1
|
Kocher F, Hegemann JH. The secreted host-cell protein clusterin interacts with PmpD and promotes Chlamydia trachomatis infection. Front Cell Infect Microbiol 2025; 14:1519883. [PMID: 39931630 PMCID: PMC11807975 DOI: 10.3389/fcimb.2024.1519883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/30/2024] [Indexed: 02/13/2025] Open
Abstract
Attachment and uptake into host cells are pivotal steps in the life cycle of the Chlamydiaceae, a family of obligate intracellular pathogens. Chlamydia trachomatis (Ctr) possesses a family of nine polymorphic membrane proteins (Pmps), which have been shown to be crucial for adhesion and internalization. However, the host-cell molecules involved have so far remained unknown. Here, we show that a fragment of Ctr PmpD, which forms high-molecular-weight oligomers in solution and adheres to epithelial cells, also binds to secreted clusterin (sCLU), a chaperone-like protein that is secreted into the extracellular space by the host cell, and forms part of the chaperone- and receptor-mediated extracellular protein degradation (CRED) pathway. Using in vitro assays, we demonstrate that sCLU interacts directly with soluble rPmpD. In infection experiments, depletion of sCLU from the culture medium leads to a significant decrease in Ctr infection. Thus, sCLU is the first host-cell interaction partner identified for a Ctr Pmp and the first case in which sCLU has been shown to be a vital component for the establishment of a bacterial infection.
Collapse
Affiliation(s)
| | - Johannes H. Hegemann
- Institute for Functional Microbial Genomics, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
2
|
Cervantes PW, Segelke BW, Lau EY, Robinson BV, Abisoye-Ogunniyan A, Pal S, de la Maza LM, Coleman MA, D’haeseleer P. Sequence, structure prediction, and epitope analysis of the polymorphic membrane protein family in Chlamydia trachomatis. PLoS One 2024; 19:e0304525. [PMID: 38861498 PMCID: PMC11166332 DOI: 10.1371/journal.pone.0304525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/13/2024] [Indexed: 06/13/2024] Open
Abstract
The polymorphic membrane proteins (Pmps) are a family of autotransporters that play an important role in infection, adhesion and immunity in Chlamydia trachomatis. Here we show that the characteristic GGA(I,L,V) and FxxN tetrapeptide repeats fit into a larger repeat sequence, which correspond to the coils of a large beta-helical domain in high quality structure predictions. Analysis of the protein using structure prediction algorithms provided novel insight to the chlamydial Pmp family of proteins. While the tetrapeptide motifs themselves are predicted to play a structural role in folding and close stacking of the beta-helical backbone of the passenger domain, we found many of the interesting features of Pmps are localized to the side loops jutting out from the beta helix including protease cleavage, host cell adhesion, and B-cell epitopes; while T-cell epitopes are predominantly found in the beta-helix itself. This analysis more accurately defines the Pmp family of Chlamydia and may better inform rational vaccine design and functional studies.
Collapse
Affiliation(s)
- Patrick W. Cervantes
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Brent W. Segelke
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Edmond Y. Lau
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Beverly V. Robinson
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Abisola Abisoye-Ogunniyan
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Sukumar Pal
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, California, United States of America
| | - Luis M. de la Maza
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, California, United States of America
| | - Matthew A. Coleman
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Patrik D’haeseleer
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| |
Collapse
|
3
|
Degn LLT, Bech D, Christiansen G, Birkelund S. Lack of neutralization of Chlamydia trachomatis infection by high avidity monoclonal antibodies to surface-exposed major outer membrane protein variable domain IV. Mol Immunol 2023; 163:163-173. [PMID: 37801817 DOI: 10.1016/j.molimm.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/21/2023] [Accepted: 09/17/2023] [Indexed: 10/08/2023]
Abstract
Chlamydia trachomatis is the leading cause of sexually transmitted diseases causing frequent, long-lasting, and often asymptomatic recurrent infections resulting in severe reproductive complications. C. trachomatis is an intracellular Gram-negative bacterium with a biphasic developmental cycle in which extracellular, infectious elementary bodies (EB) alternate with the intracellular replicating reticulate bodies (RB). The outer membrane of EB consists of a tight disulfide cross-linking protein network. The most essential protein is the 42 kDa major outer membrane protein (MOMP) that contributes to the rigid structural integrity of the outer membrane. MOMP is a transmembrane protein with a β-barrel structure consisting of four variable domains (VD) separated by five constant domains. VDIV possesses surface-exposed species-specific epitopes recognized by the immune system and, therefore, functions as a candidate for vaccine development. To analyze the protective contribution of antibodies for a MOMP vaccine, we investigated the specificity and binding characteristics of two monoclonal antibodies (MAb)224.2 and MAb244.4 directed against C. trachomatis serovar D MOMP. By immunoelectron microscopy, we found that both MAb bind to the surface of C. trachomatis EB. By epitope mapping, we characterized the MOMP epitope as linear consisting of 6 amino acids: 322TIAGAGD328. By ELISA it was shown that both antibodies bind with a higher avidity to the chlamydial surface compared to binding to monomeric MOMP, indicating that the antibodies bind divalently to the surface of C. trachomatis EB. Despite strong binding to the chlamydial surface, the antibodies only partially reduced the infectivity. This may be explained by the observation that even though both MAb covered the EB surface, antibodies could not be regularly detected on EB after the uptake into the host cell.
Collapse
Affiliation(s)
- Laura Lind Throne Degn
- Department of Health Science and Technology, Medical Microbiology and Immunology, Aalborg University, Fredrik Bajers Vej 3b, 9220 Aalborg Ø, Denmark; Department of Clinical Medicine, Department of Clinical Immunology, Aalborg University Hospital, Urbansgade 32, 9000 Aalborg, Denmark
| | - Ditte Bech
- Department of Health Science and Technology, Medical Microbiology and Immunology, Aalborg University, Fredrik Bajers Vej 3b, 9220 Aalborg Ø, Denmark
| | - Gunna Christiansen
- Department of Health Science and Technology, Medical Microbiology and Immunology, Aalborg University, Fredrik Bajers Vej 3b, 9220 Aalborg Ø, Denmark
| | - Svend Birkelund
- Department of Health Science and Technology, Medical Microbiology and Immunology, Aalborg University, Fredrik Bajers Vej 3b, 9220 Aalborg Ø, Denmark.
| |
Collapse
|
4
|
Turman BJ, Darville T, O'Connell CM. Plasmid-mediated virulence in Chlamydia. Front Cell Infect Microbiol 2023; 13:1251135. [PMID: 37662000 PMCID: PMC10469868 DOI: 10.3389/fcimb.2023.1251135] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Chlamydia trachomatis infection of ocular conjunctiva can lead to blindness, while infection of the female genital tract can lead to chronic pelvic pain, ectopic pregnancy, and/or infertility. Conjunctival and fallopian tube inflammation and the resulting disease sequelae are attributed to immune responses induced by chlamydial infection at these mucosal sites. The conserved chlamydial plasmid has been implicated in enhancing infection, via improved host cell entry and exit, and accelerating innate inflammatory responses that lead to tissue damage. The chlamydial plasmid encodes eight open reading frames, three of which have been associated with virulence: a secreted protein, Pgp3, and putative transcriptional regulators, Pgp4 and Pgp5. Although Pgp3 is an important plasmid-encoded virulence factor, recent studies suggest that chlamydial plasmid-mediated virulence extends beyond the expression of Pgp3. In this review, we discuss studies of genital, ocular, and gastrointestinal infection with C. trachomatis or C. muridarum that shed light on the role of the plasmid in disease development, and the potential for tissue and species-specific differences in plasmid-mediated pathogenesis. We also review evidence that plasmid-associated inflammation can be independent of bacterial burden. The functions of each of the plasmid-encoded proteins and potential molecular mechanisms for their role(s) in chlamydial virulence are discussed. Although the understanding of plasmid-associated virulence has expanded within the last decade, many questions related to how and to what extent the plasmid influences chlamydial infectivity and inflammation remain unknown, particularly with respect to human infections. Elucidating the answers to these questions could improve our understanding of how chlamydia augment infection and inflammation to cause disease.
Collapse
Affiliation(s)
- Breanna J. Turman
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
| | - Toni Darville
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, United States
| | | |
Collapse
|
5
|
Clarke KR, Hor L, Pilapitiya A, Luirink J, Paxman JJ, Heras B. Phylogenetic Classification and Functional Review of Autotransporters. Front Immunol 2022; 13:921272. [PMID: 35860281 PMCID: PMC9289746 DOI: 10.3389/fimmu.2022.921272] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022] Open
Abstract
Autotransporters are the core component of a molecular nano-machine that delivers cargo proteins across the outer membrane of Gram-negative bacteria. Part of the type V secretion system, this large family of proteins play a central role in controlling bacterial interactions with their environment by promoting adhesion to surfaces, biofilm formation, host colonization and invasion as well as cytotoxicity and immunomodulation. As such, autotransporters are key facilitators of fitness and pathogenesis and enable co-operation or competition with other bacteria. Recent years have witnessed a dramatic increase in the number of autotransporter sequences reported and a steady rise in functional studies, which further link these proteins to multiple virulence phenotypes. In this review we provide an overview of our current knowledge on classical autotransporter proteins, the archetype of this protein superfamily. We also carry out a phylogenetic analysis of their functional domains and present a new classification system for this exquisitely diverse group of bacterial proteins. The sixteen phylogenetic divisions identified establish sensible relationships between well characterized autotransporters and inform structural and functional predictions of uncharacterized proteins, which may guide future research aimed at addressing multiple unanswered aspects in this group of therapeutically important bacterial factors.
Collapse
Affiliation(s)
- Kaitlin R. Clarke
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Lilian Hor
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Akila Pilapitiya
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Joen Luirink
- Department of Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit, Amsterdam, Netherlands
| | - Jason J. Paxman
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- *Correspondence: Begoña Heras, ; Jason J. Paxman,
| | - Begoña Heras
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- *Correspondence: Begoña Heras, ; Jason J. Paxman,
| |
Collapse
|
6
|
Li X, Zuo Z, Wang Y, Hegemann JH, He C. Polymorphic Membrane Protein 17G of Chlamydia psittaci Mediated the Binding and Invasion of Bacteria to Host Cells by Interacting and Activating EGFR of the Host. Front Immunol 2022; 12:818487. [PMID: 35173712 PMCID: PMC8841347 DOI: 10.3389/fimmu.2021.818487] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/24/2021] [Indexed: 01/06/2023] Open
Abstract
Chlamydia psittaci (C. psittaci) is an obligate intracellular, gram-negative bacterium, and mainly causes systemic disease in psittacine birds, domestic poultry, and wild fowl. The pathogen is threating to human beings due to closely contacted to employees in poultry industry. The polymorphic membrane proteins (Pmps) enriched in C. psittaci includes six subtypes (A, B/C, D, E/F, G/I and H). Compared to that of the 1 pmpG gene in Chlamydia trachomatis (C. trachomatis), the diverse pmpG gene-coding proteins of C. psittaci remain elusive. In the present study, polymorphic membrane protein 17G (Pmp17G) of C. psittaci mediated adhesion to different host cells. More importantly, expression of Pmp17G in C. trachomatis upregulated infections to host cells. Afterwards, crosstalk between Pmp17G and EGFR was screened and identified by MALDI-MS and Co-IP. Subsequently, EGFR overexpression in CHO-K1 cells and EGFR knockout in HeLa 229 cells were assessed to determine whether Pmp17G directly correlated with EGFR during Chlamydial adhesion. Finally, the EGFR phosphorylation was recognized by Grb2, triggering chlamydial invasion. Based on above evidence, Pmp17G possesses adhesive property that serves as an adhesin and activate intracellular bacterial internalization by recognizing EGFR during C. psittaci infection
Collapse
Affiliation(s)
- Xiaohui Li
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zonghui Zuo
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
- Department of Biology, Institute for Functional Microbial Genomics, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Yihui Wang
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Johannes H. Hegemann
- Department of Biology, Institute for Functional Microbial Genomics, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Cheng He
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- *Correspondence: Cheng He,
| |
Collapse
|
7
|
Liang L, Liu D, Li Z, Zhou J, Tong D. Chlamydia abortus OmcB protein is essential for adhesion to host cells. J Basic Microbiol 2021; 61:1145-1152. [PMID: 34695236 DOI: 10.1002/jobm.202100312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/17/2021] [Accepted: 10/09/2021] [Indexed: 11/07/2022]
Abstract
Chlamydia abortus (C. abortus) is one of the most important zoonotic pathogens, causing a number of serious diseases. The adhesion of C. abortus to host cells is the first and crucial step in the process of infection. Outer membrane protein 2 (OmcB) is the second most abundant outer membrane protein. It has been shown to be an important adhesin of Chlamydia trachomatis and Chlamydia pneumoniae. In the present study, the OmcB gene of C. abortus was cloned and expressed in Escherichia coli, and the recombinant OmcB protein with His-tag was used to prepare polyclonal antibodies. Infectivity inhibition assays carried out with C. abortus in the presence of recombinant OmcB showed a considerable reduction (∼50%) in infectivity. Using anti-OmcB serum in infectivity inhibition assays resulted in a 30% reduction in infectivity. Anti-OmcB serum and recombinant OmcB protein in infection inhibition assays showed that OmcB is a surface-exposed protein that functions as an adhesin. The constructed deletion variant of the OmcB motif for infection inhibition assays showed that the first XBBXBX motif of the C. abortus OmcB protein is essential for binding to host cells.
Collapse
Affiliation(s)
- Lin Liang
- Animal Pathology Laboratory, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Teaching Management Department, Kunlun College of Qinghai University, Xining, China
| | - Donghui Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhaocai Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jizhang Zhou
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Dewen Tong
- Animal Pathology Laboratory, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
8
|
Favaroni A, Hegemann JH. Chlamydia trachomatis Polymorphic Membrane Proteins (Pmps) Form Functional Homomeric and Heteromeric Oligomers. Front Microbiol 2021; 12:709724. [PMID: 34349750 PMCID: PMC8326573 DOI: 10.3389/fmicb.2021.709724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/24/2021] [Indexed: 11/13/2022] Open
Abstract
Chlamydiae are Gram-negative, obligate intracellular bacteria, which infect animals and humans. Adhesion to host cells, the first step in the infection process, is mediated by polymorphic membrane proteins (Pmps). Pmps constitute the largest chlamydial protein family, with 9 members (subdivided into six subtypes) in C. trachomatis and 21 in C. pneumoniae, and are characterized by the presence of multiple copies of GGA(I,L,V) and FxxN motifs. Motif-rich fragments of all nine C. trachomatis Pmps act as adhesins and are essential for infection. As autotransporters, most Pmp proteins are secreted through their β-barrel domain and localize on the surface of the chlamydial cell, where most of them are proteolytically processed. Classical autotransporters are monomeric proteins, which can function as toxins, proteases, lipases and monoadhesive adhesins. Here we show that selected recombinant C. trachomatis Pmp fragments form functional adhesion-competent multimers. They assemble into homomeric and heteromeric filaments, as revealed by non-denaturing gel electrophoresis, size-exclusion chromatography and electron microscopy. Heteromeric filaments reach 2 μm in length, significantly longer than homomeric structures. Filament formation was independent of the number of motifs present in the fragment(s) concerned and their relative affinity for host cells. Our functional studies demonstrated that only adhesion-competent oligomers were able to block a subsequent infection. Pre-loading of infectious chlamydial cells with adhesion-competent Pmp oligomers maintained the subsequent infection, while adhesion-incompetent structures reduced infectivity, presumably by blocking the function of endogenous Pmps. The very large number of possible heteromeric and homomeric Pmp complexes represents a novel mechanism to ensure stable adhesion and possibly host cell immune escape.
Collapse
Affiliation(s)
- Alison Favaroni
- Institute of Functional Microbial Genomics, Heinrich-Heine-University, Duesseldorf, Germany
| | - Johannes H Hegemann
- Institute of Functional Microbial Genomics, Heinrich-Heine-University, Duesseldorf, Germany
| |
Collapse
|
9
|
Dautin N. Folding Control in the Path of Type 5 Secretion. Toxins (Basel) 2021; 13:341. [PMID: 34064645 PMCID: PMC8151025 DOI: 10.3390/toxins13050341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022] Open
Abstract
The type 5 secretion system (T5SS) is one of the more widespread secretion systems in Gram-negative bacteria. Proteins secreted by the T5SS are functionally diverse (toxins, adhesins, enzymes) and include numerous virulence factors. Mechanistically, the T5SS has long been considered the simplest of secretion systems, due to the paucity of proteins required for its functioning. Still, despite more than two decades of study, the exact process by which T5SS substrates attain their final destination and correct conformation is not totally deciphered. Moreover, the recent addition of new sub-families to the T5SS raises additional questions about this secretion mechanism. Central to the understanding of type 5 secretion is the question of protein folding, which needs to be carefully controlled in each of the bacterial cell compartments these proteins cross. Here, the biogenesis of proteins secreted by the Type 5 secretion system is discussed, with a focus on the various factors preventing or promoting protein folding during biogenesis.
Collapse
Affiliation(s)
- Nathalie Dautin
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, LBPC-PM, CNRS, UMR7099, 75005 Paris, France;
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, 75005 Paris, France
| |
Collapse
|
10
|
Hayward RJ, Marsh JW, Humphrys MS, Huston WM, Myers GSA. Chromatin accessibility dynamics of Chlamydia-infected epithelial cells. Epigenetics Chromatin 2020; 13:45. [PMID: 33109274 PMCID: PMC7590614 DOI: 10.1186/s13072-020-00368-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/15/2020] [Indexed: 01/08/2023] Open
Abstract
Chlamydia are Gram-negative, obligate intracellular bacterial pathogens responsible for a broad spectrum of human and animal diseases. In humans, Chlamydia trachomatis is the most prevalent bacterial sexually transmitted infection worldwide and is the causative agent of trachoma (infectious blindness) in disadvantaged populations. Over the course of its developmental cycle, Chlamydia extensively remodels its intracellular niche and parasitises the host cell for nutrients, with substantial resulting changes to the host cell transcriptome and proteome. However, little information is available on the impact of chlamydial infection on the host cell epigenome and global gene regulation. Regions of open eukaryotic chromatin correspond to nucleosome-depleted regions, which in turn are associated with regulatory functions and transcription factor binding. We applied formaldehyde-assisted isolation of regulatory elements enrichment followed by sequencing (FAIRE-Seq) to generate temporal chromatin maps of C. trachomatis-infected human epithelial cells in vitro over the chlamydial developmental cycle. We detected both conserved and distinct temporal changes to genome-wide chromatin accessibility associated with C. trachomatis infection. The observed differentially accessible chromatin regions include temporally-enriched sets of transcription factors, which may help shape the host cell response to infection. These regions and motifs were linked to genomic features and genes associated with immune responses, re-direction of host cell nutrients, intracellular signalling, cell-cell adhesion, extracellular matrix, metabolism and apoptosis. This work provides another perspective to the complex response to chlamydial infection, and will inform further studies of transcriptional regulation and the epigenome in Chlamydia-infected human cells and tissues.
Collapse
Affiliation(s)
- Regan J Hayward
- The ithree Institute, University of Technology Sydney, Sydney, NSW, Australia
| | - James W Marsh
- Max Planck Institute for Developmental Biology, Tuebingen, Germany
| | - Michael S Humphrys
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Wilhelmina M Huston
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Garry S A Myers
- The ithree Institute, University of Technology Sydney, Sydney, NSW, Australia. .,School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|