1
|
Fang PH, Chang HC, Cheng HL, Huang CC, Wang S, Teng CH, Chia ZC, Chiang HP, Ruan J, Shih WA, Chou WY. Bacteria Contaminants Detected by Organic Inverter-Based Biosensors. Polymers (Basel) 2024; 16:1462. [PMID: 38891409 PMCID: PMC11174487 DOI: 10.3390/polym16111462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
The importance of bacteria detection lies in its role in enabling early intervention, disease prevention, environmental protection, and effective treatment strategies. Advancements in technology continually enhance the speed, accuracy, and sensitivity of detection methods, aiding in addressing these critical issues. This study first reports the fabrication of an inverter constructed using crosslinked-poly(4-vinylphenol) (C-PVP) as the dielectric layer and an organic complementary metal-oxide semiconductor (O-CMOS) based on pentacene and N,N'-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (PTCDI-C13) as a diagnostic biosensor to rapidly detect bacterial concentration. Bacteria including Escherichia coli O157, Staphylococcus aureus ATCC25922, and Enterococcus faecalis SH-1051210 were analysed on the inverters at an ultra-low operating voltage of 2 V. The high density of negative charge on bacteria surfaces strongly modulates the accumulated negative carriers within the inverter channel, resulting in a shift of the switching voltage. The inverter-based bacteria sensor exhibits a linear-like response to bacteria concentrations ranging from 102 to 108 CFU/mL, with a sensitivity above 60%. Compared to other bacterial detectors, the advantage of using an inverter lies in its ability to directly read the switching voltage without requiring an external computing device. This facilitates rapid and accurate bacterial concentration measurement, offering significant ease of use and potential for mass production.
Collapse
Affiliation(s)
- Po-Hsiang Fang
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Han-Chun Chang
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Horng-Long Cheng
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chih-Chia Huang
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Shuying Wang
- Department of Microbiology and Immunology, Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ching-Hao Teng
- Institute of Molecular Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Zi-Chun Chia
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hai-Pang Chiang
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Jrjeng Ruan
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Wei-An Shih
- Institute of Molecular Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Wei-Yang Chou
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
2
|
MacLelland V, Kravitz M, Gupta A. Therapeutic and diagnostic applications of antisense peptide nucleic acids. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102086. [PMID: 38204913 PMCID: PMC10777018 DOI: 10.1016/j.omtn.2023.102086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Peptide nucleic acids (PNAs) are synthetic nucleic acid analogs with a neutral N-(2-aminoethyl) glycine backbone. PNAs possess unique physicochemical characteristics such as increased resistance to enzymatic degradation, ionic strength and stability over a wide range of temperatures and pH, and low intrinsic electrostatic repulsion against complementary target oligonucleotides. PNA has been widely used as an antisense oligonucleotide (ASO). Despite the favorable characteristics of PNA, in comparison with other ASO technologies, the use of antisense PNA for novel therapeutics has lagged. This review provides a brief overview of PNA, its antisense mechanisms of action, delivery strategies, and highlights successful applications of PNA, focusing on anti-pathogenic, anti-neurodegenerative disease, anti-cancer, and diagnostic agents. For each application, several studies are discussed focusing on the different target sites of the PNA, design of different PNAs and the therapeutic outcome in different cell lines and animal models. Thereafter, persisting limitations slowing the successful integration of antisense PNA therapeutics are discussed in order to highlight actionable next steps in the development and optimization of PNA as an ASO.
Collapse
Affiliation(s)
- Victoria MacLelland
- Department of Pharmaceutical Sciences, University of Saint Joseph, West Hartford, CT 06117, USA
| | - Madeline Kravitz
- Department of Pharmaceutical Sciences, University of Saint Joseph, West Hartford, CT 06117, USA
| | - Anisha Gupta
- Department of Pharmaceutical Sciences, University of Saint Joseph, West Hartford, CT 06117, USA
| |
Collapse
|
3
|
Torres-Castro K, Acuña-Umaña K, Lesser-Rojas L, Reyes DR. Microfluidic Blood Separation: Key Technologies and Critical Figures of Merit. MICROMACHINES 2023; 14:2117. [PMID: 38004974 PMCID: PMC10672873 DOI: 10.3390/mi14112117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/01/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023]
Abstract
Blood is a complex sample comprised mostly of plasma, red blood cells (RBCs), and other cells whose concentrations correlate to physiological or pathological health conditions. There are also many blood-circulating biomarkers, such as circulating tumor cells (CTCs) and various pathogens, that can be used as measurands to diagnose certain diseases. Microfluidic devices are attractive analytical tools for separating blood components in point-of-care (POC) applications. These platforms have the potential advantage of, among other features, being compact and portable. These features can eventually be exploited in clinics and rapid tests performed in households and low-income scenarios. Microfluidic systems have the added benefit of only needing small volumes of blood drawn from patients (from nanoliters to milliliters) while integrating (within the devices) the steps required before detecting analytes. Hence, these systems will reduce the associated costs of purifying blood components of interest (e.g., specific groups of cells or blood biomarkers) for studying and quantifying collected blood fractions. The microfluidic blood separation field has grown since the 2000s, and important advances have been reported in the last few years. Nonetheless, real POC microfluidic blood separation platforms are still elusive. A widespread consensus on what key figures of merit should be reported to assess the quality and yield of these platforms has not been achieved. Knowing what parameters should be reported for microfluidic blood separations will help achieve that consensus and establish a clear road map to promote further commercialization of these devices and attain real POC applications. This review provides an overview of the separation techniques currently used to separate blood components for higher throughput separations (number of cells or particles per minute). We present a summary of the critical parameters that should be considered when designing such devices and the figures of merit that should be explicitly reported when presenting a device's separation capabilities. Ultimately, reporting the relevant figures of merit will benefit this growing community and help pave the road toward commercialization of these microfluidic systems.
Collapse
Affiliation(s)
- Karina Torres-Castro
- Biophysical and Biomedical Measurements Group, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899, USA;
- Theiss Research, La Jolla, CA 92037, USA
| | - Katherine Acuña-Umaña
- Medical Devices Master’s Program, Instituto Tecnológico de Costa Rica (ITCR), Cartago 30101, Costa Rica
| | - Leonardo Lesser-Rojas
- Research Center in Atomic, Nuclear and Molecular Sciences (CICANUM), San José 11501, Costa Rica;
- School of Physics, Universidad de Costa Rica (UCR), San José 11501, Costa Rica
| | - Darwin R. Reyes
- Biophysical and Biomedical Measurements Group, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899, USA;
| |
Collapse
|
4
|
Tsylents U, Siekierska I, Trylska J. Peptide nucleic acid conjugates and their antimicrobial applications-a mini-review. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:533-544. [PMID: 37610696 PMCID: PMC10618302 DOI: 10.1007/s00249-023-01673-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 08/24/2023]
Abstract
Peptide nucleic acid (PNA) is a nucleic acid mimic with high specificity and binding affinity to natural DNA or RNA, as well as resistance to enzymatic degradation. PNA sequences can be designed to selectively silence gene expression, which makes PNA a promising tool for antimicrobial applications. However, the poor membrane permeability of PNA remains the main limiting factor for its applications in cells. To overcome this obstacle, PNA conjugates with different molecules have been developed. This mini-review focuses on covalently linked conjugates of PNA with cell-penetrating peptides, aminosugars, aminoglycoside antibiotics, and non-peptidic molecules that were tested, primarily as PNA carriers, in antibacterial and antiviral applications. The chemistries of the conjugation and the applied linkers are also discussed.
Collapse
Affiliation(s)
- Uladzislava Tsylents
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097, Warsaw, Poland
| | - Izabela Siekierska
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097, Warsaw, Poland
| | - Joanna Trylska
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097, Warsaw, Poland.
| |
Collapse
|
5
|
Marcos-Fernández R, Sánchez B, Ruiz L, Margolles A. Convergence of flow cytometry and bacteriology. Current and future applications: a focus on food and clinical microbiology. Crit Rev Microbiol 2023; 49:556-577. [PMID: 35749433 DOI: 10.1080/1040841x.2022.2086035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 05/12/2022] [Accepted: 05/31/2022] [Indexed: 11/03/2022]
Abstract
Since its development in the 1960s, flow cytometry (FCM) was quickly revealed a powerful tool to analyse cell populations in medical studies, yet, for many years, was almost exclusively used to analyse eukaryotic cells. Instrument and methodological limitations to distinguish genuine bacterial signals from the background, among other limitations, have hampered FCM applications in bacteriology. In recent years, thanks to the continuous development of FCM instruments and methods with a higher discriminatory capacity to detect low-size particles, FCM has emerged as an appealing technique to advance the study of microbes, with important applications in research, clinical and industrial settings. The capacity to rapidly enumerate and classify individual bacterial cells based on viability facilitates the monitoring of bacterial presence in foodstuffs or clinical samples, reducing the time needed to detect contamination or infectious processes. Besides, FCM has stood out as a valuable tool to advance the study of complex microbial communities, or microbiomes, that are very relevant in the context of human health, as well as to understand the interaction of bacterial and host cells. This review highlights current developments in, and future applications of, FCM in bacteriology, with a focus on those related to food and clinical microbiology.
Collapse
Affiliation(s)
- Raquel Marcos-Fernández
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Asturias, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain
| | - Borja Sánchez
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Asturias, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain
| | - Lorena Ruiz
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Asturias, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Asturias, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain
| |
Collapse
|
6
|
Urosevic N, Merritt AJ, Inglis TJJ. Plasma cfDNA predictors of established bacteraemic infection. Access Microbiol 2022; 4:acmi000373. [PMID: 36004363 PMCID: PMC9394668 DOI: 10.1099/acmi.0.000373] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/16/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction. Increased plasma cell-free DNA (cfDNA) has been reported for various diseases in which cell death and tissue/organ damage contribute to pathogenesis, including sepsis. Gap Statement. While several studies report a rise in plasma cfDNA in bacteraemia and sepsis, the main source of cfDNA has not been identified. Aim. In this study, we wanted to determine which of nuclear, mitochondrial or bacterial cfDNA is the major contributor to raised plasma cfDNA in hospital subjects with bloodstream infections and could therefore serve as a predictor of bacteraemic disease severity. Methodology. The total plasma concentration of double-stranded cfDNA was determined using a fluorometric assay. The presence of bacterial DNA was identified by PCR and DNA sequencing. The copy numbers of human genes, nuclear β globin and mitochondrial MTATP8, were determined by droplet digital PCR. The presence, size and concentration of apoptotic DNA from human cells were established using lab-on-a-chip technology. Results. We observed a significant difference in total plasma cfDNA from a median of 75 ng ml−1 in hospitalised subjects without bacteraemia to a median of 370 ng ml−1 (P=0.0003) in bacteraemic subjects. The copy numbers of nuclear DNA in bacteraemic also differed between a median of 1.6 copies µl−1 and 7.3 copies µl−1 (P=0.0004), respectively. In contrast, increased mitochondrial cfDNA was not specific for bacteraemic subjects, as shown by median values of 58 copies µl−1 in bacteraemic subjects, 55 copies µl−1 in other hospitalised subjects and 5.4 copies µl−1 in healthy controls. Apoptotic nucleosomal cfDNA was detected only in a subpopulation of bacteraemic subjects with documented comorbidities, consistent with elevated plasma C-reactive protein (CRP) levels in these subjects. No bacterial cfDNA was reliably detected by PCR in plasma of bacteraemic subjects over the course of infection with several bacterial pathogens. Conclusions. Our data revealed distinctive plasma cfDNA signatures in different groups of hospital subjects. The total cfDNA was significantly increased in hospital subjects with laboratory-confirmed bloodstream infections comprising nuclear and apoptotic, but not mitochondrial or bacterial cfDNAs. The apoptotic cfDNA, potentially derived from blood cells, predicted established bacteraemia. These findings deserve further investigation in different hospital settings, where cfDNA measurement could provide simple and quantifiable parameters for monitoring a disease progression.
Collapse
Affiliation(s)
- Nadezda Urosevic
- School of Medicine, Faculty of Health & Medical Sciences, The University of Western Australia, Nedlands, WA, Australia
- School of Biomedical Sciences, Faculty of Health & Medical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Adam J. Merritt
- Department of Microbiology, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, WA, Australia
| | - Timothy J. J. Inglis
- School of Medicine, Faculty of Health & Medical Sciences, The University of Western Australia, Nedlands, WA, Australia
- School of Biomedical Sciences, Faculty of Health & Medical Sciences, The University of Western Australia, Nedlands, WA, Australia
- Department of Microbiology, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, WA, Australia
| |
Collapse
|
7
|
Freen-van Heeren JJ. Flow-FISH as a Tool for Studying Bacteria, Fungi and Viruses. BIOTECH 2021; 10:21. [PMID: 35822795 PMCID: PMC9245478 DOI: 10.3390/biotech10040021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/03/2021] [Accepted: 10/08/2021] [Indexed: 12/20/2022] Open
Abstract
Many techniques are currently in use to study microbes. These can be aimed at detecting, identifying, and characterizing bacterial, fungal, and viral species. One technique that is suitable for high-throughput analysis is flow cytometry-based fluorescence in situ hybridization, or Flow-FISH. This technique employs (fluorescently labeled) probes directed against DNA or (m)RNA, for instance targeting a gene or microorganism of interest and provides information on a single-cell level. Furthermore, by combining Flow-FISH with antibody-based protein detection, proteins of interest can be measured simultaneously with genetic material. Additionally, depending on the type of Flow-FISH assay, Flow-FISH can also be multiplexed, allowing for the simultaneous measurement of multiple gene targets and/or microorganisms. Together, this allows for, e.g., single-cell gene expression analysis or identification of (sub)strains in mixed cultures. Flow-FISH has been used in mammalian cells but has also been extensively employed to study diverse microbial species. Here, the use of Flow-FISH for studying microorganisms is reviewed. Specifically, the detection of (intracellular) pathogens, studying microorganism biology and disease pathogenesis, and identification of bacterial, fungal, and viral strains in mixed cultures is discussed, with a particular focus on the viruses EBV, HIV-1, and SARS-CoV-2.
Collapse
|
8
|
Kuo JT, Chang LL, Yen CY, Tsai TH, Chang YC, Huang YT, Chung YC. Development of Fluorescence In Situ Hybridization as a Rapid, Accurate Method for Detecting Coliforms in Water Samples. BIOSENSORS-BASEL 2020; 11:bios11010008. [PMID: 33374317 PMCID: PMC7824014 DOI: 10.3390/bios11010008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/11/2020] [Accepted: 12/24/2020] [Indexed: 11/22/2022]
Abstract
Coliform bacteria are indicators of water quality; however, most detection methods for coliform bacteria are time-consuming and nonspecific. Here, we developed a fluorescence in situ hybridization (FISH) approach to detect four types of coliform bacteria, including Escherichia coli, Klebsiella pneumoniae, Enterobacter aerogenes, and Citrobacter freundii, simultaneously in water samples using specific probes for 16S rRNA. This FISH method was applied to detect coliform bacteria in simulated water and domestic wastewater samples and compared with traditional detection methods (e.g., plate counting, multiple-tube fermentation (MTF) technique, and membrane filter (MF) technique). Optimal FISH conditions for detecting the four types of coliforms were found to be fixation in 3% paraformaldehyde at 4 °C for 2 h and hybridization at 50 °C for 1.5 h. By comparing FISH with plate counting, MTF, MF, and a commercial detection kit, we found that FISH had the shortest detection time and highest accuracy for the identification of coliform bacteria in simulated water and domestic wastewater samples. Moreover, the developed method could simultaneously detect individual species and concentrations of coliform bacteria. Overall, our findings indicated that FISH could be used as a rapid, accurate biosensor system for simultaneously detecting four types of coliform bacteria to ensure water safety.
Collapse
Affiliation(s)
- Jong-Tar Kuo
- Department of Biological Science and Technology, China University of Science and Technology, Taipei 115, Taiwan; (J.-T.K.); (C.-Y.Y.); (Y.-C.C.); (Y.-T.H.)
| | - Li-Li Chang
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 106, Taiwan;
| | - Chia-Yuan Yen
- Department of Biological Science and Technology, China University of Science and Technology, Taipei 115, Taiwan; (J.-T.K.); (C.-Y.Y.); (Y.-C.C.); (Y.-T.H.)
| | - Teh-Hua Tsai
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan;
| | - Yu-Chi Chang
- Department of Biological Science and Technology, China University of Science and Technology, Taipei 115, Taiwan; (J.-T.K.); (C.-Y.Y.); (Y.-C.C.); (Y.-T.H.)
| | - Yu-Tang Huang
- Department of Biological Science and Technology, China University of Science and Technology, Taipei 115, Taiwan; (J.-T.K.); (C.-Y.Y.); (Y.-C.C.); (Y.-T.H.)
| | - Ying-Chien Chung
- Department of Biological Science and Technology, China University of Science and Technology, Taipei 115, Taiwan; (J.-T.K.); (C.-Y.Y.); (Y.-C.C.); (Y.-T.H.)
- Correspondence: ; Tel.: +886-22782-1862; Fax: +886-22786-5456
| |
Collapse
|
9
|
Fujimoto K, Watanabe N. Fluorescence In Situ Hybridization of 16S rRNA in
Escherichia coli
Using Multiple Photo‐Cross‐Linkable Probes. ChemistrySelect 2020. [DOI: 10.1002/slct.202003343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Kenzo Fujimoto
- School of Advanced Science and Technology Japan Advanced Institute of Science and Technology Asahidai 1–1, Nomi Ishikawa 923-1292 Japan
| | - Nanami Watanabe
- School of Advanced Science and Technology Japan Advanced Institute of Science and Technology Asahidai 1–1, Nomi Ishikawa 923-1292 Japan
| |
Collapse
|
10
|
Patel R, Sarma S, Shukla A, Parmar P, Goswami D, Saraf M. Walking through the wonder years of artificial DNA: peptide nucleic acid. Mol Biol Rep 2020; 47:8113-8131. [PMID: 32990905 DOI: 10.1007/s11033-020-05819-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 09/04/2020] [Indexed: 11/26/2022]
Abstract
Peptide Nucleic Acid (PNA) serves as an artificial functional analog of DNA. Being immune to enzymatic degradation and possessing strong affinity towards DNA and RNA, it is an ideal candidate for many medical and biotechnological applications that are of antisense and antigene in nature. PNAs are anticipated to have its application in DNA and RNA detection as well as quantification, to serve as antibacterial and antiviral agents, and silencing gene for developing anticancer strategies. Although, their restricted entry in both eukaryotic and prokaryotic cells limit their applications. In addition, aggregation of PNA in storage containers reduces the quality and quantity of functional PNA that makes it inadequate for their mass production and storage. To overcome these limitations, researchers have modified PNA either by the addition of diverse functional groups at various loci on its backbone, or by synthesizing chimeras with other moieties associated with various delivery agents that aids their entry into the cell. Here, this review article summarizes few of the structural modifications that are performed with PNA, methods used to improve their cellular uptake and shedding light on the applications of PNA in various prospects in biological sciences.
Collapse
Affiliation(s)
- Rohit Patel
- Department of Microbiology and Biotechnology, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Sameera Sarma
- Department of Microbiology and Biotechnology, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Arpit Shukla
- Department of Microbiology and Biotechnology, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Paritosh Parmar
- Department of Microbiology and Biotechnology, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Dweipayan Goswami
- Department of Microbiology and Biotechnology, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Meenu Saraf
- Department of Microbiology and Biotechnology, Gujarat University, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
11
|
Cabral AD, Rafiei N, de Araujo ED, Radu TB, Toutah K, Nino D, Murcar-Evans BI, Milstein JN, Kraskouskaya D, Gunning PT. Sensitive Detection of Broad-Spectrum Bacteria with Small-Molecule Fluorescent Excimer Chemosensors. ACS Sens 2020; 5:2753-2762. [PMID: 32803944 DOI: 10.1021/acssensors.9b02490] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antibiotic resistance is a major problem for world health, triggered by the unnecessary usage of broad-spectrum antibiotics on purportedly infected patients. Current clinical standards require lengthy protocols for the detection of bacterial species in sterile physiological fluids. In this work, a class of small-molecule fluorescent chemosensors termed ProxyPhos was shown to be capable of rapid, sensitive, and facile detection of broad-spectrum bacteria. The sensors act via a turn-on fluorescent excimer mechanism, where close-proximity binding of multiple sensor units amplifies a red shift emission signal. ProxyPhos sensors were able to detect down to 10 CFUs of model strains by flow cytometry assays and showed selectivity over mammalian cells in a bacterial coculture through fluorescence microscopy. The studies reveal that the zinc(II)-chelates cyclen and cyclam are novel and effective binding units for the detection of both Gram-negative and Gram-positive bacterial strains. Mode of action studies revealed that the chemosensors detect Gram-negative and Gram-positive strains with two distinct mechanisms. Preliminary studies applying ProxyPhos sensors to sterile physiological fluids (cerebrospinal fluid) in flow cytometry assays were successful. The results suggest that ProxyPhos sensors can be developed as a rapid, inexpensive, and robust tool for the "yes-no" detection of broad-spectrum bacteria in sterile fluids.
Collapse
Affiliation(s)
- Aaron D. Cabral
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Nafiseh Rafiei
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Elvin D. de Araujo
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
| | - Tudor B. Radu
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Krimo Toutah
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
| | - Daniel Nino
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
- Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario M5S 1A7, Canada
| | - Bronte I. Murcar-Evans
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Joshua N. Milstein
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
- Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario M5S 1A7, Canada
| | - Dziyana Kraskouskaya
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
| | - Patrick T. Gunning
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
12
|
Singh KRB, Sridevi P, Singh RP. Potential applications of peptide nucleic acid in biomedical domain. ENGINEERING REPORTS : OPEN ACCESS 2020; 2:e12238. [PMID: 32838227 PMCID: PMC7404446 DOI: 10.1002/eng2.12238] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 05/03/2023]
Abstract
Peptide Nucleic Acid (PNA) are DNA/RNA synthetic analogs with 2-([2-aminoethyl] amino) acetic acid backbone. They partake unique antisense and antigene properties, just due to its inhibitory effect on transcription and translation; they also undergo complementary binding to RNA/DNA with high affinity and specificity. Hence, to date, many methods utilizing PNA for diagnosis and treatment of various diseases namely cancer, AIDS, human papillomavirus, and so on, have been designed and developed. They are being used widely in polymerase chain reaction modulation/mutation, fluorescent in-situ hybridization, and in microarray as a probe; they are also utilized in many in-vitro and in-vivo assays and for developing micro and nano-sized biosensor/chip/array technologies. Earlier reviews, focused only on PNA properties, structure, and modifications related to diagnostics and therapeutics; our review emphasizes on PNA properties and synthesis along with its potential applications in diagnosis and therapeutics. Furthermore, prospects in biomedical applications of PNAs are being discussed in depth.
Collapse
Affiliation(s)
- Kshitij RB Singh
- Department of Biotechnology, Faculty of ScienceIndira Gandhi National Tribal UniversityAmarkantakMadhya Pradesh484887India
| | - Parikipandla Sridevi
- Department of Biotechnology, Faculty of ScienceIndira Gandhi National Tribal UniversityAmarkantakMadhya Pradesh484887India
| | - Ravindra Pratap Singh
- Department of Biotechnology, Faculty of ScienceIndira Gandhi National Tribal UniversityAmarkantakMadhya Pradesh484887India
| |
Collapse
|
13
|
Azevedo MPF, Monteiro RM, Castelani C, Bim FL, Bim LL, Macedo AP, Oliveira VDC, Watanabe E. Biosafety of Non-Return Valves for Infusion Systems in Radiology. Sci Rep 2020; 10:9574. [PMID: 32533091 PMCID: PMC7293231 DOI: 10.1038/s41598-020-66491-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 05/13/2020] [Indexed: 11/09/2022] Open
Abstract
Cross-infection in contrast injectors is still a subject under discussion with little understanding. This study evaluated the biosafety of non-return valves (NRVs). Initially, the maximum pressure during backflow of intact and disrupted flexible diaphragms (FDs) from NRVs, as well as the functionality of connectors with NRVs were verified. The performance of air columns interposed by water in connectors with NRVs was analyzed, and the diffusion distance of crystal violet through connectors with NRVs was measured. The efficacy of NRVs as a barrier to bacterial contamination from backflow was evaluated. Finally, a clinical study of bacteriological contamination from syringes was conducted. There were differences among the maximum tolerated pressure by intact and disrupted FDs. Disrupted FDs showed no failures in the functionality of connectors with NRVs based on the lack of air bubbles released. Air columns could move through connectors with NRVs with intact and disrupted FDs. The longest diffusion distance of crystal violet was 6 cm of connector length, and NRVs showed efficacy as a barrier to bacterial contamination. In the clinical study, there was no bacterial growth in any of the evaluated samples. In conclusion, biosafety depends on the functionality of NRVs as well as proper practical clinical performance.
Collapse
Affiliation(s)
- Marcela Padilha Facetto Azevedo
- Department of Fundamental Nursing, College of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rachel Maciel Monteiro
- Department of Fundamental Nursing, College of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carla Castelani
- University of Valley of the Sinos River (Unisinos), São Leopoldo, in the Metropolitan Area of Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Felipe Lazarini Bim
- Department of Fundamental Nursing, College of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lucas Lazarini Bim
- Department of Fundamental Nursing, College of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ana Paula Macedo
- Department of Dental Materials and Prosthodontics, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Viviane de Cássia Oliveira
- Department of Fundamental Nursing, College of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Department of Dental Materials and Prosthodontics, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Evandro Watanabe
- Department of Fundamental Nursing, College of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil. .,Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
14
|
The Role of Single-Cell Technology in the Study and Control of Infectious Diseases. Cells 2020; 9:cells9061440. [PMID: 32531928 PMCID: PMC7348906 DOI: 10.3390/cells9061440] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
The advent of single-cell research in the recent decade has allowed biological studies at an unprecedented resolution and scale. In particular, single-cell analysis techniques such as Next-Generation Sequencing (NGS) and Fluorescence-Activated Cell Sorting (FACS) have helped show substantial links between cellular heterogeneity and infectious disease progression. The extensive characterization of genomic and phenotypic biomarkers, in addition to host-pathogen interactions at the single-cell level, has resulted in the discovery of previously unknown infection mechanisms as well as potential treatment options. In this article, we review the various single-cell technologies and their applications in the ongoing fight against infectious diseases, as well as discuss the potential opportunities for future development.
Collapse
|
15
|
Abstract
Microbial contaminations and infections are hazardous and pose crucial concerns for humans. They result in severe morbidity and mortality around the globe. Even though dish-culturing, polymerase chain reaction (PCR), an enzyme-linked immunosorbent assay (ELISA) exhibits accurate and reliable detection of bacteria but these methods are time-consuming, laborious, and expensive. This warrants early detection and quantification of bacteria for timely diagnosis and treatment. Bacteria imprinting ensures a solution for selective and early detection of bacteria by snagging them inside their imprinted cavities. This review provides an insight into MIPs based bacterial detection strategies, challenges, and future perspectives.
Collapse
Affiliation(s)
- Shabi Abbas Zaidi
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| |
Collapse
|
16
|
Inglis TJJ, Ekelund O. Rapid antimicrobial susceptibility tests for sepsis; the road ahead. J Med Microbiol 2019; 68:973-977. [PMID: 31145055 DOI: 10.1099/jmm.0.000997] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Current methods for antimicrobial susceptibility testing (AST) are too slow to affect initial treatment decisions in the early stages of sepsis, when the prescriber is most concerned to select effective therapy immediately, rather than finding out what will not work 1 or 2 days later. There is a clear need for much faster differentiation between viral and bacterial infection, and AST, linked to earlier aetiological diagnosis, without sacrificing either the accuracy of quantitative AST or the low cost of qualitative AST. Truly rapid AST methods are eagerly awaited, and there are several candidate technologies that aim to improve the targeting of our limited stock of effective antimicrobial agents. However, none of these technologies are approaching the point of care and nor can they be described as truly culture-independent diagnostic tests. Rapid chemical and genomic methods of resistance detection are not yet reliable predictors of antimicrobial susceptibility and often rely on prior bacterial isolation. In order to resolve the trade-off between diagnostic confidence and therapeutic efficacy in increasingly antimicrobial-resistant sepsis, we propose a series of three linked decision milestones: initial clinical assessment (e.g. qSOFA score) within 10 min, initial laboratory tests and presumptive antimicrobial therapy within 1 h, and definitive AST with corresponding antimicrobial amendment within an 8 h window (i.e. the same working day). Truly rapid AST methods therefore must be integrated into the clinical laboratory workflow to ensure maximum impact on clinical outcomes of sepsis, and diagnostic and antimicrobial stewardship. The requisite series of development stages come with a substantial regulatory burden that hinders the translation of innovation into practice. The regulatory hurdles for the adoption of rapid AST technology emphasize technical accuracy, but progress will also rely on the effect rapid AST has on prescribing behaviour by physicians managing the care of patients with sepsis. Early adopters in well-equipped teaching centres in close proximity to large clinical laboratories are likely to be early beneficiaries of rapid AST, while simplified and lower-cost technology is needed to support poorly resourced hospitals in developing countries, with their higher burden of AMR. If we really want the clinical laboratory to deliver a specific, same-day diagnosis underpinned by definitive AST results, we are going to have to advocate more effectively for the clinical benefits of bacterial detection and susceptibility testing at critical decision points in the sepsis management pathway.
Collapse
Affiliation(s)
- Timothy J J Inglis
- Department of Microbiology, PathWest Laboratory Medicine WA, Queen Elizabeth II Medical Centre, Nedlands, WA 6009, Australia.,Schools of Medicine and Biomedical Sciences, Faculty of Health and Medical Sciences, the University of Western Australia, Crawley, WA 6009, Australia
| | - Oskar Ekelund
- Department of Clinical Microbiology, Region Kronoberg, Växjö, Sweden
| |
Collapse
|