1
|
Santos S, Lousa I, Carvalho M, Sameiro-Faria M, Santos-Silva A, Belo L. Anemia in Elderly Patients: Contribution of Renal Aging and Chronic Kidney Disease. Geriatrics (Basel) 2025; 10:43. [PMID: 40126293 PMCID: PMC11932280 DOI: 10.3390/geriatrics10020043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/09/2025] [Accepted: 03/12/2025] [Indexed: 03/25/2025] Open
Abstract
Renal aging is a physiological process characterized by structural and functional changes in the kidneys. The presence of disorders or pathologies can exacerbate these age-related changes, potentially leading to organ dysfunction. Chronic kidney disease (CKD), a significant global public health issue, is particularly prevalent in the elderly and is often associated with the age-related decline in kidney function. Anemia is one of the most frequent complications of CKD and is also highly prevalent in the elderly. Mild anemia, often multifactorial, is the most common presentation. Understanding the mechanisms driving anemia in this population is crucial to ensure appropriate treatment. The primary etiologies include nutritional deficiency, anemia of unknown cause, and anemia of chronic diseases, including CKD. This review provides an in-depth exploration of the complex pathophysiological mechanisms underlying anemia in elderly patients with CKD.
Collapse
Affiliation(s)
- Simone Santos
- UCIBIO i4HB, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (S.S.); (I.L.); (M.S.-F.); (A.S.-S.)
| | - Irina Lousa
- UCIBIO i4HB, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (S.S.); (I.L.); (M.S.-F.); (A.S.-S.)
| | - Márcia Carvalho
- FP-I3ID, FP-BHS, Universidade Fernando Pessoa, Praça de 9 de Abril 349, 4249-004 Porto, Portugal;
- LAQV/REQUIMTE, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- RISE-Health, Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Fundação Ensino e Cultura Fernando Pessoa, Rua Carlos da Maia 296, 4200-150 Porto, Portugal
| | - Maria Sameiro-Faria
- UCIBIO i4HB, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (S.S.); (I.L.); (M.S.-F.); (A.S.-S.)
- Centro Hospitalar Universitário do Porto, Centro Materno-Infantil do Norte, Serviço de Pediatria, Unidade de Nefrologia Pediátrica, 4050-651 Porto, Portugal
| | - Alice Santos-Silva
- UCIBIO i4HB, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (S.S.); (I.L.); (M.S.-F.); (A.S.-S.)
| | - Luís Belo
- UCIBIO i4HB, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (S.S.); (I.L.); (M.S.-F.); (A.S.-S.)
| |
Collapse
|
2
|
Ru Q, Li Y, Zhang X, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in muscle diseases and disorders: mechanisms and therapeutic prospects. Bone Res 2025; 13:27. [PMID: 40000618 PMCID: PMC11861620 DOI: 10.1038/s41413-024-00398-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/23/2024] [Accepted: 12/16/2024] [Indexed: 02/27/2025] Open
Abstract
The muscular system plays a critical role in the human body by governing skeletal movement, cardiovascular function, and the activities of digestive organs. Additionally, muscle tissues serve an endocrine function by secreting myogenic cytokines, thereby regulating metabolism throughout the entire body. Maintaining muscle function requires iron homeostasis. Recent studies suggest that disruptions in iron metabolism and ferroptosis, a form of iron-dependent cell death, are essential contributors to the progression of a wide range of muscle diseases and disorders, including sarcopenia, cardiomyopathy, and amyotrophic lateral sclerosis. Thus, a comprehensive overview of the mechanisms regulating iron metabolism and ferroptosis in these conditions is crucial for identifying potential therapeutic targets and developing new strategies for disease treatment and/or prevention. This review aims to summarize recent advances in understanding the molecular mechanisms underlying ferroptosis in the context of muscle injury, as well as associated muscle diseases and disorders. Moreover, we discuss potential targets within the ferroptosis pathway and possible strategies for managing muscle disorders. Finally, we shed new light on current limitations and future prospects for therapeutic interventions targeting ferroptosis.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xi Zhang
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
3
|
Tisato V, Castiglione A, Ciorba A, Aimoni C, Silva JA, Gallo I, D'Aversa E, Salvatori F, Bianchini C, Pelucchi S, Secchiero P, Zauli G, Singh AV, Gemmati D. LINE-1 global DNA methylation, iron homeostasis genes, sex and age in sudden sensorineural hearing loss (SSNHL). Hum Genomics 2023; 17:112. [PMID: 38098073 PMCID: PMC10722762 DOI: 10.1186/s40246-023-00562-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Sudden sensorineural hearing loss (SSNHL) is an abrupt loss of hearing, still idiopathic in most of cases. Several mechanisms have been proposed including genetic and epigenetic interrelationships also considering iron homeostasis genes, ferroptosis and cellular stressors such as iron excess and dysfunctional mitochondrial superoxide dismutase activity. RESULTS We investigated 206 SSNHL patients and 420 healthy controls for the following genetic variants in the iron pathway: SLC40A1 - 8CG (ferroportin; FPN1), HAMP - 582AG (hepcidin; HEPC), HFE C282Y and H63D (homeostatic iron regulator), TF P570S (transferrin) and SOD2 A16V in the mitochondrial superoxide dismutase-2 gene. Among patients, SLC40A1 - 8GG homozygotes were overrepresented (8.25% vs 2.62%; P = 0.0015) as well SOD2 16VV genotype (32.0% vs 24.3%; P = 0.037) accounting for increased SSNHL risk (OR = 3.34; 1.54-7.29 and OR = 1.47; 1.02-2.12, respectively). Moreover, LINE-1 methylation was inversely related (r2 = 0.042; P = 0.001) with hearing loss score assessed as pure tone average (PTA, dB HL), and the trend was maintained after SLC40A1 - 8CG and HAMP - 582AG genotype stratification (ΔSLC40A1 = + 8.99 dB HL and ΔHAMP = - 6.07 dB HL). In multivariate investigations, principal component analysis (PCA) yielded PC1 (PTA, age, LINE-1, HAMP, SLC40A1) and PC2 (sex, HFEC282Y, SOD2, HAMP) among the five generated PCs, and logistic regression analysis ascribed to PC1 an inverse association with moderate/severe/profound HL (OR = 0.60; 0.42-0.86; P = 0.0006) and with severe/profound HL (OR = 0.52; 0.35-0.76; P = 0.001). CONCLUSION Recognizing genetic and epigenetic biomarkers and their mutual interactions in SSNHL is of great value and can help pharmacy science to design by pharmacogenomic data classical or advanced molecules, such as epidrugs, to target new pathways for a better prognosis and treatment of SSNHL.
Collapse
Affiliation(s)
- Veronica Tisato
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
- LTTA Centre, University of Ferrara, 44121, Ferrara, Italy
- University Strategic Centre for Studies on Gender Medicine, University of Ferrara, 44121, Ferrara, Italy
| | | | - Andrea Ciorba
- Department of Neurosciences, University Hospital of Ferrara, 44121, Ferrara, Italy
| | - Claudia Aimoni
- Department of Neurosciences, University Hospital of Ferrara, 44121, Ferrara, Italy
| | - Juliana Araujo Silva
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Ines Gallo
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Elisabetta D'Aversa
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Francesca Salvatori
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Chiara Bianchini
- Department of Neurosciences, University Hospital of Ferrara, 44121, Ferrara, Italy
| | - Stefano Pelucchi
- Department of Neurosciences, University Hospital of Ferrara, 44121, Ferrara, Italy
| | - Paola Secchiero
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Giorgio Zauli
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany
| | - Donato Gemmati
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy.
- University Strategic Centre for Studies on Gender Medicine, University of Ferrara, 44121, Ferrara, Italy.
- Centre Haemostasis and Thrombosis, University of Ferrara, 44121, Ferrara, Italy.
| |
Collapse
|
4
|
Zheng R, Lin C, Mao Y, Jin F. miR-761-hepcidin/Gpx4 pathway contribute to unexplained liver dysfunction in polycystic ovary syndrome by regulating liver iron overload and ferroptosis. Gynecol Endocrinol 2023; 39:2166483. [PMID: 36657482 DOI: 10.1080/09513590.2023.2166483] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Aims: To investigate the underling mechanisms of liver dysfunction in patients with polycystic ovary syndrome (PCOS).Materials and methods: PCOS patients were enrolled according to the Amsterdam criteria while PCOS animal model was established by dihydrotestosterone (DHEA) sustained release tablet implantation on its neck. Further liver damage and iron overload were detected by HE and Prussian blue staining. The liver related enzymes, mRNA and protein levels of hepcidin and GPX4 were tested by ELISA, qRT-PCR and Western blot. RNA interference and miR-761 transfection were routinely performed while the regulation of miR-761 on hepcidin and GPX4 was confirmed by luciferase reporter gene analysis.Results: We found that a part of PCOS patients and animal model had unexplained liver damage, which is independent of nonalcoholic fatty liver disease (NAFLD) and accompanied by increased ferrum (Fe) deposition. Besides, the expression of hepcidin and GPX4 that is important effector proteins for ferroptosis was down regulated in liver, showing the importance of iron metabolism in this unexplained liver damage. Based on the miR-761-hepcidin/GPX4 axis, we systematically studied the effects of miR-761 on ferroptosis and Fe deposition, which further influence the phenotype and liver function of PCOS model. From both in vivo and in vitro levels, changes in PCOS disease phenotype and ferroptosis were observed through hierarchical antagonism or overexpression of miR-761, hepcidin and GPX4.Conclusions: our results provide a novel explanation for unexplained liver damage in PCOS and a potential therapeutic target.
Collapse
Affiliation(s)
- Ruoheng Zheng
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P. R. China
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, P. R. China
| | - Chuanping Lin
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | - Yuchan Mao
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | - Fan Jin
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| |
Collapse
|
5
|
Wang Z, Liu Y, Zhang S, Yuan Y, Chen S, Li W, Zuo M, Xiang Y, Li T, Yang W, Yang Y, Liu Y. Effects of iron homeostasis on epigenetic age acceleration: a two-sample Mendelian randomization study. Clin Epigenetics 2023; 15:159. [PMID: 37805541 PMCID: PMC10559596 DOI: 10.1186/s13148-023-01575-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND Epigenetic clocks constructed from DNA methylation patterns have emerged as excellent predictors of aging and aging-related health outcomes. Iron, a crucial element, is meticulously regulated within organisms, a phenomenon referred as iron homeostasis. Previous researches have demonstrated the sophisticated connection between aging and iron homeostasis. However, their causal relationship remains relatively unexplored. RESULTS Through two-sample Mendelian randomization (MR) utilizing the random effect inverse variance weighted (IVW) method, each standard deviation (SD) increase in serum iron was associated with increased GrimAge acceleration (GrimAA, BetaIVW = 0.27, P = 8.54E-03 in 2014 datasets; BetaIVW = 0.31, P = 1.25E-02 in 2021 datasets), HannumAge acceleration (HannumAA, BetaIVW = 0.32, P = 4.50E-03 in 2014 datasets; BetaIVW = 0.32, P = 8.03E-03 in 2021 datasets) and Intrinsic epigenetic age acceleration (IEAA, BetaIVW = 0.34, P = 5.33E-04 in 2014 datasets; BetaIVW = 0.49, P = 9.94E-04 in 2021 datasets). Similar results were also observed in transferrin saturation. While transferrin manifested a negative association with epigenetic age accelerations (EAAs) sensitivity analyses. Besides, lack of solid evidence to support a causal relationship from EAAs to iron-related biomarkers. CONCLUSIONS The results of present investigation unveiled the causality of iron overload on acceleration of epigenetic clocks. Researches are warranted to illuminate the underlying mechanisms and formulate strategies for potential interventions.
Collapse
Affiliation(s)
- Zhihao Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Shuxin Zhang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yunbo Yuan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Siliang Chen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Wenhao Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Mingrong Zuo
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yufan Xiang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Tengfei Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Wanchun Yang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Yang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yanhui Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Ouni M, Eichelmann F, Jähnert M, Krause C, Saussenthaler S, Ott C, Gottmann P, Speckmann T, Huypens P, Wolter S, Mann O, De Angelis MH, Beckers J, Kirchner H, Schulze MB, Schürmann A. Differences in DNA methylation of HAMP in blood cells predicts the development of type 2 diabetes. Mol Metab 2023; 75:101774. [PMID: 37429525 PMCID: PMC10422014 DOI: 10.1016/j.molmet.2023.101774] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023] Open
Abstract
OBJECTIVES Better disease management can be achieved with earlier detection through robust, sensitive, and easily accessible biomarkers. The aim of the current study was to identify novel epigenetic biomarkers determining the risk of type 2 diabetes (T2D). METHODS Livers of 10-week-old female New Zealand Obese (NZO) mice, slightly differing in their degree of hyperglycemia and liver fat content and thereby in their diabetes susceptibility were used for expression and methylation profiling. We screened for differences in hepatic expression and DNA methylation in diabetes-prone and -resistant mice, and verified a candidate (HAMP) in human livers and blood cells. Hamp expression was manipulated in primary hepatocytes and insulin-stimulated pAKT was detected. Luciferase reporter assays were conducted in a murine liver cell line to test the impact of DNA methylation on promoter activity. RESULTS In livers of NZO mice, the overlap of methylome and transcriptome analyses revealed a potential transcriptional dysregulation of 12 hepatokines. The strongest effect with a 52% decreased expression in livers of diabetes-prone mice was detected for the Hamp gene, mediated by elevated DNA methylation of two CpG sites located in the promoter. Hamp encodes the iron-regulatory hormone hepcidin, which had a lower abundance in the livers of mice prone to developing diabetes. Suppression of Hamp reduces the levels of pAKT in insulin-treated hepatocytes. In liver biopsies of obese insulin-resistant women, HAMP expression was significantly downregulated along with increased DNA methylation of a homologous CpG site. In blood cells of incident T2D cases from the prospective EPIC-Potsdam cohort, higher DNA methylation of two CpG sites was related to increased risk of incident diabetes. CONCLUSIONS We identified epigenetic changes in the HAMP gene which may be used as an early marker preceding T2D.
Collapse
Affiliation(s)
- Meriem Ouni
- German Institute of Human Nutrition, Department of Experimental Diabetology, Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Fabian Eichelmann
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany; German Institute of Human Nutrition, Department of Molecular Epidemiology, Potsdam-Rehbruecke, Germany
| | - Markus Jähnert
- German Institute of Human Nutrition, Department of Experimental Diabetology, Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Christin Krause
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Institute for Human Genetics, Section Epigenetics & Metabolism, University of Lübeck, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Germany
| | - Sophie Saussenthaler
- German Institute of Human Nutrition, Department of Experimental Diabetology, Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Christiane Ott
- German Institute of Human Nutrition, Department of Molecular Toxicology, Potsdam-Rehbruecke, Germany; DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Pascal Gottmann
- German Institute of Human Nutrition, Department of Experimental Diabetology, Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Thilo Speckmann
- German Institute of Human Nutrition, Department of Experimental Diabetology, Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Peter Huypens
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Stefan Wolter
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver Mann
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Hrabé De Angelis
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; School of Life Sciences, Chair of Experimental Genetics, Technical University Munich, Freising, Germany
| | - Johannes Beckers
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; School of Life Sciences, Chair of Experimental Genetics, Technical University Munich, Freising, Germany
| | - Henriette Kirchner
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Institute for Human Genetics, Section Epigenetics & Metabolism, University of Lübeck, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Germany
| | - Matthias B Schulze
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany; German Institute of Human Nutrition, Department of Molecular Epidemiology, Potsdam-Rehbruecke, Germany; Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Annette Schürmann
- German Institute of Human Nutrition, Department of Experimental Diabetology, Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.
| |
Collapse
|
7
|
Li C, Cui X, Li Y, Guo D, He S. Identification of ferroptosis and drug resistance related hub genes to predict the prognosis in Hepatocellular Carcinoma. Sci Rep 2023; 13:8681. [PMID: 37248280 DOI: 10.1038/s41598-023-35796-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/24/2023] [Indexed: 05/31/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Currently, overcoming the drug resistance in HCC is a critical challenge and ferroptosis has emerged as a promising therapeutic option for cancer. We aim to construct a new gene signature related to ferroptosis and drug resistance to predict the prognosis in HCC. The RNA-seq data of HCC patients was obtained from the Cancer Genome Atlas database. Using least absolute shrinkage and selection operator cox regression, Kaplan-Meier analysis, and differential analysis, we constructed a prognostic model consisting of six hub genes (TOP2A, BIRC5, VEGFA, HIF1A, FTH1, ACSL3) related to ferroptosis and drug resistance in HCC. Functional enrichment, pathway enrichment and GSEA analysis were performed to investigate the potential molecular mechanism, and construction of PPI, mRNA-miRNA, mRNA-RBP, mRNA-TF and mRNA-drugs interaction networks to predict its interaction with different molecules. Clinical prognostic characteristics were revealed by univariate, multivariate cox regression analysis and nomogram. We also analyzed the relationship between the signature, immune checkpoints, and drug sensitivity. The expression of the gene signature was detected in HCC cell lines and HPA database. Our prognostic model classified patients into high and low-risk groups based on the risk scores and found the expression level of the genes was higher in the high-risk group than the low-risk group, demonstrating that high expression of the hub genes was associated with poor prognosis in HCC. ROC analysis revealed its high diagnostic efficacy in both HCC and normal tissues. The proportional hazards model and calibration analysis confirmed that the model's prediction was most accurate for 1- and 3-years survival. QRT-PCR showed the high expression level of the gene signature in HCC. Our study built a novel gene signature with good potential to predict the prognosis of HCC, which may provide new therapeutic targets and molecular mechanism for HCC diagnosis and treatment.
Collapse
Affiliation(s)
- Chengjun Li
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Xiaomeng Cui
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yarui Li
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Dan Guo
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Shuixiang He
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
8
|
Farida B, Ibrahim KG, Abubakar B, Malami I, Bello MB, Abubakar MB, Abbas AY, Imam MU. Iron deficiency and its epigenetic effects on iron homeostasis. J Trace Elem Med Biol 2023; 78:127203. [PMID: 37201368 DOI: 10.1016/j.jtemb.2023.127203] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/27/2023] [Accepted: 05/14/2023] [Indexed: 05/20/2023]
Abstract
Iron deficiency is a common micronutrient deficiency associated with metabolic changes in the levels of iron regulatory proteins, hepcidin and ferroportin. Studies have associated dysregulation of iron homeostasis to other secondary and life-threatening diseases including anaemia, neurodegeneration and metabolic diseases. Iron deficiency plays a critical role in epigenetic regulation by affecting the Fe2+/α-ketoglutarate-dependent demethylating enzymes, Ten Eleven Translocase 1-3 (TET 1-3) and Jumonji-C (JmjC) histone demethylase, which are involved in epigenetic erasure of the methylation marks on both DNA and histone tails, respectively. In this review, studies involving epigenetic effects of iron deficiency associated with dysregulation of TET 1-3 and JmjC histone demethylase enzyme activities on hepcidin/ferroportin axis are discussed.
Collapse
Affiliation(s)
- Bashar Farida
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, Usmanu Danfodiyo University PMB, 2254 Sokoto, Nigeria; Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University PMB, 2254 Sokoto, Nigeria.
| | - Kasimu G Ibrahim
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan; Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University PMB, 2254 Sokoto, Nigeria; Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University PMB, 2254 Sokoto, Nigeria
| | - Bilyaminu Abubakar
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University PMB, 2254 Sokoto, Nigeria; Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University PMB, 2254 Sokoto, Nigeria
| | - Ibrahim Malami
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University PMB, 2254 Sokoto, Nigeria; Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University PMB, 2254 Sokoto, Nigeria
| | - Muhammad B Bello
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University PMB, 2254 Sokoto, Nigeria; Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University PMB, 2254 Sokoto, Nigeria
| | - Murtala B Abubakar
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University PMB, 2254 Sokoto, Nigeria; Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University PMB, 2254 Sokoto, Nigeria
| | - Abdullahi Y Abbas
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, Usmanu Danfodiyo University PMB, 2254 Sokoto, Nigeria
| | - Mustapha U Imam
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University PMB, 2254 Sokoto, Nigeria; Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University PMB, 2254 Sokoto, Nigeria.
| |
Collapse
|
9
|
Zhao Q, Ge Z, Fu S, Wan S, Shi J, Wu Y, Zhang Y. DNA methylation plays an important role in iron-overloaded Tibetans. Gene 2022; 97:55-66. [PMID: 35644542 DOI: 10.1266/ggs.21-00006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The prevalence of iron overload in Tibetans in Tibet is higher than that in Han. DNA methylation (DNAm) is closely related to iron metabolism and iron level. Nevertheless, the epigenetic status of Tibetans with iron overload is unknown, and we therefore aimed to explore whether the phenomenon observed in the Tibetan population is regulated by epigenetics. The results showed that 2.26% of cytosine was methylated in the whole genome, and that the rate of CG cytosine methylation was higher in individuals in the iron overload (TH) group than in those in the iron normal (TL) group. We analyzed differentially methylated genes (DMGs) in whole-genome bisulfite sequencing data from the TH and TL groups of high-altitude Tibetans. Protein-protein interaction and pathway analyses of candidate DMGs related to iron uptake and transport showed that epigenetic changes in 10 candidate genes (ACO1, CYBRD1, FLVCR1, HFE, HMOX2, IREB2, NEDD8, SLC11A2, SLC40A1 and TFRC) are likely to relate to iron overload. This work reveals, for the first time, changes of DNAm in Tibetan people with iron overload, which suggest that DNAm is a mechanism underlying differences in iron content between individuals in the high-altitude Tibetan population. Our findings should contribute to the study of iron metabolism and the overall health status of Tibetans.
Collapse
Affiliation(s)
- Qin Zhao
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital C.T.)
| | - Zhijing Ge
- School of Basic Medical Sciences, Tibet University
| | - Suhong Fu
- Laboratory of Natural Medicine, West China Hospital, West China Medical School, Sichuan University
| | - Sha Wan
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital C.T.)
| | - Jing Shi
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital C.T.)
| | - Yunhong Wu
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital C.T.)
| | - Yongqun Zhang
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital C.T.)
| |
Collapse
|
10
|
Orphan Nuclear Receptor ERRγ Is a Transcriptional Regulator of CB1 Receptor-Mediated TFR2 Gene Expression in Hepatocytes. Int J Mol Sci 2021; 22:ijms22116021. [PMID: 34199599 PMCID: PMC8199698 DOI: 10.3390/ijms22116021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 11/23/2022] Open
Abstract
Orphan nuclear receptor estrogen-related receptor γ (ERRγ) is an important transcription factor modulating gene transcription involved in endocrine control of liver metabolism. Transferrin receptor 2 (TFR2), a carrier protein for transferrin, is involved in hepatic iron overload in alcoholic liver disease (ALD). However, TFR2 gene transcriptional regulation in hepatocytes remains largely unknown. In this study, we described a detailed molecular mechanism of hepatic TFR2 gene expression involving ERRγ in response to an endocannabinoid 2-arachidonoylglycerol (2-AG). Treatment with 2-AG and arachidonyl-2′-chloroethylamide, a selective cannabinoid receptor type 1 (CB1) receptor agonist, increased ERRγ and TFR2 expression in hepatocytes. Overexpression of ERRγ was sufficient to induce TFR2 expression in both human and mouse hepatocytes. In addition, ERRγ knockdown significantly decreased 2-AG or alcohol-mediated TFR2 gene expression in cultured hepatocytes and mouse livers. Finally, deletion and mutation analysis of the TFR2 gene promoter demonstrated that ERRγ directly modulated TFR2 gene transcription via binding to an ERR-response element. This was further confirmed by chromatin immunoprecipitation assay. Taken together, these results reveal a previously unrecognized role of ERRγ in the transcriptional regulation of TFR2 gene expression in response to alcohol.
Collapse
|
11
|
Shi H, Almutairi M, Moskovitz J, Xu YG. Recent advances in iron homeostasis and regulation - a focus on epigenetic regulation and stroke. Free Radic Res 2021; 55:375-383. [PMID: 33345646 DOI: 10.1080/10715762.2020.1867314] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Iron is an element with redox properties. It is active sites of many enzymes and plays an important role in various cellular and biological functions including ATP production and DNA synthesis. However, as a redox element, iron promotes free radical generation and lipid peroxidation, causing oxidative damage and cell death. Iron-mediated oxidation is a central player in ferroptosis, a type of cell death process that is different from apoptosis and necrosis. Thus, iron metabolism and homeostasis are sophisticatedly regulated. There has been exciting progress in understanding iron metabolism and regulation since hepcidin was recognized as the central regulator of iron homeostasis. Hepcidin mainly regulates the iron export function of the ferrous iron permease, ferroportin, which is the only known iron exporter expressed by mammalian cells. Particularly, epigenetic regulation has been a recent focus on iron homeostasis. Epigenetic phenomena have been demonstrated to modulate key proteins including hepcidin in iron metabolism. Here, we review the rapid progress in recent years in understanding molecular mechanisms of iron homeostasis with a focus on epigenetic regulation of hepcidin, ferritin, and ferroptosis. Interactions between methionine oxidation and iron is also discussed. Furthermore, many studies have suggested that the severity of neuronal damage after stroke is proportional to the magnitude of brain iron accumulation. Recent discoveries regarding iron metabolism in stroke is briefly discussed. Understanding the underlying mechanism in iron regulation could provide insight into the treatment of various intractable diseases including stroke.
Collapse
Affiliation(s)
- Honglian Shi
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Mohammed Almutairi
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Jackob Moskovitz
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Yuexian G Xu
- Department of Anesthesiology, School of Medicine, University of Kansas, Kansas City, KS, USA
| |
Collapse
|
12
|
Muhammad JS, Bajbouj K, Shafarin J, Hamad M. Estrogen-induced epigenetic silencing of FTH1 and TFRC genes reduces liver cancer cell growth and survival. Epigenetics 2020; 15:1302-1318. [PMID: 32476555 PMCID: PMC7678938 DOI: 10.1080/15592294.2020.1770917] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/19/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023] Open
Abstract
Estrogen (E2) regulates hundreds of genes involved in cell metabolism and disrupts iron homoeostasis in various cell types. Herein, we addressed whether E2-induced epigenetic modifications are involved in modulating the expression of iron-regulatory genes. Epigenetic status of FTH1 and TFRC genes was assessed in E2-treated cancer cells. E2-induced DNA methylation was associated with decreased FTH1 and TFRC expression in Hep-G2 and Huh7 cells, but not in AGS or MCF7 cells. Demethylation with 5-Aza-2-deoxycytidine upregulated the expression of both these genes in Hep-G2 cells. The expression of DNMT3B, PRMT5, and H4R3me2s increased in E2-treated cells. Chromatin immunoprecipitation showed that E2 treatment recruited PRMT5 and H4R3me2s on FTH1 but not on TFRC. Knockdown of PRMT5, DNMT3B, and Estrogen-receptor alpha rescued FTH1 from E2-induced silencing. However, knockdown of DNMT3B alone blocked the inhibitory effects of E2 on TFRC. Analysis of human liver tissues in publicly available datasets showed that FTH1 and TFRC are highly expressed in primary liver tumours, but a lower expression is associated with better survival. Interestingly, we showed that the silencing of FTH1 and/or TFRC inhibited carcinogenesis in Hep-G2 cells. For the first time, our findings uncovered the novel signalling pathway involved in the protective effects of E2 against liver cancer.
Collapse
Affiliation(s)
- Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Iron Biology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Khuloud Bajbouj
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Iron Biology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Jasmin Shafarin
- Iron Biology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Mawieh Hamad
- Iron Biology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
13
|
Yu M, Zhou X, Ju L, Yu M, Gao X, Zhang M, Tang S. Characteristics of iron status, oxidation response, and DNA methylation profile in response to occupational iron oxide nanoparticles exposure. Toxicol Ind Health 2020; 36:170-180. [DOI: 10.1177/0748233720918683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although the growing development and application of iron oxide nanoparticles (IONPs) may pose exposure risk and adverse health outcomes, biological changes due to occupational exposure remain unexplored. This cross-sectional study recruited 23 workers at a plant that manufactures IONPs and 23 age- and sex-matched controls without metal-rich occupational hazards exposure. Exposure metrics at worksites were monitored, and iron status, oxidation markers, and methylation profiles of genomic DNA in peripheral blood were measured using corresponding enzyme-linked immunosorbent assays and methylation-specific polymerase chain reaction (PCR), respectively. The mass concentration, number counting, and surface area concentration of airborne particles at the worksite significantly increased during the work process of manufacturing/handling IONPs. Overall, compared to controls, workers exhibited increased 5-hydroxymethylcytosine (5hmC) levels without changes in 5-methylcytosine (5mC), hepcidin methylation, iron, soluble transferrin receptor (sTfR), ferritin, hepcidin, 8-hydroxydeoxyguanosine, and glutathione. A positive correlation was found between 5hmC and IONP exposure year with adjustment for age, sex, and cotinine using partial correlation analyses ( r = 0.521, p < 0.001). After stratification of INOPs exposure and 5hmC levels, the univariate general linear model with adjustment for age, sex, and cotinine found that the estimated mean levels of 5mC and sTfR in subjects with low and high 5hmC levels among controls were 11% and 14.4% ( p ≤ 0.01) and 80.9 nM and 70.3 nM ( p < 0.05), respectively. The estimated mean levels of sTfR in workers and controls with low 5hmC levels were 88.3 nM and 68.7 nM ( p ≤ 0.01). Multivariate linear regression analyses suggested an association between sTfR and 5hmC (standardized β = −0.420, p = 0.014) and female sex (standardized β = 0.672, p < 0.001) for subjects with low 5hmC levels. These findings suggest that increased 5hmC could be differentially employed to monitor an epigenetic signature with steady iron homeostasis for occupational IONP-exposed individuals who are likely to experience early but specific decreased sTfR, especially for females concurrent with the onset of increment in 5hmC at low level.
Collapse
Affiliation(s)
- Min Yu
- Department of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, People’s Republic of China
| | - Xingfan Zhou
- Beijing Municipal Institute of Labor Protection, Beijing, People’s Republic of China
| | - Li Ju
- Department of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, People’s Republic of China
| | - Man Yu
- Department of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiangjing Gao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, People’s Republic of China
| | - Meibian Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, People’s Republic of China
| | - Shichuan Tang
- Beijing Municipal Institute of Labor Protection, Beijing, People’s Republic of China
| |
Collapse
|
14
|
The Action of JAK/STAT3 and BMP/HJV/SMAD Signaling Pathways on Hepcidin Suppression by Tucum-do-Cerrado in a Normal and Iron-Enriched Diets. Nutrients 2020; 12:nu12051515. [PMID: 32456060 PMCID: PMC7285201 DOI: 10.3390/nu12051515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 11/25/2022] Open
Abstract
The Brazilian savanna fruit, tucum-do-cerrado (Bactris setosa Mart.) reduces hepatic hepcidin levels. Therefore, we investigated the effect of tucum-do-cerrado on the TfR/HFE and/or BMP/HJV/SMAD and JAK/STAT pathways, in normal and excess iron conditions. Rats were treated with: control diet (CT); control diet +15% tucum-do-cerrado (Tuc); iron-enriched diet (+Fe); or iron-enriched diet +15% tucum-do-cerrado (Tuc+Fe). Tucum-do-cerrado (Tuc) decreased hepatic Hamp and Hjv mRNA levels but did not alter Bmp6, Smad7, Tfr1, and Hfe mRNA levels; pSMAD1/5/8 and pSTAT3 protein levels; labile iron pool (LIP); and inflammatory biomarkers, compared to the CT group. The iron-enriched diet increased Hamp mRNA levels, as well as pSMAD1/5/8 and pSTAT3 protein levels, while no difference was observed in Hjv, Bmp6, Smad7, Tfr1, and Hfe mRNA levels and LIP compared to the CT group. The association of tucum-do-cerrado with the iron-enriched diet (Tuc+Fe) decreased Hamp, Hjv, Bmp6, and Hfe mRNA levels and pSTAT3 protein content compared to the +Fe group, while increased Hamp and decreased Hfe mRNA levels compared to the Tuc group. Therefore, the inhibition of hepatic hepcidin by tucum-do-cerrado consumption may involve the downregulation of intestinal Dmt1 and hepatic Hjv expression and deacetylation mediated by SIRT1 by a mechanism that is independent of tissue iron content. However, in excess iron conditions, the modulation of hepatic hepcidin expression by tucum-do-cerrado seems to be partially mediated by the inflammatory signaling pathway, as well as involves the chelating activity of tucum-do-cerrado.
Collapse
|
15
|
DUAN L, YIN X, MENG H, FANG X, MIN J, WANG F. [Progress on epigenetic regulation of iron homeostasis]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2020; 49:58-70. [PMID: 32621410 PMCID: PMC8800797 DOI: 10.3785/j.issn.1008-9292.2020.02.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Iron homeostasis plays an important role for the maintenance of human health. It is known that iron metabolism is tightly regulated by several key genes, including divalent metal transport-1(DMT1), transferrin receptor 1(TFR1), transferrin receptor 2(TFR2), ferroportin(FPN), hepcidin(HAMP), hemojuvelin(HJV) and Ferritin H. Recently, it is reported that DNA methylation, histone acetylation, and microRNA (miRNA) epigenetically regulated iron homeostasis. Among these epigenetic regulators, DNA hypermethylation of the promoter region of FPN, TFR2, HAMP, HJV and bone morphogenetic protein 6 (BMP6) genes result in inhibitory effect on the expression of these iron-related gene. In addition, histone deacetylase (HADC) suppresses HAMP gene expression. On the contrary, HADC inhibitor upregulates HAMP gene expression. Additional reports showed that miRNA can also modulate iron absorption, transport, storage and utilization via downregulation of DMT1, FPN, TFR1, TFR2, Ferritin H and other genes. It is noteworthy that some key epigenetic regulatory enzymes, such as DNA demethylase TET2 and histone lysine demethylase JmjC KDMs, require iron for the enzymatic activities. In this review, we summarize the recent progress of DNA methylation, histone acetylation and miRNA in regulating iron metabolism and also discuss the future research directions.
Collapse
|