1
|
Stirle JL, Matias JEF, Mendes GR, Moscardini VF, Maia JB, Michaud JP, Gontijo PC. Differential susceptibility of Spodoptera frugiperda (Lepidoptera: Noctuidae) to single versus pyramided Bt traits in Brazilian soybean: what doesn't kill you makes you stronger? PEST MANAGEMENT SCIENCE 2024; 80:6535-6544. [PMID: 39189544 DOI: 10.1002/ps.8391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/18/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Lepidopteran pest control in agriculture has become heavily dependent on cultivars that express Bacillus thuringiensis (Bt) toxins as 'plant-incorporated protectants'. However, populations of Spodoptera frugiperda (Smith) in Brazil appear resistant to the Bt traits currently available in commercial soybean cultivars. RESULTS This study evaluated S. frugiperda life history when feeding on three different Bt soybean cultivars. Cultivars expressing Cry1Ac + Cry1F and Cry1A.105 + Cry2Ab2 + Cry1Ac Bt toxins caused 100% larval mortality in S. frugiperda. Both non-Bt and Cry1Ac-expressing soybean induced transgenerational effects that increased the survival of subsequent generations. A Cry1Ac soybean diet reduced the generation time (T) of S. frugiperda relative to non-Bt soybean, resulting in shorter generation time and more rapid population growth. CONCLUSION The implications of these results revealed how diet can alter aspects of insect life history and biology, and have important implications for sustainable management of S. frugiperda on soybean. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | | | | | - Jader Braga Maia
- Departamento de Agronomia, Universidade Federal do Triângulo Mineiro, Iturama, Brazil
| | - J P Michaud
- Department of Entomology, Kansas State University, Agricultural Research Center-Hays, Hays, KS, USA
| | | |
Collapse
|
2
|
Nanini F, Souza PGC, Soliman EP, Zauza EAV, Domingues MM, Santos FA, Wilcken CF, da Silva RS, Corrêa AS. Genetic diversity, population structure and ecological niche modeling of Thyrinteina arnobia (Lepidoptera: Geometridae), a native Eucalyptus pest in Brazil. Sci Rep 2024; 14:20963. [PMID: 39251761 PMCID: PMC11384784 DOI: 10.1038/s41598-024-71816-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
Thyrinteina arnobia (Lepidoptera: Geometridae) is a native American species. Despite its historical importance as an insect pest in Eucalyptus plantations, more information is needed regarding the population diversity, demography, and climatic variables associated with its distribution in different regions of Brazil. We used a phylogeographic approach to infer the genetic diversity, genetic structure, and demographic parameters of T. arnobia. We also conducted an ecological niche modeling (ENM) to predict suitable areas for T. arnobia occurrence in Brazil and other countries worldwide. Although T. arnobia populations have low genetic diversity in Brazil, we identified mitochondrial haplogroups predominating in different Brazilian regions and high ФST and ФCT values in AMOVA, suggesting a low frequency of insect movement among these regions. These results indicate that outbreaks of T. arnobia in Eucalyptus areas in different regions of Brazil are associated with local or regional populations, with no significant contribution from long-distance dispersal from different regions or biomes, suggesting that pest management strategies would be implemented on a regional scale. In Brazil, the demographic and spatial expansion signals of T. arnobia seem to be associated with the history of geographical expansion of Eucalyptus plantations, a new sustainable host for this species. ENM indicated that isothermality and annual rainfall are critical climatic factors for the occurrence of T. arnobia in tropical and subtropical areas in the Americas. ENM also suggested that T. arnobia is a potential pest in Eucalyptus areas in all Brazilian territory and in regions from Africa, Asia, and Oceania.
Collapse
Affiliation(s)
- Frederico Nanini
- Departamento de Entomologia e Acarologia, ESALQ - Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Philipe G C Souza
- Departamento de Agronomia, Instituto Federal de Ciência e Tecnologia do Triângulo Mineiro (IFTM Campus Uberlândia), Uberlândia, Minas Gerais, Brazil
| | | | | | | | - Fábio A Santos
- Departamento de Proteção Vegetal, UNESP/FCA - Campus de Botucatu, Botucatu, São Paulo, Brasil
| | - Carlos F Wilcken
- Departamento de Proteção Vegetal, UNESP/FCA - Campus de Botucatu, Botucatu, São Paulo, Brasil
| | - Ricardo S da Silva
- Departamento de Agronomia, Universidade Federal do Vale do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Alberto S Corrêa
- Departamento de Entomologia e Acarologia, ESALQ - Universidade de São Paulo, Piracicaba, São Paulo, Brazil.
| |
Collapse
|
3
|
de Araújo WA, Fernandes MG, Degrande PE, Salustino ADS, Neto DFC, Malaquias JB. Exploring the impact of cover crops in integrated pest management: pest and natural enemies population dynamics in no-tillage cotton production. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024; 114:581-590. [PMID: 39308244 DOI: 10.1017/s0007485324000452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Conservation agriculture plays an important role in the sustainability of production systems, notably for globally significant crops such as cotton. This study explores the integration of the no-tillage system (NTS) with integrated pest management (IPM) by incorporating cover crops. The aim is to assess the impact of these living or dead covers on the management of insect populations, the indices diversity of phytophagous insects and natural enemies, and to investigate the population fluctuation of these arthropods, considering a variety of crops in the NTS before and after cotton planting. The trial, conducted over two consecutive cropping seasons in Mato Grosso do Sul State, Brazil, employed a randomised block design with four repetitions. The treatments included cover crops with the highest potential for use in the region, such as millet (Pennisetum glaucum glaucum L.), corn (Zea mays L.), brachiaria (Urochloa ruziziensis), black velvet bean (Stizolobium aterrimum), forage sorghum (Sorghum bicolor L.), and white oats (Avena sativa L.) and a mix of white oats with brachiaria. The results indicated that the black velvet bean stands out as the most effective cover crop, providing the best performance in terms of non-preference to the attack of the evaluated pest insects. Conversely, brachiaria proves to be more susceptible to infestations of Dalbulus maidis (DeLong and Wolcott) (Hemiptera: Cicadellidae), and Diabrotica speciosa (Germar, 1824) (Coleoptera: Chrysomelidae). The study underscores the relevance of the judicious choice of cover crops in IPM and in promoting agricultural biodiversity, creating a strategic tool to enhance the sustainability and efficiency of the cotton production system in the context of the NTS.
Collapse
Affiliation(s)
- Waldenio Antonio de Araújo
- Faculty of Agricultural Sciences, Federal University of Grande Dourados (UFGD), Applied Entomology Laboratory, Dourados, Mato Grosso do Sul, Brazil
| | - Marcos Gino Fernandes
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Insect Sampling and Monitoring Laboratory, Dourados, Mato Grosso do Sul, Brazil
| | - Paulo Eduardo Degrande
- Faculty of Agricultural Sciences, Federal University of Grande Dourados (UFGD), Applied Entomology Laboratory, Dourados, Mato Grosso do Sul, Brazil
| | | | | | - José Bruno Malaquias
- Federal University of Paraíba, Agricultural Sciences Center, Entomology Laboratory, Areia, Paraíba, Brazil
| |
Collapse
|
4
|
Oliveira NC, Rodrigues PAP, Cônsoli FL. Host-Adapted Strains of Spodoptera frugiperda Hold and Share a Core Microbial Community Across the Western Hemisphere. MICROBIAL ECOLOGY 2023; 85:1552-1563. [PMID: 35426077 DOI: 10.1007/s00248-022-02008-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/04/2022] [Indexed: 05/10/2023]
Abstract
The fall armyworm Spodoptera frugiperda is an important polyphagous agricultural pest in the Western Hemisphere and currently invasive to countries of the Eastern Hemisphere. This species has two host-adapted strains named "rice" and "corn" strains. Our goal was to identify the occurrence of core members in the gut bacterial community of fall armyworm larvae from distinct geographical distribution and/or host strain. We used next-generation sequencing to identify the microbial communities of S. frugiperda from corn fields in Brazil, Colombia, Mexico, Panama, Paraguay, and Peru, and rice fields from Panama. The larval gut microbiota of S. frugiperda larvae did not differ between the host strains nor was it affected by the geographical distribution of the populations investigated. Our findings provide additional support for Enterococcus and Pseudomonas as core members of the bacterial community associated with the larval gut of S. frugiperda, regardless of the site of collection or strain. Further investigations are required for a deeper understanding of the nature of this relationship.
Collapse
Affiliation(s)
- Nathalia C Oliveira
- Insect Interactions Laboratory, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Pedro A P Rodrigues
- Insect Interactions Laboratory, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Fernando L Cônsoli
- Insect Interactions Laboratory, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil.
| |
Collapse
|
5
|
Oliveira NCD, Cônsoli FL. Dysbiosis of the larval gut microbiota of Spodoptera frugiperda strains feeding on different host plants. Symbiosis 2023. [DOI: 10.1007/s13199-023-00907-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
6
|
Hinojosa JC, Montiel-Pantoja C, Sanjurjo-Franch M, Martínez-Pérez I, Lee KM, Mutanen M, Vila R. Diversification linked to larval host plant in the butterfly Eumedonia eumedon. Mol Ecol 2023; 32:182-197. [PMID: 36214081 PMCID: PMC10092595 DOI: 10.1111/mec.16728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/07/2022] [Accepted: 10/06/2022] [Indexed: 12/29/2022]
Abstract
It is widely accepted that the relationship between phytophagous insects and their host plants influences insect diversification. However, studies addressed at documenting host-associated genetic differentiation (HAD) and the mechanisms that drive reproductive isolation in host-associated lineages (or host races) are still scarce relative to insect diversity. To uncover further evidence on the HAD processes in Lepidoptera, we investigated the genetic structure of the geranium argus butterfly (Eumedonia eumedon) and tested for isolation by ecology (IBE) vs. isolation by distance (IBD). Genomic data revealed an array of host races (three of them in the same mountain range, the Cantabrian Mountains, northern Iberia) at apparently distinct levels of reproductive isolation. We found a pattern of IBE mediated by HAD at both local and European scales, in which genetic differentiation between populations and individuals correlated significantly with the taxonomic relatedness of the host plants. IBD was significant only when considered at the wider European scale. We hypothesize that, locally, HAD between Geranium-feeding populations was caused (at least partially) by allochrony, that is via adaptation of adult flight time to the flowering period of each host plant species. Nevertheless, the potential reproductive isolation between populations using Erodium and populations using Geranium cannot be explained by allochrony or IBD, and other mechanisms are expected to be at play.
Collapse
Affiliation(s)
| | | | | | | | - Kyung Min Lee
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland.,Zoology Unit, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Marko Mutanen
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain
| |
Collapse
|
7
|
Bessette M, Ste‐Croix DT, Brodeur J, Mimee B, Gagnon A. Population genetic structure of the carrot weevil ( Listronotus oregonensis) in North America. Evol Appl 2022; 15:300-315. [PMID: 35233249 PMCID: PMC8867704 DOI: 10.1111/eva.13343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/30/2021] [Indexed: 11/29/2022] Open
Abstract
Population genetic studies of insect pests enhance our ability to anticipate problems in agroecosystems, such as pest outbreaks, insecticide resistance, or expansions of the host range. This study focuses on geographic distance and host plant selection as potential determinants of genetic differentiation of the carrot weevil Listronotus oregonensis, a major pest of several apiaceous crops in North America. To undertake genetic studies on this species, we assembled the first complete genome sequence for L. oregonensis. Then, we used both haplotype discrimination with mitochondrial DNA (mtDNA) and a genotyping-by-sequencing (GBS) approach to characterize the genetic population structure. A total of 220 individuals were sampled from 17 localities in the provinces of Québec, Ontario, Nova Scotia (Canada), and the state of Ohio (USA). Our results showed significant genetic differences between distant populations across North America, indicating that geographic distance represents an important factor of differentiation for the carrot weevil. Furthermore, the GBS analysis revealed more different clusters than COI analysis between Québec and Nova Scotia populations, suggesting a recent differentiation in the latter province. In contrast, we found no clear evidence of population structure associated with the four cultivated apiaceous plants tested (carrot, parsley, celery, and celeriac) using populations from Québec. This first characterization of the genetic structure of the carrot weevil contributes to a better understanding of the gene flow of the species and helps to adapt local pest management measures to better control this agricultural pest.
Collapse
Affiliation(s)
- Marianne Bessette
- Saint‐Jean‐sur‐Richelieu Research and Development CentreAgriculture and Agri‐Food CanadaSaint‐Jean‐sur‐RichelieuQCCanada
- Département de sciences biologiquesInstitut de recherche en biologie végétaleUniversité de MontréalMontrealQCCanada
| | - Dave T. Ste‐Croix
- Saint‐Jean‐sur‐Richelieu Research and Development CentreAgriculture and Agri‐Food CanadaSaint‐Jean‐sur‐RichelieuQCCanada
| | - Jacques Brodeur
- Département de sciences biologiquesInstitut de recherche en biologie végétaleUniversité de MontréalMontrealQCCanada
| | - Benjamin Mimee
- Saint‐Jean‐sur‐Richelieu Research and Development CentreAgriculture and Agri‐Food CanadaSaint‐Jean‐sur‐RichelieuQCCanada
| | - Annie‐Ève Gagnon
- Saint‐Jean‐sur‐Richelieu Research and Development CentreAgriculture and Agri‐Food CanadaSaint‐Jean‐sur‐RichelieuQCCanada
| |
Collapse
|
8
|
Jacques FL, Degrande PE, Gauer E, Malaquias JB, Scoton AMN. Intercropped Bt and non-Bt corn with ruzigrass (Urochloa ruziziensis) as a tool to resistance management of Spodoptera frugiperda (JE Smith, 1797) (Lepidoptera: Noctuidae). PEST MANAGEMENT SCIENCE 2021; 77:3372-3381. [PMID: 33786976 DOI: 10.1002/ps.6381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/04/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Corn intercropped with ruzigrass is common in Brazil, and it can improve the physicochemical features of soils, increase water retention, and suppress the emergence of resistant weeds and soil nematodes. As both corn and ruzigrass are hosts to Spodoptera frugiperda (the main corn pest in South America), the cultivation of both these plants in the same place at one time motivates investigation into the pest population dynamics. We hypothesize that the intercropping system influences S. frugiperda pressure and leaf injury in corn. Considering that if corn hybrids with high dose toxin expression are used, ruzigrass may be a potential host to susceptible S. frugiperda larvae, consequently an alternative refuge and be included as a tool for the resistant management of Bt corn. To test these hypotheses about the use of ruzigrass as an alternative host of S. frugiperda in an intercropping system with corn, we conducted field trials in three seasons to verify S. frugiperda population dynamics and leaf injury to crop systems. In addition to phenotypic evaluation, we also characterized molecularly S. frugiperda strains collected in corn and ruzigrass to identify strain differences. RESULTS The insects collected in both corn and ruzigrass were identified as corn strains. Ruzigrass was used as a S. frugiperda host during all crop cycles. The intercropped system did not increase the S. frugiperda population or leaf injury on Bt corn. CONCLUSION The results suggest that the intercropped system is not prejudicial to Bt corn cultivation since high dose concept applies to all larvae instars. The results also suggest that ruzigrass may be used as a promising alternative refuge in Bt corn agroecosystems, if compliance with management strategies is followed. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Filipe L Jacques
- Department of Entomology, Federal University of Grande Dourados (UFGD), Dourados, Brazil
| | - Paulo E Degrande
- Department of Entomology, Federal University of Grande Dourados (UFGD), Dourados, Brazil
| | - Evandro Gauer
- Department of Entomology, Federal University of Grande Dourados (UFGD), Dourados, Brazil
| | - José B Malaquias
- Department of Biostatistics, Institute of Biosciences-IBB, São Paulo State University (UNESP), Botucatu, Brazil
| | - Ana Maria N Scoton
- Department of Entomology, Federal University of Grande Dourados (UFGD), Dourados, Brazil
| |
Collapse
|
9
|
Murad NF, Silva-Brandão KL, Brandão MM. Mechanisms behind polyphagia in a pest insect: Responses of Spodoptera frugiperda (J.E. Smith) strains to preferential and alternative larval host plants assessed with gene regulatory networks. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194687. [PMID: 33561559 DOI: 10.1016/j.bbagrm.2021.194687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 10/22/2022]
Abstract
A dataset of gene expression from Spodoptera frugiperda, a highly generalist pest moth, was used to understand how gene regulation is related to larval host plant preference. Transcriptomic data of corn and rice strains of S. frugiperda larvae, reared on different diets, were analysed with three different approaches of gene network inference, namely co-expression, weighted co-expression and Bayesian networks, since each methodology provides a different visualization of the data. Using these approaches, it was possible to identify two loosely interconnected co-expression networks, one of them responsible for fast response to herbivory and anti-herbivory mechanisms and the other related to housekeeping genes, which present slower response to environmental variations. Integrating different levels of information such as gene expression patterns, gene assembly, transcriptomics, relationship among genes and phenotypes, functional relationships, among other information, enabled a wider visualization of S. frugiperda response to diet stimuli. The biological properties in the proposed networks are here described and discussed, as well as patterns of gene expression related to larval performance attributes.
Collapse
Affiliation(s)
- Natália Faraj Murad
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade de Campinas (UNICAMP). Av. Cândido Rondon, 400. CEP 13083-875 Campinas, SP, Brazil
| | - Karina Lucas Silva-Brandão
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade de Campinas (UNICAMP). Av. Cândido Rondon, 400. CEP 13083-875 Campinas, SP, Brazil; Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos Estados, 5001. CEP 09210-580 Santo André, SP, Brazil
| | - Marcelo Mendes Brandão
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade de Campinas (UNICAMP). Av. Cândido Rondon, 400. CEP 13083-875 Campinas, SP, Brazil.
| |
Collapse
|
10
|
Silva-Brandão KL, Murad NF, Peruchi A, Martins CHZ, Omoto C, Figueira A, Brandão MM, Trigo JR. Transcriptome differential co-expression reveals distinct molecular response of fall-armyworm strains to DIMBOA. PEST MANAGEMENT SCIENCE 2021; 77:518-526. [PMID: 32815313 DOI: 10.1002/ps.6051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), the main benzoxazinoid found in corn, elicits variable larval responses from different pest moths. For the widespread and highly polyphagous Spodoptera frugiperda (Lepidoptera: Noctuidae), the fall-armyworm (FAW), DIMBOA acts as a feeding stimulant and improves larval growth at low concentrations. The FAW present two host plant-related strains, corn and rice strains, related to host preference on corn and other Graminae or rice. Based on both host preference and strain divergence of the FAW on corn, a cereal containing DIMBOA, and rice, lacking this compound, we question if corn and rice strains larvae respond equally toward DIMBOA. We evaluated differential expression in the transcriptome of both midgut and fat body larval tissues of the two strains reared on either DIMBOA-enriched artificial diet or control diet and inferred Bayesian networks. RESULTS We found differences in performance between corn and rice strain larvae reared on DIMBOA, as well as several differentially regulated contigs annotated as esterases, peptidases, transferases and reductases, all of them known for being related to responses of lepidopterans and other insects to DIMBOA. We also found a UDP-glucuronosyltransferase very similar to others found in many lepidopterans occupying a central hub within a transferase Bayesian network, suggesting that it is essential to an effective response to DIMBOA in FAW. CONCLUSION Our results suggest that there is an intrinsic cost for FAW rice strain larvae to metabolize corn-originated hydroxamic acids, which could have resulted in the partial host-associated genetic isolation found at FAW field populations.
Collapse
Affiliation(s)
- Karina Lucas Silva-Brandão
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - Natália Faraj Murad
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Aline Peruchi
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, Brazil
| | - Carlos Henrique Zanini Martins
- Programa de Pós-Graduação em Biologia Funcional e Molecular, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Celso Omoto
- Departamento de Entomologia e Acaralogia, Escola de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, Brazil
| | - Antonio Figueira
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, Brazil
| | - Marcelo Mendes Brandão
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - José Roberto Trigo
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| |
Collapse
|
11
|
Ribeiro LP, Klock ALS, Nesi CN, Luczkievicz FRG, Travi MRL, Rech AF. Adaptability and Comparative Biology of Fall Armyworm on Maize and Perennial Forage Species and Relation with Chemical-Bromatological Composition. NEOTROPICAL ENTOMOLOGY 2020; 49:758-767. [PMID: 32813217 DOI: 10.1007/s13744-020-00794-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
This study compared the development of fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), on forage species of different genera (Arachis, Axonopus, and Cynodon) in relation to maize (preferred host) as well as its adaptability on these forage species, which are the main cultivated forages in southern Brazil. The biological performance of S. frugiperda fed on host plants studied showed the highest adaptation index (AI) in maize (26.89), followed by bermudagrass (22.02), suggesting that bermudagrass is the most suitable alternative host for the development of S. frugiperda. In contrast, the giant missionary grass (18.80) and Pinto peanut (13.81) showed lower adequacy, with a relative adaptation index (RAI) 69.93 and 51.35%, respectively, using maize as standard. The cluster analysis based on similarity of the chemical-bromatological parameters showed that maize has a richer composition than the other plant species studied. The multivariate correlation analysis between AI and chemical-bromatological composition showed a positive correlation between AI and contents of ashes, ethereal extract, potassium, phosphorus, and magnesium and, to a lesser extent, with contents of nitrogen, crude protein, and copper. In this context, complexity of host composition and balance between components could explain the biological fitness of S. frugiperda on host plant species. Pasture diversification with giant missionary grass, or especially with Pinto peanut, may be an interesting strategy for integrated pest management of fall armyworm in pasturelands in a regional context.
Collapse
Affiliation(s)
- L P Ribeiro
- Research Center for Family Agriculture, Research and Rural Extension Company of Santa Catarina (CEPAF/EPAGRI), Rua Servidão Ferdinando Ricieri Tusset S/N - Bairro São Cristóvão, CEP 89803-904,, Chapecó, Santa Catarina State, Brasil.
| | - A L S Klock
- Research Center for Family Agriculture, Research and Rural Extension Company of Santa Catarina (CEPAF/EPAGRI), Rua Servidão Ferdinando Ricieri Tusset S/N - Bairro São Cristóvão, CEP 89803-904,, Chapecó, Santa Catarina State, Brasil
| | - C N Nesi
- Research Center for Family Agriculture, Research and Rural Extension Company of Santa Catarina (CEPAF/EPAGRI), Rua Servidão Ferdinando Ricieri Tusset S/N - Bairro São Cristóvão, CEP 89803-904,, Chapecó, Santa Catarina State, Brasil
| | | | - M R L Travi
- Uceff Univ., Chapecó, Santa Catarina State, Brasil
| | - A F Rech
- Lages Experimental Station (EPAGRI/EELages), Research and Rural Extension Company of Santa Catarina, Lages, Santa Catarina State, Brasil
| |
Collapse
|
12
|
Boaventura D, Martin M, Pozzebon A, Mota-Sanchez D, Nauen R. Monitoring of Target-Site Mutations Conferring Insecticide Resistance in Spodoptera frugiperda. INSECTS 2020; 11:insects11080545. [PMID: 32824659 PMCID: PMC7469220 DOI: 10.3390/insects11080545] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 11/16/2022]
Abstract
Simple Summary Fall armyworm, Spodoptera frugiperda, is an invasive moth species and one of the most destructive pests of maize. It is native to the Americas but recently invaded (sub)tropical regions in Africa, Asia and Oceania. Fall armyworm larvae feeding on maize plants cause substantial economic damage and are usually controlled by the application of insecticides and genetically modified (GM) maize expressing Bacillus thuringiensis (Bt) proteins, selectively targeting fall armyworm. It has developed resistance to many different classes of insecticides and Bt proteins as well; therefore, it is important to check field populations for the presence of mutations in target proteins conferring resistance. Here, we developed molecular diagnostic tools allowing us to test the frequency of resistance alleles in field-collected populations, either alive or preserved in alcohol. We tested 34 different populations collected on four different continents for the presence of mutations conferring resistance to common classes of insecticides and Bt proteins. We detected resistance mutations which are quite widespread, whereas others are restricted to certain geographies or even completely absent. The established molecular methods show robust results in samples collected across a broad geographical range and can be used to support decisions for sustainable fall armyworm control and applied resistance management. Abstract Fall armyworm (FAW), Spodoptera frugiperda, a major pest of corn and native to the Americas, recently invaded (sub)tropical regions worldwide. The intensive use of insecticides and the high adoption of crops expressing Bacillus thuringiensis (Bt) proteins has led to many cases of resistance. Target-site mutations are among the main mechanisms of resistance and monitoring their frequency is of great value for insecticide resistance management. Pyrosequencing and PCR-based allelic discrimination assays were developed and used to genotype target-site resistance alleles in 34 FAW populations from different continents. The diagnostic methods revealed a high frequency of mutations in acetylcholinesterase, conferring resistance to organophosphates and carbamates. In voltage-gated sodium channels targeted by pyrethroids, only one population from Indonesia showed a mutation. No mutations were detected in the ryanodine receptor, suggesting susceptibility to diamides. Indels in the ATP-binding cassette transporter C2 associated with Bt-resistance were observed in samples collected in Puerto Rico and Brazil. Additionally, we analyzed all samples for the presence of markers associated with two sympatric FAW host plant strains. The molecular methods established show robust results in FAW samples collected across a broad geographical range and can be used to support decisions for sustainable FAW control and applied resistance management.
Collapse
Affiliation(s)
- Debora Boaventura
- Institute of Crop Science and Resource Conservation, University of Bonn, 53115 Bonn, Germany;
- Bayer AG, Crop Science Division, R&D Pest Control, 40789 Monheim, Germany
| | - Macarena Martin
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Padova, Italy; (M.M.); (A.P.)
| | - Alberto Pozzebon
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Padova, Italy; (M.M.); (A.P.)
| | - David Mota-Sanchez
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA;
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D Pest Control, 40789 Monheim, Germany
- Correspondence: ; Tel.: +49-(0)2173-38-4441
| |
Collapse
|
13
|
Bergamo LW, Silva-Brandão KL, Vicentini R, Fresia P, Azeredo-Espin AML. Genetic Differentiation of a New World Screwworm Fly Population from Uruguay Detected by SNPs, Mitochondrial DNA and Microsatellites in Two Consecutive Years. INSECTS 2020; 11:E539. [PMID: 32824385 PMCID: PMC7469150 DOI: 10.3390/insects11080539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/02/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
The New World screwworm (NWS) fly, Cochliomyia hominivorax (Diptera: Calliphoridae), is an economically important ectoparasite currently distributed in South America and in the Caribbean basin. The successful eradication of this species in USA, Mexico and continental Central America was achieved by a control program based on the sterile insect technique (SIT). In order to implement a genetic control strategy over the NWS fly's current area of occurrence, first, it is necessary to understand the species dynamics and population structure. In order to address this objective, the spatial genetic structure of the NWS fly was previously reported in South America based on different genetic markers; however, to date, no study has investigated temporal changes in the genetic composition of its populations. In the current study, the temporal genetic structure of a NWS fly population from Uruguay was investigated through two consecutive samplings from the same locality over an interval of approximately 18 generations. The genetic structure was accessed with neutral and under selection SNPs obtained with genotyping-by-sequencing. The results gathered with these data were compared to estimates achieved with mitochondrial DNA sequences and eight microsatellite markers. Temporal changes in the genetic composition were revealed by all three molecular markers, which may be attributed to seasonal changes in the NWS fly's southern distribution. SNPs were employed for the first time for estimating the genetic structure in a NWS fly population; these results provide new clues and perspectives on its population genetic structure. This approach could have significant implications for the planning and implementation of management programs.
Collapse
Affiliation(s)
- Luana Walravens Bergamo
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas SP 13083-970, Brazil;
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Estadual de Campinas (UNICAMP), Campinas SP 13083-862, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (CBMEG-UNICAMP), Campinas SP 13083-875, Brazil;
| | - Karina Lucas Silva-Brandão
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (CBMEG-UNICAMP), Campinas SP 13083-875, Brazil;
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (CCNH-UFABC), Santo André SP 09210-580, Brazil
| | - Renato Vicentini
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas SP 13083-970, Brazil;
| | - Pablo Fresia
- Unidad Mixta Pasteur + INIA (UMPI), Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Ana Maria Lima Azeredo-Espin
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas SP 13083-970, Brazil;
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (CBMEG-UNICAMP), Campinas SP 13083-875, Brazil;
| |
Collapse
|
14
|
Boaventura D, Ulrich J, Lueke B, Bolzan A, Okuma D, Gutbrod O, Geibel S, Zeng Q, Dourado PM, Martinelli S, Flagel L, Head G, Nauen R. Molecular characterization of Cry1F resistance in fall armyworm, Spodoptera frugiperda from Brazil. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 116:103280. [PMID: 31740346 DOI: 10.1016/j.ibmb.2019.103280] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/05/2019] [Accepted: 11/12/2019] [Indexed: 05/21/2023]
Abstract
Fall armyworm, Spodoptera frugiperda (J.E. Smith) is a major lepidopteran pest of maize in Brazil and its control particularly relies on the use of genetically engineered crops expressing Bacillus thuringiensis (Bt) toxins such as Cry1F. However, control failures compromising the efficacy of this technology have been reported in many regions in Brazil, but the mechanism of Cry1F resistance in Brazilian fall armyworm populations remained elusive. Here we investigated the molecular mechanism of Cry1F resistance in two field-collected strains of S. frugiperda from Brazil exhibiting high levels of Cry1F resistance. We first rigorously evaluated several candidate reference genes for normalization of gene expression data across strains, larval instars and gut tissues, and identified ribosomal proteins L10, L17 and RPS3A to be most suitable. We then investigated the expression pattern of ten potential Bt toxin receptors/enzymes in both neonates and 2nd instar gut tissue of Cry1F resistant fall armyworm strains compared to a susceptible strain. Next we sequenced the ATP-dependent Binding Cassette subfamily C2 gene (ABCC2) and identified three mutated sites present in ABCC2 of both Cry1F resistant strains: two of them, a GY deletion (positions 788-789) and a P799 K/R amino acid substitution, located in a conserved region of ABCC2 extracellular loop 4 (EC4) and another amino acid substitution, G1088D, but in a less conserved region. We further characterized the role of the novel mutations present in EC4 by functionally expressing both wild type and mutated ABCC2 transporters in insect cell lines, and confirmed a critical role of both sites for Cry1F binding by cell viability assays. Finally, we assessed the frequency of the mutant alleles by pooled population sequencing and pyrosequencing in 40 fall armyworm populations collected from maize fields in different regions in Brazil. We found that the GY deletion being present at high frequency. However we also observed many rare alleles which disrupt residues between sites 783-799, and their diversity and abundance in field collected populations lends further support to the importance of the EC4 domain for Cry1F toxicity.
Collapse
Affiliation(s)
- Debora Boaventura
- Institute of Crop Science and Resource Conservation, University of Bonn, 53115, Bonn, Germany; Bayer AG, Crop Science, R&D, Alfred Nobel Str. 50, 40789, Monheim, Germany
| | - Julia Ulrich
- Bayer AG, Crop Science, R&D, Alfred Nobel Str. 50, 40789, Monheim, Germany
| | - Bettina Lueke
- Bayer AG, Crop Science, R&D, Alfred Nobel Str. 50, 40789, Monheim, Germany
| | - Anderson Bolzan
- Department of Entomology and Acarology, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Daniela Okuma
- Bayer S.A, Crop Science, Av. Dr. Roberto Moreira, 5005, Paulinia, SP, Brazil
| | - Oliver Gutbrod
- Bayer AG, Crop Science, R&D, Alfred Nobel Str. 50, 40789, Monheim, Germany
| | - Sven Geibel
- Bayer AG, Crop Science, R&D, Alfred Nobel Str. 50, 40789, Monheim, Germany
| | - Qin Zeng
- Bayer U.S, Crop Science, R&D, 700 Chesterfield Pkwy W, Chesterfield, MO, 63017, USA
| | - Patrick M Dourado
- Bayer S.A, Crop Science, R&D, Avenida Nacoes Unidas, São Paulo, Brazil
| | - Samuel Martinelli
- Bayer U.S, Crop Science, R&D, 700 Chesterfield Pkwy W, Chesterfield, MO, 63017, USA
| | - Lex Flagel
- Bayer U.S, Crop Science, R&D, 700 Chesterfield Pkwy W, Chesterfield, MO, 63017, USA
| | - Graham Head
- Bayer U.S, Crop Science, R&D, 700 Chesterfield Pkwy W, Chesterfield, MO, 63017, USA
| | - Ralf Nauen
- Bayer AG, Crop Science, R&D, Alfred Nobel Str. 50, 40789, Monheim, Germany.
| |
Collapse
|