1
|
Iqbal M, Yu Q, Tang J, Xiang J. Unraveling the gut microbiota's role in obesity: key metabolites, microbial species, and therapeutic insights. J Bacteriol 2025; 207:e0047924. [PMID: 40183584 PMCID: PMC12096833 DOI: 10.1128/jb.00479-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
Obesity, characterized by excessive fat accumulation, stems from an imbalance between energy intake and expenditure, with the gut microbiota playing a crucial role. This review highlights how gut microbiota influences metabolic pathways, inflammation, and adipose tissue regulation in obesity. Specific bacteria and metabolites, such as lipopolysaccharides (LPS) and short-chain fatty acids (SCFAs), modulate gut permeability, inflammation, and energy harvest, impacting obesity development. Certain gut bacteria, including Clostridium XIVb, Dorea spp., Enterobacter cloacae, and Collinsella aerofaciens, promote obesity by increasing energy harvest, gut permeability, and inflammatory response through LPS translocation into the bloodstream. Conversely, beneficial bacteria like Akkermansia muciniphila, Lactobacillus spp., and Bifidobacterium spp. enhance gut barrier integrity, regulate SCFA production, and modulate fasting-induced adipose factor, which collectively support metabolic health by reducing fat storage and inflammation. Metabolites such as SCFAs (acetate, propionate, and butyrate) interact with G-protein coupled receptors to regulate lipid metabolism and promote the browning of white adipose tissue (WAT), thus enhancing thermogenesis and energy expenditure. However, LPS contributes to insulin resistance and fat accumulation, highlighting the dual roles of these microbial metabolites in both supporting and disrupting metabolic function. Therapeutic interventions targeting gut microbiota, such as promoting WAT browning and activating brown adipose tissue (BAT), hold promise for obesity management. However, personalized approaches are necessary due to individual microbiome variability. Further research is essential to translate these insights into microbiota-based clinical therapies.
Collapse
Affiliation(s)
- Majid Iqbal
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Yu
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Changsha, Hunan, China
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingqun Tang
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Changsha, Hunan, China
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juanjuan Xiang
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Zuffa S, Lay C, Wimborne EA, Rodriguez AH, Wu Y, Nobrega FL, Bartke N, Hokken-Koelega ACS, Knol J, Roeselers G, Swann JR. Milk phospholipid-coated lipid droplets modulate the infant gut microbiota and metabolome influencing weight gain. MICROBIOME 2025; 13:120. [PMID: 40369689 PMCID: PMC12076826 DOI: 10.1186/s40168-025-02106-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 04/07/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND The supramolecular structure and composition of milk fat globules in breast milk is complex. Lipid droplets in formula milk are typically smaller compared to human milk and differ in their lipid and protein composition. These droplets play an important role in gut and immune maturation, and their components possess antimicrobial and antiviral properties. Here, the influence of a concept infant formula (IF) containing large milk phospholipid-coated lipid droplets on the maturation of the infant microbiota, metabolome, and weight gain in the first year of life was investigated. RESULTS Formula-fed infants were randomized to receive either a standard IF (Control) or a Test formula containing large milk phospholipid-coated lipid droplets (Test) until 17 weeks of age. A breast-fed Reference group was also investigated. At 3 months of age, several taxa identified as opportunistic pathogens (e.g., Enterobacter, Klebsiella, Enterococcus, Streptococcus) were less abundant in the Test stools compared to Control, while an enrichment of the butyrate-producing Ruminococcaceae and Lachnospiraceae was observed. These findings indicate that the Test formula resulted in gut microbiota maturation trajectories more comparable to healthy breast-fed infants. This was accompanied by variation in several fecal and plasma metabolites at 3 months of age related to gut microbial metabolism including bile acids, hippurate, phenylacetylglycine, trimethylamine, and various lipids and fatty acids. At 12 months, measures of subcutaneous fat and body mass index (BMI) were significantly higher in infants receiving standard IF compared to those receiving breast milk. However, this weight gain and adiposity was attenuated in the Test group infants. CONCLUSIONS The presence of large phospholipid-coated lipid droplets in formula milk positively influenced the development of the infants' gut microbiota, their metabolomic profiles, and their body composition to more closely resemble breast-fed infants compared to standard IF. These droplets may further enhance the restriction of pathogenic bacteria seen with standard infant formula and suggest a potential impact on infant metabolic programming that may contribute to physiological development. Video Abstract.
Collapse
Affiliation(s)
- Simone Zuffa
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, USA
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Christophe Lay
- Danone Research & Innovation, Precision Nutrition, D-Lab, Singapore, Singapore
| | - Elizabeth A Wimborne
- Faculty of Medicine, School of Human Development and Health, University of Southampton, Southampton, UK
| | | | - Yi Wu
- Faculty of Life Sciences, School of Biological Sciences, University of Southampton, Southampton, UK
| | - Franklin L Nobrega
- Faculty of Life Sciences, School of Biological Sciences, University of Southampton, Southampton, UK
| | - Nana Bartke
- Danone Research & Innovation, Utrecht, The Netherlands
| | | | - Jan Knol
- Danone Research & Innovation, Utrecht, The Netherlands
| | | | - Jonathan R Swann
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK.
- Faculty of Medicine, School of Human Development and Health, University of Southampton, Southampton, UK.
| |
Collapse
|
3
|
Rodríguez-Arellano SN, González-Gómez JP, Gomez-Gil B, González-Ávila M, Palomera-Hernández JR, Barrón-Cabrera E, Vergara-Jiménez MDJ, Chaidez C. A Two-Phage Cocktail Modulates Gut Microbiota Composition and Metabolic Profiles in an Ex Vivo Colon Model. Int J Mol Sci 2025; 26:2805. [PMID: 40141446 PMCID: PMC11942677 DOI: 10.3390/ijms26062805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
Bacteriophage therapy is a promising approach for targeting antibiotic-resistant bacteria and modulating gut microbiota in metabolic diseases such as obesity. This study evaluated the impact of a two-phage cocktail on an ex vivo colonic simulation model of gut microbiota derived from obese individuals, both in its normalized state and after enrichment with Enterobacter cloacae, an obesity-related bacteria. Microbiological analyses confirmed that the phage cocktail remained active throughout the colonic regions over three digestion cycles and effectively reduced enterobacterial populations in the enriched microbiota. Metabarcoding of the 16S rRNA gene revealed that phage therapy did not significantly alter the abundance of dominant genera, but selectively reduced E. cloacae across all colonic regions. Alpha diversity was significantly affected only in the enriched microbiota, while beta diversity analysis indicated significant compositional shifts during therapy, with reduced dispersion in the final treatment stage. Short-chain fatty acid profiling demonstrated region- and group-specific metabolic responses, with increased lactic and butyric acid concentrations in the ascending colon of the enriched microbiota following phage treatment. This study provides the first ex vivo evidence that a two-phage cocktail can selectively eliminate E. cloacae while preserving overall microbiota structure and functionality. These findings establish a foundation for future in vivo studies exploring the role of phage therapy in reshaping gut microbial communities and metabolic profiles, highlighting its potential as a precision tool for managing gut dysbiosis in metabolic disorders.
Collapse
Affiliation(s)
| | - Jean Pierre González-Gómez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Culiacan 80110, Sinaloa, Mexico
| | - Bruno Gomez-Gil
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Unidad Mazatlán en Acuicultura y Manejo Ambiental, Mazatlan 82112, Sinaloa, Mexico
| | - Marisela González-Ávila
- Medical and Pharmaceutical Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. (CIATEJ), Guadalajara 44270, Jalisco, Mexico
| | - Juan Ramón Palomera-Hernández
- Medical and Pharmaceutical Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. (CIATEJ), Guadalajara 44270, Jalisco, Mexico
| | - Elisa Barrón-Cabrera
- Facultad de Ciencias de la Nutrición y Gastronomía, Universidad Autónoma de Sinaloa, Culiacan 80019, Sinaloa, Mexico
| | | | - Cristobal Chaidez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Culiacan 80110, Sinaloa, Mexico
| |
Collapse
|
4
|
Chen J, Shen B, Shen H, Zhu L, Yu H, Tong Y, Yu W. The role of gut microbiota in predicting the weight loss following laparoscopic sleeve gastrectomy. Front Microbiol 2025; 16:1560368. [PMID: 40099179 PMCID: PMC11911518 DOI: 10.3389/fmicb.2025.1560368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/10/2025] [Indexed: 03/19/2025] Open
Abstract
Background Laparoscopic sleeve gastrectomy (LSG) has emerged as a highly effective intervention in the management of obesity. While there has been a recent surge in research exploring the relationship between obesity and gut microbiota, the association between gut microbiota and LSG remains relatively underexplored. This study aimed to investigate the relationship between gut microbiota and both early and later effects of LSG. Methods In this retrospective study, clinical characteristics and preoperative fecal samples were collected from 52 individuals who underwent LSG. Using 16S rRNA gene sequencing, we compared the community composition, alpha diversity, and beta diversity of gut microbiota between patients who experienced efficient weight loss and those who did not. Additionally, comprehensive and correlation analyses were performed to identify potential associations between specific microbial taxa and LSG outcomes. Results The abundances of gut microbiota in patients who experienced efficient weight loss and those who experienced general weight loss were comparable. However, the influence of gut microbiota on the efficacy of weight loss is dynamic. Specifically, the Fusobacteriota phylum significantly contributed to the early curative effects of LSG, while Actinobacteriota had a greater impact on the late curative effects. Additionally, Proteobacteria were found to mediate long-term efficacy through complex mechanisms. Conclusion This study analyzed the preoperative gut microbiota signature to predict the efficacy of LSG, potentially offering valuable insights for clinical applications. Preoperative assessment of gut microbiota profiles could assist patients in their decision-making processes, particularly regarding the potential outcomes of LSG and the long-term impact of the procedure on their health.
Collapse
Affiliation(s)
- Jionghuang Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liver Regeneration and Metabolism Study Group, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bo Shen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Provincial Key Laboratory of Precise Diagnosis and Treatment of Abdominal Infection, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hongdan Shen
- Nursing Department, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Linghua Zhu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hong Yu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Provincial Key Laboratory of Precise Diagnosis and Treatment of Abdominal Infection, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yifan Tong
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liver Regeneration and Metabolism Study Group, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Provincial Key Laboratory of Precise Diagnosis and Treatment of Abdominal Infection, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weihua Yu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liver Regeneration and Metabolism Study Group, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Zhou L, Gong L, Liu Z, Xiang J, Ren C, Xu Y. Probiotic interventions with highly acid-tolerant Levilactobacillus brevis strains improve lipid metabolism and gut microbial balance in obese mice. Food Funct 2025; 16:112-132. [PMID: 39621366 DOI: 10.1039/d4fo03417a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Many studies have shown that specific lactic acid bacteria (LAB) strains can delay obesity, offering a viable alternative to medications and surgeries. However, the mining and development of highly effective LAB strains for obesity control is still limited. In this study, the naturally highly acid-tolerant and gamma-aminobutyric acid-producing Levilactobacillus brevis D17 and its glnR deletion strain were used to investigate their anti-obesity effects. In an 8-week mouse experiment, L. brevis D17 and its glnR-deletion strain D17ΔglnR significantly reduced weight gain by 28.4% and 29.1%, respectively, improving abnormal serum indicators and glucose metabolism caused by a high-fat diet. Furthermore, L. brevis D17 and its glnR-deletion strain D17ΔglnR successfully colonized in the gut. Both D17 and D17ΔglnR interventions significantly restored the relative abundance of Muribaculaceae, Ileibacterium valens, Lactobacillus, Faecalibaculum, Bifidobacterium globosum, Akkermansia muciniphila, and Romboutsia ilealis, whereas they significantly reduced potentially harmful bacteria like Leptogranulimonas, Flintibacter, and Alistipes. Additionally, L. brevis intervention effectively decreased the levels of primary bile acids and increased secondary bile acids in the gut, thus balancing bile acid metabolism. The transcriptional analysis suggested that D17 and D17ΔglnR interventions may activate the AMPK signaling pathway in the liver to inhibit lipogenesis, activate the cAMP pathway to promote lipolysis, and inhibit pro-inflammatory macrophage infiltration to block inflammatory responses. These results indicate that L. brevis D17 and its glnR-deletion mutant strain D17ΔglnR show great potential in combating obesity. Moreover, these results also provide insights into the underlying mechanism behind their anti-obesity properties.
Collapse
Affiliation(s)
- Liping Zhou
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China.
| | - Luchan Gong
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China.
| | - Zhihao Liu
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China.
| | - Jinfeng Xiang
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China.
| | - Cong Ren
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China.
- China Key Laboratory of Microbiomics and Eco-brewing Technology for Light Industry, Wuxi 214122, Jiangsu, China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China.
- China Key Laboratory of Microbiomics and Eco-brewing Technology for Light Industry, Wuxi 214122, Jiangsu, China
| |
Collapse
|
6
|
Hamamah S, Iatcu OC, Covasa M. Dietary Influences on Gut Microbiota and Their Role in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Nutrients 2024; 17:143. [PMID: 39796579 PMCID: PMC11722922 DOI: 10.3390/nu17010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major contributor to liver-related morbidity, cardiovascular disease, and metabolic complications. Lifestyle interventions, including diet and exercise, are first line in treating MASLD. Dietary approaches such as the low-glycemic-index Mediterranean diet, the ketogenic diet, intermittent fasting, and high fiber diets have demonstrated potential in addressing the metabolic dysfunction underlying this condition. The development and progression of MASLD are closely associated with taxonomic shifts in gut microbial communities, a relationship well-documented in the literature. Given the importance of diet as a primary treatment for MASLD, it is important to understand how gut microbiota and their metabolic byproducts mediate favorable outcomes induced by healthy dietary patterns. Conversely, microbiota changes conferred by unhealthy dietary patterns such as the Western diet may induce dysbiosis and influence steatotic liver disease through promoting hepatic inflammation, up-regulating lipogenesis, dysregulating bile acid metabolism, increasing insulin resistance, and causing oxidative damage in hepatocytes. Although emerging evidence has identified links between diet, microbiota, and development of MASLD, significant gaps remain in understanding specific microbial roles, metabolite pathways, host interactions, and causal relationships. Therefore, this review aims to provide mechanistic insights into the role of microbiota-mediated processes through the analysis of both healthy and unhealthy dietary patterns and their contribution to MASLD pathophysiology. By better elucidating the interplay between dietary nutrients, microbiota-mediated processes, and the onset and progression of steatotic liver disease, this work aims to identify new opportunities for targeted dietary interventions to treat MASLD efficiently.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Internal Medicine, Scripps Mercy Hospital, San Diego, CA 92103, USA;
| | - Oana C. Iatcu
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania;
| | - Mihai Covasa
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania;
| |
Collapse
|
7
|
Wang T, Wang D, Ding Y, Xu H, Sun Y, Hou J, Zhang Y. Targeting Non-Alcoholic Fatty Liver Disease with Hawthorn Ethanol Extract (HEE): A Comprehensive Examination of Hepatic Lipid Reduction and Gut Microbiota Modulation. Nutrients 2024; 16:1335. [PMID: 38732582 PMCID: PMC11085873 DOI: 10.3390/nu16091335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Recent studies have highlighted the lipid-lowering ability of hawthorn ethanol extract (HEE) and the role played by gut flora in the efficacy of HEE. Our study sought to explore the effects of HEE on non-alcoholic fatty liver disease (NAFLD) in normal flora and pseudo germ-free mice. The results showed that HEE effectively diminished hepatic lipid accumulation, ameliorated liver function, reduced inflammatory cytokine levels and blood lipid profiles, and regulated blood glucose levels. HEE facilitated triglyceride breakdown, suppressed fatty acid synthesis, and enhanced intestinal health by modulating the diversity of the gut microbiota and the production of short-chain fatty acids in the gut. In addition, HEE apparently helps to increase the presence of beneficial genera of bacteria, thereby influencing the composition of the gut microbiota, and the absence of gut flora affects the efficacy of HEE. These findings reveal the potential of hawthorn for the prevention and treatment of NAFLD and provide new perspectives on the study of functional plants to improve liver health.
Collapse
Affiliation(s)
- Tianyu Wang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China; (T.W.); (Y.D.); (H.X.); (Y.S.); (J.H.)
| | - Dawei Wang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China;
| | - Yinghui Ding
- College of Food Science and Engineering, Changchun University, Changchun 130022, China; (T.W.); (Y.D.); (H.X.); (Y.S.); (J.H.)
| | - He Xu
- College of Food Science and Engineering, Changchun University, Changchun 130022, China; (T.W.); (Y.D.); (H.X.); (Y.S.); (J.H.)
| | - Yue Sun
- College of Food Science and Engineering, Changchun University, Changchun 130022, China; (T.W.); (Y.D.); (H.X.); (Y.S.); (J.H.)
| | - Jumin Hou
- College of Food Science and Engineering, Changchun University, Changchun 130022, China; (T.W.); (Y.D.); (H.X.); (Y.S.); (J.H.)
| | - Yanrong Zhang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China;
| |
Collapse
|
8
|
Moreira de Gouveia MI, Bernalier-Donadille A, Jubelin G. Enterobacteriaceae in the Human Gut: Dynamics and Ecological Roles in Health and Disease. BIOLOGY 2024; 13:142. [PMID: 38534413 DOI: 10.3390/biology13030142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 03/28/2024]
Abstract
The human gut microbiota plays a crucial role in maintaining host health. Our review explores the prevalence and dynamics of Enterobacteriaceae, a bacterial family within the Proteobacteria phylum, in the human gut which represents a small fraction of the gut microbiota in healthy conditions. Even though their roles are not yet fully understood, Enterobacteriaceae and especially Escherichia coli (E. coli) play a part in creating an anaerobic environment, producing vitamins and protecting against pathogenic infections. The composition and residency of E. coli strains in the gut fluctuate among individuals and is influenced by many factors such as geography, diet and health. Dysbiosis, characterized by alterations in the microbial composition of the gut microbiota, is associated with various diseases, including obesity, inflammatory bowel diseases and metabolic disorders. A consistent pattern in dysbiosis is the expansion of Proteobacteria, particularly Enterobacteriaceae, which has been proposed as a potential marker for intestinal and extra-intestinal inflammatory diseases. Here we develop the potential mechanisms contributing to Enterobacteriaceae proliferation during dysbiosis, including changes in oxygen levels, alterations in mucosal substrates and dietary factors. Better knowledge of these mechanisms is important for developing strategies to restore a balanced gut microbiota and reduce the negative consequences of the Enterobacteriaceae bloom.
Collapse
Affiliation(s)
| | | | - Gregory Jubelin
- Université Clermont Auvergne, INRAE, MEDIS UMR454, F-63000 Clermont-Ferrand, France
| |
Collapse
|
9
|
Gruzdev SK, Podoprigora IV, Gizinger OA. Immunology of gut microbiome and liver in non-alcoholic fatty liver disease (NAFLD): mechanisms, bacteria, and novel therapeutic targets. Arch Microbiol 2024; 206:62. [PMID: 38216746 DOI: 10.1007/s00203-023-03752-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 01/14/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the world. Most important contributors to its development are diet and obesity. Gut microbiome's importance for immune system and inflammatory pathways more widely accepted as an important component in NAFLD and other liver diseases' pathogenesis. In this article we review potential mechanisms of microbiome alteration of local and systemic immune responses leading to NAFLD's development, and how can modulate them for the treatment. Our review mentions different immune system pathways and microorganisms regulating metabolism, liver inflammation and fibrosis. We specifically point out TLR-4 as a potential key immune pathway activated by bacterial lipopolysaccharides producing pro-inflammatory cytokines in NAFLD. Also, we discuss three endotoxin-producing strains (Enterobacter cloacae B29, Escherichia coli PY102, Klebsiella pneumoniae A7) that can promote NAFLD development via TLR4-dependent immune response activation in animal models and how they potentially contribute to disease progression in humans. Additionally, we discuss their other immune and non-immune mechanisms contributing to NAFLD pathogenesis. In the end we point out gut microbiome researches' future perspective in NAFLD as a potential new target for both diagnostic and treatment.
Collapse
Affiliation(s)
- Stanislav Konstantinovich Gruzdev
- Department of Microbiology V.S. Kiktenko, Medical Institute, Peoples' Friendship University of Russia, Miklukho-Maklaya Str. 6, Moscow, 117198, Russia.
| | - Irina Viktorovna Podoprigora
- Department of Microbiology V.S. Kiktenko, Medical Institute, Peoples' Friendship University of Russia, Miklukho-Maklaya Str. 6, Moscow, 117198, Russia
| | - Oksana Anatolievna Gizinger
- Department of Microbiology V.S. Kiktenko, Medical Institute, Peoples' Friendship University of Russia, Miklukho-Maklaya Str. 6, Moscow, 117198, Russia
| |
Collapse
|
10
|
Morandini F, Perez K, Brot L, Seck SM, Tibère L, Grill JP, Macia E, Seksik P. Urbanization associates with restricted gut microbiome diversity and delayed maturation in infants. iScience 2023; 26:108136. [PMID: 37876823 PMCID: PMC10590973 DOI: 10.1016/j.isci.2023.108136] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/16/2023] [Accepted: 10/02/2023] [Indexed: 10/26/2023] Open
Abstract
Alterations of the microbiome are linked to increasingly common diseases such as obesity, allergy, and inflammatory bowel disease. Post-industrial lifestyles are thought to contribute to the gut microbiome alterations that cause or aggravate these diseases. Comparing communities across the industrialization spectrum can reveal associations between gut microbiome alterations and lifestyle and health, and help pinpoint which specific aspect of the post-industrial lifestyle is linked to microbiome alterations. Here, we compare the gut microbiomes of 60 mother and infant pairs from rural and urban areas of Senegal over two time points. We find that urban mothers, who were more frequently overweight, had different gut microbiome compositions than rural mothers, showing an expansion of Lachnospiraceae and Enterobacter. Urban infants, on the other hand, showed a delayed gut microbiome maturation and a higher susceptibility to infectious diseases. Thus, we identify new microbiome features associated with industrialization, whose association with disease may be further investigated.
Collapse
Affiliation(s)
| | - Kevin Perez
- Biomedical Sciences department, University of Lausanne, 1005 Lausanne, Vaud, Switzerland
| | - Loic Brot
- Centre de Recherche Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Hôpital Saint Antoine, Service de Gastroentérologie, Inserm, Sorbonne Université, 75012 Paris, France
- Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, 75012 Paris, France
| | - Sidy Mohammed Seck
- Internal medicine/Nephrology department, Faculty of Health Sciences and IRL-3189 “Environnement, Santé, Sociétés”, University Gaston Berger, Saint-Louis 00234, Senegal
| | - Laurence Tibère
- Centre d'Études et de Recherche: Travail, Organisation, Pouvoir (CERTOP) UMR CNRS 5044, Université de Toulouse, 31013 Toulouse, France
| | - Jean-Pierre Grill
- Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, 75012 Paris, France
| | - Enguerran Macia
- International Research Laboratory "Environnement, Sant, Socits" (CNRS / UCAD / UGB / USTTB / CNRST), Dakar, Senegal
- Unit Mixte de Recherche 7268 Anthropologie bio-culturelle, Droit, Ethique et Sant (CNRS / AMU / EFS), Aix-Marseille, France
| | - Philippe Seksik
- Centre de Recherche Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Hôpital Saint Antoine, Service de Gastroentérologie, Inserm, Sorbonne Université, 75012 Paris, France
- Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, 75012 Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, 75571 Paris, France
| |
Collapse
|
11
|
Characteristics of Gut Microbiota in Small for Gestational Age Infants with Very Low Birth Weight. Nutrients 2022; 14:nu14235158. [PMID: 36501188 PMCID: PMC9738608 DOI: 10.3390/nu14235158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Small for gestational age (SGA) birth is associated with high rates of mortality and morbidity in preterm infants. The aim of this preliminary observational study was to investigate the difference in gut microbiota between SGA and appropriate for gestational age (AGA) preterm infants with very low birth weight (VLBW). We included 20 VLBW preterm infants (SGA, n = 10; AGA, n = 10) in this study. Stool samples were collected on days 7, 14, and 30 after birth. We performed 16S ribosomal DNA sequencing to compare microbiota composition between both groups. The SGA group exhibited a lower abundance of Klebsiella on day 14 (SGA, 0.57%; AGA, 7.42%; p = 0.037). On day 30, the SGA group exhibited a lower abundance of Klebsiella (SGA 3.76% vs. AGA 16.05%; p = 0.07) and Enterobacter (SGA 5.09% vs. AGA 27.25%; p = 0.011) than the AGA group. Beta diversity demonstrated a separation of the bacterial community structure between both groups on day 30 (p = 0.019). The present study revealed that a distinct gut microbiota profile gradually develops in SGA preterm infants with VLBW during the early days of life. The role of changes in gut microbiota structure warrants further investigation.
Collapse
|
12
|
Jee JJ, Lim J, Park S, Koh H, Lee HW. Gut microbial community differentially characterizes patients with nonalcoholic fatty liver disease. J Gastroenterol Hepatol 2022; 37:1822-1832. [PMID: 35624084 DOI: 10.1111/jgh.15903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/08/2022] [Accepted: 05/22/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIM Discordant reports of the signature gut microbes involved in nonalcoholic fatty liver disease (NAFLD) have hampered understanding of the pathogenesis of the disease, and thus its diagnosis. Thus, we investigated diagnostic factors and the potential mechanisms for heterogenous NAFLD based on the gut environment, including microbes and functional pathways. METHODS Stools from 16 biopsy-proven NAFLD patients were analyzed for bacterial taxonomy and functional pathways based on 16s rRNA gene sequencing. Data from the physical examination, serum biochemistry, and the gut environment were subjected to a decision tree classifier to identify diagnostic markers. RESULTS We identified two NAFLD subpopulations: those with and without a gut microbiota similar to health controls (HCs), defined as PHC-like and P patients, respectively. Stools of PHC-like patients were significantly populated with Enterobacteriaceae and were inferred to be rich in metabolites degraded from dicarboxylic acid sugars. Significant colonization of Prevotella was observed in the stools of P patients, in parallel with enrichment of metabolites from heme b biosynthesis and sulfate reduction. As a potential mechanism, we suggest that protoporphyrin IX and/or protoheme from Prevotella participates in hepatic injury, and that endogenous hydrogen sulfide increases serum IL-6 level in P patients. However, endotoxin-producing Enterobacteriaceae are thought to produce glycerate, triggering a peroxisome proliferator- activated receptor-alpha-mediated decrease in IL-6 level and fat accumulation in PHC-like patients. CONCLUSIONS Heterogenous NAFLD subpopulations were identified, defined according to gut microbial composition and their potential underlying pathogenic mechanisms; our results raise the possibility of personalized treatment for NALFD patients.
Collapse
Affiliation(s)
- Jai J Jee
- Department of Pediatrics, Yonsei University College of Medicine, Severance Fecal Microbiota Transplantation Center, Severance Hospital, Severance Fecal Microbiota Transplantation Center, Severance Hospital, Seoul, Republic of Korea
| | - Jiyeon Lim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sowon Park
- Department of Pediatrics, Yonsei University College of Medicine, Severance Fecal Microbiota Transplantation Center, Severance Hospital, Severance Fecal Microbiota Transplantation Center, Severance Hospital, Seoul, Republic of Korea
| | - Hong Koh
- Department of Pediatrics, Yonsei University College of Medicine, Severance Fecal Microbiota Transplantation Center, Severance Hospital, Severance Fecal Microbiota Transplantation Center, Severance Hospital, Seoul, Republic of Korea
| | - Hye Won Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.,Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea.,Yonsei Liver Center, Severance Hospital, Seoul, Republic of Korea
| |
Collapse
|
13
|
Changes in the Mucosa-Associated Microbiome and Transcriptome across Gut Segments Are Associated with Obesity in a Metabolic Syndrome Porcine Model. Microbiol Spectr 2022; 10:e0071722. [PMID: 35862956 PMCID: PMC9430857 DOI: 10.1128/spectrum.00717-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Obesity is a major risk factor for metabolic syndrome, which is the most common cause of death worldwide, especially in developed countries. The link between obesity and gut mucosa-associated microbiota is unclear due to challenges associated with the collection of intestinal samples from humans.
Collapse
|
14
|
Sun S, Lei OK, Nie J, Shi Q, Xu Y, Kong Z. Effects of Low-Carbohydrate Diet and Exercise Training on Gut Microbiota. Front Nutr 2022; 9:884550. [PMID: 35592627 PMCID: PMC9110973 DOI: 10.3389/fnut.2022.884550] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/31/2022] [Indexed: 01/04/2023] Open
Abstract
ObjectiveThis study was aimed to evaluate the effects of low-carbohydrate diet (LC) and incorporated high-intensity interval training (HIIT) or moderate-intensity continuous training (MICT) on gut microbiota, and the associations between changes in gut microbiota and cardiometabolic health-related profiles.MethodsFifty overweight/obese Chinese females (age 22.2 ± 3.3 years, body mass index 25.1 ± 3.1 kg/m–2) were randomized to the groups of LC, LC and HIIT (LC-HIIT, 10 repetitions of 6-s sprints and 9-s rest), and LC and MICT group (LC-MICT, cycling at 50–60% V̇O2peak for 30 min). The LC-HIIT and LC-MICT experienced 20 training sessions over 4 weeks.ResultsThe 4-week LC intervention with/without additional training failed to change the Shannon, Chao 1, and Simpson indexes (p > 0.05), LC increased Phascolarctobacterium genus, and LC-HIIT reduced Bifidobacterium genus after intervention (p < 0.05). Groups with extra exercise training increased short-chain fatty acid-producing Blautia genus (p < 0.05) and reduced type 2 diabetes-related genus Alistipes (p < 0.05) compared to LC. Sutterella (r = −0.335) and Enterobacter (r = 0.334) were associated with changes in body composition (p < 0.05). Changes in Ruminococcus, Eubacterium, and Roseburia genera were positively associated with blood pressure (BP) changes (r = 0.392–0.445, p < 0.05), whereas the changes in Bacteroides, Faecalibacterium, and Parabacteroides genera were negatively associated with BP changes (r = −0.567 to −0.362, p < 0.05).ConclusionLC intervention did not change the α-diversity and overall structure of gut microbiota. Combining LC with exercise training may have additional benefits on gut physiology. Specific microbial genera were associated with LC- and exercise-induced regulation of cardiometabolic health.
Collapse
Affiliation(s)
- Shengyan Sun
- Institute of Physical Education, Huzhou University, Huzhou, China
| | - On Kei Lei
- Faculty of Education, University of Macau, Macao, Macao SAR, China
| | - Jinlei Nie
- Faculty of Health Sciences and Sports, Macao Polytechnic University, Macao, Macao SAR, China
| | - Qingde Shi
- Faculty of Health Sciences and Sports, Macao Polytechnic University, Macao, Macao SAR, China
| | - Yuming Xu
- College of Physical Education, Hangzhou Normal University, Hangzhou, China
| | - Zhaowei Kong
- Faculty of Education, University of Macau, Macao, Macao SAR, China
- *Correspondence: Zhaowei Kong,
| |
Collapse
|
15
|
Medici Dualib P, Ogassavara J, Mattar R, Mariko Koga da Silva E, Atala Dib S, de Almeida Pititto B. Gut microbiota and gestational Diabetes Mellitus: A systematic review. Diabetes Res Clin Pract 2021; 180:109078. [PMID: 34599971 DOI: 10.1016/j.diabres.2021.109078] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 09/15/2021] [Accepted: 09/27/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Gestational Diabetes Mellitus (GDM) is one of the most prevalent complications of pregnancy and can cause adverse maternal and fetal outcomes. The maternal gut microbiota is involved in several metabolic functions, but it is not yet known its role in GDM physiopathology. This study aims to review the role of gut microbiota in pregnancies that evolved with GDM. METHODS Systematic search of the PubMed, Embase, and Scopus databases was performed to identify articles published until 18th August 2021 involving the assessment of gut microbiota in pregnancy. RESULTS A total of 23 articles were selected for this review. Seventeen studies investigated differences in the gut microbiota of healthy and GDM pregnant women and showed differences in alfa and beta diversity. Six prospective studies found that microbiota changes during pregnancy and showed that some particularities in the microbiome in are associated with the risk of GDM. CONCLUSION This systematic review showed that there is a relationship between intestinal microbiota and GDM. Gut microbiota could be a biomarker for early detection of GDM and could be considered a potential target for modification to reduce the risk of GDM.
Collapse
Affiliation(s)
- Patricia Medici Dualib
- Department of Medicine, Sao Paulo School of Medicine, Federal University of Sao Paulo, Rua Sena Madureira, 1500, Vila Clementino, São Paulo, SP CEP 04021-001, Brazil.
| | - Juliana Ogassavara
- Graduate Program in Endocrinology and Metabology, Federal University of Sao Paulo, Rua Estado de Israel, n° 639, Vila Clementino, São Paulo, SP CEP 04022-001, Brazil
| | - Rosiane Mattar
- Departament of Obstetrics, Federal University of Sao Paulo, R. Napoleão de Barros, 875 - Vila Clementino, São Paulo, SP 04024-002, Brazil.
| | - Edina Mariko Koga da Silva
- Department of Emergency Medicine and Evidence Based Medicine, Federal University of Sao Paulo, Rua Borges Lagoa, 564 Conjunto 63, São Paulo-SP CEP 04038-000, Brazil.
| | - Sérgio Atala Dib
- Department of Medicine, Sao Paulo School of Medicine, Federal University of Sao Paulo, Rua Sena Madureira, 1500, Vila Clementino, São Paulo, SP CEP 04021-001, Brazil
| | - Bianca de Almeida Pititto
- Departmento de Medicina Preventiva, Sao Paulo School of Medicine, Federal University of Sao Paulo, Campus São Paulo, Rua Botucatu, n° 740, Vila Clementino, São Paulo-SP CEP 04023-062, Brazil.
| |
Collapse
|
16
|
Zhuang T, Li W, Yang L, Wang Z, Ding L, Zhou M. Gut Microbiota: Novel Therapeutic Target of Ginsenosides for the Treatment of Obesity and Its Complications. Front Pharmacol 2021; 12:731288. [PMID: 34512356 PMCID: PMC8429618 DOI: 10.3389/fphar.2021.731288] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity, generally characterized by excessive lipid accumulation, is a metabolic threat worldwide due to its rapid growth in global prevalence. Ginsenosides are crucial components derived from natural plants that can confer metabolic benefits for obese patients. Considering the low bioavailability and degradable properties of ginsenosides in vivo, it should be admitted that the mechanism of ginsenosides on anti-obesity contribution is still obscure. Recently, studies have indicated that ginsenoside intervention has beneficial metabolic effects on obesity and its complications because it allows for the correction of gut microbiota dysbiosis and regulates the secretion of related endogenous metabolites. In this review, we summarize the role of gut microbiota in the pathogenetic process of obesity, and explore the mechanism of ginsenosides for ameliorating obesity, which can modulate the composition of gut microbiota by improving the metabolism of intestinal endogenous substances and alleviating the level of inflammation. Ginsenosides are expected to become a promising anti-obesity medical intervention in the foreseeable clinical settings.
Collapse
Affiliation(s)
- Tongxi Zhuang
- Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Li
- Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai, China
| | - Li Yang
- Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai, China
| | - Zhengtao Wang
- Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai, China
| | - Lili Ding
- Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai, China
| | - Mingmei Zhou
- Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
17
|
Zhao T, Zhan L, Zhou W, Chen W, Luo J, Zhang L, Weng Z, Zhao C, Liu S. The Effects of Erchen Decoction on Gut Microbiota and Lipid Metabolism Disorders in Zucker Diabetic Fatty Rats. Front Pharmacol 2021; 12:647529. [PMID: 34366839 PMCID: PMC8339961 DOI: 10.3389/fphar.2021.647529] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity is a chronic metabolic disease caused by genetic and environmental factors that has become a serious global health problem. There is evidence that gut microbiota is closely related to the occurrence and development of obesity. Erchen Decoction (ECD), a traditional Chinese medicine, has been widely used for clinical treatment and basic research of obesity and related metabolic diseases in recent years. It can significantly improve insulin resistance (IR) and lipid metabolism disorders. However, there is no microbiological study on its metabolic regulation. In this study, we investigated the effects of ECD on obesity, especially lipid metabolism and the composition and function of gut microbiota in Zucker diabetic fatty (ZDF) rats, and explored the correlation between the biomarkers of gut microbiota and metabolite and host phenotype. The results showed that ECD could reduce body weight, improve IR and lipid metabolism, and reduce the concentration of free fatty acids (FFA) released from white adipose tissue (WAT) due to excessive lipolysis by interfering with the insulin receptor substrate 1 (IRS1)/protein kinase B (AKT)/protein kinase A (PKA)/hormone-sensitive triglyceride lipase (HSL) signaling pathway in ZDF rats. Additionally, ECD gradually adjusted the overall structure of changed gut microbiota, reversed the relative abundance of six genera, and changed the function of gut microbiota by reducing the content of propionic acid, a metabolite of gut microbiota, in ZDF rats. A potentially close relationship between biomarkers, especially Prevotella, Blautia, and Holdemania, propionic acid and host phenotypes were demonstrated through correlation analysis. The results suggested that the beneficial effects of ECD on obesity, especially lipid metabolism disorders, are related to the regulation of gut microbiota in ZDF rats. This provides a basis for further research on the mechanism and clinical application of ECD to improve obesity via gut microbiota.
Collapse
Affiliation(s)
- Tian Zhao
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Libin Zhan
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wen Zhou
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wanxin Chen
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jintong Luo
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lijing Zhang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zebin Weng
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunyan Zhao
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shenlin Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
18
|
Luo M, Zhou DD, Shang A, Gan RY, Li HB. Influences of food contaminants and additives on gut microbiota as well as protective effects of dietary bioactive compounds. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Wei RX, Ye FJ, He F, Song Q, Xiong XP, Yang WL, Gang X, Hu JW, Hu B, Xu HY, Li L, Liu HH, Zeng XY, Chen L, Kang B, Han CC. Comparison of overfeeding effects on gut physiology and microbiota in two goose breeds. Poult Sci 2020; 100:100960. [PMID: 33652539 PMCID: PMC7936201 DOI: 10.1016/j.psj.2020.12.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 12/16/2020] [Accepted: 12/20/2020] [Indexed: 01/22/2023] Open
Abstract
To have a better understanding of how the “gut–liver axis” mediates the lipid deposition in the liver, a comparison of overfeeding influence on intestine physiology and microbiota between Gang Goose and Tianfu Meat Goose was performed in this study. After force-feeding, compared with Gang Goose, Tianfu Meat Goose had better fat storage capacity in liver (397.94 vs. 166.54 for foie gras weight (g), P < 0.05; 6.37 vs. 2.92% for the ratio of liver to body, P < 0.05; 60.01 vs. 46.64% for fat content, P < 0.05) and the less subcutaneous adipose tissue weight (1240.96 g vs. 1440.46 g, P < 0.05). After force-feeding, the digestion–absorption capacity of Tianfu Meat Goose was higher than that of Gang Goose (5.56 vs. 3.64 and 4.63 vs. 3.68 for the ratio of villus height to crypt depth in duodenum and ileum, respectively, P < 0.05; 1394.96 vs. 782.59 and 1314.76 vs. 766.17 for the invertase activity (U/mg-prot), in duodenum and ileum, respectively, P < 0.05; 6038.36 vs. 3088.29 and 4645.29 vs. 3927.61 for the activity of maltase (U/mg-prot), in duodenum and ileum, respectively, P < 0.05). Force-feeding decreased the gene expression of Escherichia coli in the ileum of Tianfu Meat Goose; force-feeding increased the number of gut microbiota Enterobacterial Repetitive Intergenic Consensus-Polymerase Chain Reaction band in Tianfu Meat Goose and decreased the number in Gang Goose. In conclusion, compared with Gang Goose, the lipid deposition in the liver and the intestine digestion–absorption capacity and stability were higher in Tianfu Meat Goose. Thereby, Tianfu Meat Goose is the better breed for foie gras production for prolonged force-feeding; Gang Goose possesses better fat storage capacity in subcutaneous adipose tissue. However, Gang Goose has lower gut stability responding to force-feeding, so Gang Goose is suited to force-feeding in a short time to gain the body weight and subcutaneous fat as an overfed duck for roast duck.
Collapse
Affiliation(s)
- R X Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - F J Ye
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - F He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Q Song
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - X P Xiong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - W L Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - X Gang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - J W Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - B Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - H Y Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - L Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - H H Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - X Y Zeng
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, P.R. China
| | - L Chen
- Xichang Huanong Poultry Co., Xichang, Sichuan 615000, P.R. China
| | - B Kang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - C C Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China.
| |
Collapse
|
20
|
Su H, Liu J, Wu G, Long Z, Fan J, Xu Z, Liu J, Yu Z, Cao M, Liao N, Peng J, Yu W, Li W, Wu H, Wang X. Homeostasis of gut microbiota protects against polychlorinated biphenyl 126-induced metabolic dysfunction in liver of mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137597. [PMID: 32143051 DOI: 10.1016/j.scitotenv.2020.137597] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
Polychlorinated biphenyls (PCBs) exposure is closely associated with the prevalence of metabolic diseases, including fatty liver and dyslipidemia. Emerging literature suggests that disturbance of gut microbiota is related to PCB126-induced metabolic disorders. However, the causal role of dysbiosis in PCB126-induced fatty liver is still unknown. To clarify the role of the gut microbiome in the detoxification of PCB126 in intestine or PCB126-induced toxicity in liver, mice were administrated with drinking water containing antibiotics (ampicillin, vancomycin, neomycin, and metronidazole) or Inulin. We showed that PCB126 resulted in significant hepatic lipid accumulation, inflammation, and fibrosis. PCB126, Antibiotics, and Inulin significantly affected the structure and shifted community membership of gut microbiome. 7 KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways at level 2 and 39 KEGG pathways at level 3 were significantly affected. Antibiotics alleviated PCB126-induced fibrosis in the liver but increased inflammation. Inulin treatment ameliorated both inflammation and fibrosis in the liver of PCB126-treated mice. Neither Antibiotics nor Inulin had significant effect on PCB126-induced hepatic steatosis. The more specific intervention of gut microbiota is needed to alleviate PCB126-induced fatty liver. These data demonstrate that homeostasis of gut microbiota is critical for the defense against PCB126 toxicity and dysbiosis plays a fundamental role in the development of inflammation and fibrosis in liver of PCB126-treated mice.
Collapse
Affiliation(s)
- Hongfei Su
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Jiangzheng Liu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Guangyuan Wu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Zi Long
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Junshu Fan
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Zhongrui Xu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Jiawei Liu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Zhongtian Yu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Meng Cao
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Nai Liao
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Jie Peng
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Weihua Yu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Wenli Li
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Hao Wu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Xi'an 710032, China.
| | - Xin Wang
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Xi'an 710032, China.
| |
Collapse
|
21
|
Wang WW, Wang J, Zhang HJ, Wu SG, Qi GH. Supplemental Clostridium butyricum Modulates Lipid Metabolism Through Shaping Gut Microbiota and Bile Acid Profile of Aged Laying Hens. Front Microbiol 2020; 11:600. [PMID: 32351471 PMCID: PMC7176355 DOI: 10.3389/fmicb.2020.00600] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/18/2020] [Indexed: 12/21/2022] Open
Abstract
Probiotic Clostridium butyricum could affect lipid metabolism in broilers. However, it is not clear whether C. butyricum could improve lipid metabolism through shaping gut microbiota and bile acid (BA) profile of laying hens. We aimed to evaluate the contributions of gut microbiota and BA profile to the potential effect of C. butyricum on lipid metabolism of aged laying hens. A total of 192 60-week-old Hy-Line Brown laying hens were divided into two groups (eight replicates per group). Birds were fed a basal diet supplemented with 0 or 2.7 g/kg C. butyricum (1.0 × 109 CFU/g). Samples were collected at the end of week 8 of the experiment. The results showed elevated (P < 0.05) concentrations of glucagon-like peptide 1, insulin and thyroid hormones in serum responded to C. butyricum addition, which also decreased (P < 0.05) hepatic free fatty acids contents, as well as increased (P < 0.05) the expression of hepatic acyl-CoA oxidase, farnesoid X receptor (FXR) and PPARα. C. butyricum addition increased (P < 0.05) Bacteroidetes abundance but tended to decrease (P < 0.10) Firmicutes abundance in the ileum. Besides, C. butyricum addition resulted in higher (P < 0.05) abundances of Clostridia (Clostridiales) and Prevotellaceae, concurrent with an increasing trend (P < 0.10) of Bifidobacteriaceae abundance and decreased the abundances of several harmful bacteria such as Klebsiella (P < 0.05). Regarding ileal BA profile, there was a reduced (P < 0.05) content of tauro-α-muricholic acid, increased (P < 0.05) contents of tauroursodeoxycholic acid and lithocholic acid, along with increasing trends (P < 0.10) of glycochenodeoxycholic acid and hyodeoxycholic acid contents due to C. butyricum addition, which also increased (P < 0.05) ileal FXR expression. Collectively, supplemental C. butyricum accelerated hepatic fatty acid oxidation, and shaped gut microbiota and BA profile, thus reducing fat deposition in the liver of aged laying hens.
Collapse
Affiliation(s)
- Wei-Wei Wang
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Wang
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hai-Jun Zhang
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shu-Geng Wu
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guang-Hai Qi
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
22
|
Liu J, Lai L, Lin J, Zheng J, Nie X, Zhu X, Xue J, Liu T. Ranitidine and finasteride inhibit the synthesis and release of trimethylamine N-oxide and mitigates its cardiovascular and renal damage through modulating gut microbiota. Int J Biol Sci 2020; 16:790-802. [PMID: 32071549 PMCID: PMC7019130 DOI: 10.7150/ijbs.40934] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022] Open
Abstract
Trimethylamine N-oxide (TMAO) leads to the development of cardiovascular and chronic kidney diseases, but there are currently no potent drugs that inhibit the production or toxicity of TMAO. In this study, high-fat diet-fed ApoE-/- mice were treated with finasteride, ranitidine, and andrioe. Subsequently, the distribution and quantity of gut microbiota in the faeces of the mice in each group were analysed using 16S rRNA sequencing of the V3+V4 regions. Pathological examination confirmed that both ranitidine and finasteride reduced atherosclerosis and renal damage in mice. HPLC analysis also indicated that ranitidine and finasteride significantly reduced the synthesis of TMAO and the TMAO precursor delta-Valerobetaine in their livers. The 16S rRNA sequencing showed that all 3 drugs significantly increased the richness and diversity of gut microbiota in the model mice. Bioinformatic analysis revealed that the faeces of mice treated with ranitidine and finasteride, had significant increases in the number of microbes in the families g_Helicobacter, f_Desulfovibrionaceae, Mucispirillum_schaedleri_ASF457, and g_Blautia, whereas the relative abundances of microbes in the families Enterobacter_sp._IPC1-8 and g_Bacteroides were significantly reduced. The microbiota metabolic pathways, such as nucleotide and cofactor and vitamin metabolism were also significantly increased, whereas the activities of metabolic signalling pathways related to glycan biosynthesis and metabolism and cardiovascular diseases were significantly reduced. Therefore, our study indicates that in addition to their known pharmacological effects, ranitidine and finasteride also exhibit potential cardiovascular and renal protective effects. They inhibit the synthesis and metabolism of TMAO and delay the deposition of lipids and endotoxins through improving the composition of the gut microbiota.
Collapse
Affiliation(s)
- Junfeng Liu
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lingyun Lai
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jiajia Lin
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| | - Jiajia Zheng
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| | - Xiaoli Nie
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| | - Xiaoye Zhu
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jun Xue
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| |
Collapse
|
23
|
Li F, Yang Z, Stone C, Ding JY, Previch L, Shen J, Ji Y, Geng X, Ding Y. Phenothiazines Enhance the Hypothermic Preservation of Liver Grafts: A Pilot in Vitro Study. Cell Transplant 2019; 28:318-327. [PMID: 30666889 PMCID: PMC6425111 DOI: 10.1177/0963689718824559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 12/06/2018] [Accepted: 12/20/2018] [Indexed: 02/06/2023] Open
Abstract
In vitro liver conservation is an issue of ongoing critical importance in graft transplantation. In this study, we investigated the possibility of augmenting the standard pre-transplant liver conservation protocol (University of Wisconsin (UW) cold solution) with the phenothiazines chlorpromazine and promethazine. Livers from male Sprague-Dawley rats were preserved either in UW solution alone, or in UW solution plus either 2.4, 3.6, or 4.8 mg chlorpromazine and promethazine (C+P, 1:1). The extent of liver injury following preservation was determined by alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, the ratio of AST/ALT, morphological changes as assessed by hematoxylin-eosin staining, apoptotic cell death as determined by ELISA, and by expression of the apoptotic regulatory proteins BAX and Bcl-2. Levels of glucose (GLU) and lactate dehydrogenase (LDH) in the preservation liquid were determined at 3, 12, and 24 h after incubation to assess glucose metabolism. Oxidative stress was assessed by levels of superoxide dismutase (SOD), reactive oxygen species (ROS), and malondialdehyde (MDA), and inflammatory cytokine expression was evaluated with Western blotting. C+P augmentation induced significant reductions in ALT and AST activities; the AST/ALT ratio; as well as in cellular swelling, vacuolar degeneration, apoptosis, and BAX expression. These changes were associated with lowered levels of GLU and LDH; decreased expression of SOD, MDA, ROS, TNF-α, and IL-1β; and increased expression of Bcl-2. We conclude that C+P augments hypothermic preservation of liver tissue by protecting hepatocytes from ischemia-induced oxidative stress and metabolic dysfunction. This result provides a basis for improvement of the current preservation strategy, and thus for the development of a more effective graft conservation method.
Collapse
Affiliation(s)
- Fengwu Li
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Zhiying Yang
- Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Christopher Stone
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jamie Y. Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Lauren Previch
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jiamei Shen
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yu Ji
- Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
24
|
Lin S, Wang Z, Lam KL, Zeng S, Tan BK, Hu J. Role of intestinal microecology in the regulation of energy metabolism by dietary polyphenols and their metabolites. Food Nutr Res 2019; 63:1518. [PMID: 30814920 PMCID: PMC6385797 DOI: 10.29219/fnr.v63.1518] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 12/01/2018] [Accepted: 12/18/2018] [Indexed: 12/24/2022] Open
Abstract
Background Polyphenols are a class of plant secondary metabolites with a variety of physiological functions. Polyphenols and their intestinal metabolites could greatly affect host energy metabolism via multiple mechanisms. Objective The objective of this review was to elaborate the role of intestinal microecology in the regulatory effects of dietary polyphenols and their metabolites on energy metabolism. Methods In this review, we illustrated the potential mechanisms of energy metabolism regulated by the crosstalk between polyphenols and intestinal microecology including intestinal microbiota, intestinal epithelial cells, and mucosal immune system. Results Polyphenols can selectively regulate the growth of susceptible microorganisms (eg. reducing the ratio of Firmicutes to Bacteroides, promoting the growth of beneficial bacteria and inhibiting pathogenic bacteria) as well as alter bacterial enzyme activity. Moreover, polyphenols can influence the absorption and secretion of intestinal epithelial cells, and alter the intestinal mucosal immune system. Conclusion The intestinal microecology play a crucial role for the regulation of energy metabolism by dietary polyphenols.
Collapse
Affiliation(s)
- Shaoling Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhengyu Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ka-Lung Lam
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Shaoxiao Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bee K Tan
- Departments of Cardiovascular Sciences, Health Sciences and Leicester Diabetes Centre, College of Life Sciences, University of Leicester, University Road, Leicester, United Kingdom
| | - Jiamiao Hu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
25
|
Bakke D, Chatterjee I, Agrawal A, Dai Y, Sun J. Regulation of Microbiota by Vitamin D Receptor: A Nuclear Weapon in Metabolic Diseases. NUCLEAR RECEPTOR RESEARCH 2018; 5:101377. [PMID: 30828578 PMCID: PMC6392192 DOI: 10.11131/2018/101377] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Metabolic syndrome is a multi-faceted disease. The microbiota, as a newly discovered organ, contributes to the pathogenesis and progression of metabolic syndrome. Recent studies have demonstrated that nuclear receptors play critical roles in metabolic diseases. In the current review, we discuss the general role of the microbiome in health and metabolic syndrome. We summarize the functions of the nuclear receptor vitamin D receptor (VDR) in metabolism. The focus of this review is the novel roles of vitamin D/VDR signaling in regulating inflammation and the microbiome, especially in obesity. Furthermore, we extend our discussion of potential gut-liver axis mediated by VDR signaling and microbiota in obesity. Finally, we discuss the potential clinical application of probiotics and fecal microbiota transplantation in prevention and treatment of metabolic syndrome. Insights into nuclear receptors in metabolism and metabolic diseases will allow us to develop new strategies for fighting metabolic diseases.
Collapse
Affiliation(s)
- Danika Bakke
- Division of Gastroenterology and Hepatology, Medicine, University of Illinois at Chicago, USA
| | - Ishita Chatterjee
- Division of Gastroenterology and Hepatology, Medicine, University of Illinois at Chicago, USA
| | - Annika Agrawal
- Division of Gastroenterology and Hepatology, Medicine, University of Illinois at Chicago, USA
- Hinsdale Central High School, 5500 S Grant St, Hinsdale, IL 60521, USA
| | - Yang Dai
- Department of Bioengineering, College of Engineering/College of Medicine, University of Illinois at Chicago, USA
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Medicine, University of Illinois at Chicago, USA
| |
Collapse
|