1
|
Finnegan N, Lima MGM, Lynch JW. Mitochondrial DNA for Phylogeny Building: Assessing Individual and Grouped mtGenes as Proxies for the mtGenome in Platyrrhines. Am J Primatol 2025; 87:e70017. [PMID: 40059324 PMCID: PMC11891386 DOI: 10.1002/ajp.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 01/15/2025] [Accepted: 02/17/2025] [Indexed: 05/13/2025]
Abstract
Phylogenetic trees are analytic tools used in primate studies to elucidate evolutionary relationships. Because of its relative ease to sequence and rapid evolution compared to nuclear genomes, mitochondrial DNA is frequently used for phylogeny building. This project evaluated the effectiveness of using individual or grouped mitochondrial genes (mtGenes) as a proxy for the mitochondrial genome (mtGenome) in phylogeny building within two nested primate datasets, Cebidae and Platyrrhini, with differing divergence dates. mtGene utility rankings were determined based on congruence values to the mtGenome tree. mtGenes trees were also assessed on tree resolution and ability to sort nested clades. We found that most individual mtGenes, including ribosomal genes (12S and 16S), COX genes, most ND genes, and d-Loop are not appropriate for use as proxies for the mtGenome when tree building in either the Cebidae or Platyrrhini set. On average, grouped mtGenes outperformed individual mtGenes in both sets, and mtGene and grouped mtGene rankings varied between sets. Pairing CYB and COX3 together or pairing ND2 and CYB worked well in both the Cebidae set and the Platyrrhini set. We also found that nucleotide diversity is not a predictor of mtGene performance. Instead, it may be that unique mtGene or mtGene system evolutionary history impacts mtGene performance.
Collapse
Affiliation(s)
- Natalie Finnegan
- Department of AnthropologyUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | | | - Jessica W. Lynch
- Department of AnthropologyUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Institute for Society and GeneticsUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
2
|
Xu J, Wang J, Dong Y. Genetic Determination of a Cryptic Species in the Littoraria Genus With Whole-Genome Molecular Resolution. Ecol Evol 2024; 14:e70715. [PMID: 39664716 PMCID: PMC11631568 DOI: 10.1002/ece3.70715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 11/15/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024] Open
Abstract
Recognizing cryptic species is crucial for understanding global biodiversity. The intertidal snail Littoraria flammea is potentially a cryptic species of L. melanostoma widely distributed in the Northwest Pacific. However, the evidence from traditional morphology and single genetic markers is inconsistent. Our study combined quantitative morphological and whole-genome molecular data to clarify the phylogenetic relationship of three species (L. flammea, L. aff. melanostoma, and L. melanostoma). Three-dimensional models of shells revealed significant differences in morphology between L. flammea and L. melanostoma. Neutral SNPs indicated that individuals of L. flammea and L. melanostoma were in different clusters. The ratio of interspecific F ST to intraspecific F ST between L. flammea and L. melanostoma (16) was much larger than the lowest ratio (2.31) in six published genera with cryptic species in gastropods. Non-neutral SNPs disclosed divergence in functional genes related to reproduction and protein binding. The morphological and phylogenetic analyses corroborated the transitional status of L. aff. melanostoma. These results confirmed that the L. flammea snails north of the Yangtze River Estuary is a cryptic species of L. melanostoma, and allopatric speciation occurs in the L. melanostoma complex.
Collapse
Affiliation(s)
- Jia‐Wei Xu
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries CollegeOcean University of ChinaQingdaoPeople's Republic of China
| | - Jie Wang
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries CollegeOcean University of ChinaQingdaoPeople's Republic of China
- Function Laboratory for Marine Fisheries Science and Food Production ProcessesPilot National Laboratory for Marine Science and TechnologyQingdaoPeople's Republic of China
| | - Yun‐Wei Dong
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries CollegeOcean University of ChinaQingdaoPeople's Republic of China
- Function Laboratory for Marine Fisheries Science and Food Production ProcessesPilot National Laboratory for Marine Science and TechnologyQingdaoPeople's Republic of China
| |
Collapse
|
3
|
Hermosilla-Albala N, Silva FE, Cuadros-Espinoza S, Fontsere C, Valenzuela-Seba A, Pawar H, Gut M, Kelley JL, Ruibal-Puertas S, Alentorn-Moron P, Faella A, Lizano E, Farias I, Hrbek T, Valsecchi J, Gut IG, Rogers J, Farh KKH, Kuderna LFK, Marques-Bonet T, Boubli JP. Whole genomes of Amazonian uakari monkeys reveal complex connectivity and fast differentiation driven by high environmental dynamism. Commun Biol 2024; 7:1283. [PMID: 39379612 PMCID: PMC11461705 DOI: 10.1038/s42003-024-06901-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 09/16/2024] [Indexed: 10/10/2024] Open
Abstract
Despite showing the greatest primate diversity on the planet, genomic studies on Amazonian primates show very little representation in the literature. With 48 geolocalized high coverage whole genomes from wild uakari monkeys, we present the first population-level study on platyrrhines using whole genome data. In a very restricted range of the Amazon rainforest, eight uakari species (Cacajao genus) have been described and categorized into the bald and black uakari groups, based on phenotypic and ecological differences. Despite a slight habitat overlap, we show that posterior to their split 0.92 Mya, bald and black uakaris have remained independent, without gene flow. Nowadays, these two groups present distinct genetic diversity and group-specific variation linked to pathogens. We propose differing hydrology patterns and effectiveness of geographic barriers have modulated the intra-group connectivity and structure of bald and black uakari populations. With this work we have explored the effects of the Amazon rainforest's dynamism on wild primates' genetics and increased the representation of platyrrhine genomes, thus opening the door to future research on the complexity and diversity of primate genomics.
Collapse
Grants
- T.M.B gratefully acknowledges the financial support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 864203), (PID2021-126004NB-100) (MICIIN/FEDER, UE) and from the Secretaria d’Universitats i Recerca and CERCA Programme del Departament d’Economia i Coneixement de la Generalitat de Catalunya (GRC 2021 SGR 00177). J.P.B. gratefully acknowledges the financial support from the Natural Environment Research Council (NERC) (NE/T000341/1). F.E.S. gratefully acknowledges the financial support from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement (801505), the Fonds National de la Recherche Scientifique (F.R.S.-FNRS, Belgium; grant 40017464) Brazilian National Council for Scientific and Technological Development (CNPq) (Processes 303286/2014-8, 303579/2014-5, 200502/2015-8, 302140/2020-4, 300365/2021-7, 301407/2021-5, #301925/2021-6), the International Primatological Society (Conservation grant). The Rufford Foundation (14861-1, 23117-2, 38786-B), the Margot Marsh Biodiversity Foundation (SMA-CCO-G0023, SMA-CCOG0037), the Primate Conservation Inc. (1713 and 1689) and the Gordon and Betty Moore Foundation (Grant 5344) (Mamirauá Institute for Sustainable Development). N.H.-A. gratefully acknowledges the financial support from the Government of Catalonia | Agència de Gestió d'Ajuts Universitaris i de Recerca (Agency for Management of University and Research Grants) (FI_00040).
Collapse
Affiliation(s)
- Núria Hermosilla-Albala
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003, Barcelona, Spain.
| | - Felipe Ennes Silva
- Research Unit of Evolutionary Biology and Ecology, Département de Biologie des Organismes, Université libre de Bruxelles (ULB), Brussels, Belgium
- Research Group on Primate Biology and Conservation, Mamirauá Institute for Sustainable Development, Tefé, Amazonas, Brazil
| | - Sebastián Cuadros-Espinoza
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003, Barcelona, Spain
| | - Claudia Fontsere
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003, Barcelona, Spain
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Øster Farimagsgade 5A, 1352, Copenhagen, Denmark
| | - Alejandro Valenzuela-Seba
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003, Barcelona, Spain
| | - Harvinder Pawar
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003, Barcelona, Spain
| | - Marta Gut
- Centro Nacional de Análisis Genómico (CNAG), C/Baldiri Reixac 4, 08028, Barcelona, Spain
| | - Joanna L Kelley
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 130 McAllister Way, Santa Cruz, CA, 95060, USA
| | - Sandra Ruibal-Puertas
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003, Barcelona, Spain
| | - Pol Alentorn-Moron
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003, Barcelona, Spain
| | - Armida Faella
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003, Barcelona, Spain
| | - Esther Lizano
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003, Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Izeni Farias
- Universidade Federal do Amazonas, Departamento de Genética, Laboratório de Evolução e Genética Animal (LEGAL), Manaus, Amazonas, 69080-900, Brazil
| | - Tomas Hrbek
- Universidade Federal do Amazonas, Departamento de Genética, Laboratório de Evolução e Genética Animal (LEGAL), Manaus, Amazonas, 69080-900, Brazil
- Department of Biology, Trinity University, San Antonio, TX, 78212, USA
| | - Joao Valsecchi
- Research Group on Terrestrial Vertebrate Ecology, Mamirauá Institute for Sustainable Development, Tefé, Amazonas, Brazil
- Rede de Pesquisa para Estudos sobre Diversidade, Conservação e Uso da Fauna na Amazônia-RedeFauna, Manaus, Amazonas, Brazil
- Comunidad de Manejo de Fauna Silvestre en la Amazonía y en Latinoamérica-ComFauna, Iquitos, Loreto, Peru
| | - Ivo G Gut
- Centro Nacional de Análisis Genómico (CNAG), C/Baldiri Reixac 4, 08028, Barcelona, Spain
| | - Jeffrey Rogers
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kyle Kai-How Farh
- Illumina Artificial Intelligence Laboratory, Illumina Inc., San Diego, CA, 94404, USA
| | - Lukas F K Kuderna
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003, Barcelona, Spain
- Illumina Artificial Intelligence Laboratory, Illumina Inc., San Diego, CA, 94404, USA
| | - Tomas Marques-Bonet
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003, Barcelona, Spain
- Centro Nacional de Análisis Genómico (CNAG), C/Baldiri Reixac 4, 08028, Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, Cerdanyola del Vallès, 08193, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) and Universitat Pompeu Fabra. Pg. Luís Companys 23, 08010, Barcelona, Spain
| | - Jean P Boubli
- School of Science, Engineering & Environment, University of Salford, Salford, M5 4WT, UK
| |
Collapse
|
4
|
Martins AB, Valença-Montenegro MM, Lima MGM, Lynch JW, Svoboda WK, Silva-Júnior JDSE, Röhe F, Boubli JP, Fiore AD. A New Assessment of Robust Capuchin Monkey ( Sapajus) Evolutionary History Using Genome-Wide SNP Marker Data and a Bayesian Approach to Species Delimitation. Genes (Basel) 2023; 14:genes14050970. [PMID: 37239330 DOI: 10.3390/genes14050970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/28/2023] Open
Abstract
Robust capuchin monkeys, Sapajus genus, are among the most phenotypically diverse and widespread groups of primates in South America, with one of the most confusing and often shifting taxonomies. We used a ddRADseq approach to generate genome-wide SNP markers for 171 individuals from all putative extant species of Sapajus to access their evolutionary history. Using maximum likelihood, multispecies coalescent phylogenetic inference, and a Bayes Factor method to test for alternative hypotheses of species delimitation, we inferred the phylogenetic history of the Sapajus radiation, evaluating the number of discrete species supported. Our results support the recognition of three species from the Atlantic Forest south of the São Francisco River, with these species being the first splits in the robust capuchin radiation. Our results were congruent in recovering the Pantanal and Amazonian Sapajus as structured into three monophyletic clades, though new morphological assessments are necessary, as the Amazonian clades do not agree with previous morphology-based taxonomic distributions. Phylogenetic reconstructions for Sapajus occurring in the Cerrado, Caatinga, and northeastern Atlantic Forest were less congruent with morphology-based phylogenetic reconstructions, as the bearded capuchin was recovered as a paraphyletic clade, with samples from the Caatinga biome being either a monophyletic clade or nested with the blond capuchin monkey.
Collapse
Affiliation(s)
- Amely Branquinho Martins
- Centro Nacional de Pesquisa e Conservação de Primatas Brasileiros, Instituto Chico Mendes de Conservação da Biodiversidade, Cabedelo 58310-000, PB, Brazil
- Primate Molecular Ecology and Evolution Laboratory, Department of Anthropology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Mônica Mafra Valença-Montenegro
- Centro Nacional de Pesquisa e Conservação de Primatas Brasileiros, Instituto Chico Mendes de Conservação da Biodiversidade, Cabedelo 58310-000, PB, Brazil
| | - Marcela Guimarães Moreira Lima
- Laboratório de Biogeografia da Conservação e Macroecologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66077-530, PA, Brazil
| | - Jessica W Lynch
- Institute for Society and Genetics, Department of Anthropology, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Walfrido Kühl Svoboda
- Instituto Latino-Americano de Ciências da Vida e da Natureza, Centro Interdisciplinar de Ciências da Vida, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu 85870-650, PR, Brazil
| | - José de Sousa E Silva-Júnior
- Museu Paraense Emílio Goeldi, Ministério da Ciência, Tecnologia, Inovações e Comunicações, Coordenação de Zoologia, Campus de Pesquisa, Setor de Mastozoologia, Belém 66077-830, PA, Brazil
| | - Fábio Röhe
- Laboratório de Evolução e Genética Animal, Universidade Federal do Amazonas, Manaus 69067-005, AM, Brazil
| | - Jean Philippe Boubli
- School of Science, Engineering and the Environment, University of Salford, Salford M5 4WT, UK
| | - Anthony Di Fiore
- Primate Molecular Ecology and Evolution Laboratory, Department of Anthropology, The University of Texas at Austin, Austin, TX 78712, USA
- Tiputini Biodiversity Station, Universidad San Francisco de Quito, Quito 170901, Ecuador
| |
Collapse
|
5
|
Chambers EA, Tarvin RD, Santos JC, Ron SR, Betancourth‐Cundar M, Hillis DM, Matz MV, Cannatella DC. 2b or not 2b? 2bRAD is an effective alternative to ddRAD for phylogenomics. Ecol Evol 2023; 13:e9842. [PMID: 36911313 PMCID: PMC9994478 DOI: 10.1002/ece3.9842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 03/10/2023] Open
Abstract
Restriction-site-associated DNA sequencing (RADseq) has become an accessible way to obtain genome-wide data in the form of single-nucleotide polymorphisms (SNPs) for phylogenetic inference. Nonetheless, how differences in RADseq methods influence phylogenetic estimation is poorly understood because most comparisons have largely relied on conceptual predictions rather than empirical tests. We examine how differences in ddRAD and 2bRAD data influence phylogenetic estimation in two non-model frog groups. We compare the impact of method choice on phylogenetic information, missing data, and allelic dropout, considering different sequencing depths. Given that researchers must balance input (funding, time) with output (amount and quality of data), we also provide comparisons of laboratory effort, computational time, monetary costs, and the repeatability of library preparation and sequencing. Both 2bRAD and ddRAD methods estimated well-supported trees, even at low sequencing depths, and had comparable amounts of missing data, patterns of allelic dropout, and phylogenetic signal. Compared to ddRAD, 2bRAD produced more repeatable datasets, had simpler laboratory protocols, and had an overall faster bioinformatics assembly. However, many fewer parsimony-informative sites per SNP were obtained from 2bRAD data when using native pipelines, highlighting a need for further investigation into the effects of each pipeline on resulting datasets. Our study underscores the importance of comparing RADseq methods, such as expected results and theoretical performance using empirical datasets, before undertaking costly experiments.
Collapse
Affiliation(s)
- E. Anne Chambers
- Department of Integrative Biology and Biodiversity CenterUniversity of Texas at AustinAustinTexasUSA
- Department of Environmental Science, Policy, and Management and Museum of Vertebrate ZoologyUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Rebecca D. Tarvin
- Department of Integrative Biology and Biodiversity CenterUniversity of Texas at AustinAustinTexasUSA
- Department of Integrative Biology and Museum of Vertebrate ZoologyUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Juan C. Santos
- Department of Biological SciencesSt John's UniversityNew YorkNew YorkUSA
| | - Santiago R. Ron
- Museo de Zoología, Escuela de Ciencias BiológicasPontificia Universidad Católica del EcuadorQuitoEcuador
| | | | - David M. Hillis
- Department of Integrative Biology and Biodiversity CenterUniversity of Texas at AustinAustinTexasUSA
| | - Mikhail V. Matz
- Department of Integrative Biology and Biodiversity CenterUniversity of Texas at AustinAustinTexasUSA
| | - David C. Cannatella
- Department of Integrative Biology and Biodiversity CenterUniversity of Texas at AustinAustinTexasUSA
| |
Collapse
|
6
|
Mitochondrial genes as strong molecular markers for species identification. THE NUCLEUS 2022. [DOI: 10.1007/s13237-022-00393-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
7
|
Storer JM, Walker JA, Brown MA, Batzer MA. Cebidae Alu Element Alignments and a Complex Non-Human Primate Radiation. Life (Basel) 2022; 12:1655. [PMID: 36295090 PMCID: PMC9605045 DOI: 10.3390/life12101655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
Phylogenetic relationships among Cebidae species of platyrrhine primates are presently under debate. Studies prior to whole genome sequence (WGS) availability utilizing unidirectional Alu repeats linked Callithrix and Saguinus as sister taxa, based on a limited number of genetic markers and specimens, while the relative positions of Cebus, Saimiri and Aotus remained controversial. Multiple WGS allowed computational detection of Alu-genome junctions, however random mutation and evolutionary decay of these short-read segments prevented phylogenetic resolution. In this study, WGS for four Cebidae genomes of marmoset, squirrel monkey, owl monkey and capuchin were analyzed for full-length Alu elements and each locus was compared to the other three genomes in all possible combinations using orthologous region sequence alignments. Over 2000 candidates were aligned and subjected to visual inspection. Approximately 34% passed inspection and were considered shared in their respective category, 48% failed due to the target being present in all four genomes, having N's in the sequence or other sequence quality anomalies, and 18% were determined to represent near parallel insertions (NP). Wet bench locus specific PCR confirmed the presence of shared Alu insertions in all phylogenetically informative categories, providing evidence of extensive incomplete lineage sorting (ILS) and an abundance of Alu proliferation during the complex radiation of Cebidae taxa.
Collapse
Affiliation(s)
- Jessica M. Storer
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Jerilyn A. Walker
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| | - Morgan A. Brown
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| | - Mark A. Batzer
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| |
Collapse
|
8
|
Abstract
The platyrrhine family Cebidae (capuchin and squirrel monkeys) exhibit among the largest primate encephalization quotients. Each cebid lineage is also characterized by notable lineage-specific traits, with capuchins showing striking similarities to Hominidae such as high sensorimotor intelligence with tool use, advanced cognitive abilities, and behavioral flexibility. Here, we take a comparative genomics approach, performing genome-wide tests for positive selection across five cebid branches, to gain insight into major periods of cebid adaptive evolution. We uncover candidate targets of selection across cebid evolutionary history that may underlie the emergence of lineage-specific traits. Our analyses highlight shifting and sustained selective pressures on genes related to brain development, longevity, reproduction, and morphology, including evidence for cumulative and diversifying neurobiological adaptations across cebid evolution. In addition to generating a high-quality reference genome assembly for robust capuchins, our results lend to a better understanding of the adaptive diversification of this distinctive primate clade.
Collapse
|
9
|
Molecular phylogeny and systematics of bald uakaris, genus Cacajao Lesson, 1840 (Primates: Pitheciidae), with the description of a new species. Mol Phylogenet Evol 2022; 173:107509. [PMID: 35589052 DOI: 10.1016/j.ympev.2022.107509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 11/22/2022]
Abstract
Bald uakaris, genus Cacajao, are Amazonian primates currently classified as one species and four subspecies based on the patterns of pelage coloration. In this study, we test if their current taxonomy is represented by the phylogenetic relationship of the main lineages retrieved from molecular data. We included, for the first time, all bald uakari taxa in a mitochondrial (cytochrome b) and genome-wide (ddRAD) phylogenetic analyses. We also examined the pattern of pelage colouration in specimens from zoological collections. Having determined the number of lineages using Maximum Likelihood and the species tree using coalescent analyses, we test their divergence time using a Bayesian approach. While the cytochrome b analysis only recovered two clades, the ddRAD analysis supported the reciprocal monophyly of five lineages of bald uakaris, with all clades including only individuals with distinct and exclusive diagnostic phenotypic characters. We found that species diversification in Cacajao occurred during the last 300 Kya and may have been influenced by the formation of rivers and flooded forests in western Amazonia. We propose that the four bald uakari subspecies currently recognised can be upgraded to species level and we describe the white uakaris from the basin of the Rio Tarauacá as a new species.
Collapse
|
10
|
Pozzi L, Penna A. Rocks and clocks revised: New promises and challenges in dating the primate tree of life. Evol Anthropol 2022; 31:138-153. [PMID: 35102633 DOI: 10.1002/evan.21940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 10/04/2021] [Accepted: 01/12/2022] [Indexed: 01/14/2023]
Abstract
In recent years, multiple technological and methodological advances have increased our ability to estimate phylogenies, leading to more accurate dating of the primate tree of life. Here we provide an overview of the limitations and potentials of some of these advancements and discuss how dated phylogenies provide the crucial temporal scale required to understand primate evolution. First, we review new methods, such as the total-evidence dating approach, that promise a better integration between the fossil record and molecular data. We then explore how the ever-increasing availability of genomic-level data for more primate species can impact our ability to accurately estimate timetrees. Finally, we discuss more recent applications of mutation rates to date divergence times. We highlight example studies that have applied these approaches to estimate divergence dates within primates. Our goal is to provide a critical overview of these new developments and explore the promises and challenges of their application in evolutionary anthropology.
Collapse
Affiliation(s)
- Luca Pozzi
- Department of Anthropology, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Anna Penna
- Department of Anthropology, The University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
11
|
Sebastian W, Sukumaran S, Abdul Azeez S, Muraleedharan KR, Dinesh Kumar PK, Zacharia PU, Gopalakrishnan A. Genomic investigations provide insights into the mechanisms of resilience to heterogeneous habitats of the Indian Ocean in a pelagic fish. Sci Rep 2021; 11:20690. [PMID: 34667208 PMCID: PMC8526693 DOI: 10.1038/s41598-021-00129-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 10/05/2021] [Indexed: 11/08/2022] Open
Abstract
The adaptive genetic variation in response to heterogeneous habitats of the Indian Ocean was investigated in the Indian oil sardine using ddRAD sequencing to understand the subpopulation structure, stock complexity, mechanisms of resilience, and vulnerability in the face of climate change. Samples were collected from different ecoregions of the Indian ocean and ddRAD sequencing was carried out. Population genetic analyses revealed that samples from the Gulf of Oman significantly diverged from other Indian Ocean samples. SNP allele-environment correlation revealed the presence of candidate loci correlated with the environmental variables like annual sea surface temperature, chlorophyll-a, and dissolved oxygen concentration which might represent genomic regions allegedly diverging as a result of local adaptation. Larval dispersal modelling along the southwest coast of India indicated a high dispersal rate. The two major subpopulations (Gulf of Oman and Indian) need to be managed regionally to ensure the preservation of genetic diversity, which is crucial for climatic resilience.
Collapse
Affiliation(s)
- Wilson Sebastian
- Marine Biotechnology Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India.
| | - Sandhya Sukumaran
- Marine Biotechnology Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India
| | - S Abdul Azeez
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Dr Salim Ali Road, Post Box No. 1913, Kochi, Kerala, India
| | - K R Muraleedharan
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Dr Salim Ali Road, Post Box No. 1913, Kochi, Kerala, India
| | - P K Dinesh Kumar
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Dr Salim Ali Road, Post Box No. 1913, Kochi, Kerala, India
| | - P U Zacharia
- Marine Biotechnology Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India
| | - A Gopalakrishnan
- Marine Biotechnology Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India
| |
Collapse
|
12
|
Helenbrook WD, Valdez JW. Species distribution and conservation assessment of the black-headed night monkey (Aotus nigriceps): a species of Least Concern that faces widespread anthropogenic threats. Primates 2021; 62:817-825. [PMID: 34117595 DOI: 10.1007/s10329-021-00922-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
Deforestation rates in the Brazilian Amazon have been steadily increasing since 2007. Recent government policy, the projected growth of agriculture, and the expansion of the cattle industry are expected to further pressure primates within the Amazon basin. In this study, we examined the anthropogenic impact on the widely distributed black-headed night monkey, Aotus nigriceps, whose distribution and population status have yet to be assessed. We (1) modeled potential species distribution in A. nigriceps, (2) estimated the impact of habitat loss on population trends, and (3) highlight landscape-based conservation actions that maximize the potential for their long-term sustainability. We found the black-headed night monkey to be restricted by several biotic and environmental factors including forest cover, isothermality, precipitation, temperature, and elevation. Over the last two decades, over 132,908 km2 of tree cover (18%) has been lost within their currently recognized range based on satellite imagery. Based on a balance training omission, predicted area, and threshold values (BPTP), suitable habitat was only 67% (1,069,948 km2) of their hypothesized range, a loss of 16.5% from 2000, with just nearly a third of suitable habitat currently within protected areas. Over the last two decades, an estimated minimum 1.6 million individuals have been lost due to loss of suitable habitat. Projected deforestation rates equate to an additional loss of 94,458 km2 of suitable habitat over the next decade. Although classified as a species of Least Concern, we suggest that A. nigriceps may likely be more at risk than previously described. The future impact of the continued expansion of monoculture crops, cattle ranching, and wildfires is still unknown. However, we outline several steps to ensure the long-term viability of this nocturnal primate and other sympatric species throughout the Amazon Basin.
Collapse
Affiliation(s)
- William D Helenbrook
- Neotropical Division, Tropical Conservation Fund, 760 Parkside Trl NW, Marietta, GA, 30064, USA. .,State University of New York College of Environmental Science and Forestry, Syracuse, NY, 13210, USA.
| | - Jose W Valdez
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
| |
Collapse
|
13
|
Hannula R, Söderholm J, Svendsen T, Skaland M, Nordbø SA, Steinum H, Damås JK. Hepatitis C outreach project and cross-sectional epidemiology in high-risk populations in Trondheim, Norway. Ther Adv Infect Dis 2021; 8:20499361211053929. [PMID: 34733508 PMCID: PMC8558792 DOI: 10.1177/20499361211053929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Hepatitis C is highly prevalent among people who use drugs (PWUD), and the hepatitis C virus (HCV) epidemic is less characterised in Norway. The aims of the study were to assess the prevalence and treatment willingness in high-risk populations by reaching out to frequently visited sites for high-risk populations. METHODS Individuals from high-risk populations were included from September 2015 to March 2017. Two dedicated study nurses frequently visited the local opioid substitution clinic, outpatient clinics, PWUD day centres, local prison, and refugee centre in Trondheim, Norway. Demographic data, risk behaviour, and clinical symptoms were obtained by study questionnaire. Subjects with anti-HCV+ rapid test were subsequently tested for HCV RNA and genotyped. Viraemic patients were offered referral for HCV treatment evaluation. RESULTS A total of 381 participants were included in the study: 52 immigrants, 62 prisoners, and 267 PWUD. The anti-HCV prevalence rates were 0% (n = 0) in immigrants, 40% (n = 25) in prisoners, and 61% (n = 164) in PWUD, with 24% (n = 15) of prisoners and 42% (n = 108) of PWUD being viraemic. Of those qualifying for treatment (n = 31), 30 wished to be evaluated. CONCLUSION This study showed high HCV prevalence in prisoners and PWUD and that infected high-risk patients were interested in treatment evaluation.
Collapse
Affiliation(s)
- Raisa Hannula
- Department of Infectious Diseases, Trondheim University Hospital, 7006 Trondheim, Norway
| | - Jonas Söderholm
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Therese Svendsen
- Department of Infectious Diseases, Trondheim University Hospital, Trondheim, Norway
| | - Maja Skaland
- Department of Infectious Diseases, Trondheim University Hospital, Trondheim, Norway
| | - Svein A. Nordbø
- Department of Medical Microbiology, St. Olavs Hospital HF, Trondheim University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Harald Steinum
- Department of Infectious Diseases, Trondheim University Hospital, Trondheim, Norway
| | - Jan K. Damås
- Department of Infectious Diseases, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
14
|
Quintero-Corrales C, Ángeles-Argáiz R, Jaramillo-Correa JP, Piñero D, Garibay-Orijel R, Mastretta-Yanes A. Allopatric instead of parapatric divergence in an ectomycorrhizal fungus (Laccaria trichodermophora) in tropical sky-islands. FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2020.100966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Norconk MA. Historical antecedents and recent innovations in pitheciid (titi, saki, and uakari) feeding ecology. Am J Primatol 2020; 83:e23177. [PMID: 32720418 DOI: 10.1002/ajp.23177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/03/2020] [Indexed: 11/07/2022]
Abstract
The modern pitheciids (titis, sakis, and uakaris) of northern South America represent one of the earliest radiations of platyrrhines and demonstrate morphological adaptations and ecological strategies for seed eating. While seeds can provide reliable resources for relatively long periods of time, they are often well protected by thick husks and hard seed coverings. Seeds also tend to be rich in lipids, but they may also be high in indigestible fiber. Even though seed eaters are found in each major primate radiation, only the pitheciids demonstrate primary adaptations for eating seeds. In this partly historical, partly contemporary review, I examine the ecological and anatomical correlates of seed eating. It is dedicated to two well-known field primatologists: ecologist and conservationist J. Márcio Ayres; and anatomist and ecologist Warren G. Kinzey. Using observations in Kinzey (1992, Am J Phys Anthropol, 88, pp. 499-514) as a framework, I provide context and analysis for the intervening three decades of pitheciid research to identify what we know about this understudied group of primates and propose directions for future work.
Collapse
|
16
|
Parvimico materdei gen. et sp. nov.: A new platyrrhine from the Early Miocene of the Amazon Basin, Peru. J Hum Evol 2019; 134:102628. [DOI: 10.1016/j.jhevol.2019.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 11/21/2022]
|