a new therapeutic target or forecast biomarker for PF, inflammation, and angiogenesis in the future.
Collapse
Affiliation(s)
- Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Ni
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Tao
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoyan Ma
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Nephrology, Baoshan Branch of Shanghai First People's Hospital, Shanghai, China
| | - Yi Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiujuan Zang
- Department of Nephrology, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Yan Hu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Andong Qiu
- School of Life Science and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Keating ST, Groh L, van der Heijden CDCC, Rodriguez H, Dos Santos JC, Fanucchi S, Okabe J, Kaipananickal H, van Puffelen JH, Helder L, Noz MP, Matzaraki V, Li Y, de Bree LCJ, Koeken VACM, Moorlag SJCFM, Mourits VP, Domínguez-Andrés J, Oosting M, Bulthuis EP, Koopman WJH, Mhlanga M, El-Osta A, Joosten LAB, Netea MG, Riksen NP. The Set7 Lysine Methyltransferase Regulates Plasticity in Oxidative Phosphorylation Necessary for Trained Immunity Induced by β-Glucan. Cell Rep 2021; 31:107548. [PMID: 32320649 PMCID: PMC7184679 DOI: 10.1016/j.celrep.2020.107548] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/31/2020] [Accepted: 03/31/2020] [Indexed: 12/25/2022] Open
Abstract
Trained immunity confers a sustained augmented response of innate immune cells to a secondary challenge, via a process dependent on metabolic and transcriptional reprogramming. Because of its previous associations with metabolic and transcriptional memory, as well as the importance of H3 histone lysine 4 monomethylation (H3K4me1) to innate immune memory, we hypothesize that the Set7 methyltransferase has an important role in trained immunity induced by β-glucan. Using pharmacological studies of human primary monocytes, we identify trained immunity-specific immunometabolic pathways regulated by Set7, including a previously unreported H3K4me1-dependent plasticity in the induction of oxidative phosphorylation. Recapitulation of β-glucan training in vivo additionally identifies Set7-dependent changes in gene expression previously associated with the modulation of myelopoiesis progenitors in trained immunity. By revealing Set7 as a key regulator of trained immunity, these findings provide mechanistic insight into sustained metabolic changes and underscore the importance of characterizing regulatory circuits of innate immune memory. Set7 regulates enhanced cytokine production in trained immunity in vitro Set7 knockout mice are unable to mount trained immunity against endotoxin challenge Set7 modulates cellular respiration in β-glucan-trained macrophages Set7-dependent histone methylation regulates MDH2 and SDHB in trained cells
Collapse
Affiliation(s)
- Samuel T Keating
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Laszlo Groh
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Charlotte D C C van der Heijden
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hanah Rodriguez
- Epigenetics in Human Health and Disease, Department of Diabetes, Monash University, Melbourne, VIC, Australia
| | - Jéssica C Dos Santos
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Stephanie Fanucchi
- Division of Chemical, Systems and Synthetic Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Gene Expression and Biophysics Group, CSIR Biosciences, Pretoria, South Africa
| | - Jun Okabe
- Epigenetics in Human Health and Disease, Department of Diabetes, Monash University, Melbourne, VIC, Australia
| | - Harikrishnan Kaipananickal
- Epigenetics in Human Health and Disease, Department of Diabetes, Monash University, Melbourne, VIC, Australia; Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - Jelmer H van Puffelen
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands; Department for Health Evidence, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leonie Helder
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marlies P Noz
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Vasiliki Matzaraki
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Yang Li
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine, Helmholtz Centre for Infection Research, Hannover Medical School, 30625 Hannover, Germany
| | - L Charlotte J de Bree
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands; Research Center for Vitamins and Vaccines, Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark; Odense Patient Data Explorative Network, University of Southern Denmark/Odense University Hospital, Odense, Denmark
| | - Valerie A C M Koeken
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Simone J C F M Moorlag
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Vera P Mourits
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jorge Domínguez-Andrés
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marije Oosting
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Elianne P Bulthuis
- Department of Biochemistry, Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Werner J H Koopman
- Department of Biochemistry, Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Musa Mhlanga
- Division of Chemical, Systems and Synthetic Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Assam El-Osta
- Epigenetics in Human Health and Disease, Department of Diabetes, Monash University, Melbourne, VIC, Australia; Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia; Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong City, Hong Kong SAR
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands; Department for Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Niels P Riksen
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
22
|
Liu B, Nie J, Liang H, Liang Z, Huang J, Yu W, Wen S. Pharmacological inhibition of SETD7 by PFI-2 attenuates renal fibrosis following folic acid and obstruction injury. Eur J Pharmacol 2021; 901:174097. [PMID: 33848540 DOI: 10.1016/j.ejphar.2021.174097] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 01/19/2023]
Abstract
Renal fibrosis is the common pathological hallmark of chronic kidney disease, and SET domain containing lysine methyltransferase 7 (SETD7) promote considerably renal fibrosis. However, the signaling mechanisms underlying SETD7 driving renal fibrosis are not fully understood. Here, we investigated the role of SETD7 in M2 macrophages-myofibroblasts transition and the myeloid fibroblasts activation in folic acid and obstruction-induced renal fibrosis. Mice treated with PFI-2, an inhibitor of SETD7, presented less bone marrow-derived myofibroblasts, fewer CD206+/α-smooth muscle actin + cells and developed less renal fibrosis (P<0.01). Furthermore, SETD7 inhibition reduced the infiltration of inflammatory cells and decreased the production of pro-inflammatory cytokines and chemokines in the kidneys after folic acid treatment (P<0.01). Finally, SETD7 inhibition suppressed the accumulation of NF-κB p65+ cells in folic acid nephropathy (P<0.01). Taken together, SETD7 mediates M2 macrophages-myofibroblasts transition, bone marrow-derived myofibroblasts activation, and inflammation response in the development of renal fibrosis.
Collapse
Affiliation(s)
- Benquan Liu
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, China
| | - Jiayi Nie
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, China
| | - Hua Liang
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, China; Translational Medicine Institute of Anesthesiology and Perioperative Medicine, The First People's Hospital of Foshan, Foshan, 528000, China.
| | - Zijie Liang
- Department of Nephrology, The First People's Hospital of Foshan, Foshan, 528000, China
| | - Jiangju Huang
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, China
| | - Wenqiang Yu
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, China
| | - Shihong Wen
- Department of Anesthesiology, The First Affiliated Hospital of SUN YAT-SEN University, Guangzhou, 510080, China
| |
Collapse
|
23
|
Ma H. Effects of SET7 on angiotensin II-mediated proliferation and collagen synthesis of myocardial fibroblasts and its mechanisms. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:135-141. [PMID: 33678649 PMCID: PMC10929789 DOI: 10.11817/j.issn.1672-7347.2021.190400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Indexed: 11/03/2022]
Abstract
OBJECTIVES Silence of SET domain containing lysine methyltransferase 7 (SET7) alleviates myocardial tissue injury caused by ischemia-reperfusion. But the effects of SET7 on angiotensin II (Ang II)-induced myocardial fibroblast proliferation and the collagen synthesis are not clear. The purpose of this study was to explore the effect of SET7 on the proliferation and collagen synthesis of myocardial fibroblasts and its mechanisms. METHODS Myocardial fibroblasts were isolated and identified by immunofluorescence. Myocardial fibroblasts were randomly divided into 4 groups: a control group (cells were normally cultured), an Ang II group (cells were treated with 100 nmol/L Ang II for 24 h), a siCtrl group (cells were transfected with siRNA control and were then treated with 100 nmol/L Ang II for 24 h), and a siSET7 group (cells were transfected with siRNA SET7 and were then treated with 100 nmol/L Ang II for 24 h). Cell counting kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) assay were used to evaluate cell proliferation. Real-time PCR was used to detect the mRNA levels of SET7, collagen I, collagen III, and α-smooth muscle actin (α-SMA). Western blotting was used to detect the protein expression of SET7, collagen I, collagen III, α-SMA, sonic hedgehog (Shh), ptched1 (Ptch1), and glioma-associated oncogene homolog 1 (Gli1). RESULTS Fluorescence microscopy showed positive vimentin staining, and myocardial fibroblasts were in good condition. As compared to the control group, the mRNA and protein levels of SET7 in the Ang II group were significantly upregulated; cell proliferation rate and EdU fluorescence intensity in the Ang II group were significantly increased; the mRNA and protein levels of collagen I, collagen III, and α-SMA were significantly upregulated (all P<0.05). As compared to the siCtrl group, the mRNA and protein levels of SET7 in the siSET7 group were significantly downregulated; cell proliferation rate and EdU fluorescence intensity in the siSET7 group were significantly decreased; the mRNA and protein levels of collagen I, collagen III, and α-SMA in the siSET7 group were significantly downregulated (all P<0.05). CONCLUSIONS Silence of SET7 gene inhibits Ang II-induced proliferation and collagen synthesis of myocardial fibroblasts. Shh signaling pathway may be involved in this process.
Collapse
Affiliation(s)
- Huijun Ma
- Department of Cardiovascular Medicine, Xi'an NO.1 Hospital, Xi'an 710002, China.
| |
Collapse
|
24
|
SRF is a nonhistone methylation target of KDM2B and SET7 in the regulation of skeletal muscle differentiation. Exp Mol Med 2021; 53:250-263. [PMID: 33564100 PMCID: PMC8080764 DOI: 10.1038/s12276-021-00564-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/19/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022] Open
Abstract
The demethylation of histone lysine residues, one of the most important modifications in transcriptional regulation, is associated with various physiological states. KDM2B is a demethylase of histones H3K4, H3K36, and H3K79 and is associated with the repression of transcription. Here, we present a novel mechanism by which KDM2B demethylates serum response factor (SRF) K165 to negatively regulate muscle differentiation, which is counteracted by the histone methyltransferase SET7. We show that KDM2B inhibited skeletal muscle differentiation by inhibiting the transcription of SRF-dependent genes. Both KDM2B and SET7 regulated the balance of SRF K165 methylation. SRF K165 methylation was required for the transcriptional activation of SRF and for the promoter occupancy of SRF-dependent genes. SET7 inhibitors blocked muscle cell differentiation. Taken together, these data indicate that SRF is a nonhistone target of KDM2B and that the methylation balance of SRF as maintained by KDM2B and SET7 plays an important role in muscle cell differentiation. The balance between the opposing actions of two enzymes that, respectively, inhibit or activate the same gene-regulating protein plays a key role in the differentiation of skeletal muscle cells. A South Korean team led by Hyun Koon at Chonnam National University, Hwasun, and Sang-Beom Seo at Chung-Ang University, Seoul, studied the effect of the enzymes on cultured human muscle-forming cells. One enzyme, KDM2B, inhibits the differentiation of the cells by removing methyl groups (CH3) from a protein called serum response factor (SRF). A second enzyme, SET7, activates differentiation by adding methyl groups to SRF. The SRF protein controls the activity of many genes required for cell differentiation. This work reveals SRF as a previously unidentified target for KDM2B, and provides new insights into skeletal muscle development in health and disease.
Collapse
|
25
|
Wang Y, Shi Y, Tao M, Zhuang S, Liu N. Peritoneal fibrosis and epigenetic modulation. Perit Dial Int 2020; 41:168-178. [PMID: 32662737 DOI: 10.1177/0896860820938239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Peritoneal dialysis (PD) is an effective treatment for patients with end-stage renal disease. However, peritoneal fibrosis (PF) is a common complication that ultimately leads to ultrafiltration failure and discontinuation of PD after long-term PD therapy. There is currently no effective therapy to prevent or delay this pathologic process. Recent studies have reported epigenetic modifications involved in PF, and accumulating evidence suggests that epigenetic therapies may have the potential to prevent and treat PF clinically. The major epigenetic modifications in PF include DNA methylation, histone modification, and noncoding RNAs. The mechanisms of epigenetic regulation in PF are complex, predominantly involving modification of signaling molecules, transcriptional factors, and genes. This review will describe the mechanisms of epigenetic modulation in PF and discuss the possibility of targeting them to prevent and treat this complication.
Collapse
Affiliation(s)
- Yi Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China
| | - Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China
| | - Min Tao
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China
| |
Collapse
|
26
|
Computational discovery and biological evaluation of novel inhibitors targeting histone-lysine N-methyltransferase SET7. Bioorg Med Chem 2020; 28:115372. [DOI: 10.1016/j.bmc.2020.115372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 12/11/2022]
|
27
|
Wang Q, Xu L, Zhang X, Liu D, Wang R. GSK343, an inhibitor of EZH2, mitigates fibrosis and inflammation mediated by HIF-1α in human peritoneal mesothelial cells treated with high glucose. Eur J Pharmacol 2020; 880:173076. [PMID: 32222493 DOI: 10.1016/j.ejphar.2020.173076] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/19/2022]
Abstract
Inflammation and fibrosis in peritoneal mesothelial cells caused by long-term peritoneal dialysis (PD) are the main reasons why patients withdraw from peritoneal dialysis treatment. However, the related mechanism is still unclear. In the current study, we revealed that the expression of EZH2 was positively related to EMT and fibrosis in an in vitro model using human peritoneal mesothelial cells (HPMCs) stimulated with high glucose. Moreover, EZH2 also exhibited a positive correlation with HIF-1α expression. Using an sh-RNA lentivirus specific to EZH2, the EZH2 inhibitor GSK343 and rescue experiments of HIF-1α, we showed that EZH2 was an inducer of inflammation and fibrosis mediated by HIF-1α. Mechanistically, we revealed that on the one hand, EZH2 could increase the trimethylation of H3K4 at the HIF-1α gene promoter and directly activate HIF-1α transcription, as demonstrated by co-IP and ChIP-RT-PCR experiments. On the other hand, we verified that EZH2 could increase the trimethylation of H3K27 at the miR-142 gene promoter, which repressed the expression of miR-142. Combining bioanalysis and dual-luciferase assays, we found that miR-142 could regulate HIF-1α expression by directly binding to its mRNA 3'-UTR. Inhibition of miR-142 could rescue the protective effect of GSK343 on inflammation and fibrosis. In conclusion, our current study revealed that EZH2 plays a vital role in peritoneal fibrosis mediated by HIF-1α and related mechanisms. To our knowledge, this is the first study to demonstrate the effect of the EZH2-HIF-1α interaction and miR-142 on peritoneal fibrosis and inflammation and to suggest EZH2 and miR-142 as potential targets for the treatment of peritoneal fibrosis in patients with PD.
Collapse
Affiliation(s)
- Qinglian Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.
| | - Liang Xu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Xianzheng Zhang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Dan Liu
- Department of Nephrology, Yanzhou District People's Hospital, Jining, Shandong, China.
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Preclinical data suggests that transforming growth factor-β (TGF-β) is arguably the most potent profibrotic growth factor in kidney injury. Despite this, recent clinical trials targeting TGF-β have been disappointing. These negative studies suggest that TGF-β signaling in the injured kidney might be more complicated than originally thought. This review examines recent studies that expand our understanding of how this pleiotropic growth factor affects renal injury. RECENT FINDINGS There are recent studies showing new mechanisms whereby TGF-β can mediate injury (e.g. epigenetic effects, macrophage chemoattractant). However, more significant are the increasing reports on cross-talk between TGF-β signaling and other pathways relevant to renal injury such as Wnt/β-catenin, YAP/TAZ (transcriptional coactivator with PDZ-binding motif), and klotho/FGF23. TGF-β clearly alters the response to injury, not just by direct transcriptional changes on target cells, but also through effects on other signaling pathways. In T cells and tubular epithelial cells, some of these TGF-β-mediated changes are potentially beneficial. SUMMARY It is unlikely that inhibition of TGF-β per se will be a successful antifibrotic strategy, but a better understanding of TGF-β's actions may reveal promising downstream targets or modulators of signaling to target therapeutically for chronic kidney disease.
Collapse
|
29
|
Yu C, Zhuang S. Histone Methyltransferases as Therapeutic Targets for Kidney Diseases. Front Pharmacol 2019; 10:1393. [PMID: 31866860 PMCID: PMC6908484 DOI: 10.3389/fphar.2019.01393] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/31/2019] [Indexed: 12/31/2022] Open
Abstract
Emerging evidence has demonstrated that epigenetic regulation plays a vital role in gene expression under normal and pathological conditions. Alterations in the expression and activation of histone methyltransferases (HMTs) have been reported in preclinical models of multiple kidney diseases, including acute kidney injury, chronic kidney disease, diabetic nephropathy, polycystic kidney disease, and renal cell carcinoma. Pharmacological inhibition of these enzymes has shown promise in preclinical models of those renal diseases. In this review, we summarize recent knowledge regarding expression and activation of various HMTs and their functional roles in some kidney diseases. The preclinical activity of currently available HMT inhibitors and the mechanisms of their actions are highlighted.
Collapse
Affiliation(s)
- Chao Yu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| |
Collapse
|
30
|
Abstract
Aim: The druggability of epigenetic targets has prompted researchers to develop small-molecule therapeutics. However, no systematic assessment has ever been done to investigate the chemical space of epigenetic modulators. Herein, we report a comprehensive chemoinformatic analysis of epigenetic ligands from EpiDBase, HEMD, ChEMBL and PubChem databases. Results: Nearly, 0.45 × 106 ligands were analyzed for assay interference compounds, target profiling, drug-like properties and hit prioritization. After eliminating approximately 96,000 problematic compounds, the remaining 0.36 × 106 compounds were studied for their physicochemical distributions, principal component analysis and hit prioritization. More than 30% of assay interference compounds were determined for many proteins. Conclusion: This systematic assessment of epigenetic ligands will help in the enrichment of screening libraries with high-quality compounds and thus, the generation of efficacious drug candidates.
Collapse
|
31
|
Basuroy T, de la Serna IL. SETD7 in cardiomyocyte differentiation and cardiac function. Stem Cell Investig 2019; 6:29. [PMID: 31620476 DOI: 10.21037/sci.2019.08.01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 07/30/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Tupa Basuroy
- Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA, USA
| | - Ivana L de la Serna
- University of Toledo College of Medicine and Life Sciences, Department of Cancer Biology, Toledo, OH, USA
| |
Collapse
|
32
|
Zhong Y, Ye P, Mei Z, Huang S, Huang M, Li Y, Niu S, Zhao S, Cai J, Wang J, Zou H, Jiang Y, Liu J. The novel methyltransferase SETD4 regulates TLR agonist-induced expression of cytokines through methylation of lysine 4 at histone 3 in macrophages. Mol Immunol 2019; 114:179-188. [PMID: 31376731 DOI: 10.1016/j.molimm.2019.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 06/29/2019] [Accepted: 07/11/2019] [Indexed: 11/30/2022]
Abstract
The production of inflammatory cytokines is closely related to pathogen-associated molecular pattern (PAMP)-triggered activation of the Toll-like receptor (TLR), intracellular signal transduction pathways such as MAPK and NF-κB, and histone modifications. Histone methylation, a type of histone modifications, is mainly accomplished by a class of SET family proteins containing highly conserved SET domains. In the present study, we found that SET domain-containing protein 4 (SETD4) regulated inflammatory cytokines in response to TLR agonists. LPS stimulation led to the enhanced SETD4 expression, while the increased IL-6 and TNF-α release from LPS-stimulated RAW264.7 cells was attenuated by depletion of SETD4 using RNA interference. The results were further confirmed in BMDMs and pMφ isolated from SETD4-deficient mice where SETD4-/- macrophages treated with LPS, BLP or Poly(I:C) showed down-regulated IL-6 and TNF-α mRNA and protein levels when compared with SETD4+/+ macrophages. Moreover, the mRNA levels of all NF-κB-dependent genes including IL-1β, IL-10, NFKBA, DUSP1, CCL2, CCL5, and CXCL10 in SETD4-/- macrophages were substantially reduced. To further clarify the regulatory mechanism(s) by which SETD4 modulates inflammatory cytokines, we examined the effect of SETD4 on the activation of MAPK and NF-κB signalling pathways, and found that knockout of SETD4 had no effect on phosphorylation of p38, ERK, JNK, p65, and IκBα. Notably, SETD4 translocated quickly from the cytosol to the nucleus upon LPS stimulation, suggesting that SETD4 may exert its regulatory function downstream of the MAPK and NF-κB pathways. To characterize this, we performed an in vitro HMTase assay to measure histone methyltransferase (HMTase) activity of SETD4. H3K4me1 and H3K4me2 levels were enhanced dramatically with the supplementation of SETD4, whereas both H3K4me1 and H3K4me2 were strongly attenuated in SETD4-/- BMDMs. Moreover, the LPS-stimulated recruitment of H3K4me1 and H3K4me2 at both TNF-α and IL-6 promoters was severely impaired in SETD4-/- BMDMs. Collectively, these results demonstrate that SETD4 positively regulates IL-6 and TNF-α expression in TLR agonist-stimulated macrophages by directly activating H3K4 methylation.
Collapse
Affiliation(s)
- Yuyun Zhong
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ping Ye
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhuzhong Mei
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Sui Huang
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Mengyi Huang
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yue Li
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shixian Niu
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuqi Zhao
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Junwei Cai
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hequn Zou
- Institute of Nephrology and Urology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Yong Jiang
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Jinghua Liu
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
33
|
Henderson J, Distler J, O'Reilly S. The Role of Epigenetic Modifications in Systemic Sclerosis: A Druggable Target. Trends Mol Med 2019; 25:395-411. [PMID: 30858032 DOI: 10.1016/j.molmed.2019.02.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 02/07/2023]
Abstract
Systemic sclerosis (SSc) is a rare autoimmune disorder characterised by skin fibrosis that often also affects internal organs, eventually resulting in mortality. Although management of the symptoms has extended lifespan, patients still suffer from poor quality of life, hence the need for improved therapies. Development of efficacious treatments has been stymied by the unknown aetiology, although recent advancements suggest a potentially key role for epigenetics - the regulation of gene expression by noncoding RNAs and chemical modifications to DNA or DNA-associated proteins. Herein, the evidence implicating epigenetics in the pathogenesis of SSc is discussed with an emphasis on the therapeutic potential this introduces to the field - particularly the repurposing of epigenetic targeting cancer therapeutics and newly emerging miRNA-based strategies.
Collapse
Affiliation(s)
- John Henderson
- Faculty of Health and Life Sciences, Northumbria University, Ellison Building, Tyne and Wear, Newcastle upon Tyne NE2 8ST, UK
| | - Joerg Distler
- Department of Internal Medicine 3, Erlangen University, Erlangen, Germany
| | - Steven O'Reilly
- Faculty of Health and Life Sciences, Northumbria University, Ellison Building, Tyne and Wear, Newcastle upon Tyne NE2 8ST, UK.
| |
Collapse
|