1
|
Sharma S, Nayak A, Thomas B, Kesavadas C. Synthetic MR: Clinical applications in neuroradiology. Neuroradiology 2025; 67:509-527. [PMID: 39888426 DOI: 10.1007/s00234-025-03547-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 01/13/2025] [Indexed: 02/01/2025]
Abstract
PURPOSE Synthetic MR is a quantitative MRI method that measures tissue relaxation times and generates multiple contrast-weighted images using suitable algorithms. The present article principally discusses the multiple dynamic multiple echo (MDME) technique of synthetic MR and briefly describes other quantitative MR sequences. METHODS Using illustrative cases, various applications of the MDME sequence in neuroradiology are explained. The MDME sequence allows rapid quantification of tissue relaxation times in a scan duration of 5-7 minutes for full brain coverage. It also has the additional advantages of myelin quantification and automatic segmentation of brain volumes. RESULTS Applications including reducing scan time, improved detection of demyelinating plaques in Multiple Sclerosis (MS), objective assessment and follow-up for brain atrophy in neurodegenerative MS and dementia cases, and applications in stroke imaging and neuro-oncology are discussed. Uses in the pediatric population, including assessment of brain development and progression of myelination in children, evaluation of white matter disorders, and evaluation of pediatric and adult epilepsy, are elaborated. Quantitative evaluation by synthetic MR is discussed, which allows homogenization and objectification of the radiology data and can serve as a valuable source for artificial intelligence and future multicentre studies. A brief discussion on the technique, other quantitative MR methods, and limitations of the MDME sequence is also presented. CONCLUSION The article intends to provide an explicit and comprehensive review of the applications of synthetic MR in neuroradiology, exploring its potential as a routine sequence in daily neuroimaging practice.
Collapse
Affiliation(s)
- Smily Sharma
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, Kerala, India.
| | - Abhishek Nayak
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, Kerala, India
| | - Bejoy Thomas
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, Kerala, India
| | - Chandrasekharan Kesavadas
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, Kerala, India
| |
Collapse
|
2
|
Huang S, Lah JJ, Allen JW, Qiu D. Accelerated model-based T1, T2* and proton density mapping using a Bayesian approach with automatic hyperparameter estimation. Magn Reson Med 2025; 93:563-583. [PMID: 39270136 PMCID: PMC11604832 DOI: 10.1002/mrm.30295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 08/09/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024]
Abstract
PURPOSE To achieve automatic hyperparameter estimation for the model-based recovery of quantitative MR maps from undersampled data, we propose a Bayesian formulation that incorporates the signal model and sparse priors among multiple image contrasts. THEORY We introduce a novel approximate message passing framework "AMP-PE" that enables the automatic and simultaneous recovery of hyperparameters and quantitative maps. METHODS We employed the variable-flip-angle method to acquire multi-echo measurements using gradient echo sequence. We explored undersampling schemes to incorporate complementary sampling patterns across different flip angles and echo times. We further compared AMP-PE with conventional compressed sensing approaches such as thel 1 $$ {l}_1 $$ -norm minimization, PICS and other model-based approaches such as GraSP, MOBA. RESULTS Compared to conventional compressed sensing approaches such as thel 1 $$ {l}_1 $$ -norm minimization and PICS, AMP-PE achieved superior reconstruction performance with lower errors inT 2 ∗ $$ {\mathrm{T}}_2^{\ast } $$ mapping and comparable performance inT 1 $$ {\mathrm{T}}_1 $$ and proton density mappings. When compared to other model-based approaches including GraSP and MOBA, AMP-PE exhibited greater robustness and outperformed GraSP in reconstruction error. AMP-PE offers faster speed than MOBA. AMP-PE performed better than MOBA at higher sampling rates and worse than MOBA at a lower sampling rate. Notably, AMP-PE eliminates the need for hyperparameter tuning, which is a requisite for all the other approaches. CONCLUSION AMP-PE offers the benefits of model-based recovery with the additional key advantage of automatic hyperparameter estimation. It works adeptly in situations where ground-truth is difficult to obtain and in clinical environments where it is desirable to automatically adapt hyperparameters to individual protocol, scanner and patient.
Collapse
Affiliation(s)
- Shuai Huang
- Department of Radiology and Imaging SciencesEmory UniversityAtlantaGeorgiaUSA
| | - James J. Lah
- Department of NeurologyEmory UniversityAtlantaGeorgiaUSA
| | - Jason W. Allen
- Department of Radiology and Imaging SciencesIndiana UniversityIndianapolisIndianaUSA
| | - Deqiang Qiu
- Department of Radiology and Imaging SciencesEmory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
3
|
Ho CY, Persohn S, Sankar M, Territo PR. Development of Myelin Growth Charts of the White Matter Using T1 Relaxometry. AJNR Am J Neuroradiol 2024; 45:1335-1345. [PMID: 39025639 PMCID: PMC11392380 DOI: 10.3174/ajnr.a8306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/02/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND AND PURPOSE Myelin maturation occurs in late fetal life to early adulthood, with the most rapid changes observed in the first few years of infancy. To quantify the degree of myelination, a specific MR imaging sequence is required to measure the changes in tissue proton relaxivity (R1). R1 positively correlates with the degree of myelination maturation at a given age. Similar to head circumference charts, these data can be used to develop normal growth charts for specific white matter tracts to detect pathologies involving abnormal myelination. MATERIALS AND METHODS This is a cross-sectional study using normal clinical pediatric brain MR images with the MP2RAGE sequence to generate T1 maps. The T1 maps were segmented to 75 brain regions from a brain atlas (white matter and gyri). Statistical modeling for all subjects across regions and the age range was computed, and estimates of population-level percentile ranking were computed to describe the effective myelination rate as a function of age. Test-retest analysis was performed to assess reproducibility. Logistic trendline and regression were performed for selected white matter regions and plotted for growth charts. RESULTS After exclusion for abnormal MR imaging or diseases affecting myelination from the electronic medical record, 103 subject MR images were included, ranging from birth to 17 years of age. Test-retest analysis resulted in a high correlation for white matter (r = 0.88) and gyri (r = 0.95). All white matter regions from the atlas had significant P values for logistic regression with R 2 values ranging from 0.41 to 0.99. CONCLUSIONS These data can serve as a myelination growth chart to permit patient comparisons with normal levels with respect to age and brain regions, thus improving detection of developmental disorders affecting myelin.
Collapse
Affiliation(s)
- Chang Y Ho
- From the Department of Radiology and Imaging Sciences (C.Y.H., P.R.T.), Indiana University School of Medicine, Indianapolis, Indiana
| | - Scott Persohn
- Department of Medicine (S.P., M.S., P.R.T.), Indiana University School of Medicine, Indianapolis, Indiana
| | - Meghana Sankar
- Department of Medicine (S.P., M.S., P.R.T.), Indiana University School of Medicine, Indianapolis, Indiana
| | - Paul R Territo
- From the Department of Radiology and Imaging Sciences (C.Y.H., P.R.T.), Indiana University School of Medicine, Indianapolis, Indiana
- Department of Medicine (S.P., M.S., P.R.T.), Indiana University School of Medicine, Indianapolis, Indiana
- Stark Neuroscience Research Institute (P.R.T.), Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
4
|
Simegn GL, Gagoski B, Song Y, Dean DC, Hupfeld KE, Murali-Manohar S, Davies-Jenkins CW, Simičić D, Wisnowski J, Yedavalli V, Gudmundson AT, Zöllner HJ, Oeltzschner G, Edden RAE. Comparison of test-retest reproducibility of DESPOT and 3D-QALAS for water T 1 and T 2 mapping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608081. [PMID: 39229114 PMCID: PMC11370424 DOI: 10.1101/2024.08.15.608081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Purpose Relaxometry, specifically T 1 and T 2 mapping, has become an essential technique for assessing the properties of biological tissues related to various physiological and pathological conditions. Many techniques are being used to estimate T 1 and T 2 relaxation times, ranging from the traditional inversion or saturation recovery and spin-echo sequences to more advanced methods. Choosing the appropriate method for a specific application is critical since the precision and accuracy of T 1 and T 2 measurements are influenced by a variety of factors including the pulse sequence and its parameters, the inherent properties of the tissue being examined, the MRI hardware, and the image reconstruction. The aim of this study is to evaluate and compare the test-retest reproducibility of two advanced MRI relaxometry techniques (Driven Equilibrium Single Pulse Observation of T 1 and T 2, DESPOT, and 3D Quantification using an interleaved Look-Locker acquisition Sequence with a T 2 preparation pulse, QALAS), for T 1 and T 2 mapping in a healthy volunteer cohort. Methods 10 healthy volunteers underwent brain MRI at 1.3 mm3 isotropic resolution, acquiring DESPOT and QALAS data (~11.8 and ~5 minutes duration, including field maps, respectively), test-retest with subject repositioning, on a 3.0 Tesla Philips Ingenia Elition scanner. To reconstruct the T 1 and T 2 maps, we used an equation-based algorithm for DESPOT and a dictionary-based algorithm that incorporates inversion efficiency and B 1 -field inhomogeneity for QALAS. The test-retest reproducibility was assessed using the coefficient of variation (CoV), intraclass correlation coefficient (ICC) and Bland-Altman plots. Results Our results indicate that both the DESPOT and QALAS techniques demonstrate good levels of test-retest reproducibility for T 1 and T 2 mapping across the brain. Higher whole-brain voxel-to-voxel ICCs are observed in QALAS for T 1 (0.84 ± 0.039) and in DESPOT for T 2 (0.897 ± 0.029). The Bland-Altman plots show smaller bias and variability of T 1 estimates for QALAS (mean of -0.02 s, and upper and lower limits of -0.14 and 0.11 s, 95% CI) than for DESPOT (mean of -0.02 s, and limits of -0.31 and 0.27 s). QALAS also showed less variability (mean 1.08 ms, limits -1.88 to 4.04 ms) for T 2 compared to DESPOT (mean of 2.56 ms, and limits -17.29 to 22.41 ms). The within-subject CoVs for QALAS range from 0.6% (T 2 in CSF) to 5.8% (T 2 in GM), while for DESPOT they range from 2.1% (T 2 in CSF) to 6.7% (T 2 in GM). The between-subject CoVs for QALAS range from 2.5% (T 2 in GM) to 12% (T 2 in CSF), and for DESPOT they range from 3.7% (T 2 in WM) to 9.3% (T 2 in CSF). Conclusion Overall, QALAS demonstrated better reproducibility for T 1 and T 2 measurements than DESPOT, in addition to reduced acquisition time.
Collapse
Affiliation(s)
- Gizeaddis Lamesgin Simegn
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Borjan Gagoski
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Yulu Song
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Douglas C. Dean
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Kathleen E. Hupfeld
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Saipavitra Murali-Manohar
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Christopher W. Davies-Jenkins
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Dunja Simičić
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Jessica Wisnowski
- Department of Pediatrics, Division of Neurology, Children’s Hospital Los Angeles and the University of Southern California
| | - Vivek Yedavalli
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aaron T. Gudmundson
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- The Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD, USA
| | - Helge J. Zöllner
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Richard A. E. Edden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
5
|
Yablonski M, Zhou Z, Cao X, Schauman S, Liao C, Setsompop K, Yeatman JD. Fast and reliable quantitative measures of white matter development with magnetic resonance fingerprinting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600735. [PMID: 38979185 PMCID: PMC11230456 DOI: 10.1101/2024.06.26.600735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Developmental cognitive neuroscience aims to shed light on evolving relationships between brain structure and cognitive development. To this end, quantitative methods that reliably measure individual differences in brain tissue properties are fundamental. Standard qualitative MRI sequences are influenced by scan parameters and hardware-related biases, and also lack physical units, making the analysis of individual differences problematic. In contrast, quantitative MRI can measure physical properties of the tissue but with the cost of long scan durations and sensitivity to motion. This poses a critical limitation for studying young children. Here, we examine the reliability and validity of an efficient quantitative multiparameter mapping method - Magnetic Resonance Fingerprinting (MRF) - in children scanned longitudinally. We focus on T1 values in white matter, since quantitative T1 values are known to primarily reflect myelin content, a key factor in brain development. Forty-nine children aged 8-13y (mean 10.3y ±1.4) completed two scanning sessions 2-4 months apart. In each session, two 2-minute 3D-MRF scans at 1mm isotropic resolution were collected to evaluate the effect of scan duration on image quality and scan-rescan reliability. A separate calibration scan was used to measure B0 inhomogeneity and correct for bias. We examined the impact of scan time and B0 inhomogeneity correction on scan-rescan reliability of values in white matter, by comparing single 2-min and combined two 2-min scans, with and without B0-correction. Whole-brain voxel-based reliability analysis showed that combining two 2-min MRF scans improved reliability (pearson's r=0.87) compared with a single 2-min scan (r=0.84), while B0-correction had no effect on reliability in white matter (r=0.86 and 0.83 4-min vs 2-min). Using diffusion tractography, we delineated MRF-derived T1 profiles along major white matter fiber tracts and found similar or higher reliability for T1 from MRF compared to diffusion parameters (based on a 10-minute dMRI scan). Lastly, we found that T1 values in multiple white matter tracts were significantly correlated with age. In sum, MRF-derived T1 values were highly reliable in a longitudinal sample of children and replicated known age effects. Reliability in white matter was improved by longer scan duration but was not affected by B0-correction, making it a quick and straightforward scan to collect. We propose that MRF provides a promising avenue for acquiring quantitative brain metrics in children and patient populations where scan time and motion are of particular concern.
Collapse
|
6
|
Lee CH, Holloman M, Salzer JL, Zhang J. Multi-parametric MRI can detect enhanced myelination in the Gli1 -/- mouse brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.20.567957. [PMID: 38045415 PMCID: PMC10690149 DOI: 10.1101/2023.11.20.567957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
This study investigated the potential of combining multiple MR parameters to enhance the characterization of myelin in the mouse brain. We collected ex vivo multi-parametric MR data at 7 Tesla from control and Gli1 -/- mice; the latter exhibit enhanced myelination at postnatal day 10 (P10) in the corpus callosum and cortex. The MR data included relaxivity, magnetization transfer, and diffusion measurements, each targeting distinct myelin properties. This analysis was followed by and compared to myelin basic protein (MBP) staining of the same samples. Although a majority of the MR parameters included in this study showed significant differences in the corpus callosum between the control and Gli1 -/- mice, only T 2 , T 1 /T 2, and radial diffusivity (RD) demonstrated a significant correlation with MBP values. Based on data from the corpus callosum, partial least square regression suggested that combining T 2 , T 1 /T 2 , and inhomogeneous magnetization transfer ratio could explain approximately 80% of the variance in the MBP values. Myelin predictions based on these three parameters yielded stronger correlations with the MBP values in the P10 mouse brain corpus callosum than any single MR parameter. In the motor cortex, combining T 2 , T 1 /T 2, and radial kurtosis could explain over 90% of the variance in the MBP values at P10. This study demonstrates the utility of multi-parametric MRI in improving the detection of myelin changes in the mouse brain.
Collapse
|
7
|
Yamashita K, Yoneyama M, Kikuchi K, Wada T, Murazaki H, Watanuki H, Mikayama R, Ishigami K, Togao O. Reproducibility of quantitative ADC, T1, and T2 measurement on the cerebral cortex: Utility of whole brain echo-planar DWI with compressed SENSE (EPICS-DWI): A pilot study. Eur J Radiol Open 2023; 11:100516. [PMID: 37609044 PMCID: PMC10440392 DOI: 10.1016/j.ejro.2023.100516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/30/2023] [Accepted: 08/08/2023] [Indexed: 08/24/2023] Open
Abstract
Purpose To assess the reproducibility of ADC, T1, T2, and proton density (PD) measurements on the cortex across the entire brain using high-resolution pseudo-3D diffusion-weighted imaging using echo-planar imaging with compressed SENSE (EPICS-DWI) and 3D quantification with an interleaved Look-Locker acquisition sequence with T2 preparation pulse (3D-QALAS) in normal healthy adults. Methods Twelve healthy participants (median age, 33 years; range, 28-51 years) were recruited to evaluate the reproducibility of whole-brain EPICS-DWI and synthetic MRI. EPICS-DWI utilizes a compressed SENSE reconstruction framework while maintaining the EPI sampling pattern. The 3D-QALAS sequence is based on multi-acquisition 3D gradient echo, with five acquisitions equally spaced in time, interleaved with a T2 preparation pulse and an inversion pulse. EPICS-DWI (b values, 0 and 1000 s/mm2) and 3D-QALAS sequence with identical voxel size on a 3.0-T MR system were performed twice (for test-retest scan). Intraclass correlation coefficients (ICCs) for ADC, T1, T2, and PD for all parcellated volume of interest (VOI) per subject on scan-rescan tests were calculated to assess reproducibility. Bland-Altman plots were used to investigate discrepancies in ADCs, T1s, T2s, and PDs obtained from the two MR scans. Results The ICC of ADCs was 0.785, indicating "good" reproducibility. The ICCs of T1s, T2s, and PDs were 0.986, 0.978, and 0.968, indicating "excellent" reproducibility. Conclusion The combination of EPICS-DWI and 3D-QALAS sequences with identical voxel size could reproducible ADC, T1, T2, and PD measurements for the cortex across the entire brain in healthy adults.
Collapse
Affiliation(s)
- Koji Yamashita
- Departments of Radiology Informatics and Network, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masami Yoneyama
- Philips Japan, 13-37, Kohnan 2-chome, Minato-ku, Tokyo 108-8507, Japan
| | - Kazufumi Kikuchi
- Departments of Clinical Radiology, and Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tatsuhiro Wada
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Japan
| | - Hiroo Murazaki
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Japan
| | - Hiroaki Watanuki
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Japan
| | - Ryoji Mikayama
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Japan
| | - Kousei Ishigami
- Departments of Clinical Radiology, and Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Osamu Togao
- Departments of Molecular Imaging and Diagnosis, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
8
|
Mandine N, Tavernier E, Hülnhagen T, Maréchal B, Kober T, Tauber C, Guichard M, Castelnau P, Morel B. Corpus callosum in children with neurodevelopmental delay: MRI standard qualitative assessment versus automatic quantitative analysis. Eur Radiol Exp 2023; 7:61. [PMID: 37833469 PMCID: PMC10575841 DOI: 10.1186/s41747-023-00375-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/07/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND The corpus callosum (CC) is a key brain structure. In children with neurodevelopmental delay, we compared standard qualitative radiological assessments with an automatic quantitative tool. METHODS We prospectively enrolled 73 children (46 males, 63.0%) with neurodevelopmental delay at single university hospital between September 2020 and September 2022. All of them underwent 1.5-T brain magnetic resonance imaging (MRI) including a magnetization-prepared 2 rapid acquisition gradient echoes - MP2RAGE sequence. Two radiologists blindly reviewed the images to classify qualitatively the CC into normal, hypoplasic, hyperplasic, and/or dysgenetic classes. An automatic tool (QuantiFIRE) was used to provide brain volumetry and T1 relaxometry automatically as well as deviations of those parameters compared with a healthy age-matched cohort. The MRI reference standard for CC volumetry was based on the Garel et al. study. Cohen κ statistics was used for interrater agreement. The radiologists and QuantiFIRE's diagnostic accuracy were compared with the reference standard using the Delong test. RESULTS The CC was normal in 42 cases (57.5%), hypoplastic in 20 cases (27.4%), and hypertrophic in 11 cases (15.1%). T1 relaxometry values were abnormal in 26 children (35.6%); either abnormally high (18 cases, 24.6%) or low (8 cases, 11.0%). The interrater Cohen κ coefficient was 0.91. The diagnostic accuracy of the QuantiFIRE prototype was higher than that of the radiologists for hypoplastic and normal CC (p = 0.003 for both subgroups, Delong test). CONCLUSIONS An automated volumetric and relaxometric assessment can assist the evaluation of brain structure such as the CC, particularly in the case of subtle abnormalities. RELEVANCE STATEMENT Automated brain MRI segmentation combined with statistical comparison to normal volume and T1 relaxometry values can be a useful diagnostic support tool for radiologists. KEY POINTS • Corpus callosum abnormality detection is challenging but clinically relevant. • Automated quantitative volumetric analysis had a higher diagnostic accuracy than that of visual appreciation of radiologists. • Quantitative T1 relaxometric analysis might help characterizing corpus callosum better.
Collapse
Affiliation(s)
- Natacha Mandine
- Pediatric Radiology Department, CHRU of Tours, Clocheville Hospital, Tours, France
| | - Elsa Tavernier
- Clinical Investigation Center, INSERM 1415, CHRU Tours, Tours, France
| | - Till Hülnhagen
- Advanced Clinical Imaging Technology, Siemens Healthineers International, Lausanne, Switzerland
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bénédicte Maréchal
- Advanced Clinical Imaging Technology, Siemens Healthineers International, Lausanne, Switzerland
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tobias Kober
- Advanced Clinical Imaging Technology, Siemens Healthineers International, Lausanne, Switzerland
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Clovis Tauber
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Marine Guichard
- Pediatric Neurology Department, CHRU of Tours, Clocheville Hospital, Tours, France
| | - Pierre Castelnau
- Pediatric Neurology Department, CHRU of Tours, Clocheville Hospital, Tours, France
| | - Baptiste Morel
- Pediatric Radiology Department, CHRU of Tours, Clocheville Hospital, Tours, France.
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.
| |
Collapse
|
9
|
Müller SJ, Khadhraoui E, Hansen N, Jamous A, Langer P, Wiltfang J, Riedel CH, Bouter C, van Riesen C, Maass F, Bartl M, Lange C, Ernst M. Brainstem atrophy in dementia with Lewy bodies compared with progressive supranuclear palsy and Parkinson's disease on MRI. BMC Neurol 2023; 23:114. [PMID: 36944914 PMCID: PMC10029226 DOI: 10.1186/s12883-023-03151-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/08/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Although Dementia with Lewy bodies (DLB) is the second most common form of dementia in elderly patients, it remains underdiagnosed compared with Alzheimer's (AD) and Parkinson's diseases (PD). This may be explained by overlapping clinical symptoms, e.g. Parkinsonism. While current MRI research focuses primarily on atrophy patterns of the frontal and temporal lobes, we focus on brainstem characteristics of DLB. In particular, we focused on brainstem atrophy patterns distinguishing DLB from Progressive Supranuclear Palsy (PSP) and PD based as the most common differential diagnoses. METHODS We identified patients diagnosed with DLB, PD, PSP, and a control group (CTRL) in our psychiatric and neurological archives. All patients with competing diagnoses and without a high-quality T1 MPRAGE 3D dataset were excluded. We assessed atrophy patterns in all patients (1) manually and (2) using FastSurfer's segmentation algorithm in combination with FreeSurfer's brainstem volumetric calculations. We compared classical measurement methods and ratios with automated volumetric approaches. RESULTS One hundred two patients were enrolled and evaluated in this study. Patients with DLB (n = 37) showed on average less atrophy of the brainstem than patients with PSP (n = 21), but a significantly more pronounced atrophy than patients with PD (n = 36) and the control group (CTRL, n = 8). The mean measured sagittal diameters of the midbrain were 8.17 ± 1.06 mm (mean ± standard deviation) for PSP, 9.45 ± 0.95 mm for DLB, 10.37 ± 0.99 mm for PD and 10.74 ± 0.70 for CTRL. The mean measured areas of the midbrain were 81 ± 18 mm2 for PSP, 105 ± 17 mm2 for DLB, 130 ± 26 mm2 for PD and 135 ± 23 mm2 for CTRL. The mean segmented volumes of the midbrain were 5595 ± 680 mm3 for PSP, 6051 ± 566 mm3 for DLB, 6646 ± 802 mm3 for PD and 6882 ± 844 mm3 for CTRL. The calculated midbrain pons ratios did not show superiority over the absolute measurements of the midbrain for distinguishing PSP from DLB. Because of the relatively uniform atrophy throughout the brainstem, the ratios were not suitable for distinguishing DLB from PD. CONCLUSIONS DLB patients exhibit homogenous atrophy of the brainstem and can be distinguished from patients with PSP and PD by both manual measurement methods and automated volume segmentation using absolute values or ratios.
Collapse
Affiliation(s)
- Sebastian Johannes Müller
- Institute of Diagnostic and Interventional Neuroradiology, University Medical Center Göttingen (UMG), Georg-August-University Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Eya Khadhraoui
- Institute of Diagnostic and Interventional Neuroradiology, University Medical Center Göttingen (UMG), Georg-August-University Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Niels Hansen
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Ala Jamous
- Institute of Diagnostic and Interventional Neuroradiology, University Medical Center Göttingen (UMG), Georg-August-University Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Philip Langer
- Institute of Diagnostic and Interventional Neuroradiology, University Medical Center Göttingen (UMG), Georg-August-University Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Department of Medical Sciences, Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Christian Heiner Riedel
- Institute of Diagnostic and Interventional Neuroradiology, University Medical Center Göttingen (UMG), Georg-August-University Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Caroline Bouter
- Department of Nuclear Medicine, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Christoph van Riesen
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Department of Neurology, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Fabian Maass
- Department of Neurology, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Michael Bartl
- Department of Neurology, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Claudia Lange
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Marielle Ernst
- Institute of Diagnostic and Interventional Neuroradiology, University Medical Center Göttingen (UMG), Georg-August-University Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
| |
Collapse
|
10
|
Padormo F, Cawley P, Dillon L, Hughes E, Almalbis J, Robinson J, Maggioni A, Botella MDLF, Cromb D, Price A, Arlinghaus L, Pitts J, Luo T, Zhang D, Deoni SCL, Williams S, Malik S, O′Muircheartaigh J, Counsell SJ, Rutherford M, Arichi T, Edwards AD, Hajnal JV. In vivo T 1 mapping of neonatal brain tissue at 64 mT. Magn Reson Med 2023; 89:1016-1025. [PMID: 36372971 PMCID: PMC10099617 DOI: 10.1002/mrm.29509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/14/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Ultralow-field (ULF) point-of-care MRI systems allow image acquisition without interrupting medical provision, with neonatal clinical care being an important potential application. The ability to measure neonatal brain tissue T1 is a key enabling technology for subsequent structural image contrast optimization, as well as being a potential biomarker for brain development. Here we describe an optimized strategy for neonatal T1 mapping at ULF. METHODS Examinations were performed on a 64-mT portable MRI system. A phantom validation experiment was performed, and a total of 33 in vivo exams were acquired from 28 neonates with postmenstrual age ranging from 31+4 to 49+0 weeks. Multiple inversion-recovery turbo spin-echo sequences were acquired with differing inversion and repetition times. An analysis pipeline incorporating inter-sequence motion correction generated proton density and T1 maps. Regions of interest were placed in the cerebral deep gray matter, frontal white matter, and cerebellum. Weighted linear regression was used to predict T1 as a function of postmenstrual age. RESULTS Reduction of T1 with postmenstrual age is observed in all measured brain tissue; the change in T1 per week and 95% confidence intervals is given by dT1 = -21 ms/week [-25, -16] (cerebellum), dT1 = -14 ms/week [-18, -10] (deep gray matter), and dT1 = -35 ms/week [-45, -25] (white matter). CONCLUSION Neonatal T1 values at ULF are shorter than those previously described at standard clinical field strengths, but longer than those of adults at ULF. T1 reduces with postmenstrual age and is therefore a candidate biomarker for perinatal brain development.
Collapse
Affiliation(s)
- Francesco Padormo
- Center for the Developing Brain, School of Imaging Sciences and Biomedical EngineeringKing′s College London
LondonUnited Kingdom
- Medical PhysicsGuy′s & St. Thomas' NHS Foundation TrustLondonUnited Kingdom
- Hyperfine, Inc.GuilfordConnecticutUSA
| | - Paul Cawley
- Center for the Developing Brain, School of Imaging Sciences and Biomedical EngineeringKing′s College London
LondonUnited Kingdom
- Medical Research Council Center for Neurodevelopmental DisordersKing′s College LondonLondonUnited Kingdom
- Department of NeonatologyGuy′s and St. Thomas′ NHS Foundation TrustLondonUnited Kingdom
| | - Louise Dillon
- Center for the Developing Brain, School of Imaging Sciences and Biomedical EngineeringKing′s College London
LondonUnited Kingdom
| | - Emer Hughes
- Center for the Developing Brain, School of Imaging Sciences and Biomedical EngineeringKing′s College London
LondonUnited Kingdom
| | - Jennifer Almalbis
- Center for the Developing Brain, School of Imaging Sciences and Biomedical EngineeringKing′s College London
LondonUnited Kingdom
- Department of NeonatologyGuy′s and St. Thomas′ NHS Foundation TrustLondonUnited Kingdom
| | - Joanna Robinson
- Center for the Developing Brain, School of Imaging Sciences and Biomedical EngineeringKing′s College London
LondonUnited Kingdom
- Department of NeonatologyGuy′s and St. Thomas′ NHS Foundation TrustLondonUnited Kingdom
| | - Alessandra Maggioni
- Center for the Developing Brain, School of Imaging Sciences and Biomedical EngineeringKing′s College London
LondonUnited Kingdom
- Department of NeonatologyGuy′s and St. Thomas′ NHS Foundation TrustLondonUnited Kingdom
| | - Miguel De La Fuente Botella
- Center for the Developing Brain, School of Imaging Sciences and Biomedical EngineeringKing′s College London
LondonUnited Kingdom
- Department of NeonatologyGuy′s and St. Thomas′ NHS Foundation TrustLondonUnited Kingdom
| | - Dan Cromb
- Center for the Developing Brain, School of Imaging Sciences and Biomedical EngineeringKing′s College London
LondonUnited Kingdom
- Department of NeonatologyGuy′s and St. Thomas′ NHS Foundation TrustLondonUnited Kingdom
| | - Anthony Price
- Center for the Developing Brain, School of Imaging Sciences and Biomedical EngineeringKing′s College London
LondonUnited Kingdom
- Medical PhysicsGuy′s & St. Thomas' NHS Foundation TrustLondonUnited Kingdom
| | | | | | | | | | - Sean C. L. Deoni
- Advanced Baby Imaging Lab, Rhode Island HospitalWarren, Alpert Medical School at Brown UniversityProvidenceRhode IslandUSA
- Department of Diagnostic RadiologyWarren Alpert Medical School at Brown UniversityProvidenceRhode IslandUSA
- Department of PediatricsWarren Alpert Medical School at Brown UniversityProvidenceRhode IslandUSA
| | - Steve Williams
- Medical Research Council Center for Neurodevelopmental DisordersKing′s College LondonLondonUnited Kingdom
- Center for Neuroimaging SciencesKing′s College LondonLondonUnited Kingdom
| | - Shaihan Malik
- Center for the Developing Brain, School of Imaging Sciences and Biomedical EngineeringKing′s College London
LondonUnited Kingdom
| | - Jonathan O′Muircheartaigh
- Center for the Developing Brain, School of Imaging Sciences and Biomedical EngineeringKing′s College London
LondonUnited Kingdom
- Medical Research Council Center for Neurodevelopmental DisordersKing′s College LondonLondonUnited Kingdom
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and NeuroscienceKing′s College LondonLondonUnited Kingdom
| | - Serena J. Counsell
- Center for the Developing Brain, School of Imaging Sciences and Biomedical EngineeringKing′s College London
LondonUnited Kingdom
| | - Mary Rutherford
- Center for the Developing Brain, School of Imaging Sciences and Biomedical EngineeringKing′s College London
LondonUnited Kingdom
- Medical Research Council Center for Neurodevelopmental DisordersKing′s College LondonLondonUnited Kingdom
| | - Tomoki Arichi
- Center for the Developing Brain, School of Imaging Sciences and Biomedical EngineeringKing′s College London
LondonUnited Kingdom
- Medical Research Council Center for Neurodevelopmental DisordersKing′s College LondonLondonUnited Kingdom
- Department of BioengineeringImperial College LondonLondonUnited Kingdom
- Pediatric Neurosciences, Evelina London Children′s HospitalGuys′ and St. Thomas′ NHS Foundation TrustLondonUnited Kingdom
| | - A. David Edwards
- Center for the Developing Brain, School of Imaging Sciences and Biomedical EngineeringKing′s College London
LondonUnited Kingdom
- Medical Research Council Center for Neurodevelopmental DisordersKing′s College LondonLondonUnited Kingdom
- Department of NeonatologyGuy′s and St. Thomas′ NHS Foundation TrustLondonUnited Kingdom
| | - Joseph V. Hajnal
- Center for the Developing Brain, School of Imaging Sciences and Biomedical EngineeringKing′s College London
LondonUnited Kingdom
| |
Collapse
|
11
|
Müller SJ, Khadhraoui E, Voit D, Riedel CH, Frahm J, Ernst M. First clinical application of a novel T1 mapping of the whole brain. Neuroradiol J 2022; 35:684-691. [PMID: 35446175 PMCID: PMC9626833 DOI: 10.1177/19714009221084244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The aim of this study was to evaluate the reproducibility and clinical value of the novel single-shot T1 mapping method for rapid and accurate multi-slice coverage of the whole brain, described by Wang et al. 2015. METHODS At a field strength of 3 Tesla, T1 mappings of 139 patients (51 of them without pathologic findings) and two repeats of five volunteers were performed at 0.5 mm in-plane resolution. Mean T1 values were determined in 18 manually segmented regions-of-interest without pathologic findings. Reproducibility of the repeated scans was calculated using mean coefficient of variations. Pathologies were grouped and separately evaluated. RESULTS The mean age of the cohort was 49 (range 1-95 years). T1 relaxation times for ordinary brain and pathologies were in accordance with the literature values. Intra- and inter-subject reproducibility was excellent, and mean coefficient of variations were 2.4% and 3.8%, respectively. DISCUSSION The novel rapid T1 mapping method is a reliable magnetic resonance imaging technique for identifying and quantifying normal brain structures and may thus serve as a basis for assessing pathologies. The fast and parallel online calculation enables a comfortable use in everyday clinical practice. We see a possible clinical value in a large spectrum of diseases, which should be investigated in further studies.
Collapse
Affiliation(s)
| | - Eya Khadhraoui
- Department of Neuroradiology, University Medical Center
Göttingen, Germany
| | - Dirk Voit
- Max Planck Institute for Biophysical
Chemistry, Göttingen, Germany
| | | | - Jens Frahm
- Max Planck Institute for Biophysical
Chemistry, Göttingen, Germany
| | - Marielle Ernst
- Department of Neuroradiology, University Medical Center
Göttingen, Germany
| |
Collapse
|
12
|
Moody JF, Aggarwal N, Dean DC, Tromp DPM, Kecskemeti SR, Oler JA, Kalin NH, Alexander AL. Longitudinal assessment of early-life white matter development with quantitative relaxometry in nonhuman primates. Neuroimage 2022; 251:118989. [PMID: 35151851 PMCID: PMC8940652 DOI: 10.1016/j.neuroimage.2022.118989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/13/2022] [Accepted: 02/09/2022] [Indexed: 12/01/2022] Open
Abstract
Alterations in white matter (WM) development are associated with many neuropsychiatric and neurodevelopmental disorders. Most MRI studies examining WM development employ diffusion tensor imaging (DTI), which relies on estimating diffusion patterns of water molecules as a reflection of WM microstructure. Quantitative relaxometry, an alternative method for characterizing WM microstructural changes, is based on molecular interactions associated with the magnetic relaxation of protons. In a longitudinal study of 34 infant non-human primates (NHP) (Macaca mulatta) across the first year of life, we implement a novel, high-resolution, T1-weighted MPnRAGE sequence to examine WM trajectories of the longitudinal relaxation rate (qR1) in relation to DTI metrics and gestational age at scan. To the best of our knowledge, this is the first study to assess developmental WM trajectories in NHPs using quantitative relaxometry and the first to directly compare DTI and relaxometry metrics during infancy. We demonstrate that qR1 exhibits robust logarithmic growth, unfolding in a posterior-anterior and medial-lateral fashion, similar to DTI metrics. On a within-subject level, DTI metrics and qR1 are highly correlated, but are largely unrelated on a between-subject level. Unlike DTI metrics, gestational age at birth (time in utero) is a strong predictor of early postnatal qR1 levels. Whereas individual differences in DTI metrics are maintained across the first year of life, this is not the case for qR1. These results point to the similarities and differences in using quantitative relaxometry and DTI in developmental studies, providing a basis for future studies to characterize the unique processes that these measures reflect at the cellular and molecular level.
Collapse
Affiliation(s)
- Jason F Moody
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, United States.
| | - Nakul Aggarwal
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Boulevard, Madison, WI 53719, United States
| | - Douglas C Dean
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, United States; Department of Pediatrics, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53792, United States; Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI 53705, United States
| | - Do P M Tromp
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Boulevard, Madison, WI 53719, United States
| | - Steve R Kecskemeti
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI 53705, United States
| | - Jonathan A Oler
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Boulevard, Madison, WI 53719, United States
| | - Ned H Kalin
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Boulevard, Madison, WI 53719, United States
| | - Andrew L Alexander
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, United States; Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Boulevard, Madison, WI 53719, United States; Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI 53705, United States
| |
Collapse
|
13
|
White matter myelination during early infancy is linked to spatial gradients and myelin content at birth. Nat Commun 2022; 13:997. [PMID: 35194018 PMCID: PMC8863985 DOI: 10.1038/s41467-022-28326-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 01/12/2022] [Indexed: 12/25/2022] Open
Abstract
Development of myelin, a fatty sheath that insulates nerve fibers, is critical for brain function. Myelination during infancy has been studied with histology, but postmortem data cannot evaluate the longitudinal trajectory of white matter development. Here, we obtained longitudinal diffusion MRI and quantitative MRI measures of longitudinal relaxation rate (R1) of white matter in 0, 3 and 6 months-old human infants, and developed an automated method to identify white matter bundles and quantify their properties in each infant's brain. We find that R1 increases from newborns to 6-months-olds in all bundles. R1 development is nonuniform: there is faster development in white matter that is less mature in newborns, and development rate increases along inferior-to-superior as well as anterior-to-posterior spatial gradients. As R1 is linearly related to myelin fraction in white matter bundles, these findings open new avenues to elucidate typical and atypical white matter myelination in early infancy.
Collapse
|
14
|
Maier IL, Heide M, Hofer S, Dechent P, Fiss I, von der Brelie C, Rohde V, Frahm J, Bähr M, Liman J. High Periventricular T1 Relaxation Times Predict Gait Improvement After Spinal Tap in Patients with Idiopathic Normal Pressure Hydrocephalus. Clin Neuroradiol 2022; 32:1067-1076. [PMID: 35391549 PMCID: PMC9744711 DOI: 10.1007/s00062-022-01155-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 03/02/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE The diagnosis of idiopathic normal pressure hydrocephalus (iNPH) can be challenging. Aim of this study was to use a novel T1 mapping method to enrich the diagnostic work-up of patients with suspected iNPH. METHODS Using 3T magnetic resonance imaging (MRI) we prospectively evaluated rapid high-resolution T1 mapping at 0.5 mm resolution and 4 s acquisition time in 15 patients with suspected iNPH and 8 age-matched, healthy controls. T1 mapping in axial sections of the cerebrum, clinical and neuropsychological testing were performed prior to and after cerebrospinal fluid tap test (CSF-TT). T1 relaxation times were measured in 5 predefined periventricular regions. RESULTS All 15 patients with suspected iNPH showed gait impairment, 13 (86.6%) showed signs of cognitive impairment and 8 (53.3%) patients had urinary incontinence. Gait improvement was noted in 12 patients (80%) after CSF-TT. T1 relaxation times in all periventricular regions were elevated in patients with iNPH compared to controls with the most pronounced differences in the anterior (1006 ± 93 ms vs. 911 ± 77 ms; p = 0.023) and posterior horns (983 ± 103 ms vs. 893 ± 68 ms; p = 0.037) of the lateral ventricles. Montreal cognitive assessment (MoCA) scores at baseline were negatively correlated with T1 relaxation times (r < -0.5, p < 0.02). Higher T1 relaxation times were significantly correlated with an improvement of the 3‑m timed up and go test (r > 0.6 and p < 0.03) after CSF-TT. CONCLUSION In iNPH-patients, periventricular T1 relaxation times are increased compared to age-matched controls and predict gait improvement after CSF-TT. T1 mapping might enrich iNPH work-up and might be useful to indicate permanent shunting.
Collapse
Affiliation(s)
- Ilko L. Maier
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Marielle Heide
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Sabine Hofer
- Biomedizinische NMR, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Peter Dechent
- Institute for Cognitive Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Ingo Fiss
- Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| | | | - Veit Rohde
- Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| | - Jens Frahm
- Biomedizinische NMR, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Jan Liman
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| |
Collapse
|
15
|
Martin P, Hagberg GE, Schultz T, Harzer K, Klose U, Bender B, Nägele T, Scheffler K, Krägeloh-Mann I, Groeschel S. T2-Pseudonormalization and Microstructural Characterization in Advanced Stages of Late-infantile Metachromatic Leukodystrophy. Clin Neuroradiol 2021; 31:969-980. [PMID: 33226437 PMCID: PMC8648649 DOI: 10.1007/s00062-020-00975-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/27/2020] [Indexed: 11/24/2022]
Abstract
PURPOSE T2-weighted signal hyperintensities in white matter (WM) are a diagnostic finding in brain magnetic resonance imaging (MRI) of patients with metachromatic leukodystrophy (MLD). In our systematic investigation of the evolution of T2-hyperintensities in patients with the late-infantile form, we describe and characterize T2-pseudonormalization in the advanced stage of the natural disease course. METHODS The volume of T2-hyperintensities was quantified in 34 MRIs of 27 children with late-infantile MLD (median age 2.25 years, range 0.5-5.2 years). In three children with the most advanced clinical course (age >4 years) and for whom the T2-pseudonormalization was the most pronounced, WM microstructure was investigated using a multimodal MRI protocol, including diffusion-weighted imaging, MR spectroscopy (MRS), myelin water fraction (MWF), magnetization transfer ratio (MTR), T1-mapping and quantitative susceptibility mapping. RESULTS T2-hyperintensities in cerebral WM returned to normal in large areas of 3 patients in the advanced disease stage. Multimodal assessment of WM microstructure in areas with T2-pseudonormalization revealed highly decreased values for NAA, neurite density, isotropic water, mean and radial kurtosis, MWF and MTR, as well as increased radial diffusivity. CONCLUSION In late-infantile MLD patients, we found T2-pseudonormalization in WM tissue with highly abnormal microstructure characterizing the most advanced disease stage. Pathological hallmarks might be a loss of myelin, but also neuronal loss as well as increased tissue density due to gliosis and accumulated storage material. These results suggest that a multimodal MRI protocol using more specific microstructural parameters than T2-weighted sequences should be used when evaluating the effect of treatment trials in MLD.
Collapse
Affiliation(s)
- Pascal Martin
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| | - Gisela E Hagberg
- High Field Magnetic Resonance, Max-Planck Institute for Biological Cybernetics, Tübingen, Germany
- Biomedical Magnetic Resonance, University Hospital, Tübingen, Germany
| | - Thomas Schultz
- B-IT and Institute of Computer Science, University of Bonn, Bonn, Germany
| | - Klaus Harzer
- Department of Neuropediatrics, University Children's Hospital, Tübingen, Germany
| | - Uwe Klose
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Tübingen, Germany
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Tübingen, Germany
| | - Thomas Nägele
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Tübingen, Germany
| | - Klaus Scheffler
- High Field Magnetic Resonance, Max-Planck Institute for Biological Cybernetics, Tübingen, Germany
- Biomedical Magnetic Resonance, University Hospital, Tübingen, Germany
| | | | - Samuel Groeschel
- Department of Neuropediatrics, University Children's Hospital, Tübingen, Germany
| |
Collapse
|
16
|
Schnider B, Disselhoff V, Latal B, Wehrle F, Hagmann C, Tuura R. Reply to comment: "Brain creatine alteration and executive function deficits in children born very preterm". Pediatr Res 2021; 90:256-258. [PMID: 33214676 DOI: 10.1038/s41390-020-01281-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 09/23/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Barbara Schnider
- Department of Neonatology and Pediatric Intensive Care, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Vera Disselhoff
- Department of Neonatology and Pediatric Intensive Care, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Beatrice Latal
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.,Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Flavia Wehrle
- Department of Neonatology and Pediatric Intensive Care, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.,Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Cornelia Hagmann
- Department of Neonatology and Pediatric Intensive Care, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Ruth Tuura
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland. .,Centre for MR Research, University Children's Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
17
|
Dumitru R, Goodall A, Broadbent D, Del Galdo F, Tan AL, Biglands J, Buch M. First pilot study of extracellular volume MRI measurement in peripheral muscle of systemic sclerosis patients suggests diffuse fibrosis. Rheumatology (Oxford) 2021; 61:1651-1657. [PMID: 34273164 DOI: 10.1093/rheumatology/keab567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/09/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES Peripheral muscle involvement in systemic sclerosis (SSc) may comprise myositis or a non-inflammatory myopathy. There is little understanding on the nature of SSc myopathy. This pilot study aimed to evaluate for the presence of diffuse fibrosis in the peripheral muscle of patients with SSc by determining extracellular volume (ECV) MRI measurement. METHODS SSc patients, with suspected myopathy or no muscle involvement, and healthy volunteers (HV) had native T1 and ECV MRI quantification of the thigh and creatine-kinase (CK) measured. Suspected myopathy was defined as current/history of minimally raised CK (<600 IU/l) +/- presence of clinical signs-symptoms (proximal muscle weakness and/or myalgia) +/- a Manual Muscle Testing score <5 in the thighs. RESULTS 12 SSc patients and 10 HV were recruited. 9/12 patients had limited cutaneous SSc, 4/12 interstitial lung disease, 7/12 suspected myopathy. Higher skeletal muscle ECV was recorded in SSc patients compared to HV [mean (SD) 23(11)%, vs 11(4)% p = 0.04].Peripheral muscle ECV associated with CK (rho=0.554, p = 0.061) and was higher in SSc patients with myopathy compared to those with no myopathy [mean (SD) 28 (10) vs 15 (5), p = 0.023]. An ECV of 22% was determined to best identify myopathy with a sensitivity of 71% and a specificity of 80%. CONCLUSION This hypothesis-generating study showed higher ECV in SSc patients compared to HV as well as association of ECV with suspected myopathy, suggesting the presence of diffuse fibrosis in the peripheral muscle of SSc patients. Further studies are needed to understand the nature of SSc myopathy.
Collapse
Affiliation(s)
- Raluca Dumitru
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom.,Leeds Biomedical Research Centre, National Institute for Health Research, Leeds, United Kingdom
| | - Alex Goodall
- Department Of Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom.,Department of Medical Imaging and Medical Physics, Sheffield Teaching Hospitals Foundation Trust, Sheffield, United Kingdom
| | - David Broadbent
- Department Of Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Francesco Del Galdo
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom.,Leeds Biomedical Research Centre, National Institute for Health Research, Leeds, United Kingdom
| | - Ai Lyn Tan
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom.,Leeds Biomedical Research Centre, National Institute for Health Research, Leeds, United Kingdom
| | - John Biglands
- Leeds Biomedical Research Centre, National Institute for Health Research, Leeds, United Kingdom.,Department Of Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Maya Buch
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom.,Centre for Musculoskeletal Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom.,NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
18
|
Schreiber-Stainthorp W, Solomon J, Lee JH, Castro M, Shah S, Martinez-Orengo N, Reeder R, Maric D, Gross R, Qin J, Hagen KR, Johnson RF, Hammoud DA. Longitudinal in vivo imaging of acute neuropathology in a monkey model of Ebola virus infection. Nat Commun 2021; 12:2855. [PMID: 34001896 PMCID: PMC8129091 DOI: 10.1038/s41467-021-23088-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 04/13/2021] [Indexed: 02/03/2023] Open
Abstract
Ebola virus (EBOV) causes neurological symptoms yet its effects on the central nervous system (CNS) are not well-described. Here, we longitudinally assess the acute effects of EBOV on the brain, using quantitative MR-relaxometry, 18F-Fluorodeoxyglucose PET and immunohistochemistry in a monkey model. We report blood-brain barrier disruption, likely related to high cytokine levels and endothelial viral infection, with extravasation of fluid, Gadolinium-based contrast material and albumin into the extracellular space. Increased glucose metabolism is also present compared to the baseline, especially in the deep gray matter and brainstem. This regional hypermetabolism corresponds with mild neuroinflammation, sporadic neuronal infection and apoptosis, as well as increased GLUT3 expression, consistent with increased neuronal metabolic demands. Neuroimaging changes are associated with markers of disease progression including viral load and cytokine/chemokine levels. Our results provide insight into the pathophysiology of CNS involvement with EBOV and may help assess vaccine/treatment efficacy in real time.
Collapse
Affiliation(s)
- William Schreiber-Stainthorp
- Hammoud Laboratory, Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jeffrey Solomon
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ji Hyun Lee
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Marcelo Castro
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Swati Shah
- Hammoud Laboratory, Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Neysha Martinez-Orengo
- Hammoud Laboratory, Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Rebecca Reeder
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA
| | - Robin Gross
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Jing Qin
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Katie R Hagen
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Reed F Johnson
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Dima A Hammoud
- Hammoud Laboratory, Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
19
|
Sanchez Panchuelo RM, Mougin O, Turner R, Francis ST. Quantitative T1 mapping using multi-slice multi-shot inversion recovery EPI. Neuroimage 2021; 234:117976. [PMID: 33781969 PMCID: PMC8204273 DOI: 10.1016/j.neuroimage.2021.117976] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 02/27/2021] [Accepted: 03/13/2021] [Indexed: 11/12/2022] Open
Abstract
An efficient multi-slice inversion–recovery EPI (MS-IR-EPI) sequence for fast, high spatial resolution, quantitative T1 mapping is presented, using a segmented simultaneous multi-slice acquisition, combined with slice order shifting across multiple acquisitions. The segmented acquisition minimises the effective TE and readout duration compared to a single-shot EPI scheme, reducing geometric distortions to provide high quality T1 maps with a narrow point-spread function. The precision and repeatability of MS-IR-EPI T1 measurements are assessed using both T1-calibrated and T2-calibrated ISMRM/NIST phantom spheres at 3 and 7 T and compared with single slice IR and MP2RAGE methods. Magnetization transfer (MT) effects of the spectrally-selective fat-suppression (FS) pulses required for in vivo imaging are shown to shorten the measured in-vivo T1 values. We model the effect of these fat suppression pulses on T1 measurements and show that the model can remove their MT contribution from the measured T1, thus providing accurate T1 quantification. High spatial resolution T1 maps of the human brain generated with MS-IR-EPI at 7 T are compared with those generated with the widely implemented MP2RAGE sequence. Our MS-IR-EPI sequence provides high SNR per unit time and sharper T1 maps than MP2RAGE, demonstrating the potential for ultra-high resolution T1 mapping and the improved discrimination of functionally relevant cortical areas in the human brain.
Collapse
Affiliation(s)
- Rosa M Sanchez Panchuelo
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom.
| | - Olivier Mougin
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Robert Turner
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Susan T Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
20
|
Pirastru A, Chen Y, Pelizzari L, Baglio F, Clerici M, Haacke EM, Laganà MM. Quantitative MRI using STrategically Acquired Gradient Echo (STAGE): optimization for 1.5 T scanners and T1 relaxation map validation. Eur Radiol 2021; 31:4504-4513. [PMID: 33409790 DOI: 10.1007/s00330-020-07515-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/24/2020] [Accepted: 11/12/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVES The strategically acquired gradient echo (STAGE) protocol, developed for 3T scanners, allows one to derive quantitative maps such as T1, T2*, proton density, and quantitative susceptibility mapping in about 5 min. Our aim was to adapt the STAGE sequences for 1.5T scanners which are still commonly used in clinical practice. Furthermore, the accuracy and repeatability of the STAGE-derived T1 estimate were tested. METHODS Flip angle (FA) optimization was performed using a theoretical simulation by maximizing signal-to-noise ratio, contrast-to-noise ratio, and T1 precision. The FA choice was further refined with the ISMRM/NIST phantom and in vivo acquisitions. The accuracy of the T1 estimate was assessed by comparing STAGE-derived T1 values with T1 maps obtained with an inversion recovery sequence. T1 accuracy was investigated for both the phantom and in vivo data. Finally, one subject was acquired 10 times once a week and a group of 27 subjects was scanned once. The T1 coefficient of variation (COV) was computed to assess scan-rescan and physiological variability, respectively. RESULTS The FA1,2 = 7°,38° were identified as the optimal FA pair at 1.5T. The T1 estimate errors were below 3% and 5% for phantom and in vivo measurements, respectively. COV for different tissues ranged from 1.8 to 4.8% for physiological variability, and between 0.8 and 2% for scan-rescan repeatability. CONCLUSION The optimized STAGE protocol can provide accurate and repeatable T1 mapping along with other qualitative images and quantitative maps in about 7 min on 1.5T scanners. This study provides the groundwork to assess the role of STAGE in clinical settings. KEY POINTS • The STAGE imaging protocol was optimized for use on 1.5T field strength scanners. • A practical STAGE protocol makes it possible to derive quantitative maps (i.e., T1, T2*, PD, and QSM) in about 7 min at 1.5T. • The T1 estimate derived from the STAGE protocol showed good accuracy and repeatability.
Collapse
Affiliation(s)
- Alice Pirastru
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Via Alfonso Capecelatro, 66, 20148, Milan, Italy
| | - Yongsheng Chen
- Department of Neurology, Wayne State University School of Medicine, 4201 St Antoine St, Detroit, MI 48201, USA
| | - Laura Pelizzari
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Via Alfonso Capecelatro, 66, 20148, Milan, Italy
| | - Francesca Baglio
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Via Alfonso Capecelatro, 66, 20148, Milan, Italy
| | - Mario Clerici
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Via Alfonso Capecelatro, 66, 20148, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 35, Milan, 20122, Italy
| | - E Mark Haacke
- Department of Neurology, Wayne State University School of Medicine, 4201 St Antoine St, Detroit, MI 48201, USA.,The MRI Institute for Biomedical Research, 30200 Telegraph Rd, Bingham Farms, MI 48025, USA.,Magnetic Resonance Innovations Inc, 30200 Telegraph Rd, Bingham Farms, MI 48025, USA.,Department of Radiology, Wayne State University School of Medicine, 3990 John R St, Detroit, MI 48201, USA
| | - Maria Marcella Laganà
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Via Alfonso Capecelatro, 66, 20148, Milan, Italy.
| |
Collapse
|
21
|
Kühne F, Neumann WJ, Hofmann P, Marques J, Kaindl AM, Tietze A. Assessment of myelination in infants and young children by T1 relaxation time measurements using the magnetization-prepared 2 rapid acquisition gradient echoes sequence. Pediatr Radiol 2021; 51:2058-2068. [PMID: 34287663 PMCID: PMC8476383 DOI: 10.1007/s00247-021-05109-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 03/18/2021] [Accepted: 05/17/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Axonal myelination is an important maturation process in the developing brain. Increasing myelin content correlates with the longitudinal relaxation rate (R1=1/T1) in magnetic resonance imaging (MRI). OBJECTIVE By using magnetization-prepared 2 rapid acquisition gradient echoes (MP2RAGE) on a 3-T MRI system, we provide R1 values and myelination rates for infants and young children. MATERIALS AND METHODS Average R1 values in white and grey matter regions in 94 children without pathological MRI findings (age range: 3 months to 6 years) were measured and fitted by a saturating-exponential growth model. For comparison, R1 values of 36 children with different brain pathologies are presented. The findings were related to a qualitative evaluation using T2, magnetization-prepared rapid acquisition gradient echo (MP-RAGE) and MP2RAGE. RESULTS R1 changes rapidly in the first 16 months of life, then much slower thereafter. R1 is highest in pre-myelinated structures in the youngest subjects, such as the posterior limb of the internal capsule (0.74-0.76±0.04 s-1) and lowest for the corpus callosum (0.37-0.44±0.03 s-1). The myelination rate is fastest in the corpus callosum and slowest in the deep grey matter. R1 is decreased in hypo- and dysmyelination disorders. Myelin maturation is clearly visible on MP2RAGE, especially in the first year of life. CONCLUSION MP2RAGE permits a quantitative R1 mapping method with an examination time of approximately 6 min. The age-dependent R1 values for children without MRI-identified brain pathologies are well described by a saturating-exponential function with time constants depending on the investigated brain region. This model can serve as a reference for this age group and to search for indications of subtle pathologies. Moreover, the MP2RAGE sequence can also be used for the qualitative assessment of myelinated structures.
Collapse
Affiliation(s)
- Fabienne Kühne
- Department of Pediatric Neurology, Charité – University Medicine Berlin, Berlin, Germany
| | - Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité – University Medicine Berlin, Berlin, Germany ,Institute of Neuroradiology, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Philip Hofmann
- Department of Physics and Astronomy, Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - José Marques
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, Netherlands
| | - Angela M. Kaindl
- Department of Pediatric Neurology, Charité – University Medicine Berlin, Berlin, Germany
| | - Anna Tietze
- Institute of Neuroradiology, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|
22
|
Gräfe D, Frahm J, Merkenschlager A, Voit D, Hirsch FW. Quantitative T1 mapping of the normal brain from early infancy to adulthood. Pediatr Radiol 2021; 51:450-456. [PMID: 33068131 PMCID: PMC7897197 DOI: 10.1007/s00247-020-04842-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/12/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Quantitative mapping of MRI relaxation times is expected to uncover pathological processes in the brain more subtly than standard MRI techniques with weighted contrasts. So far, however, most mapping techniques suffer from a long measuring time, low spatial resolution or even sensitivity to magnetic field inhomogeneity. OBJECTIVE To obtain T1 relaxation times of the normal brain from early infancy to adulthood using a novel technique for fast and accurate T1 mapping at high spatial resolution. MATERIALS AND METHODS We performed whole-brain T1 mapping within less than 3 min in 100 patients between 2 months and 18 years of age with normal brain at a field strength of 3 T. We analyzed T1 relaxation times in several gray-matter nuclei and white matter. Subsequently, we derived regression equations for mean value and confidence interval. RESULTS T1 relaxation times of the pediatric brain rapidly decrease in all regions within the first 3 years of age, followed by a significantly weaker decrease until adulthood. These characteristics are more pronounced in white matter than in deep gray matter. CONCLUSION Regardless of age, quantitative T1 mapping of the pediatric brain is feasible in clinical practice. Normal age-dependent values should contribute to improved discrimination of subtle intracerebral alterations.
Collapse
Affiliation(s)
- Daniel Gräfe
- Department of Pediatric Radiology, University of Leipzig, Liebigstraße 20a, 04103, Leipzig, Germany.
| | - Jens Frahm
- Biomedizinische NMR, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | | | - Dirk Voit
- Biomedizinische NMR, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Franz Wolfgang Hirsch
- Department of Pediatric Radiology, University of Leipzig, Liebigstraße 20a, 04103, Leipzig, Germany
| |
Collapse
|
23
|
Morel B, Piredda GF, Cottier JP, Tauber C, Destrieux C, Hilbert T, Sirinelli D, Thiran JP, Maréchal B, Kober T. Normal volumetric and T1 relaxation time values at 1.5 T in segmented pediatric brain MRI using a MP2RAGE acquisition. Eur Radiol 2020; 31:1505-1516. [PMID: 32885296 DOI: 10.1007/s00330-020-07194-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/02/2020] [Accepted: 08/13/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES This study introduced a tailored MP2RAGE-based brain acquisition for a comprehensive assessment of the normal maturing brain. METHODS Seventy normal patients (35 girls and 35 boys) from 1 to 16 years of age were recruited within a prospective monocentric study conducted from a single University Hospital. Brain MRI examinations were performed at 1.5 T using a 20-channel head coil and an optimized 3D MP2RAGE sequence with a total acquisition time of 6:36 min. Automated 38 region segmentation was performed using the MorphoBox (template registration, bias field correction, brain extraction, and tissue classification) which underwent a major adaptation of three age-group T1-weighted templates. Volumetry and T1 relaxometry reference ranges were established using a logarithmic model and a modified Gompertz growth respectively. RESULTS Detailed automated brain segmentation and T1 mapping were successful in all patients. Using these data, an age-dependent model of normal brain maturation with respect to changes in volume and T1 relaxometry was established. After an initial rapid increase until 24 months of life, the total intracranial volume was found to converge towards 1400 mL during adolescence. The expected volumes of white matter (WM) and cortical gray matter (GM) showed a similar trend with age. After an initial major decrease, T1 relaxation times were observed to decrease progressively in all brain structures. The T1 drop in the first year of life was more pronounced in WM (from 1000-1100 to 650-700 ms) than in GM structures. CONCLUSION The 3D MP2RAGE sequence allowed to establish brain volume and T1 relaxation time normative ranges in pediatrics. KEY POINTS • The 3D MP2RAGE sequence provided a reliable quantitative assessment of brain volumes and T1 relaxation times during childhood. • An age-dependent model of normal brain maturation was established. • The normative ranges enable an objective comparison to a normal cohort, which can be useful to further understand, describe, and identify neurodevelopmental disorders in children.
Collapse
Affiliation(s)
- Baptiste Morel
- Inserm UMR 1253, iBrain, Université de Tours, Tours, France. .,Pediatric Radiology Department, Clocheville Hospital, CHRU de Tours, 49 Boulevard Beranger, 37000, Tours, France.
| | - Gian Franco Piredda
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland.,Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,LTS5, École Polytechnique FÉdÉrale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Clovis Tauber
- Inserm UMR 1253, iBrain, Université de Tours, Tours, France
| | | | - Tom Hilbert
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland.,Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,LTS5, École Polytechnique FÉdÉrale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Jean-Philippe Thiran
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,LTS5, École Polytechnique FÉdÉrale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bénédicte Maréchal
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland.,Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,LTS5, École Polytechnique FÉdÉrale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tobias Kober
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland.,Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,LTS5, École Polytechnique FÉdÉrale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
24
|
Supplemental taurine during adolescence and early adulthood has sex-specific effects on cognition, behavior and neurotransmitter levels in C57BL/6J mice dependent on exposure window. Neurotoxicol Teratol 2020; 79:106883. [PMID: 32289445 DOI: 10.1016/j.ntt.2020.106883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/18/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023]
Abstract
The mammalian brain goes through final maturation during late adolescence and early adulthood with sex differences in timing. The key cellular processes, including changes in neurotransmitter receptor density and synaptic pruning, make this age uniquely vulnerable to neurotoxic insults. Teenagers and young adults are the major consumers of energy drinks, which contain high levels of taurine and caffeine. Taurine is one of the most abundant amino acids in the central nervous system, but the effects of supplemental taurine consumption during adolescence has not been well studied. We conducted an initial short-term exposure study with 0.12% taurine in drinking water and a long-term exposure dose-response study using 0.06 and 0.12% taurine in male and female C57BL/6J mice. We examined a broad range of cognitive functions and behaviors and measured neurotransmitter levels. We found no significant differences in anxiety, open field locomotor activity, or sensorimotor gating. However, we found impairments in novel object recognition and sex differences in Morris water maze. When taurine treatment stopped before behavioral experiments began, male mice had significant impairments in spatial learning and memory. In the dose-response study when taurine treatment continued throughout behavioral experiments, females had significant impairments. We also found sex differences in neurotransmitter levels with females having higher levels of glutamate, DOPAC and 5-HIAA. We conclude that both females and males are at risk from excess taurine consumption during final brain maturation.
Collapse
|
25
|
Paniukov D, Lebel RM, Giesbrecht G, Lebel C. Cerebral blood flow increases across early childhood. Neuroimage 2020; 204:116224. [PMID: 31561017 DOI: 10.1016/j.neuroimage.2019.116224] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/27/2019] [Accepted: 09/23/2019] [Indexed: 12/12/2022] Open
Abstract
Adequate cerebral blood flow (CBF) is essential to proper brain development and function. Detailed characterization of CBF developmental trajectories will lead to better understanding of the development of cognitive, motor, and sensory functions, as well as behaviour in children. Previous studies have shown CBF increases during infancy and decreases during adolescence; however, the trajectories during childhood, and in particular the timing of peak CBF, remain unclear. Here, we used arterial spin labeling to map age-related changes of CBF across a large longitudinal sample that included 279 scans on 96 participants (46 girls and 50 boys) aged 2-7 years. CBF maps were analyzed using hierarchical linear regression for every voxel inside the grey matter mask, controlling for multiple comparisons. The results revealed a significant positive linear association between CBF and age in distributed brain regions including prefrontal, temporal, parietal, and occipital cortex, and in the cerebellum. There were no differences in developmental trajectories between males and females. Our findings show that CBF continues to increase until the age of 7 years, likely supporting ongoing improvements in behaviour, cognition, motor, and sensory functions in early childhood.
Collapse
Affiliation(s)
- Dmitrii Paniukov
- Department of Pediatrics, University of Calgary, Canada; Department of Radiology, University of Calgary, Canada; Alberta Children's Hospital Research Institute at Alberta Children's Hospital, Cumming School of Medicine, University of Calgary, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Canada
| | - R Marc Lebel
- Department of Radiology, University of Calgary, Canada; Alberta Children's Hospital Research Institute at Alberta Children's Hospital, Cumming School of Medicine, University of Calgary, Canada; GE Healthcare, Calgary, Canada
| | - Gerald Giesbrecht
- Department of Pediatrics, University of Calgary, Canada; Alberta Children's Hospital Research Institute at Alberta Children's Hospital, Cumming School of Medicine, University of Calgary, Canada
| | - Catherine Lebel
- Department of Radiology, University of Calgary, Canada; Alberta Children's Hospital Research Institute at Alberta Children's Hospital, Cumming School of Medicine, University of Calgary, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Canada.
| |
Collapse
|
26
|
Kupeli A, Kocak M, Goktepeli M, Karavas E, Danisan G. Role of T1 mapping to evaluate brain aging in a healthy population. Clin Imaging 2020; 59:56-60. [DOI: 10.1016/j.clinimag.2019.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/24/2019] [Accepted: 09/23/2019] [Indexed: 11/25/2022]
|
27
|
Wang X, Hernando D, Reeder SB. Phase-based T 2 mapping with gradient echo imaging. Magn Reson Med 2019; 84:609-619. [PMID: 31872470 DOI: 10.1002/mrm.28138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/31/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE Transverse relaxation time (T2 ) mapping with MRI has a plethora of clinical and research applications. Current T2 mapping techniques are based primarily on spin-echo (SE) relaxometry strategies that rely on the signal magnitude, and often suffer from lengthy acquisition times. In this work, we propose a phase-based T2 mapping technique where T2 information is encoded into the signal phase of rapid gradient echo (GRE) acquisitions. THEORY Bloch equation simulations demonstrate that the phase of GRE acquisitions obtained with a very small inter-repetition RF phase increment has a strong monotonic dependence on T2 , resulting from coherent transverse magnetization. This T2 -dependent phase behavior forms the basis of the proposed T2 mapping technique. To isolate T2 -dependent phase from background phase, at least 2 data sets with different RF phase increments are acquired. The proposed method can also be combined with chemical shift encoded MRI to separate water and fat signals. METHODS The feasibility of the proposed technique was validated in a phantom experiment. In vivo feasibility was demonstrated in the brain, knee, abdomen, and pelvis. Comparisons were made with SE-based T2 mapping, spectroscopy, and T2 values from the literature. RESULTS The proposed method produced accurate T2 maps compared with SE-based T2 mapping in the phantom. Good qualitative agreement was observed in vivo between the proposed method and the reference. T2 measured in various anatomies agreed well with values reported in the literature. CONCLUSION A phase-based T2 mapping technique was developed and its feasibility demonstrated in phantoms and in vivo.
Collapse
Affiliation(s)
- Xiaoke Wang
- Department of Radiology, University of Wisconsin, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin
| | - Diego Hernando
- Department of Radiology, University of Wisconsin, Madison, Wisconsin.,Department of Medical Physics, University of Wisconsin, Madison, Wisconsin
| | - Scott B Reeder
- Department of Radiology, University of Wisconsin, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin.,Department of Medical Physics, University of Wisconsin, Madison, Wisconsin.,Department of Medicine, University of Wisconsin, Madison, Wisconsin.,Department of Emergency Medicine, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
28
|
Bouhrara M, Rejimon AC, Cortina LE, Khattar N, Spencer RG. Four-angle method for practical ultra-high-resolution magnetic resonance mapping of brain longitudinal relaxation time and apparent proton density. Magn Reson Imaging 2019; 66:57-68. [PMID: 31730882 DOI: 10.1016/j.mri.2019.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/09/2019] [Accepted: 11/10/2019] [Indexed: 10/25/2022]
Abstract
Changes in longitudinal relaxation time (T1) and proton density (PD) are sensitive indicators of microstructural alterations associated with various central nervous system diseases as well as brain maturation and aging. In this work, we introduce a new approach for rapid and accurate high-resolution (HR) or ultra HR (UHR) mapping of T1 and apparent PD (APD) of the brain with correction of radiofrequency field, B1, inhomogeneities. The four-angle method (FAM) uses four spoiled-gradient recalled-echo (SPGR) images acquired at different flip angles (FA) and short repetition times (TRs). The first two SPGR images are acquired at low-spatial resolution and used to accurately map the active B1+ field with the recently introduced steady-state double angle method (SS-DAM). The estimated B1+ map is used in conjunction with the two other SPGR images, acquired at HR or UHR, to map T1 and APD. The method is evaluated with numerical, phantom, and in-vivo imaging measurements. Furthermore, we investigated imaging acceleration methods to further shorten the acquisition time. Our results indicate that FAM provides an accurate method for simultaneous HR or UHR mapping of T1 and APD in human brain in clinical high-field MRI. Derived parameter maps without B1+correction suffer from large inaccuracies, but this issue is well-corrected through use of the SS-DAM. Furthermore, the use of SPGR imaging with short TR and phased-array coil acquisition permits substantial imaging acceleration and enables robust HR or UHR T1 and APD mapping in a clinically acceptable time frame, with whole brain coverage obtained in less than 2 min or 5 min, respectively. The method exhibits high reproducibility and benefits from the use of the conventional SPGR sequence, available in all preclinical and clinical MRI machines, and very simple modeling to address a critical outstanding issue in neuroimaging.
Collapse
Affiliation(s)
- Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| | - Abinand C Rejimon
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Luis E Cortina
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Nikkita Khattar
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Richard G Spencer
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
29
|
Age-specific optimization of T1-weighted brain MRI throughout infancy. Neuroimage 2019; 199:387-395. [PMID: 31154050 DOI: 10.1016/j.neuroimage.2019.05.075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/10/2019] [Accepted: 05/28/2019] [Indexed: 12/16/2022] Open
Abstract
The infant brain undergoes drastic morphological and functional development during the first year of life. Three-dimensional T1-weighted Magnetic Resonance Imaging (3D T1w-MRI) is a major tool to characterize the brain anatomy, which however, manifests inherently low and rapidly changing contrast between white matter (WM) and gray matter (GM) in the infant brains (0-12 month-old). Despite the prior efforts made to maximize tissue contrast in the neonatal brains (≤1 months), optimization of imaging methods in the rest of the infancy (1-12 months) is not fully addressed, while brains in the latter period exhibit even more challenging contrast. Here, we performed a systematic investigation to improve the contrast between cortical GM and subcortical WM throughout the infancy. We first performed simultaneous T1 and proton density mapping in a normally developing infant cohort at 3T (n = 57). Based on the evolution of T1 relaxation times, we defined three age groups and simulated the relative tissue contrast between WM and GM in each group. Age-specific imaging strategies were proposed according to the Bloch simulation: inversion time (TI) around 800 ms for the 0-3 month-old group, dual TI at 500 ms and 700 ms for the 3-7 month-old group, and TI around 700 ms for 7-12 month-old group, using a centrically encoded 3D-MPRAGE sequence at 3T. Experimental results with varying TIs in each group confirmed improved contrast at the proposed optimal TIs, even in 3-7 month-old infants who had nearly isointense contrast. We further demonstrated the advantage of improved relative contrast in segmenting the neonatal brains using a multi-atlas segmentation method. The proposed age-specific optimization strategies can be easily adapted to routine clinical examinations, and the improved image contrast would facilitate quantitative analysis of the infant brain development.
Collapse
|
30
|
Crowe W, Wang L, Zhang Z, Varagic J, Bourland JD, Chan MD, Habib AA, Zhao D. MRI evaluation of the effects of whole brain radiotherapy on breast cancer brain metastasis. Int J Radiat Biol 2019; 95:338-346. [PMID: 30499763 DOI: 10.1080/09553002.2019.1554920] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE To assess early changes in brain metastasis in response to whole brain radiotherapy (WBRT) by longitudinal Magnetic Resonance Imaging (MRI). MATERIALS AND METHODS Using a 7T system, MRI examinations of brain metastases in a breast cancer MDA-MD231-Br mouse model were conducted before and 24 hours after 3 daily fractionations of 4 Gy WBRT. Besides anatomic MRI, diffusion-weighted (DW) MRI and dynamic contrast-enhanced (DCE) MRI were applied to study cytotoxic effect and blood-tumor-barrier (BTB) permeability change, respectively. RESULTS Before treatment, high-resolution T2-weighted images revealed hyperintense multifocal lesions, many of which (∼50%) were not enhanced on T1-weighted contrast images, indicating intact BTB in the brain metastases. While no difference in the number of new lesions was observed, WBRT-treated tumors were significantly smaller than sham controls (p < .05). DW MRI detected significant increase in apparent diffusion coefficient (ADC) in WBRT tumors (p < .05), which correlated with elevated caspase 3 staining of apoptotic cells. Many lesions remained non-enhanced post WBRT. However, quantitative DCE MRI analysis showed significantly higher permeability parameter, Ktrans, in WBRT than the sham group (p < .05), despite marked spatial heterogeneity. CONCLUSIONS MRI allowed non-invasive assessments of WBRT induced changes in BTB permeability, which may provide useful information for potential combination treatment.
Collapse
Affiliation(s)
- William Crowe
- a Department of Biomedical Engineering , Wake Forest School of Medicine , Winston-Salem , NC , USA
| | - Lulu Wang
- a Department of Biomedical Engineering , Wake Forest School of Medicine , Winston-Salem , NC , USA
| | - Zhongwei Zhang
- a Department of Biomedical Engineering , Wake Forest School of Medicine , Winston-Salem , NC , USA
| | - Jasmina Varagic
- b Department of Surgery , Wake Forest School of Medicine , Winston-Salem , NC , USA
| | - J Daniel Bourland
- a Department of Biomedical Engineering , Wake Forest School of Medicine , Winston-Salem , NC , USA.,c Department of Radiation Oncology , Wake Forest School of Medicine , Winston-Salem , NC , USA
| | - Michael D Chan
- c Department of Radiation Oncology , Wake Forest School of Medicine , Winston-Salem , NC , USA
| | - Amyn A Habib
- d Department of Neurology and Neurotherapeutics , University of Texas Southwestern Medical Center and VA North Texas Medical Center , Dallas , TX , USA
| | - Dawen Zhao
- a Department of Biomedical Engineering , Wake Forest School of Medicine , Winston-Salem , NC , USA.,e Department of Cancer Biology , Wake Forest School of Medicine , Winston-Salem , NC , USA
| |
Collapse
|
31
|
Shapshak P, Balaji S, Kangueane P, Chiappelli F, Somboonwit C, Menezes LJ, Sinnott JT. Innovative Technologies for Advancement of WHO Risk Group 4 Pathogens Research. GLOBAL VIROLOGY III: VIROLOGY IN THE 21ST CENTURY 2019. [PMCID: PMC7122670 DOI: 10.1007/978-3-030-29022-1_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Paul Shapshak
- Department of Internal Medicine, University of South Florida, Tampa, FL USA
| | - Seetharaman Balaji
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka India
| | | | - Francesco Chiappelli
- Oral Biology and Medicine, CHS 63-090, UCLA School of Dentistry Oral Biology and Medicine, CHS 63-090, Los Angeles, CA USA
| | | | - Lynette J. Menezes
- Department of Internal Medicine, University of South Florida, Tampa, FL USA
| | - John T. Sinnott
- Department of Internal Medicine, University of South Florida, Tampa, FL USA
| |
Collapse
|