1
|
Chen SY, Xu H, Qin Y, He TQ, Shi RR, Xing YR, Xu J, Cong RC, Wang MR, Yang JS, Gu JH, He BS. Nicotinamide adenine dinucleotide phosphate alleviates intestinal ischemia/reperfusion injury via Nrf2/HO-1 pathway. Int Immunopharmacol 2024; 143:113478. [PMID: 39471691 DOI: 10.1016/j.intimp.2024.113478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/30/2024] [Accepted: 10/20/2024] [Indexed: 11/01/2024]
Abstract
Intestinal ischemia-reperfusion (I/R) injury is a critical condition in the abdomen that has significant morbidity and fatality rates. Prior studies have noted the defensive role of the coenzymatic antioxidant reduced nicotinamide adenine dinucleotide phosphate (NADPH) in heart and brain I/R damage, yet its impact on intestinal I/R trauma required further exploration. Through the application of an in vitro oxygen-glucose deprivation-reoxygenation model and a mouse model of short-term intestinal I/R, this study clarified the defensive mechanisms of NADPH against intestinal I/R injury. We demonstrated that intraperitoneal NADPH administration markedly reduced interleukin-1β (IL-1β) levels and blocked NLRP3 inflammasome activation, hence reducing inflammation. The antioxidative properties of NADPH were established by the reduction of oxidative stress markers and enhancement of glutathione levels. Importantly, NADPH improved intestinal barrier integrity, indicated by an upregulation of zonula occludens-1 and the promotion of a balanced gut microbiome profile. Furthermore, we identified the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1(HO-1) pathway as a crucial conduit for NADPH's beneficence. When this pathway was inhibited by ML385, the favorable outcomes conferred by NADPH were significantly abrogated. These results demonstrate that NADPH functions as an antioxidative, anti-inflammatory, microbiota-balancing, barrier-strengthening, and anti-inflammatory agent against intestinal I/R damage through activation of the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Su-Ying Chen
- Department of Radiology, Affiliated Hospital 2 of Nantong University, Medical School of Nantong University, Nantong 226001, China; Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong 226001, China; Department of Ultrasonography, Wuxi City Rehabilitation Hospital, Liangxi District Chinese Medicine Hospital, Wuxi 214000, China
| | - Hui Xu
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong 226001, China.
| | - Yan Qin
- Department of Pharmacy, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong 226001, China
| | - Tian-Qi He
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong 226001, China; Department of Pharmacy, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong 226001, China
| | - Rui-Rui Shi
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong 226001, China
| | - Yu-Run Xing
- Department of Radiology, Affiliated Hospital 2 of Nantong University, Medical School of Nantong University, Nantong 226001, China; Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong 226001, China
| | - Jian Xu
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong 226001, China; Department of Pharmacy, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong 226001, China
| | - Ruo-Chen Cong
- Department of Radiology, Affiliated Hospital 2 of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Mei-Rong Wang
- Department of Radiology, Affiliated Hospital 2 of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Ju-Shun Yang
- Department of Radiology, Affiliated Hospital 2 of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Jin-Hua Gu
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong 226001, China; Department of Pharmacy, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong 226001, China.
| | - Bo-Sheng He
- Department of Radiology, Affiliated Hospital 2 of Nantong University, Medical School of Nantong University, Nantong 226001, China; Translational Medicine Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, China.
| |
Collapse
|
2
|
Wang Q, Yu ZH, Nie L, Wang FX, Mu G, Lu B. Assessing the impact of gut microbiota and metabolic products on acute lung injury following intestinal ischemia-reperfusion injury: harmful or helpful? Front Cell Infect Microbiol 2024; 14:1491639. [PMID: 39687547 PMCID: PMC11647003 DOI: 10.3389/fcimb.2024.1491639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024] Open
Abstract
Ischemia-reperfusion injury (IRI) is a common and clinically significant form of tissue damage encountered in medical practice. This pathological process has been thoroughly investigated across a variety of clinical settings, including, but not limited to, sepsis, organ transplantation, shock, myocardial infarction, cerebral ischemia, and stroke. Intestinal IRI, in particular, is increasingly recognized as a significant clinical entity due to marked changes in the gut microbiota and their metabolic products, often described as the body's "second genome." These changes in intestinal IRI lead to profound alterations in the gut microbiota and their metabolic outputs, impacting not only the pathology of intestinal IRI itself but also influencing the function of other organs through various mechanisms. Notable among these are brain, liver, and kidney injuries, with acute lung injury being especially significant. This review seeks to explore in depth the roles and mechanisms of the gut microbiota and their metabolic products in the progression of acute lung injury initiated by intestinal IRI, aiming to provide a theoretical basis and directions for future research into the treatment of related conditions.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Anesthesiology, Zigong Fourth People’s Hospital, Zigong, Sichuan, China
| | - Zi-Hang Yu
- Department of Anesthesiology, Fushun County People’s Hospital, Zigong, Sichuan, China
| | - Liang Nie
- Department of Anesthesiology, Fushun County People’s Hospital, Zigong, Sichuan, China
| | - Fei-Xiang Wang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Guo Mu
- Department of Anesthesiology, Zigong Fourth People’s Hospital, Zigong, Sichuan, China
| | - Bin Lu
- Department of Anesthesiology, Zigong Fourth People’s Hospital, Zigong, Sichuan, China
| |
Collapse
|
3
|
Matera M. Bifidobacteria, Lactobacilli... when, how and why to use them. GLOBAL PEDIATRICS 2024; 8:100139. [DOI: 10.1016/j.gpeds.2024.100139] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Zhu JX, Dun Y, Wu W, Shen J, Zhang F, Zhang L. Curcumin suppresses the Wnt/β-catenin signaling pathway by inhibiting NKD2 methylation to ameliorate intestinal ischemia/reperfusion injury. Kaohsiung J Med Sci 2024; 40:175-187. [PMID: 38010861 DOI: 10.1002/kjm2.12782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/29/2023] Open
Abstract
Intestinal ischemia/reperfusion (I/R) injury is a life-threatening condition with no effective treatment currently available. Curcumin (CCM), a polyphenol compound in Curcuma Longa, reportedly has positive effects against intestinal I/R injury. However, the mechanism underlying the protective effect of CCM against intestinal I/R injury has not been fully clarified. To determine whether the protective effect of CCM was mediated by epigenetic effects on Wnt/β-catenin signaling, the effect of CCM was examined in vivo and in vitro. An intestinal I/R model was established in Sprague-Dawley (SD) rats with superior mesenteric artery occlusion, and Caco-2 cells were subjected to hypoxia/reoxygenation (H/R) for in vivo simulation of I/R. The results showed that CCM significantly reduced inflammatory, cell apoptosis, and oxidative stress induced by I/R insult in vivo and in vitro. Western blot analysis showed that CCM preconditioning reduced the protein levels of β-catenin, p-GSK3β, and cyclin-D1 and increased the protein level of GSK3β compared with the I/R group. Overexpressing β-catenin aggravated H/R injury, and knocking down β-catenin relieved H/R injury by improving intestinal permeability and reducing the cell apoptosis. Moreover, Naked cuticle homolog 2(NKD2) mRNA and protein levels were upregulated in the CCM-pretreated group. 5-aza-2'-deoxycytidine (5-AZA) treatment improved intestinal epithelial barrier impairment induced by H/R. Besides, the protein levels of total β-catenin, phosphor-β-catenin and cyclin-D1 were reduced after overexpressing NKD2 in Caco-2 cells following H/R insult. In conclusion, Our study suggests that CCM could attenuate intestinal I/R injury in vitro and in vivo by suppressing the Wnt/β-catenin signaling pathway via inhibition of NKD2 methylation.
Collapse
Affiliation(s)
- Jia-Xi Zhu
- Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai, China
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, China
| | - Yu Dun
- Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai, China
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, China
| | - Wei Wu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Shen
- Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai, China
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, China
| | - Feng Zhang
- Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai, China
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, China
| | - Lin Zhang
- Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai, China
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, China
| |
Collapse
|
5
|
Zhao M, Tang F, Huang X, Ma J, Wang F, Zhang P. Polysaccharide Isolated from Agaricus blazei Murill Alleviates Intestinal Ischemia/Reperfusion Injury through Regulating Gut Microbiota and Mitigating Inflammation in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2202-2213. [PMID: 38247134 DOI: 10.1021/acs.jafc.3c08482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Intestinal ischemia-reperfusion (I/R) injury is a serious disease in medical settings, and gut dysbiosis is a major contributor to its development. Polysaccharides from Agaricus blazei Murill (ABM) showed a range of pharmacological activities, yet no studies assessed the potential of ABM polysaccharides for alleviating intestinal I/R injury. Here, we purified a major polysaccharide (ABP1) from an ABM fruit body and subsequently tested its potential to mitigate intestinal I/R injury in a mouse model of temporary superior mesenteric artery occlusion. The results reveal that ABP1 pretreatment enhances gut barrier function via upregulation of the expression of tight junction proteins such as ZO-1 and occludin. Additionally, ABP1 intervention reduces the recruitment of neutrophils and the polarization of M1 macrophages and limits inflammation by blocking the assembly of the NLRP3 inflammasome. Moreover, the role of ABP1 in regulating the gut microbiota was confirmed via antibiotic treatment. The omics data reveals that ABP1 reprograms gut microbiota compositions, characterized by a decrease of Proteobacteria and an increase of Lachnospiraceae and Lactobacillaceae, especially the SCFA-producing genera such as Ligilactobacillus and Blautia. Overall, this work highlights the therapeutic potential of ABP1 against intestinal I/R injury, which mainly exhibits its effects via regulating the gut microbiota and suppressing the overactivated inflammation response.
Collapse
Affiliation(s)
- Meiqi Zhao
- Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, China
- Department of Gastroenterology and Hepatology, Nankai University Affiliated Third Central Hospital, Tianjin 300170, China
| | - Fei Tang
- Department of Gastroenterology and Hepatology, Nankai University Affiliated Third Central Hospital, Tianjin 300170, China
| | - Xiaoyu Huang
- Department of Gastroenterology and Hepatology, Nankai University Affiliated Third Central Hospital, Tianjin 300170, China
| | - Jiajia Ma
- Department of Gastroenterology and Hepatology, Nankai University Affiliated Third Central Hospital, Tianjin 300170, China
| | - Fengmei Wang
- Department of Organ Transplantation, Tianjin Key Laboratory of Organ Transplantation, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
- Department of Gastroenterology and Hepatology, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Peng Zhang
- Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
6
|
Martin AJ, Serebrinsky-Duek K, Riquelme E, Saa PA, Garrido D. Microbial interactions and the homeostasis of the gut microbiome: the role of Bifidobacterium. MICROBIOME RESEARCH REPORTS 2023; 2:17. [PMID: 38046822 PMCID: PMC10688804 DOI: 10.20517/mrr.2023.10] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 12/05/2023]
Abstract
The human gut is home to trillions of microorganisms that influence several aspects of our health. This dense microbial community targets almost all dietary polysaccharides and releases multiple metabolites, some of which have physiological effects on the host. A healthy equilibrium between members of the gut microbiota, its microbial diversity, and their metabolites is required for intestinal health, promoting regulatory or anti-inflammatory immune responses. In contrast, the loss of this equilibrium due to antibiotics, low fiber intake, or other conditions results in alterations in gut microbiota composition, a term known as gut dysbiosis. This dysbiosis can be characterized by a reduction in health-associated microorganisms, such as butyrate-producing bacteria, enrichment of a small number of opportunistic pathogens, or a reduction in microbial diversity. Bifidobacterium species are key species in the gut microbiome, serving as primary degraders and contributing to a balanced gut environment in various ways. Colonization resistance is a fundamental property of gut microbiota for the prevention and control of infections. This community competes strongly with foreign microorganisms, such as gastrointestinal pathogens, antibiotic-resistant bacteria, or even probiotics. Resistance to colonization is based on microbial interactions such as metabolic cross-feeding, competition for nutrients, or antimicrobial-based inhibition. These interactions are mediated by metabolites and metabolic pathways, representing the inner workings of the gut microbiota, and play a protective role through colonization resistance. This review presents a rationale for how microbial interactions provide resistance to colonization and gut dysbiosis, highlighting the protective role of Bifidobacterium species.
Collapse
Affiliation(s)
- Alberto J.M. Martin
- Laboratorio de Redes Biológicas, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago 8580702, Chile
| | - Kineret Serebrinsky-Duek
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago 833115, Chile
| | - Erick Riquelme
- Department of Respiratory Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Pedro A. Saa
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago 833115, Chile
- Institute for Mathematical and Computational Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Daniel Garrido
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago 833115, Chile
| |
Collapse
|
7
|
Munley JA, Nagpal R, Hanson NC, Mirzaie A, Laquian L, Mohr AM, Efron PA, Arnaoutakis DJ, Cooper MA. Chronic Mesenteric Ischemia Intestinal Dysbiosis Resolves after Revascularization. J Vasc Surg Cases Innov Tech 2022; 9:101084. [PMID: 36970136 PMCID: PMC10033993 DOI: 10.1016/j.jvscit.2022.101084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/11/2022] [Indexed: 12/24/2022] Open
Abstract
Objective Chronic mesenteric ischemia (CMI) is a debilitating condition arising from intestinal malperfusion from mesenteric artery stenosis or occlusion. Mesenteric revascularization has been the standard of care but can result in substantial morbidity and mortality. Most of the perioperative morbidity has been secondary to postoperative multiple organ dysfunction, potentially from ischemia-reperfusion injury. The intestinal microbiome is a dense community of microorganisms in the gastrointestinal tract that help regulate pathways ranging from nutritional metabolism to the immune response. We hypothesized that patients with CMI will have microbiome perturbations that contribute to this inflammatory response and could potentially normalize in the postoperative period. Methods We performed a prospective study of patients with CMI who had undergone mesenteric bypass and/or stenting from 2019 to 2020. Stool samples were collected at three time points: preoperatively at the clinic, perioperatively within 14 days after surgery, and postoperatively at the clinic at >30 days after revascularization. Stool samples from healthy controls were used for comparison. The microbiome was measured using 16S rRNA sequencing on an Illumina-MiSeq sequence platform and analyzed using the QIIME2 (quantitative insights into microbial ecology 2)-DADA2 bioinformatics pipeline with the Silva database. Beta-diversity was analyzed using a principal coordinates analysis and permutational analysis of variance. Alpha-diversity (microbial richness and evenness) was compared using the nonparametric Mann-Whitney U test. Microbial taxa unique to CMI patients vs controls were identified using linear discriminatory analysis effect size analysis. P < .05 was considered statistically significant. Results Eight patients with CMI had undergone mesenteric revascularization (25% men; average age, 71 years). Nine healthy controls were also analyzed (78% men; average age, 55 years). Bacterial alpha-diversity (number of operational taxonomic units) was dramatically reduced preoperatively compared with that of the controls (P = .03). However, revascularization partially restored the species richness and evenness in the perioperative and postoperative phases. Beta-diversity was only different between the perioperative and postoperative groups (P = .03). Further analyses revealed increased abundance of Bacteroidetes and Clostridia taxa preoperatively and perioperatively compared with the controls, which was reduced during the postoperative period. Conclusions The results from the present study have shown that patients with CMI have intestinal dysbiosis that resolves after revascularization. The intestinal dysbiosis is characterized by the loss of alpha-diversity, which is restored perioperatively and maintained postoperatively. This microbiome restoration demonstrates the importance of intestinal perfusion to sustain gut homeostasis and suggests that microbiome modulation could be a possible intervention to ameliorate acute and subacute postoperative outcomes in these patients.
Collapse
|
8
|
Wang F, Gu L, Wang Y, Sun D, Zhao Y, Meng Q, Yin L, Xu L, Lu X, Peng J, Lin Y, Sun P. MicroRNA-122a aggravates intestinal ischemia/reperfusion injury by promoting pyroptosis via targeting EGFR-NLRP3 signaling pathway. Life Sci 2022; 307:120863. [PMID: 35940217 DOI: 10.1016/j.lfs.2022.120863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/26/2022]
Abstract
Multiple studies have confirmed the significance of microRNA (miR)-122a in disease regulation. However, its impact on ischaemia/reperfusion (I/R) injury is unknown. In this study, we propose that the promoting role of miR-122a exists in I/R injuries. Two models, including hypoxia/reoxygenation (H/R)-injured IEC-6 cells in vitro and ischemia/reperfusion (I/R)-injured C57BL/6 mice intestinal tissues in vivo, were used to verify our purpose. Applying dual-luciferase reporter assays and transfection tests, the regulatory impacts of miR-122a were examined by promoting pyroptosis on intestinal I/R injury via targeting epidermal growth factor receptor (EGFR)-NOD-, LRR-, and pyrin domain-containing 3 (NLRP3) signaling pathway. Both H/R-injured IEC-6 cells and I/R-injured mice intestinal tissues had elevated miR-122a expression, which targeted EGFR directly. Increased miR-122a expression significantly inhibited EGFR activity, decreased EGFR mRNA and protein expression, increased NLRP3 mRNA and protein expression, and up-regulated caspase 1, N-GSDMD, ASC, IL-1β, and IL-18 protein expression to promote pyroptosis. Furthermore, in IEC-6 cells, a miR-122a inhibitor and an EGFR-overexpression plasmid significantly reduced pyroptosis and alleviated intestinal I/R injury via activating the EGFR-NLRP3 signaling pathway, showing that miR-122a is very essential for regulating intestinal I/R injury. In brief, miR-122a promotes pyroptosis by inhibiting the EGFR-NLRP3 signaling pathway, which should be evaluated as a therapeutic target for intestinal I/R injury.
Collapse
Affiliation(s)
- Fei Wang
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Lidan Gu
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Yilin Wang
- Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China
| | - Deen Sun
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Yuanhang Zhao
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Qiang Meng
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, China; Key Laboratory for Basic and Applied Research on Pharmacodynamic Substances of Traditional Chinese Medicine of Liaoning Province, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Lianhong Yin
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, China; Key Laboratory for Basic and Applied Research on Pharmacodynamic Substances of Traditional Chinese Medicine of Liaoning Province, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Lina Xu
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, China; Key Laboratory for Basic and Applied Research on Pharmacodynamic Substances of Traditional Chinese Medicine of Liaoning Province, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Xiaolong Lu
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, China; Key Laboratory for Basic and Applied Research on Pharmacodynamic Substances of Traditional Chinese Medicine of Liaoning Province, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Jinyong Peng
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, China; Key Laboratory for Basic and Applied Research on Pharmacodynamic Substances of Traditional Chinese Medicine of Liaoning Province, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Yuan Lin
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Pengyuan Sun
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, China; Key Laboratory for Basic and Applied Research on Pharmacodynamic Substances of Traditional Chinese Medicine of Liaoning Province, Dalian Medical University, Dalian, Liaoning 116044, China.
| |
Collapse
|
9
|
Wan Y, Dong P, Zhu X, Lei Y, Shen J, Liu W, Liu K, Zhang X. Bibliometric and visual analysis of intestinal ischemia reperfusion from 2004 to 2022. Front Med (Lausanne) 2022; 9:963104. [PMID: 36052333 PMCID: PMC9426633 DOI: 10.3389/fmed.2022.963104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background Intestinal ischemia/reperfusion (I/R) injury is a common tissue-organ damage occurring in surgical practice. This study aims to comprehensively review the collaboration and impact of countries, institutions, authors, subject areas, journals, keywords, and critical literature on intestinal I/R injury from a bibliometric perspective, and to assess the evolution of clustering of knowledge structures and identify hot trends and emerging topics. Methods Articles and reviews related to intestinal I/R were retrieved through subject search from Web of Science Core Collection. Bibliometric analyses were conducted on Excel 365, CiteSpace, VOSviewer, and Bibliometrix (R-Tool of R-Studio). Results A total of 1069 articles and reviews were included from 2004 to 2022. The number of articles on intestinal I/R injury gradually plateaued, but the number of citations increased. These publications were mainly from 985 institutions in 46 countries, led by China and the United States. Liu Kx published the most papers, while Chiu Cj had the largest number of co-citations. Analysis of the journals with the most outputs showed that most journals focused on surgical sciences, cell biology, and immunology. Macroscopic sketch and microscopic characterization of the entire knowledge domain were achieved through co-citation analysis. The roles of cell death, exosomes, intestinal flora, and anesthetics in intestinal I/R injury are the current and developing research focuses. The keywords "dexmedetomidine", "proliferation", and "ferroptosis" may also become new trends and focus of future research. Conclusion This study comprehensively reviews the research on intestinal I/R injury using bibliometric and visualization methods, and will help scholars better understand the dynamic evolution of intestinal I/R injury and provide directions for future research.
Collapse
Affiliation(s)
- Yantong Wan
- College of Anesthesiology, Southern Medical University, Guangzhou, China
| | - Peng Dong
- College of Anesthesiology, Southern Medical University, Guangzhou, China
| | - Xiaobing Zhu
- Department of Anesthesiology, Hospital of Traditional Chinese Medicine of Zhongshan City, Zhongshan, China
| | - Yuqiong Lei
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| | - Junyi Shen
- The Second Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Weifeng Liu
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| | - Kexuan Liu
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| | - Xiyang Zhang
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Chen J, Wang Y, Shi Y, Liu Y, Wu C, Luo Y. Association of Gut Microbiota With Intestinal Ischemia/Reperfusion Injury. Front Cell Infect Microbiol 2022; 12:962782. [PMID: 35903197 PMCID: PMC9314564 DOI: 10.3389/fcimb.2022.962782] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Intestinal ischemia/reperfusion (II/R) is a common acute and critical condition in clinical practice with a high mortality rate. However, there is still a lack of effective prevention and treatment measures for II/R injury. The role of the gut microbiota in II/R has attracted widespread attention. Recent evidence has demonstrated that the gut microbiota plays a pivotal role in the occurrence, development, and prognosis of II/R. Therefore, maintaining the homeostasis of gut microbiota and its metabolites may be a potential strategy for the treatment of II/R. This review focuses on the importance of crosstalk between the gastrointestinal ecosystem and II/R to highlight II/R-induced gut microbiota signatures and potential applications of microbial-based therapies in II/R. This will also provide potentially effective biomarkers for the prediction, diagnosis and treatment of II/R.
Collapse
Affiliation(s)
- Jingyi Chen
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- *Correspondence: Jingyi Chen, ; Yanrong Luo, ; Chengyi Wu,
| | - Yu Wang
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yongxia Shi
- Department of Surgical Nursing, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yongpan Liu
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Chengyi Wu
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- *Correspondence: Jingyi Chen, ; Yanrong Luo, ; Chengyi Wu,
| | - Yanrong Luo
- Physical Examination Center, Shiyan Hospital of Integrated Traditional and Western Medicine, Shiyan, China
- *Correspondence: Jingyi Chen, ; Yanrong Luo, ; Chengyi Wu,
| |
Collapse
|
11
|
Deng F, Lin ZB, Sun QS, Min Y, Zhang Y, Chen Y, Chen WT, Hu JJ, Liu KX. The role of intestinal microbiota and its metabolites in intestinal and extraintestinal organ injury induced by intestinal ischemia reperfusion injury. Int J Biol Sci 2022; 18:3981-3992. [PMID: 35844797 PMCID: PMC9274501 DOI: 10.7150/ijbs.71491] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/01/2022] [Indexed: 11/18/2022] Open
Abstract
Intestinal ischemia/reperfusion (I/R) is a common pathophysiological process in clinical severe patients, and the effect of intestinal I/R injury on the patient's systemic pathophysiological state is far greater than that of primary intestinal injury. In recent years, more and more evidence has shown that intestinal microbiota and its metabolites play an important role in the occurrence, development, diagnosis and treatment of intestinal I/R injury. Intestinal microbiota is regulated by host genes, immune response, diet, drugs and other factors. The metabolism and immune potential of intestinal microbiota determine its important significance in host health and diseases. Therefore, targeting the intestinal microbiota and its metabolites may be an effective therapy for the treatment of intestinal I/R injury and intestinal I/R-induced extraintestinal organ injury. This review focuses on the role of intestinal microbiota and its metabolites in intestinal I/R injury and intestinal I/R-induced extraintestinal organ injury, and summarizes the latest progress in regulating intestinal microbiota to treat intestinal I/R injury and intestinal I/R-induced extraintestinal organ injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jing-Juan Hu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ke-Xuan Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Liu H, Wang J, Ding Y, Shi X, Ren H. Antibiotic pretreatment attenuates liver ischemia-reperfusion injury by Farnesoid X receptor activation. Cell Death Dis 2022; 13:484. [PMID: 35597796 PMCID: PMC9124217 DOI: 10.1038/s41419-022-04955-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 12/14/2022]
Abstract
Prophylactic antibiotics (Abx) are used before liver surgery, and the influence of antibiotic pretreatment on hepatic ischemia-reperfusion injury (IRI) remains unclear. Hence, we explored the impact of Abx pretreatment on hepatic IRI in the present work. The gut microbiota has an essential role in hepatic bile acid (BA) metabolism, and we assumed that depletion of the gut microbiota could affect the composition of hepatic BAs and affect liver IRI. The IRI model demonstrated that Abx pretreatment attenuated liver IRI by alleviating cell apoptosis, reducing the inflammatory response, and decreasing the recruitment of CCR2+ monocytes. Mechanistically, Abx pretreatment reshaped the gut microbiota, especially decreasing the relative abundance of Firmicutes and increasing the relative abundance of Clostridium, which were related to the transformation of BAs and were consistent with the altered bile acid species (unconjugated BAs, especially UDCA). These altered BAs are known FXR agonists and lead to the activation of the farnesoid X receptor (FXR), which can directly bind to the FXR response element (FXRE) harbored in the TLR4 promoter and further suppress downstream mitogen-activated protein kinase (MAPK) and nuclear kappa B (NF-κB) pathways. Meanwhile, the CCL2-CCR2 axis was also involved in the process of FXR activation, as we confirmed both in vivo and in vitro. Importantly, we proved the importance of FXR in mice and clinical occlusion samples, which were inversely correlated with liver injury. Taken together, our study identified that Abx pretreatment before liver resection was a beneficial event by activating FXR, which might become a potential therapeutic target in treating liver injury.
Collapse
Affiliation(s)
- Hanyi Liu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jinglin Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Institute of Hepatobiliary Surgery, Nanjing University, Nanjing, China
| | - Yitao Ding
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
- Institute of Hepatobiliary Surgery, Nanjing University, Nanjing, China.
| | - Xiaolei Shi
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
- Institute of Hepatobiliary Surgery, Nanjing University, Nanjing, China.
| | - Haozhen Ren
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
- Institute of Hepatobiliary Surgery, Nanjing University, Nanjing, China.
| |
Collapse
|
13
|
Li Y, He L, Zhao Q, Bo T. Microbial and metabolic profiles of bronchopulmonary dysplasia and therapeutic effects of potential probiotics Limosilactobacillus reuteri and Bifidobacterium bifidum. J Appl Microbiol 2022; 133:908-921. [PMID: 35488863 DOI: 10.1111/jam.15602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/26/2022]
Abstract
AIMS Bronchopulmonary dysplasia (BPD) is a common respiratory disease in newborns; however, there is no effective treatment. We aimed to investigate the effects of the potential probiotics Limosilactobacillus reuteri (L. reuteri) and Bifidobacterium bifidum (B. bifidum) on BPD using 16S rDNA sequencing and metabolomics methods. METHODS AND RESULTS Fecal samples were collected from 10 BPD patients and 10 healthy subjects. 16S rDNA sequencing results showed that microbial diversity was decreased and compositions were affected in BPD. Escherichia-Shigella and Clostridium_sensu_stricto_1 were increased in the BPD group, and Enterobacteriaceae, Megamonas, Blautia, Lactobacillus (Limosilactobacillus), [Eubacterium]_coprostanoligenes_group, Phascolarctobacterium and Bifidobacterium were reduced. Metabolomics analysis identified 129 differentiated metabolites that were changed in BPD patients, and they were associated with a preference for carbohydrate metabolism in translation and metabolism during genetic information processing. Correlation analysis revealed a remarkable relationship between gut microbiota and metabolites. Subsequently, a BPD cell model was constructed to test the effect of the potential probiotics. Cell function experiments verified that treatment with the potential probiotics L. reuteri and B. bifidum promoted proliferation and inhibited apoptosis of hyperoxia-induced MLE-12 cells. In addition, treatment with the potential probiotics L. reuteri and B. bifidum reduced inflammation and oxidative stress damage. CONCLUSIONS Treatment with the potential probiotics L. reuteri and B. bifidum could alleviate BPD and reduce inflammation and oxidative stress damage. SIGNIFICANCE AND IMPACT This study was the first to report positive roles for the potential probiotics L. reuteri and B. bifidum in BPD. The potential probiotics L. reuteri and B. bifidum were shown to reduce inflammation and oxidative stress damage in BPD. This study provided new insights on the pathogenesis and treatment of BPD.
Collapse
Affiliation(s)
- Ying Li
- Department of Pediatrics, Central South University Third Xiangya Hospital, Changsha, Hunan, China
| | - Li He
- Department of Pediatrics, Central South University Third Xiangya Hospital, Changsha, Hunan, China
| | - Qin Zhao
- Department of Pediatrics, Central South University Third Xiangya Hospital, Changsha, Hunan, China
| | - Tao Bo
- Department of Pediatrics, Central South University Third Xiangya Hospital, Changsha, Hunan, China
| |
Collapse
|
14
|
de Marins AR, de Campos TAF, Pereira Batista AF, Correa VG, Peralta RM, Graton Mikcha JM, Gomes RG, Feihrmann AC. Effect of the addition of encapsulated Lactiplantibacillus plantarum Lp-115, Bifidobacterium animalis spp. lactis Bb-12, and Lactobacillus acidophilus La-5 to cooked burger. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Gao J, Li X, Zhang G, Sadiq FA, Simal-Gandara J, Xiao J, Sang Y. Probiotics in the dairy industry-Advances and opportunities. Compr Rev Food Sci Food Saf 2021; 20:3937-3982. [PMID: 33938124 DOI: 10.1111/1541-4337.12755] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/09/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
The past two decades have witnessed a global surge in the application of probiotics as functional ingredients in food, animal feed, and pharmaceutical products. Among food industries, the dairy industry is the largest sector where probiotics are employed in a number of dairy products including sour/fermented milk, yogurt, cheese, butter/cream, ice cream, and infant formula. These probiotics are either used as starter culture alone or in combination with traditional starters, or incorporated into dairy products following fermentation, where their presence imparts many functional characteristics to the product (for instance, improved aroma, taste, and textural characteristics), in addition to conferring many health-promoting properties. However, there are still many challenges related to the stability and functionality of probiotics in dairy products. This review highlights the advances, opportunities, and challenges of application of probiotics in dairy industries. Benefits imparted by probiotics to dairy products including their role in physicochemical characteristics and nutritional properties (clinical and functional perspective) are also discussed. We transcend the traditional concept of the application of probiotics in dairy products and discuss paraprobiotics and postbiotics as a newly emerged concept in the field of probiotics in a particular relation to the dairy industry. Some potential applications of paraprobiotics and postbiotics in dairy products as functional ingredients for the development of functional dairy products with health-promoting properties are briefly elucidated.
Collapse
Affiliation(s)
- Jie Gao
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Xiyu Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Guohua Zhang
- School of Life Science, Shanxi University, Taiyuan, China
| | | | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, China
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
16
|
İkiz Ö, Kahramansoy N, Erkol H, Koçoğlu E, Fırat T. Effects of lycopene in intestinal ischemia reperfusion injury via intestinal immunoglobulin A. J Surg Res 2021; 267:63-70. [PMID: 34130240 DOI: 10.1016/j.jss.2021.04.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/17/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Intestinal ischemia causes an inflammatory response that may become intense by reperfusion and result in bacterial translocation. Intestinal immunoglobulin A is known to be a barrier against bacterial translocation. Lycopene is a compound with antioxidant and anti-inflammatory properties. We hypothesized that lycopene has positive effects in ischemia-reperfusion of the intestine through the intestinal IgA. MATERIAL AND METHODS Twenty-eight Wistar albino rats were separated into four groups: sham, control, lycopene-administered-before-ischemia (L-pre), and lycopene-administered-after-reperfusion groups. Histopathologic changes, intestinal immunoglobulin A levels, and bacterial translocation were evaluated after the ischemia-reperfusion period of 0.5-12 h. RESULTS Histopathologic changes, intestinal immunoglobulin A, and bacterial translocation levels in the L-pre group were similar to those in the sham group. Administration of the lycopene after reperfusion showed just a slight protective effect. However, the L-pre group had significantly fewer histopathologic changes when compared with changes in the control (P = 0.011). Intestinal immunoglobulin A level in the L-pre group was found to be higher than that in the control group (P = 0.014). Bacterial translocation levels in the blood and mesenteric lymph nodes, in the L-pre group, were lower than those in the control group (P = 0.0027 and P = 0.0097, respectively). CONCLUSIONS Lycopene limited intestinal damage, reduced loss of intestinal immunoglobulin A and decreased bacterial translocation when administered before the ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Özgür İkiz
- Abant Izzet Baysal University Faculty of Medicine, Department of General Surgery, Bolu, Turkey
| | - Nurettin Kahramansoy
- Abant Izzet Baysal University Faculty of Medicine, Department of General Surgery, Bolu, Turkey.
| | - Hayri Erkol
- Abant Izzet Baysal University Faculty of Medicine, Department of General Surgery, Bolu, Turkey
| | - Esra Koçoğlu
- Abant İzzet Baysal University Faculty of Medicine, Department of Clinical Microbiology, Bolu, Turkey
| | - Tülin Fırat
- Abant İzzet Baysal University Faculty of Medicine, Department of Histology and Embryology, Bolu, Turkey
| |
Collapse
|
17
|
Intestinal ischemic reperfusion injury: Recommended rats model and comprehensive review for protective strategies. Biomed Pharmacother 2021; 138:111482. [PMID: 33740527 DOI: 10.1016/j.biopha.2021.111482] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/01/2021] [Accepted: 03/06/2021] [Indexed: 12/17/2022] Open
Abstract
Intestinal ischemic reperfusion injury (IIRI) is a life-threatening condition with high morbidity and mortality in the clinic. IIRI was induced by intestinal ischemic diseases such as, small bowel transplantation, aortic aneurysm surgery, and strangulated hernias. Although related mechanisms have not been fully elucidated, during the last decade, researches have demonstrated that many factors are crucial in the pathological process, including oxidative stress (OS), epithelial barrier function disorder, and so on. Rats model, as the most applied animal IIRI model, provides specific targets for researches and therapeutic strategies. Moreover, various treatment strategies such as, anti-oxidative stress, anti-apoptosis, and anti-inflammation, have shown promising effects in alleviating IIRI. However, current researches cannot solve the clinical problems of IIRI, and specific treatment strategies are still needed to be exploited. This review focuses on a recommended experimental IIRI rat model and understanding of the involved mechanisms such as, OS, gut bacteria translocation, apoptosis, and necroptosis, aim at providing novel ideas for therapeutic strategies of IIRI.
Collapse
|
18
|
Akbari G. Emerging roles of microRNAs in intestinal ischemia/reperfusion-induced injury: a review. J Physiol Biochem 2020; 76:525-537. [PMID: 33140255 DOI: 10.1007/s13105-020-00772-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
Intestinal ischemia/reperfusion (II/R) injury is a serious pathological phenomenon in underlying hemorrhagic shock, trauma, strangulated intestinal obstruction, and acute mesenteric ischemia which associated with high morbidity and mortality. MicroRNAs (miRNAs, miRs) are endogenous non-coding RNAs that regulate post-transcriptionally target mRNA translation via degrading it and/or suppressing protein synthesis. This review discusses on the role of some miRNAs in underlying II/R injury. Some of these miRNAs can have protective action through agomiR or specific antagomiR, and others can have destructive effects in the basal level of II/R insult. Based on these literature reviews, II/R injury affects several miRNAs and their specific target genes. Some miRNAs upregulate under condition of II/R injury, and multiple miRNAs downregulate following II/R damage. Data of this review have been collected from the scientific articles published in databases such as Science Direct, Scopus, PubMed, Web of Science, and Scientific Information Database from 2000 to 2020. It is shown a correlation between changes in the expression of miRNAs and autophagy, inflammation, oxidative stress, apoptosis, and epithelial barrier function. Taken together, agomiR or antagomiR of some miRNAs can be considered as one new target for the research and development of innovative drugs to the prevention or treatment of II/R damage.
Collapse
Affiliation(s)
- Ghaidafeh Akbari
- Medicinal Plants Research Center, Department of Physiology, School of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran.
| |
Collapse
|
19
|
Dai Y, Mao Z, Han X, Xu Y, Xu L, Yin L, Qi Y, Peng J. MicroRNA-29b-3p reduces intestinal ischaemia/reperfusion injury via targeting of TNF receptor-associated factor 3. Br J Pharmacol 2019; 176:3264-3278. [PMID: 31167039 PMCID: PMC6692574 DOI: 10.1111/bph.14759] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 05/07/2019] [Accepted: 05/25/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE The microRNA miR-29b-3p shows important roles in regulating apoptosis and inflammation. However, its effects on intestinal ischaemia/reperfusion (II/R) injury have not been reported. Here we have investigated the functions of miR-29b-3p on II/R injury on order to find drug targets to treat the injury. EXPERIMENTAL APPROACH Two models - in vitro hypoxia/reoxygenation (H/R) of IEC-6 cells; in vivo, II/R injury in C57BL/6 mice were used. Western blotting and dual-luciferase reporter assays were used and mimic and siRNA transfection tests were applied to assess the effects of miR-29b-3p on II/R injury via targeting TNF receptor-associated factor 3 (TRAF3). KEY RESULTS The H/R procedure decreased cell viability and promoted inflammation and apoptosis in IEC-6 cells, and the II/R procedure also promoted intestinal inflammation and apoptosis in mice. Expression levels of miR-29b-3p were decreased in H/R-induced cells and II/R-induced intestinal tissues of mice compared with control group or sham group, which directly targeted TRAF3. Decreased miR-29b-3p level markedly increased TRAF3 expression via activating TGF-α-activated kinase 1 phosphorylation, increasing NF-κB (p65) levels to promote inflammation, up-regulating Bcl2-associated X expression, and down-regulating Bcl-2 expression to trigger apoptosis. In addition, the miR-29b-3p mimetic and TRAF3 siRNA in IEC-6 cells markedly suppressed apoptosis and inflammation to alleviate II/R injury via inhibiting TRAF3 signallimg. CONCLUSIONS AND IMPLICATIONS The miR-29b-3p played a critical role in II/R injury, via targeting TRAF3, which should be considered as a significant drug target to treat the disease.
Collapse
Affiliation(s)
- Yan Dai
- College of PharmacyDalian Medical UniversityDalianChina
| | - Zhang Mao
- College of PharmacyDalian Medical UniversityDalianChina
| | - Xu Han
- College of PharmacyDalian Medical UniversityDalianChina
| | - Youwei Xu
- College of PharmacyDalian Medical UniversityDalianChina
| | - Lina Xu
- College of PharmacyDalian Medical UniversityDalianChina
| | - Lianhong Yin
- College of PharmacyDalian Medical UniversityDalianChina
| | - Yan Qi
- College of PharmacyDalian Medical UniversityDalianChina
| | - Jinyong Peng
- College of PharmacyDalian Medical UniversityDalianChina
- Key Laboratory for Basic and Applied Research on Pharmacodynamic Substances of Traditional Chinese Medicine of Liaoning ProvinceDalian Medical UniversityDalianChina
- National‐Local Joint Engineering Research Center for Drug Development (R&D) of Neurodegenerative DiseasesDalian Medical UniversityDalianChina
| |
Collapse
|