1
|
Yin S, Wang J, Jia Y, Wang X, Zhao Y, Liu T, Lv W, Duan Y, Zhao S, Wang S, Liu L. Sleep deprivation-induced sympathetic activation promotes pro-tumoral macrophage phenotype via the ADRB2/KLF4 pathway to facilitate NSCLC metastasis. iScience 2025; 28:112321. [PMID: 40276761 PMCID: PMC12018092 DOI: 10.1016/j.isci.2025.112321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/01/2025] [Accepted: 03/26/2025] [Indexed: 04/26/2025] Open
Abstract
Sleep deprivation is one of concomitant symptoms of cancer patients, particularly those with non-small cell lung cancer (NSCLC). The potential effect of sleep deprivation on tumor progression and underlying mechanisms remain to be fully investigated. Using a sleep-deprived tumor-bearing mouse model, we found that sleep deprivation altered immune cell composition and regulated pro-tumoral M2 macrophage polarization by the sympathetic nervous system. Furthermore, we identified a role of catecholaminergic neurons in the rostral ventrolateral medulla (RVLM) in influencing NSCLC metastasis. Clinical analyses revealed a correlation between sympathetic-related indicators and poor prognosis. Mechanistically, our findings indicate that sleep deprivation facilitates the polarization of pro-tumoral macrophages by upregulating β2-adrenergic receptor (ADRB2), which subsequently enhances the expression of Kruppel-like transcription factor 4 (KLF4) through the JAK1/STAT6 phosphorylation pathway. These findings highlight a neuro-immune mechanism linking sleep deprivation to NSCLC metastasis, suggesting that targeting the ADRB2/KLF4 axis could improve outcomes for sleep-deprived NSCLC patients.
Collapse
Affiliation(s)
- Shuxian Yin
- Department of Tumor Immunotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Research Institute, Shijiazhuang, China
- Hebei Key Laboratory of Stomatology, Hebei Technology Innovation Center of Oral Health, Hebei Medical University, Shijiazhuang, China
| | - Jiali Wang
- Department of Tumor Immunotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Research Institute, Shijiazhuang, China
| | - Yunlong Jia
- Department of Tumor Immunotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Research Institute, Shijiazhuang, China
| | - Xiaoyi Wang
- Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| | - Yan Zhao
- Department of Tumor Immunotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Research Institute, Shijiazhuang, China
| | - Tianxu Liu
- Department of Tumor Immunotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Research Institute, Shijiazhuang, China
| | - Wei Lv
- Department of Tumor Immunotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Research Institute, Shijiazhuang, China
| | - Yuqing Duan
- Department of Tumor Immunotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Research Institute, Shijiazhuang, China
| | - Song Zhao
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Sheng Wang
- Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| | - Lihua Liu
- Department of Tumor Immunotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Research Institute, Shijiazhuang, China
- International Cooperation Laboratory of Stem Cell Research, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
2
|
Yang R, Jin H, Zhao C, Wang W, Li WY. Oral Cancer and Sleep Disturbances: A Narrative Review on Exploring the Bidirectional Relationship. Cancers (Basel) 2025; 17:1262. [PMID: 40282437 PMCID: PMC12025584 DOI: 10.3390/cancers17081262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/15/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
Oral cancer is a common malignant tumor, and its incidence has steadily increased in recent years. Sleep disturbances, including insomnia and obstructive sleep apnea, are prevalent among patients with oral cancer and significantly impact their quality of life. Emerging research suggests a bidirectional relationship between oral cancer and sleep disorders. This article reviews how oral cancer induces or exacerbates sleep disorders, particularly obstructive sleep apnea (OSA), through factors such as pain, psychological stress, and treatment-related side effects (e.g., upper airway damage caused by chemotherapy, radiotherapy, or surgical interventions). Furthermore, it analyzes how sleep disorders may promote oral cancer progression via chronic inflammation, intermittent hypoxia, oxidative stress, and disruption of circadian rhythms. By elucidating these interactions, this review provides a theoretical foundation for optimizing clinical treatment plans through a holistic understanding of their shared pathophysiological mechanisms.
Collapse
Affiliation(s)
- Runhua Yang
- Respiratory and Critical Care Department, The First Hospital of China Medical University, Shenyang 110001, China; (R.Y.); (W.W.)
| | - Hongyu Jin
- Respiratory and Critical Care Department, The First Hospital of China Medical University, Shenyang 110001, China; (R.Y.); (W.W.)
| | - Chenyu Zhao
- Department of China Medical University-The Queen’s University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang 110052, China;
| | - Wei Wang
- Respiratory and Critical Care Department, The First Hospital of China Medical University, Shenyang 110001, China; (R.Y.); (W.W.)
| | - Wen-Yang Li
- Respiratory and Critical Care Department, The First Hospital of China Medical University, Shenyang 110001, China; (R.Y.); (W.W.)
| |
Collapse
|
3
|
Wang H, Song X, Shen H, Liu W, Wang Y, Zhang M, Yang T, Mou Y, Ren C, Song X. Cancer neuroscience in head and neck: interactions, modulation, and therapeutic strategies. Mol Cancer 2025; 24:101. [PMID: 40165230 PMCID: PMC11956203 DOI: 10.1186/s12943-025-02299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
Head and neck cancer (HNC) is an aggressive malignancy with significant effects on the innervation. Not only is it at the top of the cancer spectrum with a dismal prognosis, but it also imposes considerable stress on patients and society owing to frequent neurological symptoms. With progress in cancer neuroscience, the interactions between HNC and the nervous system, as well as the underlying mechanisms, have become increasingly clear. Compelling evidence suggests communication of information between cancer and nerve cells and devastation of the neurological system with tumor growth. However, the thorough grasp of HNC in cancer neuroscience has been severely constrained by the intricacy of HNC and fragmented research. This review comprehensively organizes and summarizes the latest research on the crosstalk between HNC and the nervous system. It aims to clarify various aspects of the neurological system in HNC, including the physiology, progression, and treatment of cancer. Furthermore, the opportunities and challenges of cancer neuroscience in HNC are discussed, which offers fresh perspectives on the neurological aspects of HNC diagnosis and management.
Collapse
Affiliation(s)
- Hanrui Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, No.20, East Road, Zhifu District, Yantai, 264000, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Xiaoyu Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, No.20, East Road, Zhifu District, Yantai, 264000, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Hui Shen
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, No.20, East Road, Zhifu District, Yantai, 264000, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Wanchen Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, No.20, East Road, Zhifu District, Yantai, 264000, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Yao Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, No.20, East Road, Zhifu District, Yantai, 264000, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Mingjun Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, No.20, East Road, Zhifu District, Yantai, 264000, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Ting Yang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, No.20, East Road, Zhifu District, Yantai, 264000, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Yakui Mou
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, No.20, East Road, Zhifu District, Yantai, 264000, China.
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China.
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China.
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.
| | - Chao Ren
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, No.20, East Road, Zhifu District, Yantai, 264000, China.
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China.
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China.
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.
- Department of Neurology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, No.20, East Road, Zhifu District, Yantai, 264000, China.
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China.
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China.
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.
| |
Collapse
|
4
|
Kayahara GM, Sarafim-Costa BAM, Branco de Oliveira MV, Fontanelli AM, Ye Y, Valente VB, Biasoli ER, Miyahara GI, Bernabé DG. Associations of Pain, Anxiety, and Depressive Symptoms With Sleep Outcomes in Patients With Head and Neck Squamous Cell Carcinoma: A Cross-Sectional Observational Study. Head Neck 2025. [PMID: 40159711 DOI: 10.1002/hed.28147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 02/27/2025] [Accepted: 03/18/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND This exploratory cross-sectional observational study sought to characterize sleep quality and evaluate its association with sociodemographic, clinicopathological, behavioral, and psychological variables in patients with head and neck squamous cell carcinoma (HNSCC). PATIENTS AND METHODS Sleep problems from 132 HNC patients were assessed before starting oncological treatment through the questionnaires Pittsburgh Sleep Quality Index (PSQI), Insomnia Severity Index (ISI), Epworth Sleepiness Scale (ESS), and STOP-Bang. Anxiety and depression symptoms were evaluated using the Hospital Anxiety and Depression Scale. Univariate analysis and multivariate logistic regression were performed to evaluate factors associated with sleep problems in HNSCC patients. RESULTS About 50% of the HNSCC patients reported poor overall sleep quality on the PSQI. Insomnia, excessive daytime sleepiness, and high risk of apnea were observed in 19%, 15%, and 54% of HNSCC patients, respectively. Our results showed that pain was associated with overall poor PSQI sleep quality and lower PSQI sleep efficiency, while the presence of regional metastasis was linked to overall PSQI good sleep. No other clinicopathological or behavioral (i.e., alcohol and tobacco use) variables were related to sleep outcomes. Higher occurrence of anxiety symptoms was related to poor overall PSQI sleep quality, decreased PSQI sleep efficiency, PSQI daytime dysfunction, and ISI insomnia. Moreover, higher occurrence of depression symptoms was associated with lower PSQI sleep latency and PSQI duration, and the occurrence of ESS excessive daytime sleepiness. CONCLUSION Pain, anxiety, and depressive symptoms were associated with poor sleep quality and sleep problems in HNSCC patients before starting treatment. No sociodemographic or behavioral (i.e., alcohol and tobacco use) variables were related to sleep outcomes. Likewise, tumor location, T classification, and clinical staging were not linked to sleep quality and disorders in HNSCC patients.
Collapse
Affiliation(s)
- Giseli Mitsuy Kayahara
- Psychosomatic Research Center, Oral Oncology Center, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
- Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Bruna Amélia Moreira Sarafim-Costa
- Psychosomatic Research Center, Oral Oncology Center, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | | | | | - Yi Ye
- Translational Research Center, NYU Pain Research Center, Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York, USA
| | - Vitor Bonetti Valente
- Psychosomatic Research Center, Oral Oncology Center, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
- Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Eder Ricardo Biasoli
- Psychosomatic Research Center, Oral Oncology Center, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
- Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Glauco Issamu Miyahara
- Psychosomatic Research Center, Oral Oncology Center, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
- Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Daniel Galera Bernabé
- Psychosomatic Research Center, Oral Oncology Center, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
- Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| |
Collapse
|
5
|
Tiwari RK, Rawat SG, Rai S, Kumar A. Stress regulatory hormones and cancer: the contribution of epinephrine and cancer therapeutic value of beta blockers. Endocrine 2025:10.1007/s12020-025-04161-7. [PMID: 39869294 DOI: 10.1007/s12020-025-04161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 01/08/2025] [Indexed: 01/28/2025]
Abstract
The word "cancer" evokes myriad emotions, ranging from fear and despair to hope and determination. Cancer is aptly defined as a complex and multifaceted group of diseases that has unapologetically led to the loss of countless lives and affected innumerable families across the globe. The battle with cancer is not only a physical battle, but also an emotional, as well as a psychological skirmish for patients and for their loved ones. Cancer has been a part of our history, stories, and lives for centuries and has challenged the ingenuity of health and medical science, and the resilience of the human spirit. From the early days of surgery and radiation therapy to cutting-edge developments in chemotherapeutic agents, immunotherapy, and targeted treatments, the medical field continues to make significant headway in the fight against cancer. However, even after all these advancements, cancer is still among the leading cause of death globally. This urges us to understand the central hallmarks of neoplastic cells to identify novel molecular targets for the development of promising therapeutic approaches. Growing research suggests that stress mediators, including epinephrine, play a critical role in the development and progression of cancer by inducing neoplastic features through activating adrenergic receptors, particularly β-adrenoreceptors. Further, our experimental data has also shown that epinephrine mediates the growth of T-cell lymphoma by inducing proliferation, glycolysis, and apoptosis evasion via altering the expression levels of key regulators of these vital cellular processes. The beauty of receptor-based therapy lies in its precision and higher therapeutic value. Interestingly, the enhanced expression of β-adrenergic receptors (ADRBs), namely ADRB2 (β2-adrenoreceptor) and ADRB3 (β3-adrenoreceptor) has been noted in many cancers, such as breast, colon, gastric, pancreatic, and prostate and has been reported to play a pivotal role in facilitating cancer growth mainly by promoting proliferation, evasion of apoptosis, angiogenesis, invasion and metastasis, and chemoresistance. The present review article is an attempt to summarize the available findings which indicate a distinct relationship between stress hormones and cancer, with a special emphasis on epinephrine, considered as a key stress regulatory molecule. This article also discusses the possibility of using beta-blockers for cancer therapy.
Collapse
Affiliation(s)
- Rajan Kumar Tiwari
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- School of Medicine and Health Sciences, The George Washington University, Washington DC, USA
| | - Shiv Govind Rawat
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- MD Anderson Cancer Center, The University of Texas, Texas, USA
| | - Siddharth Rai
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ajay Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| |
Collapse
|
6
|
Rutkowski K, Gola M, Godlewski J, Starzyńska A, Marvaso G, Mastroleo F, Giulia Vincini M, Porazzi A, Zaffaroni M, Jereczek-Fossa BA. Understanding the role of nerves in head and neck cancers - a review. Oncol Rev 2025; 18:1514004. [PMID: 39906323 PMCID: PMC11791411 DOI: 10.3389/or.2024.1514004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 12/03/2024] [Indexed: 02/06/2025] Open
Abstract
Worldwide, head and neck cancers (HNCs) account for approximately 900,000 cases and 500,000 deaths annually, with their incidence continuing to rise. Carcinogenesis is a complex, multidimensional molecular process leading to cancer development, and in recent years, the role of nerves in the pathogenesis of various malignancies has been increasingly recognized. Thanks to the abundant innervation of the head and neck region, peripheral nervous system has gained considerable interest for its possible role in the development and progression of HNCs. Intratumoral parasympathetic, sympathetic, and sensory nerve fibers are emerging as key players and potential targets for novel anti-cancer and pain-relieving medications in different tumors, including HNCs. This review explores nerve-cancer interactions, including perineural invasion (PNI), cancer-related axonogenesis, neurogenesis, and nerve reprogramming, with an emphasis on their molecular mechanisms, mediators and clinical implications. PNI, an adverse histopathologic feature, has been widely investigated in HNCs. However, its prognostic value remains debated due to inconsistent results when classified dichotomously (present/absent). Emerging evidence suggests that quantitative and qualitative descriptions of PNI may better reflect its clinical usefulness. The review also examines therapies targeting nerve-cancer crosstalk and highlights the influence of HPV status on tumor innervation. By synthesizing current knowledge, challenges, and future perspectives, this review offers insights into the molecular basis of nerve involvement in HNCs and the potential for novel therapeutic approaches.
Collapse
Affiliation(s)
- Krzysztof Rutkowski
- Department of Hematology, Transplantology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Michał Gola
- Department of Human Histology and Embryology, Collegium Medicum, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
- Department of Oncology and Immuno-Oncology, Clinical Hospital of the Ministry of Internal Affairs and Administration with the Warmia-Mazury Oncology Centre, Olsztyn, Poland
| | - Janusz Godlewski
- Department of Human Histology and Embryology, Collegium Medicum, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
- Department of Surgical Oncology, Clinical Hospital of the Ministry of Internal Affairs and Administration with the Warmia-Mazury Oncology Centre, Olsztyn, Poland
| | - Anna Starzyńska
- Department of Oral Surgery, Medical University of Gdańsk, Gdańsk, Poland
- Department of Otolaryngology, Phoniatrics and Audiology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Giulia Marvaso
- Division of Radiation Oncology, European Institute of Oncology (IEO), Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Federico Mastroleo
- Division of Radiation Oncology, European Institute of Oncology (IEO), Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Maria Giulia Vincini
- Division of Radiation Oncology, European Institute of Oncology (IEO), Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Alice Porazzi
- Division of Radiation Oncology, European Institute of Oncology (IEO), Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Mattia Zaffaroni
- Division of Radiation Oncology, European Institute of Oncology (IEO), Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Barbara Alicja Jereczek-Fossa
- Division of Radiation Oncology, European Institute of Oncology (IEO), Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
7
|
Peña-Oyarzún D, Quest AFG, Lobos-González L, Maturana-Ramírez A, Reyes M. Porcupine expression promotes the progression of oral carcinogenesis. Neoplasia 2025; 59:101097. [PMID: 39616893 DOI: 10.1016/j.neo.2024.101097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer, which is usually preceded by a potentially malignant disorder histologically diagnosed as dysplasia. We and others have provided evidence for the pro-carcinogenic role of the Wnt/β-catenin pathway in this context, in which Wnt ligands stabilize and allow relocalization of β-catenin to the nucleus for transcription of pro-survival and pro-proliferation genes. However, the contribution of Porcupine (PORCN), an O-acyltransferase that catalyzes the palmitoylation of Wnt ligands, to OSCC carcinogenesis is not known. Moreover, the effectiveness of LGK974, a novel PORCN inhibitor remains to be elucidated. By using different ex vivo, in vivo and in vitro OSCC carcinogenesis models, we show that PORCN expression is significantly increased in high-grade dysplasia as well as moderately/poorly- differentiated OSCC. Consistent with these observations, expression of key proteins involved in the Wnt/β-catenin pathway are elevated as well. Importantly, the treatment with LGK974, a chemical PORCN inhibitor, reduced the number and size of oral lesions in mice treated with 4-Nitroquinoline 1-oxide (4NQO), a tobacco smoke surrogate. These results highlight the role of PORCN during OSCC carcinogenesis.
Collapse
Affiliation(s)
- Daniel Peña-Oyarzún
- School of Odontology, Faculty of Odontology and Rehabilitation Sciences, Universidad San Sebastián, Santiago, Chile.
| | - Andrew F G Quest
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile; Laboratory of Cellular Communication, Center for studies on Exercise, Metabolism and Cancer (CEMC), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Lorena Lobos-González
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile; Laboratory of Cellular Communication, Center for studies on Exercise, Metabolism and Cancer (CEMC), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Andrea Maturana-Ramírez
- Pathology and Oral Medicine Department, Faculty of Odontology, Universidad de Chile, Santiago, Chile
| | - Montserrat Reyes
- Pathology and Oral Medicine Department, Faculty of Odontology, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
8
|
Dong ZK, Wang YF, Li WP, Jin WL. Neurobiology of cancer: Adrenergic signaling and drug repurposing. Pharmacol Ther 2024; 264:108750. [PMID: 39527999 DOI: 10.1016/j.pharmthera.2024.108750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Cancer neuroscience, as an emerging converging discipline, provides us with new perspectives on the interactions between the nervous system and cancer progression. As the sympathetic nervous system, in particular adrenergic signaling, plays an important role in the regulation of tumor activity at every hierarchical level of life, from the tumor cell to the tumor microenvironment, and to the tumor macroenvironment, it is highly desirable to dissect its effects. Considering the far-reaching implications of drug repurposing for antitumor drug development, such a large number of adrenergic receptor antagonists on the market has great potential as one of the means of antitumor therapy, either as primary or adjuvant therapy. Therefore, this review aims to summarize the impact of adrenergic signaling on cancer development and to assess the status and prospects of intervening in adrenergic signaling as a therapeutic tool against tumors.
Collapse
Affiliation(s)
- Zi-Kai Dong
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China
| | - Yong-Fei Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China
| | - Wei-Ping Li
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Department of Urology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Wei-Lin Jin
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
9
|
Dai M, Chen Y, Qin J. Atrioventricular re-entrant tachycardia and atrioventricular node re-entrant tachycardia in a patient with cancer under chemotherapy: a case report and literature review. Front Cardiovasc Med 2024; 11:1367893. [PMID: 38911514 PMCID: PMC11190324 DOI: 10.3389/fcvm.2024.1367893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/21/2024] [Indexed: 06/25/2024] Open
Abstract
Cardio-oncology is a new field of interest in cardiology focusing on the detection and treatment of cardiovascular diseases, such as arrhythmias, myocarditis, and heart failure, as side-effects of chemotherapy and radiotherapy. The association between chemotherapeutic agents and arrhythmias has previously been established. Atrial tachyarrhythmias, particularly atrial fibrillation, are most common, but ventricular arrhythmias, including those related to treatment-induced QT prolongation, and bradyarrhythmias can also occur. However, the association between chemotherapeutic agents and atrioventricular re-entrant tachycardia (AVRT)/atrioventricular node re-entrant tachycardia (AVNRT) remains poorly understood. Here, we report a patient with new-onset AVRT/AVNRT and lung cancer who underwent chemotherapy. We considered that chemotherapy or cancer itself may have been a trigger for the initiation of paroxysmal AVRT/AVNRT, and that radiofrequency catheter ablation was effective in treating this type of tachycardia. Here, possible mechanisms and potential genes (mostly ion channels) involved in AVRT/AVNRT are summarized and the mechanisms underlying the possible regulatory patterns of cancer cells and chemotherapy on ion channels are reviewed. Finally, we considered that ion channel abnormalities may link cancer or chemotherapy to the onset of AVRT/AVNRT. The aim of the present study was to highlight the association between chemotherapeutic agents and AVRT/AVNRT and to provide new insights for future research. Understanding the intermediate mechanisms between chemotherapeutic agents and AVRT/AVNRT may be beneficial in preventing chemotherapy-evoked AVRT/AVNRT (and/or other arrhythmias) in future.
Collapse
Affiliation(s)
- Meiyan Dai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Chen
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Qin
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Mandal SK, Yadav P, Sheth RA. The Neuroimmune Axis and Its Therapeutic Potential for Primary Liver Cancer. Int J Mol Sci 2024; 25:6237. [PMID: 38892423 PMCID: PMC11172507 DOI: 10.3390/ijms25116237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The autonomic nervous system plays an integral role in motion and sensation as well as the physiologic function of visceral organs. The nervous system additionally plays a key role in primary liver diseases. Until recently, however, the impact of nerves on cancer development, progression, and metastasis has been unappreciated. This review highlights recent advances in understanding neuroanatomical networks within solid organs and their mechanistic influence on organ function, specifically in the liver and liver cancer. We discuss the interaction between the autonomic nervous system, including sympathetic and parasympathetic nerves, and the liver. We also examine how sympathetic innervation affects metabolic functions and diseases like nonalcoholic fatty liver disease (NAFLD). We also delve into the neurobiology of the liver, the interplay between cancer and nerves, and the neural regulation of the immune response. We emphasize the influence of the neuroimmune axis in cancer progression and the potential of targeted interventions like neurolysis to improve cancer treatment outcomes, especially for hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
| | | | - Rahul A. Sheth
- Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1471, Houston, TX 77030-4009, USA; (S.K.M.); (P.Y.)
| |
Collapse
|
11
|
Shu LZ, Ding YD, Zhang JY, He RS, Xiao L, Pan BX, Deng H. Interactions between MDSCs and the Autonomic Nervous System: Opportunities and Challenges in Cancer Neuroscience. Cancer Immunol Res 2024; 12:652-662. [PMID: 38568775 DOI: 10.1158/2326-6066.cir-23-0976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/11/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
Myeloid-derived suppressor cells (MDSC) are a population of heterogeneous immune cells that are involved in precancerous conditions and neoplasms. The autonomic nervous system (ANS), which is composed of the sympathetic nervous system and the parasympathetic nervous system, is an important component of the tumor microenvironment that responds to changes in the internal and external environment mainly through adrenergic and cholinergic signaling. An abnormal increase of autonomic nerve density has been associated with cancer progression. As we discuss in this review, growing evidence indicates that sympathetic and parasympathetic signals directly affect the expansion, mobilization, and redistribution of MDSCs. Dysregulated autonomic signaling recruits MDSCs to form an immunosuppressive microenvironment in chronically inflamed tissues, resulting in abnormal proliferation and differentiation of adult stem cells. The two components of the ANS may also be responsible for the seemingly contradictory behaviors of MDSCs. Elucidating the underlying mechanisms has the potential to provide more insights into the complex roles of MDSCs in tumor development and lay the foundation for the development of novel MDSC-targeted anticancer strategies.
Collapse
Affiliation(s)
- Lin-Zhen Shu
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Rehabiliation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Tumor Immunology Institute, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yi-Dan Ding
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Rehabiliation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Tumor Immunology Institute, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jin-Yao Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Rui-Shan He
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Rehabiliation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Tumor Immunology Institute, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Li Xiao
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Rehabiliation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Tumor Immunology Institute, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Bing-Xing Pan
- Laboratory of Fear and Anxiety Disorders, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Huan Deng
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Rehabiliation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Tumor Immunology Institute, Nanchang University, Nanchang, Jiangxi, China
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
12
|
Santos-Sousa AL, Kayahara GM, Bastos DB, Sarafim-Silva BAM, Crivelini MM, Valente VB, Corrente JE, Xavier-Júnior JCC, Miyahara GI, Bernabé DG. Expression of β 1- and β 2-adrenergic receptors in oral squamous cell carcinoma and their association with psychological and clinical factors. Arch Oral Biol 2024; 162:105939. [PMID: 38490087 DOI: 10.1016/j.archoralbio.2024.105939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Psychological stressors have been related to tumor progression through the activation of beta-adrenergic receptors (β-AR) in several types of cancer. PURPOSE This study aimed to investigate the expressions of β1- and β2-AR and their association with psychological and clinicopathological variables in patients with oral squamous cell carcinoma. METHODS Tumor samples from 99 patients diagnosed with OSCC were subjected to immunohistochemical reaction to detect the expression of β1-AR and β2-AR. Anxiety and depression symptoms were assessed using the Beck Anxiety Inventory and Beck Depression Inventory (BDI), respectively. The Brunel Mood Scale was used for measuring affective mood states. RESULTS Univariate analyzes revealed that higher expression of β1-AR was associated with increased alcohol consumption (p = 0.032), higher education (p = 0.042), worse sleep quality (p = 0.044) and increased levels of pain related to the primary tumor (p < 0.001). Higher expression of β2-AR was related with regional metastasis (p = 0.014), increased levels of pain related to the primary tumor (p = 0.044), anxiety (p < 0.001) and depressive (p = 0.010) symptoms and higher mood scores of angry (p = 0.010) and fatigue (p = 0.010). Multivariate analysis identified that patients with advanced clinical stage had lower β1-AR expression (OR=0.145, 95% CI=0.025-0.828, p = 0.003). Higher anxiety symptoms and higher mood fatigue are independent factors for increased β2-AR expression (OR=4256, 95% CI=1439-12606, p = 0.009; OR=3816, 95% CI=1258-11,573, p = 0.018, respectively). CONCLUSION This study reveal that anxiety, fatigue symptoms, and clinical staging are associated with tumor expression of beta-adrenergic receptors in patients with oral cancer.
Collapse
Affiliation(s)
- Ana Lívia Santos-Sousa
- Psychosomatic Research Center, Oral Oncology Center, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Giseli Mitsuy Kayahara
- Psychosomatic Research Center, Oral Oncology Center, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil; Department of Diagnosis and Surgery, Araçatuba Dental School, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Daniela Brito Bastos
- Psychosomatic Research Center, Oral Oncology Center, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Bruna Amélia Moreira Sarafim-Silva
- Psychosomatic Research Center, Oral Oncology Center, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Marcelo Macedo Crivelini
- Department of Diagnosis and Surgery, Araçatuba Dental School, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Vítor Bonetti Valente
- Psychosomatic Research Center, Oral Oncology Center, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil; Department of Diagnosis and Surgery, Araçatuba Dental School, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - José Eduardo Corrente
- Research Support Office, Botucatu Medical School (UNESP), Botucatu, São Paulo, Brazil
| | | | - Glauco Issamu Miyahara
- Psychosomatic Research Center, Oral Oncology Center, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil; Department of Diagnosis and Surgery, Araçatuba Dental School, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Daniel Galera Bernabé
- Psychosomatic Research Center, Oral Oncology Center, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil; Department of Diagnosis and Surgery, Araçatuba Dental School, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil.
| |
Collapse
|
13
|
Blasko F, Horvathova L. The relationship between the tumor and its innervation: historical, methodical, morphological, and functional assessments - A minireview. Endocr Regul 2024; 58:68-82. [PMID: 38563296 DOI: 10.2478/enr-2024-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
The acceptance of the tumor as a non-isolated structure within the organism has opened a space for the study of a wide spectrum of potential direct and indirect interactions, not only between the tumor tissue and its vicinity, but also between the tumor and its macroenvironment, including the nervous system. Although several lines of evidence have implicated the nervous system in tumor growth and progression, for many years, researchers believed that tumors lacked innervation and the notion of indirect neuro-neoplastic interactions via other systems (e.g., immune, or endocrine) predominated. The original idea that tumors are supplied not only by blood and lymphatic vessels, but also autonomic and sensory nerves that may influence cancer progression, is not a recent phenomenon. Although in the past, mainly due to the insufficiently sensitive methodological approaches, opinions regarding the presence of nerves in tumors were inconsistent. However, data from the last decade have shown that tumors are able to stimulate the formation of their own innervation by processes called neo-neurogenesis and neo-axonogenesis. It has also been shown that tumor infiltrating nerves are not a passive, but active components of the tumor microenvironment and their presence in the tumor tissue is associated with an aggressive tumor phenotype and correlates with poor prognosis. The aim of the present review was to 1) summarize the available knowledge regarding the course of tumor innervation, 2) present the potential mechanisms and pathways for the possible induction of new nerve fibers into the tumor microenvironment, and 3) highlight the functional significance/consequences of the nerves infiltrating the tumors.
Collapse
Affiliation(s)
- Filip Blasko
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Physiology, Faculty of Medicine, Comenius University Bratislava, Bratislava, Slovakia
| | - Lubica Horvathova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
14
|
Lin X, He J, Liu F, Li L, Sun L, Niu L, Xi H, Zhan Y, Liu X, Hu P. β‑adrenergic receptor activation promotes the proliferation of HepG2 cells via the ERK1/2/CREB pathways. Oncol Lett 2023; 26:519. [PMID: 37927415 PMCID: PMC10623085 DOI: 10.3892/ol.2023.14106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/12/2023] [Indexed: 11/07/2023] Open
Abstract
Primary liver cancer is one of the most frequently diagnosed malignant tumors seen in clinics, and typically exhibits aggressive invasive behaviors, a poor prognosis, and is associated with high mortality rates. Long-term stress exposure causes norepinephrine (NE) release and activates the β-Adrenergic receptor (β-AR), which in turn exacerbates the occurrence and development of different types of cancers; however, the molecular mechanisms of β-AR in liver cancer are not fully understood. In the present study, reverse transcription (RT)-PCR and RT-quantitative PCR showed that β-AR expression was upregulated in human liver cancer cells (HepG2) compared with normal liver cells (LO2). Moreover, NE treatment promoted the growth of HepG2 cells, which could be blocked by propranolol, a β-AR antagonist. Notably, NE had no significant effect on the migration and epithelial-mesenchymal transition in HepG2 cells. Further experiments revealed that NE increased the phosphorylation levels of the extracellular signal-regulated kinase 1/2 (ERK1/2) and cyclic adenosine monophosphate response element-binding protein (CREB), while inhibition of ERK1/2 and CREB activation significantly blocked NE-induced cell proliferation. In summary, the findings of the present study suggested that β-adrenergic receptor activation promoted the proliferation of HepG2 cells through ERK1/2/CREB signaling pathways.
Collapse
Affiliation(s)
- Xingcheng Lin
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| | - Jingjing He
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| | - Fuhong Liu
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| | - Lehui Li
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| | - Longhua Sun
- Department of Respiratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Liyan Niu
- Huan Kui College, Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| | - Haolin Xi
- Queen Mary School, Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| | - Yuan Zhan
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaohua Liu
- Department of Nursing, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ping Hu
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| |
Collapse
|
15
|
Globig AM, Zhao S, Roginsky J, Maltez VI, Guiza J, Avina-Ochoa N, Heeg M, Araujo Hoffmann F, Chaudhary O, Wang J, Senturk G, Chen D, O'Connor C, Pfaff S, Germain RN, Schalper KA, Emu B, Kaech SM. The β 1-adrenergic receptor links sympathetic nerves to T cell exhaustion. Nature 2023; 622:383-392. [PMID: 37731001 PMCID: PMC10871066 DOI: 10.1038/s41586-023-06568-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 08/24/2023] [Indexed: 09/22/2023]
Abstract
CD8+ T cells are essential components of the immune response against viral infections and tumours, and are capable of eliminating infected and cancerous cells. However, when the antigen cannot be cleared, T cells enter a state known as exhaustion1. Although it is clear that chronic antigen contributes to CD8+ T cell exhaustion, less is known about how stress responses in tissues regulate T cell function. Here we show a new link between the stress-associated catecholamines and the progression of T cell exhaustion through the β1-adrenergic receptor ADRB1. We identify that exhausted CD8+ T cells increase ADRB1 expression and that exposure of ADRB1+ T cells to catecholamines suppresses their cytokine production and proliferation. Exhausted CD8+ T cells cluster around sympathetic nerves in an ADRB1-dependent manner. Ablation of β1-adrenergic signalling limits the progression of T cells towards the exhausted state in chronic infection and improves effector functions when combined with immune checkpoint blockade (ICB) in melanoma. In a pancreatic cancer model resistant to ICB, β-blockers and ICB synergize to boost CD8+ T cell responses and induce the development of tissue-resident memory-like T cells. Malignant disease is associated with increased catecholamine levels in patients2,3, and our results establish a connection between the sympathetic stress response, tissue innervation and T cell exhaustion. Here, we uncover a new mechanism by which blocking β-adrenergic signalling in CD8+ T cells rejuvenates anti-tumour functions.
Collapse
Affiliation(s)
- Anna-Maria Globig
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Steven Zhao
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jessica Roginsky
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Vivien I Maltez
- Lymphocyte Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Juan Guiza
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Natalia Avina-Ochoa
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Maximilian Heeg
- Division of Biological Sciences, Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| | - Filipe Araujo Hoffmann
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Omkar Chaudhary
- Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Jiawei Wang
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Gokhan Senturk
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Dan Chen
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Carolyn O'Connor
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
- Flow Cytometry Core Facility, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Samuel Pfaff
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ronald N Germain
- Lymphocyte Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Kurt A Schalper
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Brinda Emu
- Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
16
|
Hardardottir H, Aspelund T, Fall K, Broström E, Sigurdsson BB, Cook E, Valdimarsdottir H, Fang F, Sloan EK, Lutgendorf SK, Jansson C, Valdimarsdottir UA. Psychobiological stress response to a lung cancer diagnosis: a prospective study of patients in Iceland and Sweden. Acta Oncol 2023; 62:1338-1347. [PMID: 37747345 DOI: 10.1080/0284186x.2023.2258445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND A diagnostic work-up leading to a lung cancer diagnosis is a severely stressful experience that may impact tumor progression. Yet, prospective data are scarce on psychological and biological components of stress at the time of lung cancer diagnosis. The aim of this study was to assess pre-to-post diagnosis change in psychological distress and urinary excretion of catecholamines in patients with suspected lung cancer. METHODS Participants were 167 patients within the LUCASS study, recruited at referral for suspected lung cancer to University Hospitals in Iceland and Sweden. Patients completed questionnaires on perceived distress (Hospital Anxiety and Depression Scale, HADS) before and after diagnosis of lung cancer or a non-malignant origin. A subpopulation of 85 patients also provided overnight urine for catecholamine analysis before and at a median of 24 days after diagnosis but before treatment. RESULTS A lung cancer diagnosis was confirmed in 123 (73.7%) patients, with a mean age of 70.1 years. Patients diagnosed with lung cancer experienced a post-diagnosis increase in psychological distress (p = 0.010), while patients with non-malignant lung pathology showed a reduction in distress (p = 0.070). Both urinary epinephrine (p = 0.001) and norepinephrine (p = 0.032) levels were higher before the diagnosis among patients eventually diagnosed with lung cancer compared to those with non-malignant lung pathology. We observed indications of associations between pre-to-post diagnosis changes in perceived distress and changes in urinary catecholamine levels. CONCLUSION Receiving a lung cancer diagnosis is associated with an increase in psychological distress, while elevated catecholamine levels are evident already before lung cancer diagnosis.
Collapse
Affiliation(s)
- Hronn Hardardottir
- Centre of Public Health Sciences, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Respiratory Medicine, Landspitali University Hospital, Reykjavik, Iceland
| | - Thor Aspelund
- Centre of Public Health Sciences, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Katja Fall
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Örebro, Sweden
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Erika Broström
- Department of Immunology, Genetics and Pathology, Clinical and Experimental Pathology, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Baldur B Sigurdsson
- Department of Clinical Chemistry, Landspitali University Hospital, Reykjavik, Iceland
| | - Elizabeth Cook
- Department of Clinical Chemistry, Landspitali University Hospital, Reykjavik, Iceland
| | - Heiddis Valdimarsdottir
- Department of Psychology, Reykjavik University, Reykjavik, Iceland
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Fang Fang
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Erica K Sloan
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Susan K Lutgendorf
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Christer Jansson
- Department of Medical Sciences, Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Unnur A Valdimarsdottir
- Centre of Public Health Sciences, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
17
|
Slominski RM, Raman C, Chen JY, Slominski AT. How cancer hijacks the body's homeostasis through the neuroendocrine system. Trends Neurosci 2023; 46:263-275. [PMID: 36803800 PMCID: PMC10038913 DOI: 10.1016/j.tins.2023.01.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/30/2022] [Accepted: 01/15/2023] [Indexed: 02/19/2023]
Abstract
During oncogenesis, cancer not only escapes the body's regulatory mechanisms, but also gains the ability to affect local and systemic homeostasis. Specifically, tumors produce cytokines, immune mediators, classical neurotransmitters, hypothalamic and pituitary hormones, biogenic amines, melatonin, and glucocorticoids, as demonstrated in human and animal models of cancer. The tumor, through the release of these neurohormonal and immune mediators, can control the main neuroendocrine centers such as the hypothalamus, pituitary, adrenals, and thyroid to modulate body homeostasis through central regulatory axes. We hypothesize that the tumor-derived catecholamines, serotonin, melatonin, neuropeptides, and other neurotransmitters can affect body and brain functions. Bidirectional communication between local autonomic and sensory nerves and the tumor, with putative effects on the brain, is also envisioned. Overall, we propose that cancers can take control of the central neuroendocrine and immune systems to reset the body homeostasis in a mode favoring its expansion at the expense of the host.
Collapse
Affiliation(s)
- Radomir M Slominski
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA; Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chander Raman
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jake Y Chen
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA; Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA; Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, USA; VA Medical Center, Birmingham, AL, USA.
| |
Collapse
|
18
|
Conceição F, Sousa DM, Tojal S, Lourenço C, Carvalho-Maia C, Estevão-Pereira H, Lobo J, Couto M, Rosenkilde MM, Jerónimo C, Lamghari M. The Secretome of Parental and Bone Metastatic Breast Cancer Elicits Distinct Effects in Human Osteoclast Activity after Activation of β2 Adrenergic Signaling. Biomolecules 2023; 13:biom13040622. [PMID: 37189370 DOI: 10.3390/biom13040622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
The sympathetic nervous system (SNS), particularly through the β2 adrenergic receptor (β2-AR), has been linked with breast cancer (BC) and the development of metastatic BC, specifically in the bone. Nevertheless, the potential clinical benefits of exploiting β2-AR antagonists as a treatment for BC and bone loss-associated symptoms remain controversial. In this work, we show that, when compared to control individuals, the epinephrine levels in a cohort of BC patients are augmented in both earlier and late stages of the disease. Furthermore, through a combination of proteomic profiling and functional in vitro studies with human osteoclasts and osteoblasts, we demonstrate that paracrine signaling from parental BC under β2-AR activation causes a robust decrease in human osteoclast differentiation and resorption activity, which is rescued in the presence of human osteoblasts. Conversely, metastatic bone tropic BC does not display this anti-osteoclastogenic effect. In conclusion, the observed changes in the proteomic profile of BC cells under β-AR activation that take place after metastatic dissemination, together with clinical data on epinephrine levels in BC patients, provided new insights on the sympathetic control of breast cancer and its implications on osteoclastic bone resorption.
Collapse
Affiliation(s)
- Francisco Conceição
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Daniela M Sousa
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Sofia Tojal
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Catarina Lourenço
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
| | - Carina Carvalho-Maia
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal
| | - Helena Estevão-Pereira
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
| | - João Lobo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal
| | - Marina Couto
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal
| | - Meriem Lamghari
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
19
|
Atherton MA, Park S, Horan NL, Nicholson S, Dolan JC, Schmidt BL, Scheff NN. Sympathetic modulation of tumor necrosis factor alpha-induced nociception in the presence of oral squamous cell carcinoma. Pain 2023; 164:27-42. [PMID: 35714327 PMCID: PMC9582047 DOI: 10.1097/j.pain.0000000000002655] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/08/2022] [Indexed: 01/09/2023]
Abstract
ABSTRACT Head and neck squamous cell carcinoma (HNSCC) causes more severe pain and psychological stress than other types of cancer. Despite clinical evidence linking pain, stress, and cancer progression, the underlying relationship between pain and sympathetic neurotransmission in oral cancer is unknown. We found that human HNSCC tumors and mouse tumor tissue are innervated by peripheral sympathetic and sensory nerves. Moreover, β-adrenergic 1 and 2 receptors (β-ARs) are overexpressed in human oral cancer cell lines, and norepinephrine treatment increased β-AR2 protein expression as well as cancer cell proliferation in vitro. We have recently demonstrated that inhibition of tumor necrosis factor alpha (TNFα) signaling reduces oral cancer-induced nociceptive behavior. Norepinephrine-treated cancer cell lines secrete more TNFα which, when applied to tongue-innervating trigeminal neurons, evoked a larger Ca 2+ transient; TNF-TNFR inhibitor blocked the increase in the evoked Ca 2+ transient. Using an orthotopic xenograft oral cancer model, we found that mice demonstrated significantly less orofacial cancer-induced nociceptive behavior during systemic β-adrenergic inhibitory treatment with propranolol. Furthermore, chemical sympathectomy using guanethidine led to a significant reduction in tumor size and nociceptive behavior. We infer from these results that sympathetic signaling modulates oral cancer pain through TNFα secretion and tumorigenesis. Further investigation of the role of neurocancer communication in cancer progression and pain is warranted.
Collapse
Affiliation(s)
- Megan A Atherton
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Stella Park
- Bluestone Center for Clinical Research, DDS Program, College of Dentistry, New York University, New York, NY, United States
| | - Nicole L Horan
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Samuel Nicholson
- Bluestone Center for Clinical Research, DDS Program, College of Dentistry, New York University, New York, NY, United States
| | - John C Dolan
- Bluestone Center for Clinical Research, DDS Program, College of Dentistry, New York University, New York, NY, United States
| | - Brian L Schmidt
- Bluestone Center for Clinical Research, DDS Program, College of Dentistry, New York University, New York, NY, United States
| | - Nicole N Scheff
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| |
Collapse
|
20
|
Paul D, Nedelcu AM. The underexplored links between cancer and the internal body climate: Implications for cancer prevention and treatment. Front Oncol 2022; 12:1040034. [PMID: 36620608 PMCID: PMC9815514 DOI: 10.3389/fonc.2022.1040034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
In order to effectively manage and cure cancer we should move beyond the general view of cancer as a random process of genetic alterations leading to uncontrolled cell proliferation or simply a predictable evolutionary process involving selection for traits that increase cell fitness. In our view, cancer is a systemic disease that involves multiple interactions not only among cells within tumors or between tumors and surrounding tissues but also with the entire organism and its internal "milieu". We define the internal body climate as an emergent property resulting from spatial and temporal interactions among internal components themselves and with the external environment. The body climate itself can either prevent, promote or support cancer initiation and progression (top-down effect; i.e., body climate-induced effects on cancer), as well as be perturbed by cancer (bottom-up effect; i.e., cancer-induced body climate changes) to further favor cancer progression and spread. This positive feedback loop can move the system towards a "cancerized" organism and ultimately results in its demise. In our view, cancer not only affects the entire system; it is a reflection of an imbalance of the entire system. This model provides an integrated framework to study all aspects of cancer as a systemic disease, and also highlights unexplored links that can be altered to both prevent body climate changes that favor cancer initiation, progression and dissemination as well as manipulate or restore the body internal climate to hinder the success of cancer inception, progression and metastasis or improve therapy outcomes. To do so, we need to (i) identify cancer-relevant factors that affect specific climate components, (ii) develop 'body climate biomarkers', (iii) define 'body climate scores', and (iv) develop strategies to prevent climate changes, stop or slow the changes, or even revert the changes (climate restoration).
Collapse
Affiliation(s)
- Doru Paul
- Weill Cornell Medicine, New York, NY, United States
| | - Aurora M. Nedelcu
- Biology Department, University of New Brunswick, Fredericton, NB, Canada
| |
Collapse
|
21
|
Payaradka R, Ramesh PS, Vyas R, Patil P, Rajendra VK, Kumar M, Shetty V, Devegowda D. Oncogenic viruses as etiological risk factors for head and neck cancers: An overview on prevalence, mechanism of infection and clinical relevance. Arch Oral Biol 2022; 143:105526. [DOI: 10.1016/j.archoralbio.2022.105526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/03/2022] [Accepted: 08/16/2022] [Indexed: 12/07/2022]
|
22
|
Mahadevaiah T, T S D, Rani R, K N V, G M S. Comparison of Hemodynamic Response to Laryngoscopy Using Miller and McCoy Blade. Cureus 2022; 14:e24914. [PMID: 35698670 PMCID: PMC9187158 DOI: 10.7759/cureus.24914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/11/2022] [Indexed: 11/24/2022] Open
Abstract
Background: The most commonly used equipment to aid endotracheal intubation is a laryngoscope, and the procedure performed is known as laryngoscopy, which leads to profound cardiovascular effects. The process of laryngoscopy causes the release of catecholamines, thereby leading to marked pressor responses and tachycardia. The process of laryngoscopy can be made easier by the use of various types of laryngoscopic blades. The McCoy blade is a modification of the standard Macintosh blade that incorporates a hinged tip blade. It allows elevation of the epiglottis while decreasing overall laryngeal movement. A Miller blade is a straight blade with a slight upward curve near the tip. It is found that the force exerted, head extension, and cervical spine movement are less with the Miller blade. This study was undertaken to compare changes in haemodynamic parameters before, during, and after laryngoscopy using these two blades. Materials and methods: Following institutional ethical committee approval and obtaining informed written consent, 100 patients of American Society of Anesthesiologists (ASA) grades I and II in the age group of 18-45 years of either sex undergoing elective surgeries under general anaesthesia were included in the study. The patients were randomly allocated into two groups of 50 patients each. Group Mc - laryngoscopy was performed using a no. 3 McCoy blade. Group Ml - laryngoscopy was performed using a no. 2 Miller blade. The laryngoscopic view was compared using Cormack and Lehane grading. Haemodynamic parameters before, during, and after laryngoscopy were recorded. Results: Hemodynamic parameters including heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP) were increased in both the groups but were statistically and clinically significant in the Miller group with p≤0.001. Conclusion: McCoy blade is associated with a significantly more stable hemodynamic response to laryngoscopy in comparison with the Miller blade.
Collapse
|
23
|
Figueira JA, Sarafim-Silva BAM, Gonçalves GM, Aranha LN, Lopes FL, Corrente JE, Biasoli ÉR, Miyahara GI, Bernabé DG. Predisposing factors for increased cortisol levels in oral cancer patients. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2022; 9:100110. [PMID: 35755918 PMCID: PMC9216328 DOI: 10.1016/j.cpnec.2022.100110] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 01/03/2022] [Accepted: 01/03/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer patients may have a dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis and abnormal secretion of cortisol. Increased cortisol levels have been associated with worse prognosis in patients with different types of tumors. Although anxiety and depression can trigger an abnormal cortisol secretion, little is known regarding the influence of these emotional disorders on HPA axis dysregulation in cancer patients when evaluating together with demographic, clinicopathological and biobehavioral variables. This cross-sectional study analyzed the pre-treatment plasma cortisol levels of 133 patients with oral squamous cell carcinoma (OSCC) and its association with demographic, clinicopathological, biobehavioral and psychological variables. Plasma cortisol levels were measured by electrochemiluminescence, and anxiety and depression symptoms were assessed using Beck Anxiety Inventory (BAI) and Depression (BDI), respectively. Demographic, clinicopathological and biobehavioral data were collected from patients' medical records. Results from multivariate analysis showed that the occurrence of cancer-induced pain was predictive for higher cortisol levels (OR = 5.388, p = 0.003). Men with OSCC were 4.5 times more likely to have higher plasma cortisol levels than women (OR = 4.472, p = 0.018). The effect of sex on cortisol concentrations was lost in the adjusted model for clinical staging (OR = 2.945, p = 0.116). The absence of chronic alcohol consumption history was a protective factor for highest hormone concentrations in oral cancer patients (OR = 0.104, p = 0.004). Anxiety symptoms measured by BAI as “hands trembling” (OR = 0.192, p = 0.016) and being “nervous” (OR = 0.207, p = 0.0004) were associated with lower cortisol levels. In contrast, the feeling of “fear of losing control” was a risk factor for highest hormone concentrations (OR = 6.508, p = 0.0004). The global score and specific symptoms of depression measured by the BDI were not predictive for plasma hormone levels (p > 0.05). Together, our results show that pain, alcohol consumption and feeling fear are independent factors for increased systemic cortisol levels in patients with oral cancer. Therefore, psychological intervention, as well as control of pain and alcohol consumption, should be considered to prevent the negative effects of cortisol secretion dysregulation in cancer patients. Pain, alcoholism and fear increase cortisol levels in cancer patients. Different anxiety symptoms can inversely predict cortisol systemic levels. Management of pain, alcoholism, and fear could prevent HPA axis dysregulation.
Collapse
Affiliation(s)
- Jéssica Araújo Figueira
- Psychosomatic Research Center, Oral Oncology Center, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, 15050-015, Brazil
| | - Bruna Amélia Moreira Sarafim-Silva
- Psychosomatic Research Center, Oral Oncology Center, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, 15050-015, Brazil
| | - Gislene Maria Gonçalves
- Psychosomatic Research Center, Oral Oncology Center, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, 15050-015, Brazil
| | | | - Flávia Lombardi Lopes
- Department of Production and Animal Health, São Paulo State University (UNESP), School of Veterinary Medicine, Araçatuba, São Paulo, 16050-680, Brazil
| | - José Eduardo Corrente
- Research Support Office, Botucatu Medical School (UNESP), Botucatu, São Paulo, 18618-687, Brazil
| | - Éder Ricardo Biasoli
- Psychosomatic Research Center, Oral Oncology Center, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, 15050-015, Brazil
| | - Glauco Issamu Miyahara
- Psychosomatic Research Center, Oral Oncology Center, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, 15050-015, Brazil
| | - Daniel Galera Bernabé
- Psychosomatic Research Center, Oral Oncology Center, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, 15050-015, Brazil
- Corresponding author. Psychosomatic Research Center, Oral Oncology Center, São Paulo State University (UNESP), School of Dentistry, 1193 José Bonifácio St, SP 15050-015, Araçatuba, São Paulo, Brazil.
| |
Collapse
|
24
|
Grelet S, Fréreux C, Obellianne C, Noguchi K, Howley BV, Dalton AC, Howe PH. TGFβ-induced expression of long noncoding lincRNA Platr18 controls breast cancer axonogenesis. Life Sci Alliance 2021; 5:5/2/e202101261. [PMID: 34810279 PMCID: PMC8645334 DOI: 10.26508/lsa.202101261] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/20/2022] Open
Abstract
Tumor axonogenesis is an emerging hallmark of cancer and TGF-beta is a well-known cytokine involved in the control of cancer progression. In this study we identify a novel function for the TGF-beta signaling in cancer aggressivity by promoting cancer axonogenesis. Metastasis is the leading driver of cancer-related death. Tumor cell plasticity associated with the epithelial–mesenchymal transition (EMT), an embryonic program also observed in carcinomas, has been proposed to explain the colonization of distant organs by the primary tumor cells. Many studies have established correlations between EMT marker expression in the primary tumor and metastasis in vivo. However, the longstanding model of EMT-transitioned cells disseminating to secondary sites is still actively debated and hybrid states are presently considered as more relevant during tumor progression and metastasis. Here, we describe an unexplored role of EMT on the tumor microenvironment by controlling tumor innervation. Using in vitro and in vivo breast tumor progression models, we demonstrate that TGFβ-mediated tumor cell EMT triggers the expression of the embryonic LincRNA Platr18 those elevated expression controls the expression of the axon guidance protein semaphorin-4F and other neuron-related molecules such as IGSF11/VSIG-3. Platr18/Sema4F axis silencing abrogates axonogenesis and attenuates metastasis. Our observations suggest that EMT-transitioned cells are also locally required in the primary tumor to support distant dissemination by promoting axonogenesis, a biological process known for its role in metastatic progression of breast cancer.
Collapse
Affiliation(s)
- Simon Grelet
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA .,Mitchell Cancer Institute, The University of South Alabama, Mobile, AL, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.,Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Cécile Fréreux
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Clémence Obellianne
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Ken Noguchi
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA.,Center for Family Medicine, Sioux Falls, SD, USA
| | - Breege V Howley
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Annamarie C Dalton
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Philip H Howe
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA .,Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
25
|
Vincent-Chong VK, Seshadri M. Adrenergic-Angiogenic Crosstalk in Head and Neck Cancer: Mechanisms and Therapeutic Implications. FRONTIERS IN ORAL HEALTH 2021; 2. [PMID: 34790909 PMCID: PMC8594278 DOI: 10.3389/froh.2021.689482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) are loco-regionally aggressive tumors that often lead to debilitating changes in appearance, speech, swallowing and respiratory function in patients. It is therefore critical to develop novel targeted treatment strategies that can effectively target multiple components within the tumor microenvironment. In this regard, there has been an increased recognition of the role of neural signaling networks as mediators of disease progression in HNSCC. Here, we summarize the current knowledge on the mechanisms of adrenergic signaling in HNSCC specifically focusing on neurovascular crosstalk and the potential of targeting the adrenergic-angiogenic axis through repurposing of FDA-approved drugs against HNSCC.
Collapse
Affiliation(s)
| | - Mukund Seshadri
- Center for Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.,Department of Dentistry and Maxillofacial Prosthetics Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
26
|
Kwon SY, Chun KJ, Kil HK, Jung N, Shin HA, Jang JY, Choi HG, Oh KH, Kim MS. β2-adrenergic receptor expression and the effects of norepinephrine and propranolol on various head and neck cancer subtypes. Oncol Lett 2021; 22:804. [PMID: 34630711 PMCID: PMC8477068 DOI: 10.3892/ol.2021.13065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 08/27/2021] [Indexed: 11/24/2022] Open
Abstract
The present study aimed to investigate expression of β2-adrenergic receptor (AR), the effect of the stress-related neurotransmitter norepinephrine (NE) on cell viability, proliferation and the therapeutic effect of propranolol, which is a typical β-blocker in various type of head and neck cancers for the first time. The β2-AR expression was investigated using immunohistochemistry and an immunoreactive scoring (IRS) system in 57 different head and neck cancer specimens, and reverse transcriptase-polymerase chain reaction and western blotting in four head and neck cancer cell lines (HNCCLs). Cell viability and proliferation assays were performed using 0, 1, 5 and 10 µM of NE and 1 µM of propranolol in four HNCCLs. The expression of β2-AR was positive in the majority of head and neck cancer tissues (55/57, 96.5%); however, it was significantly higher in oral cavity cancer than in pharyngeal cancer (median IRS: 9 vs. 3; P<0.001). All HNCCLs exhibited β2-AR expression, with a higher expression level detected in the oral cavity cancer cell line than in the others. NE stimulated viability (oral cavity, 206%; larynx, 156%; pharynx, 130%; nasal cavity, 137%; 10 µM NE) and proliferation (124, 176, 131 and 127%, respectively) in a dose-dependent manner in all HNCCLs. Conversely, propranolol attenuated such viability (55, 42, 18 and 22%, respectively) and proliferation (22, 40, 61 and 48%, respectively). In conclusion, the viability and proliferation of various head and neck cancers may be directly stimulated by stress and this may be attenuated by β-blockers.
Collapse
Affiliation(s)
- Soon Young Kwon
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Gyeonggi-do 15355, Republic of Korea
| | - Kyung Ju Chun
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi-do 13496, Republic of Korea
| | - Hong Kwon Kil
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi-do 13496, Republic of Korea
| | - Narae Jung
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi-do 13496, Republic of Korea
| | - Hyun-Ah Shin
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi-do 13496, Republic of Korea
| | - Jeon Yeob Jang
- Department of Otorhinolaryngology-Head and Neck Surgery, Ajou University Hospital, Ajou University College of Medicine, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - Hyo Geun Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Gyeonggi-do 14068, Republic of Korea
| | - Kyoung-Ho Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Gyeonggi-do 15355, Republic of Korea
| | - Min-Su Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi-do 13496, Republic of Korea
| |
Collapse
|
27
|
Valente VB, de Melo Cardoso D, Kayahara GM, Nunes GB, Tjioe KC, Biasoli ÉR, Miyahara GI, Oliveira SHP, Mingoti GZ, Bernabé DG. Stress hormones promote DNA damage in human oral keratinocytes. Sci Rep 2021; 11:19701. [PMID: 34611221 PMCID: PMC8492616 DOI: 10.1038/s41598-021-99224-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 09/08/2021] [Indexed: 12/24/2022] Open
Abstract
Chronic stress increases the systemic levels of stress hormones norepinephrine and cortisol. As well as tobacco-specific carcinogen NNK (4-(methylnitrosamine)-1-(3-pyridyl)-1-butanone), they can induce expressive DNA damage contributing to the cancer development. However, it is unknown whether stress hormones have genotoxic effects in oral keratinocytes. This study investigated the effects of stress hormones on DNA damage in a human oral keratinocyte cell line (NOK-SI). NOK-SI cells stimulated with norepinephrine or cortisol showed higher DNA damage compared to untreated cells. Norepinephrine-induced DNA damage was reversed by pre-treatment with beta-adrenergic blocker propranolol. Cells treated with NNK combined to norepinephrine displayed reduced levels of caspases 3 and 7. Cortisol also reduced the activity of pro-apoptotic enzymes. NNK or norepinephrine promoted single-strand breaks and alkali-label side breaks in the DNA of NOK-SI cells. Pre-treatment of cells with propranolol abolished these effects. Carcinogen NNK in the presence or absence of cortisol also induced DNA damage of these cells. The genotoxic effects of cortisol alone and hormone combined with NNK were blocked partially and totally, respectively, by the glucocorticoid receptor antagonist RU486. DNA damage promoted by NNK or cortisol and carcinogen combined to the hormone led to intracellular γH2AX accumulation. The effects caused by NNK and cortisol were reversed by propranolol and glucocorticoid receptor antagonist RU486, respectively. Propranolol inhibited the oxidation of basis induced by NNK in the presence of DNA-formamidopyrimidine glycosylase. DNA breaks induced by norepinephrine in the presence or absence of NNK resulted in higher 8OHdG cellular levels. This effect was also induced through beta-adrenergic receptors. Together, these findings indicate that stress hormones induce DNA damage of oral keratinocytes and could contribute to oral carcinogenesis.
Collapse
Affiliation(s)
- Vitor Bonetti Valente
- Psychoneuroimmunology Laboratory, Psychosomatic Research Center, Oral Oncology Center, School of Dentistry, São Paulo State University (Unesp), 1193 José Bonifácio St, Araçatuba, São Paulo, 15050-015, Brazil
| | - Diovana de Melo Cardoso
- Psychoneuroimmunology Laboratory, Psychosomatic Research Center, Oral Oncology Center, School of Dentistry, São Paulo State University (Unesp), 1193 José Bonifácio St, Araçatuba, São Paulo, 15050-015, Brazil
| | - Giseli Mitsuy Kayahara
- Psychoneuroimmunology Laboratory, Psychosomatic Research Center, Oral Oncology Center, School of Dentistry, São Paulo State University (Unesp), 1193 José Bonifácio St, Araçatuba, São Paulo, 15050-015, Brazil
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), 1193 José Bonifácio St, Araçatuba, São Paulo, 15050-015, Brazil
| | - Giovana Barros Nunes
- Laboratory of Reproductive Physiology, Department of Animal Health, School of Veterinary Medicine, São Paulo State University (Unesp), 793 Clovis Pestana St, Araçatuba, São Paulo, 16050-680, Brazil
| | - Kellen Cristine Tjioe
- Psychoneuroimmunology Laboratory, Psychosomatic Research Center, Oral Oncology Center, School of Dentistry, São Paulo State University (Unesp), 1193 José Bonifácio St, Araçatuba, São Paulo, 15050-015, Brazil
- Laboratory of Immunopharmacology, Department of Basic Sciences, School of Dentistry, São Paulo State University (Unesp), 1193 José Bonifácio St, Araçatuba, São Paulo, 15050-015, Brazil
| | - Éder Ricardo Biasoli
- Psychoneuroimmunology Laboratory, Psychosomatic Research Center, Oral Oncology Center, School of Dentistry, São Paulo State University (Unesp), 1193 José Bonifácio St, Araçatuba, São Paulo, 15050-015, Brazil
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), 1193 José Bonifácio St, Araçatuba, São Paulo, 15050-015, Brazil
| | - Glauco Issamu Miyahara
- Psychoneuroimmunology Laboratory, Psychosomatic Research Center, Oral Oncology Center, School of Dentistry, São Paulo State University (Unesp), 1193 José Bonifácio St, Araçatuba, São Paulo, 15050-015, Brazil
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), 1193 José Bonifácio St, Araçatuba, São Paulo, 15050-015, Brazil
| | - Sandra Helena Penha Oliveira
- Psychoneuroimmunology Laboratory, Psychosomatic Research Center, Oral Oncology Center, School of Dentistry, São Paulo State University (Unesp), 1193 José Bonifácio St, Araçatuba, São Paulo, 15050-015, Brazil
- Laboratory of Immunopharmacology, Department of Basic Sciences, School of Dentistry, São Paulo State University (Unesp), 1193 José Bonifácio St, Araçatuba, São Paulo, 15050-015, Brazil
| | - Gisele Zoccal Mingoti
- Laboratory of Reproductive Physiology, Department of Animal Health, School of Veterinary Medicine, São Paulo State University (Unesp), 793 Clovis Pestana St, Araçatuba, São Paulo, 16050-680, Brazil
| | - Daniel Galera Bernabé
- Psychoneuroimmunology Laboratory, Psychosomatic Research Center, Oral Oncology Center, School of Dentistry, São Paulo State University (Unesp), 1193 José Bonifácio St, Araçatuba, São Paulo, 15050-015, Brazil.
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), 1193 José Bonifácio St, Araçatuba, São Paulo, 15050-015, Brazil.
| |
Collapse
|
28
|
Mehedințeanu AM, Sfredel V, Stovicek PO, Schenker M, Târtea GC, Istrătoaie O, Ciurea AM, Vere CC. Assessment of Epinephrine and Norepinephrine in Gastric Carcinoma. Int J Mol Sci 2021; 22:ijms22042042. [PMID: 33670813 PMCID: PMC7922341 DOI: 10.3390/ijms22042042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 12/20/2022] Open
Abstract
The aim of our study was to assess the sympathetic nervous system’s involvement in the evolution of gastric carcinoma in patients by analyzing the mediators of this system (epinephrine and norepinephrine), as well as by analyzing the histological expression of the norepinephrine transporter (NET). We conducted an observational study including 91 patients diagnosed with gastric carcinoma and an additional 200 patients without cancer between November 2017 and October 2018. We set the primary endpoint as mortality from any cause in the first two years after enrolment in the study. The patients were monitored by a 24-h Holter electrocardiogram (ECG) to assess sympathetic or parasympathetic predominance. Blood was also collected from the patients to measure plasma free metanephrine (Meta) and normetanephrine (N-Meta), and tumor histological samples were collected for the analysis of NET expression. All of this was performed prior to the application of any antineoplastic therapy. Each patient was monitored for two years. We found higher heart rates in patients with gastric carcinoma than those without cancer. Regarding Meta and N-Meta, elevated levels were recorded in the patients with gastric carcinoma, correlating with the degree of tumor differentiation and other negative prognostic factors such as tumor invasion, lymph node metastasis, and distant metastases. Elevated Meta and N-Meta was also associated with a poor survival rate. All these data suggest that the predominance of the sympathetic nervous system’s activity predicts increased gastric carcinoma severity.
Collapse
Affiliation(s)
- Alina Maria Mehedințeanu
- Department of Oncology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.M.M.); (M.S.); (A.-M.C.)
| | - Veronica Sfredel
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Puiu Olivian Stovicek
- Department of Pharmacology, Faculty of Nursing, Târgu Jiu Subsidiary, Titu Maiorescu University, 04317 Bucharest, Romania;
| | - Michael Schenker
- Department of Oncology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.M.M.); (M.S.); (A.-M.C.)
| | - Georgică Costinel Târtea
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
- Correspondence: (G.C.T.); (O.I.)
| | - Octavian Istrătoaie
- Department of Cardiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Correspondence: (G.C.T.); (O.I.)
| | - Ana-Maria Ciurea
- Department of Oncology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.M.M.); (M.S.); (A.-M.C.)
| | - Cristin Constantin Vere
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| |
Collapse
|
29
|
Iftikhar A, Islam M, Shepherd S, Jones S, Ellis I. Cancer and Stress: Does It Make a Difference to the Patient When These Two Challenges Collide? Cancers (Basel) 2021; 13:cancers13020163. [PMID: 33418900 PMCID: PMC7825104 DOI: 10.3390/cancers13020163] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Head and neck cancers are the sixth most common cancer in the world. The burden of the disease has remained challenging over recent years despite the advances in treatments of other malignancies. The very use of the word malignancy brings about a stress response in almost all adult patients. Being told you have a tumour is not a word anyone wants to hear. We have embarked on a study which will investigate the effect of stress pathways on head and neck cancer patients and which signalling pathways may be involved. In the future, this will allow clinicians to better manage patients with head and neck cancer and reduce the patients’ stress so that this does not add to their tumour burden. Abstract A single head and neck Cancer (HNC) is a globally growing challenge associated with significant morbidity and mortality. The diagnosis itself can affect the patients profoundly let alone the complex and disfiguring treatment. The highly important functions of structures of the head and neck such as mastication, speech, aesthetics, identity and social interactions make a cancer diagnosis in this region even more psychologically traumatic. The emotional distress engendered as a result of functional and social disruption is certain to negatively affect health-related quality of life (HRQoL). The key biological responses to stressful events are moderated through the combined action of two systems, the hypothalamus–pituitary–adrenal axis (HPA) which releases glucocorticoids and the sympathetic nervous system (SNS) which releases catecholamines. In acute stress, these hormones help the body to regain homeostasis; however, in chronic stress their increased levels and activation of their receptors may aid in the progression of cancer. Despite ample evidence on the existence of stress in patients diagnosed with HNC, studies looking at the effect of stress on the progression of disease are scarce, compared to other cancers. This review summarises the challenges associated with HNC that make it stressful and describes how stress signalling aids in the progression of cancer. Growing evidence on the relationship between stress and HNC makes it paramount to focus future research towards a better understanding of stress and its effect on head and neck cancer.
Collapse
|
30
|
de Souza MG, Gomes ESB, Costa LB, Andrade ADS, de Jesus SF, de Paula DPS, Rocha RGD, Santos SHS, de Paula AMB, Farias LC, Guimaraes ALS. Might anxiety disorders promote head and neck cancer development? IBRO Rep 2020; 9:9-13. [PMID: 33336100 PMCID: PMC7733128 DOI: 10.1016/j.ibror.2020.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/10/2020] [Indexed: 01/03/2023] Open
Abstract
Cancer patients present a higher risk of experiencing anxiety disorders (AD). However, it is not clear if AD might be associated with cancer development. Thus, our study aimed to evaluate if AD might be related to head and neck squamous cell carcinoma (HNSCC) development. The combination of an applied animal basic study and a retrospective diagnostic case and control study in patients was performed. As a result, we obtained that stress reduced the locomotor activity of the animals in the group stress and stress + 4NqO (p < 0.0001). The stress showed no influence on the progression of neoplasia in mice. In the same way, the case group did not present differences in anxiety scores in comparison to control. Moreover, no association between HNSCC staging and anxiety scores was observed. In conclusion, our in vivo findings in humans and animals have shown that there is no relationship between AD and oral squamous cell carcinoma.
Collapse
Affiliation(s)
| | | | - Lorena Barbosa Costa
- Department of Dentistry, Universidade Estadual de Montes Claros, Montes Claros, Minas Gerais, Brazil
| | - Amanda Dias Silva Andrade
- Department of Dentistry, Universidade Estadual de Montes Claros, Montes Claros, Minas Gerais, Brazil
| | - Sabrina Ferreira de Jesus
- Department of Dentistry, Universidade Estadual de Montes Claros, Montes Claros, Minas Gerais, Brazil
| | | | | | - Sérgio Henrique Sousa Santos
- Institute of Agricultural Sciences, Food Engineering College, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil
| | | | - Lucyana Conceição Farias
- Department of Dentistry, Universidade Estadual de Montes Claros, Montes Claros, Minas Gerais, Brazil
| | - André Luiz Sena Guimaraes
- Department of Dentistry, Universidade Estadual de Montes Claros, Montes Claros, Minas Gerais, Brazil
| |
Collapse
|
31
|
Mravec B, Horvathova L, Hunakova L. Neurobiology of Cancer: the Role of β-Adrenergic Receptor Signaling in Various Tumor Environments. Int J Mol Sci 2020; 21:ijms21217958. [PMID: 33114769 PMCID: PMC7662752 DOI: 10.3390/ijms21217958] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022] Open
Abstract
The development and progression of cancer depends on both tumor micro- and macroenvironments. In addition, psychosocial and spiritual “environments” might also affect cancer. It has been found that the nervous system, via neural and humoral pathways, significantly modulates processes related to cancer at the level of the tumor micro- and macroenvironments. The nervous system also mediates the effects of psychosocial and noetic factors on cancer. Importantly, data accumulated in the last two decades have clearly shown that effects of the nervous system on cancer initiation, progression, and the development of metastases are mediated by the sympathoadrenal system mainly via β-adrenergic receptor signaling. Here, we provide a new complex view of the role of β-adrenergic receptor signaling within the tumor micro- and macroenvironments as well as in mediating the effects of the psychosocial and spiritual environments. In addition, we describe potential preventive and therapeutic implications.
Collapse
Affiliation(s)
- Boris Mravec
- Institute of Physiology, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia
- Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, 814 39 Bratislava, Slovakia;
- Correspondence: ; Tel.: +421-(2)-59357527; Fax: +421-(2)-59357601
| | - Lubica Horvathova
- Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, 814 39 Bratislava, Slovakia;
| | - Luba Hunakova
- Institute of Microbiology, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia;
| |
Collapse
|
32
|
Sympathetic and parasympathetic innervation in cancer: therapeutic implications. Clin Auton Res 2020; 31:165-178. [PMID: 32926324 DOI: 10.1007/s10286-020-00724-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE The autonomic nervous system, consisting of sympathetic and parasympathetic/vagal nerves, is known to control the functions of any organ, maintaining whole-body homeostasis under physiological conditions. Recently, there has been increasing evidence linking sympathetic and parasympathetic/vagal nerves to cancers. The present review aimed to summarize recent developments from studies addressing the relationship between sympathetic and parasympathetic/vagal nerves and cancer behavior. METHODS Literature review. RESULTS Human and animal studies have revealed that sympathetic and parasympathetic/vagal nerves innervate the cancer microenvironment and alter cancer behavior. The sympathetic nerves have cancer-promoting effects on prostate cancer, breast cancer, and melanoma. On the other hand, while the parasympathetic/vagal nerves have cancer-promoting effects on prostate, gastric, and colorectal cancers, they have cancer-suppressing effects on breast and pancreatic cancers. These neural effects may be mediated by β-adrenergic or muscarinic receptors and can be explained by changes in cancer cell behavior, angiogenesis, tumor-associated macrophages, and adaptive antitumor immunity. CONCLUSIONS Sympathetic nerves innervating the tumor microenvironment promote cancer progression and are related to stress-induced cancer behavior. The parasympathetic/vagal nerves have variable (promoting or suppressing) effects on different cancer types. Approaches directed toward the sympathetic and parasympathetic/vagal nerves can be developed as a new cancer therapy. In addition to existing pharmacological, surgical, and electrical approaches, a recently developed virus vector-based genetic local neuroengineering technology is a powerful approach that selectively manipulates specific types of nerve fibers innervating the cancer microenvironment and leads to the suppression of cancer progression. This technology will enable the creation of "cancer neural therapy" individually tailored to different cancer types.
Collapse
|
33
|
Wyner N, Barash M, McNevin D. Forensic Autosomal Short Tandem Repeats and Their Potential Association With Phenotype. Front Genet 2020; 11:884. [PMID: 32849844 PMCID: PMC7425049 DOI: 10.3389/fgene.2020.00884] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022] Open
Abstract
Forensic DNA profiling utilizes autosomal short tandem repeat (STR) markers to establish identity of missing persons, confirm familial relations, and link persons of interest to crime scenes. It is a widely accepted notion that genetic markers used in forensic applications are not predictive of phenotype. At present, there has been no demonstration of forensic STR variants directly causing or predicting disease. Such a demonstration would have many legal and ethical implications. For example, is there a duty to inform a DNA donor if a medical condition is discovered during routine analysis of their sample? In this review, we evaluate the possibility that forensic STRs could provide information beyond mere identity. An extensive search of the literature returned 107 articles associating a forensic STR with a trait. A total of 57 of these studies met our inclusion criteria: a reported link between a STR-inclusive gene and a phenotype and a statistical analysis reporting a p-value less than 0.05. A total of 50 unique traits were associated with the 24 markers included in the 57 studies. TH01 had the greatest number of associations with 27 traits reportedly linked to 40 different genotypes. Five of the articles associated TH01 with schizophrenia. None of the associations found were independently causative or predictive of disease. Regardless, the likelihood of identifying significant associations is increasing as the function of non-coding STRs in gene expression is steadily revealed. It is recommended that regular reviews take place in order to remain aware of future studies that identify a functional role for any forensic STRs.
Collapse
Affiliation(s)
- Nicole Wyner
- Centre for Forensic Science, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Mark Barash
- Centre for Forensic Science, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.,Department of Justice Studies, San José State University, San Jose, CA, United States
| | - Dennis McNevin
- Centre for Forensic Science, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
34
|
Dretchen KL, Mesa Z, Robben M, Slade D, Hill S, Forsee K, Croutch C, Mesa M. Effects of Intranasal Epinephrine on Cerebrospinal Fluid Epinephrine Pharmacokinetics, Nasal Mucosa, Plasma Epinephrine Pharmacokinetics, and Cardiovascular Changes. Pharm Res 2020; 37:103. [PMID: 32448925 DOI: 10.1007/s11095-020-02829-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/21/2020] [Indexed: 11/26/2022]
Abstract
PURPOSE We aimed to assess intranasal (IN) epinephrine effects on cerebrospinal fluid (CSF) absorption, nasal mucosa quality, plasma epinephrine pharmacokinetics (PK), and cardiovascular changes in dogs. METHODS CSF epinephrine concentration was measured and nasal mucosa quality was evaluated after IN epinephrine 4 mg and one or two 4 mg doses (21 min apart), respectively. Maximum plasma concentration [Cmax], time to Cmax [Tmax], area under the curve from 0 to 120 min [AUC0-120], and cardiovascular effects were evaluated after epinephrine IN (4 and 5 mg) and intramuscular (IM; 0.3 mg). Clinical observations were assessed. RESULTS After epinephrine IN, there were no changes in CSF epinephrine or nasal mucosa. Cmax, Tmax, and AUC1-120 were similar following epinephrine IN and IM. Epinephrine IN versus IM increased plasma epinephrine at 1 min (mean ± SEM, 1.15 ± 0.48 for 4 mg IN and 1.7 ± 0.72 for 5 mg IN versus 0.47 ± 0.11 ng/mL for 0.3 mg IM). Epinephrine IN and IM produced similar heart rate and ECG results. Clinical observations included salivation and vomiting. CONCLUSIONS Epinephrine IN did not alter CSF epinephrine or nasal tissue and had similar cardiovascular effects as epinephrine IM. Epinephrine IN rapidly increased plasma epinephrine concentration versus epinephrine IM.
Collapse
Affiliation(s)
- Kenneth L Dretchen
- Mesa Science Associates, Inc., 4539 Metropolitan Ct, Frederick, MD, 21701, USA.
| | - Zack Mesa
- Mesa Science Associates, Inc., 4539 Metropolitan Ct, Frederick, MD, 21701, USA
| | | | | | | | | | | | - Michael Mesa
- Mesa Science Associates, Inc., 4539 Metropolitan Ct, Frederick, MD, 21701, USA
| |
Collapse
|
35
|
Cheng L, Meiser B. The relationship between psychosocial factors and biomarkers in cancer patients: A systematic review of the literature. Eur J Oncol Nurs 2019; 41:88-96. [DOI: 10.1016/j.ejon.2019.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/05/2019] [Accepted: 06/09/2019] [Indexed: 02/06/2023]
|