1
|
Nie B, Chen J, Wang W, Cao T, Ye X, Chen S, Hou Z. Structural and functional benefits of Ganoderma lucidum polysaccharides due to space mutagenesis. Carbohydr Polym 2025; 358:123532. [PMID: 40383591 DOI: 10.1016/j.carbpol.2025.123532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/11/2025] [Accepted: 03/22/2025] [Indexed: 05/20/2025]
Abstract
Ganoderma lucidum samples from space-mutated strains transported by China's "Shenzhou" recoverable satellites, along with traditionally cultivated counterparts, were selected for this study. Polysaccharides from Ganoderma lucidum were extracted using a two-step sequential method integrating hot water and alkaline extractions. Liquid chromatography-mass spectrometry (LC-MS) was employed to characterize polysaccharide structures (monosaccharide composition and glycosidic linkages) and profile terpenoids, assessing the impact of space mutation. Results showed a significant increase (p < 0.05) in polysaccharide and terpenoid contents, with polysaccharide yield rising from 178.59 % to 265.38 %. Space-mutated polysaccharides exhibited higher glucose content, altered monosaccharide composition, lower molecular weight, and an enriched β-1,3-glucan structure. They also demonstrated enhanced anti-inflammatory activity, underscoring the functional benefits of space-induced modifications. This study presents the first comprehensive analysis of structural alterations in Ganoderma lucidum polysaccharides induced by space mutation. It provides valuable scientific insights into the space breeding of medicinal plants and suggests that space mutation technology could serve as a promising strategy for developing functional foods from Ganoderma lucidum.
Collapse
Affiliation(s)
- Bingqian Nie
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jianle Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Wenkang Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Tong Cao
- Zhejiang Senzhibao Biotechnology Co., Ltd., Longquan 323000, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| | - Zhiqiang Hou
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Shin HJ, Ro HS, Kawauchi M, Honda Y. Review on mushroom mycelium-based products and their production process: from upstream to downstream. BIORESOUR BIOPROCESS 2025; 12:3. [PMID: 39794674 PMCID: PMC11723872 DOI: 10.1186/s40643-024-00836-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
The global trend toward carbon neutrality and sustainability calls for collaborative efforts in both the basic and applied research sectors to utilize mushroom mycelia as environmentally friendly and sustainable materials. Fungi, along with animals and plants, are one of the major eukaryotic life forms. They have long been utilized in traditional biotechnology sectors, such as food fermentation, antibiotic production, and industrial enzyme production. Some fungi have also been consumed as major food crops, such as the fruiting bodies of various mushrooms. Recently, new trends have emerged, shifting from traditional applications towards the innovative use of mushroom mycelium as eco-friendly bioresources. This approach has gained attention in the development of alternative meats, mycofabrication of biocomposites, and production of mycelial leather and fabrics. These applications aim to replace animal husbandry and recycle agricultural waste for use in construction and electrical materials. This paper reviews current research trends on industrial applications of mushroom mycelia, covering strain improvements and molecular breeding as well as mycelial products and the production processes. Key findings, practical considerations, and valorization are also discussed.
Collapse
Affiliation(s)
- Hyun-Jae Shin
- Department of Biochemical Engineering, Chosun University, Gwangju, Republic of Korea.
| | - Hyeon-Su Ro
- Department of Bio and Medical Big Data (BK4 Program) and Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Moriyuki Kawauchi
- Laboratory of Environmental Interface Technology of Filamentous Fungi, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yoichi Honda
- Laboratory of Forest Biochemistry, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| |
Collapse
|
3
|
Li D, Shen J, Ding Q, Wu J, Chen X. Recent progress of atmospheric and room-temperature plasma as a new and promising mutagenesis technology. Cell Biochem Funct 2024; 42:e3991. [PMID: 38532652 DOI: 10.1002/cbf.3991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024]
Abstract
At present, atmospheric and room-temperature plasma (ARTP) is regarded as a new and powerful mutagenesis technology with the advantages of environment-friendliness, operation under mild conditions, and fast mutagenesis speed. Compared with traditional mutagenesis strategies, ARTP is used mainly to change the structure of microbial DNA, enzymes, and proteins through a series of physical, chemical, and electromagnetic effects with the organisms, leading to nucleotide breakage, conversion or inversion, causing various DNA damages, so as to screen out the microbial mutants with better biological characteristics. As a result, in recent years, ARTP mutagenesis and the combination of ARTP with traditional mutagenesis have been widely used in microbiology, showing great potential for application. In this review, the recent progress of ARTP mutagenesis in different application fields and bottlenecks of this technology are systematically summarized, with a view to providing a theoretical basis and technical support for better application. Finally, the outlook of ARTP mutagenesis is presented, and we identify the challenges in the field of microbial mutagenesis by ARTP.
Collapse
Affiliation(s)
- Dongao Li
- Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, Low Temperature Plasma Application Laboratory, Hefei, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Jie Shen
- Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, Low Temperature Plasma Application Laboratory, Hefei, China
| | - Qiang Ding
- Yichang Sanxia Pharmaceutical Co., Ltd., Yichang City, Hubei Province, China
| | - Jinyong Wu
- Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, Low Temperature Plasma Application Laboratory, Hefei, China
| | - Xiangsong Chen
- Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, Low Temperature Plasma Application Laboratory, Hefei, China
| |
Collapse
|
4
|
Meng L, Zhou R, Liang L, Zang X, Lin J, Wang Q, Wang L, Wang W, Li Z, Ren P. 4-Coumarate-CoA ligase (4-CL) enhances flavonoid accumulation, lignin synthesis, and fruiting body formation in Ganoderma lucidum. Gene 2024; 899:148147. [PMID: 38191099 DOI: 10.1016/j.gene.2024.148147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/19/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
It is now understood that 4-Coumarate-CoA ligases (4-CL) are pivotal in bridging the phenylpropanoid metabolic pathway and the lignin biosynthesis pathway in plants. However, limited information on 4-CL genes and their functions in fungi is available. In this study, we cloned the 4-CL gene (Gl21040) from Ganoderma lucidum, which spans 2178 bp and consists of 10 exons and 9 introns. We also developed RNA interference and overexpression vectors for Gl21040 to investigate its roles in G. lucidum. Our findings indicated that in the Gl21040 interference transformants, 4-CL enzyme activities decreased by 31 %-57 %, flavonoids contents decreased by 10 %-22 %, lignin contents decreased by 20 %-36 % compared to the wild-type (WT) strain. Conversely, in the Gl21040 overexpression transformants, 4-CL enzyme activity increased by 108 %-143 %, flavonoids contents increased by 8 %-37 %, lignin contents improved by 15 %-17 % compared to the WT strain. Furthermore, primordia formation was delayed by approximately 10 days in the Gl21040-interferenced transformants but occurred 3 days earlier in the Gl21040-overexpressed transformants compared to the WT strain. These results underscored the involvement of the Gl21040 gene in flavonoid synthesis, lignin synthesis, and fruiting body formation in G. lucidum.
Collapse
Affiliation(s)
- Li Meng
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Ruyue Zhou
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Lidan Liang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Xizhe Zang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Jialong Lin
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Qingji Wang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Li Wang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Wei Wang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China.
| | - Zhuang Li
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China.
| | - Pengfei Ren
- State Key Laboratory of Nutrient Use and Management, Shandong Academy of Agricultural Sciences, Jinan 250100, China; Key Laboratory of Wastes Matrix Utilization, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| |
Collapse
|
5
|
Liu D, Diao W, Sun X, Zong J, Qi X, Liang C. Application of Miscanthus substrates in the cultivation of Ganoderma lingzhi. Arch Microbiol 2023; 205:384. [PMID: 37975884 DOI: 10.1007/s00203-023-03720-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
Ganoderma lingzhi is a traditional Chinese medicine that has been used to improve health and longevity for thousands of years. It is usually cultivated on hardwood log- or sawdust-based formulations. Conversely, in this study, we used Miscanthus sacchariflorus (MSF), M. floridulus, and M. sinensis (MSS), fast-growing perennial grasses widely distributed in China, for G. lingzhi cultivation. Mycelial growth rate, activities of lignin-degrading enzymes on colonized mushroom substrates, and expression levels of CAZymes and laccase genes based on different substrates were analyzed. Total triterpenoids, sterols, and polysaccharides content of fruiting bodies obtained from different substrates were investigated. The activities of laccase and manganese peroxidase in mycelia increased in the MSF- and MSS-based formulations compared with that in the sawdust-based formulation. The results of mycelial growth- and cultivation-related experiments showed that the Miscanthus substrates could be used as the substrates for cultivating G. lingzhi. The content of active ingredients, namely triterpenoids, sterols, and polysaccharides, in fruiting bodies cultivated on the Miscanthus substrates did not decrease compared with those in substrate obtained from the sawdust-based formulation. Therefore, the present study provides alternative substrates for the cultivation of G. lingzhi, and a reference for better utilization of inexpensive substrate in future.
Collapse
Affiliation(s)
- Dongmei Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Wentong Diao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Xueyan Sun
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Junqin Zong
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Xiwu Qi
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Chengyuan Liang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| |
Collapse
|
6
|
Xu J, Yan X, Jia X, Wang Y, Xu H, Yu H, He L, Zheng B, Wu X. A new strategy to improve Ganoderma polysaccharides production by symbiotic fungi elicitors through activating the biosynthetic pathway. Int J Biol Macromol 2023; 235:123798. [PMID: 36841391 DOI: 10.1016/j.ijbiomac.2023.123798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/02/2023] [Accepted: 02/18/2023] [Indexed: 02/26/2023]
Abstract
Ganoderma lucidum polysaccharides (GLP) attract growing attention due to their remarkable bioactivities, but the low content in raw materials remains a bottleneck severely restricting their application. We previously found a higher polysaccharides accumulation in Ganoderma lucidum cultured in continuous cropping soil, and soil symbiotic fungi are presumed as the key among many factors. Herein, 33 symbiotic fungi were isolated from the soil, and fungal elicitors were prepared to investigate their biotic eliciting effect on GLP biosynthesis. Most elicitors were found to significantly improve GLP production, among which the NO.16 molecularly identified as Penicillium citrinum, exhibited the optimum eliciting effect with GLP yield increasing by 3.4 times. Differences in the biosynthetic pathway genes expressions and the monosaccharide components of GLP were further analyzed. The transcriptions of the main genes of GLP biosynthetic pathway were up-regulated under PCE treatments, suggesting it improves GLP production by activating transcriptions of the biosynthetic pathway genes. Moreover, PCE eliciting significantly altered the monosaccharide compositions of GLP with Gal, Man, GalA, GlcA, and Fuc increasing by 8.17 %, 5.68 %, 5.41 %, 2.66 %, and 1.51 % respectively, but Glc decreased by 23.43 %, which may result in the activity change. It can serve as a new strategy to improve GLP production.
Collapse
Affiliation(s)
- Juan Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China; Zhejiang Provincial Key Laboratory of Characteristic Traditional Chinese Medicine Resources Protection and Innovative Utilization, Zhejiang A&F University, Lin'an 311300, China; National Innovation Alliance of Lingzhi and Sanyeqing Industry, Lin'an 311300, China
| | - Xiaoyun Yan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China; Zhejiang Provincial Key Laboratory of Characteristic Traditional Chinese Medicine Resources Protection and Innovative Utilization, Zhejiang A&F University, Lin'an 311300, China
| | - Xumei Jia
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China; Zhejiang Provincial Key Laboratory of Characteristic Traditional Chinese Medicine Resources Protection and Innovative Utilization, Zhejiang A&F University, Lin'an 311300, China
| | - Ying Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China; Zhejiang Provincial Key Laboratory of Characteristic Traditional Chinese Medicine Resources Protection and Innovative Utilization, Zhejiang A&F University, Lin'an 311300, China; National Innovation Alliance of Lingzhi and Sanyeqing Industry, Lin'an 311300, China
| | - Haishun Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China; Zhejiang Provincial Key Laboratory of Characteristic Traditional Chinese Medicine Resources Protection and Innovative Utilization, Zhejiang A&F University, Lin'an 311300, China; National Innovation Alliance of Lingzhi and Sanyeqing Industry, Lin'an 311300, China
| | - Haizheng Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China; Zhejiang Provincial Key Laboratory of Characteristic Traditional Chinese Medicine Resources Protection and Innovative Utilization, Zhejiang A&F University, Lin'an 311300, China; National Innovation Alliance of Lingzhi and Sanyeqing Industry, Lin'an 311300, China
| | - Liang He
- Zhejiang Provincial academy of forestry, Hangzhou 310000, China
| | - BingSong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China
| | - Xueqian Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China; Zhejiang Provincial Key Laboratory of Characteristic Traditional Chinese Medicine Resources Protection and Innovative Utilization, Zhejiang A&F University, Lin'an 311300, China; National Innovation Alliance of Lingzhi and Sanyeqing Industry, Lin'an 311300, China.
| |
Collapse
|
7
|
Ye L, He X, Su C, Feng H, Meng G, Chen B, Wu X. The Effect of Mitochondria on Ganoderma lucidum Growth and Bioactive Components Based on Transcriptomics. J Fungi (Basel) 2022; 8:1182. [PMID: 36354949 PMCID: PMC9692720 DOI: 10.3390/jof8111182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 01/06/2024] Open
Abstract
Mitochondria are the power source of living cells and implicated in the oxidative metabolism. However, the effect of mitochondria on breeding is usually ignored in conventional research. In this study, the effect of mitochondria on Ganoderma lucidum morphology, yield, and main primary bioactive components was analyzed via structuring and comparing isonuclear alloplasmic strains. The crucial biological pathways were then explored based on the transcriptome. The results showed that isonuclear alloplasmic exhibited difference in mycelial growth rate in potato dextrose agar medium (PDA), basidiospore yield, and polysaccharide and triterpenoid content. Otherwise, mitochondria did not change colony and fruit body morphology, mushroom yield, or mycelial growth rate in solid-state fermentation cultivation material. The transcriptome data of two significant isonuclear alloplasmic strains S1 and S5 revealed that the involvement of differentially expressed genes (DEGs) was mainly in pentose and glucuronate interconversions, starch and sucrose metabolism, and steroid biosynthesis. The result was further confirmed by the other isonuclear alloplasmic strains. The above results further proved that mitochondria could affect the active components of G. lucidum. Our results provide information which will contribute to understanding of mitochondria and will be helpful for breeding improved varieties.
Collapse
Affiliation(s)
- Liyun Ye
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaofang He
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Congbao Su
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haiying Feng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guoliang Meng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bingzhi Chen
- College of Food Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Xiaoping Wu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
8
|
Nonthermal Plasma Effects on Fungi: Applications, Fungal Responses, and Future Perspectives. Int J Mol Sci 2022; 23:ijms231911592. [PMID: 36232892 PMCID: PMC9569944 DOI: 10.3390/ijms231911592] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022] Open
Abstract
The kingdom of Fungi is rich in species that live in various environments and exhibit different lifestyles. Many are beneficial and indispensable for the environment and industries, but some can threaten plants, animals, and humans as pathogens. Various strategies have been applied to eliminate fungal pathogens by relying on chemical and nonchemical antifungal agents and tools. Nonthermal plasma (NTP) is a potential tool to inactivate pathogenic and food-contaminating fungi and genetically improve fungal strains used in industry as enzyme and metabolite producers. The NTP mode of action is due to many highly reactive species and their interactions with biological molecules. The interaction of the NTP with living cells is believed to be synergistic yet not well understood. This review aims to summarize the current NTP designs, applications, and challenges that involve fungi, as well as provide brief descriptions of underlying mechanisms employed by fungi in interactions with the NTP components.
Collapse
|
9
|
Yang C, Ma X, Guan H, Fan B. Rapid detection method of Pleurotus eryngii mycelium based on near infrared spectral characteristics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120919. [PMID: 35091183 DOI: 10.1016/j.saa.2022.120919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Edible fungus is a large fungus with edible and medicinal value. Rapid detection of mycelium phenotypic characteristics is of great significance for edible fungus breeding and intelligent cultivation. Traditional method based on experienced observation easily led to make mistakes on distinguishing the growth stages, which impacted on the yield and quality of edible fungus. Therefore, in view of the lack of accurate and efficient detection technology during the growth stages of Pleurotus eryngii mycelium, a rapid detection method of Pleurotus eryngii mycelium at different growth stages is proposed based on the characteristics of near-infrared spectroscopy. First, the spectral data of mycelium of Pleurotus eryngii at six different growth stages were scanned. Second, the multivariate scattering correction method (MSC) was used to pre-process the raw spectral data, and then the competitive adaptive reweighted sampling algorithm (CARS) was adopted to detect the characteristic wave number of the effective variables for Pleurotus eryngii mycelium. In addition, the mathematical model between the mycelium of Pleurotus eryngii and the characteristic wave number of near-infrared spectrum was established by using feed forward neural network (BP). Finally, and the coding vector output by the network was used to detect to the growth stages. The results showed that the BP neural network structure of MSC-CARS-BP detection model was 86-85-85-95-6, and the accuracy of identifying different growth stages of Pleurotus eryngii mycelium was 99.67%. The research results could provide a new idea and technical support for the rapid detection of Pleurotus eryngii mycelium at different growth stages.
Collapse
Affiliation(s)
- Chen Yang
- College of Information and Electrical Engineering, Heilongjiang Bayi Agricultural University, Da Qing 163319, China.
| | - Xiaodan Ma
- College of Information and Electrical Engineering, Heilongjiang Bayi Agricultural University, Da Qing 163319, China.
| | - Haiou Guan
- College of Information and Electrical Engineering, Heilongjiang Bayi Agricultural University, Da Qing 163319, China.
| | - Bowen Fan
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Da Qing 163319, China.
| |
Collapse
|
10
|
Veerana M, Yu N, Ketya W, Park G. Application of Non-Thermal Plasma to Fungal Resources. J Fungi (Basel) 2022; 8:jof8020102. [PMID: 35205857 PMCID: PMC8879654 DOI: 10.3390/jof8020102] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 12/21/2022] Open
Abstract
In addition to being key pathogens in plants, animals, and humans, fungi are also valuable resources in agriculture, food, medicine, industry, and the environment. The elimination of pathogenic fungi and the functional enhancement of beneficial fungi have been the major topics investigated by researchers. Non-thermal plasma (NTP) is a potential tool to inactivate pathogenic and food-spoiling fungi and functionally enhance beneficial fungi. In this review, we summarize and discuss research performed over the last decade on the use of NTP to treat both harmful and beneficial yeast- and filamentous-type fungi. NTP can efficiently inactivate fungal spores and eliminate fungal contaminants from seeds, fresh agricultural produce, food, and human skin. Studies have also demonstrated that NTP can improve the production of valuable enzymes and metabolites in fungi. Further studies are still needed to establish NTP as a method that can be used as an alternative to the conventional methods of fungal inactivation and activation.
Collapse
Affiliation(s)
- Mayura Veerana
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Korea; (M.V.); (N.Y.); (W.K.)
| | - Nannan Yu
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Korea; (M.V.); (N.Y.); (W.K.)
| | - Wirinthip Ketya
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Korea; (M.V.); (N.Y.); (W.K.)
| | - Gyungsoon Park
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Korea; (M.V.); (N.Y.); (W.K.)
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
- Correspondence: ; Tel.: +82-2-940-8324
| |
Collapse
|
11
|
Liu C, Zuo Z, Xu F, Wang Y. Authentication of Herbal Medicines Based on Modern Analytical Technology Combined with Chemometrics Approach: A Review. Crit Rev Anal Chem 2022; 53:1393-1418. [PMID: 34991387 DOI: 10.1080/10408347.2021.2023460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Since ancient times, herbal medicines (HMs) have been widely popular with consumers as a "natural" drug for health care and disease treatment. With the emergence of problems, such as increasing demand for HMs and shortage of resources, it often occurs the phenomenon of shoddy exceed and mixing the false with the genuine in the market. There is an urgent need to evaluate the quality of HMs to ensure their important role in health care and disease treatment, and to reduce the possibility of threat to human health. Modern analytical technology is can be analyzed for analyzing chemical components of HMs or their preparations. Reflecting complex chemical components' characteristic curves in the analysis sample, and the comprehensive effect of active ingredients of HMs. In this review, modern analytical technology (chromatography, spectroscopy, mass spectrometry), chemometrics methods (unsupervised, supervised) and their advantages, disadvantages, and applicability were introduced and summarized. In addition, the authentication application of modern analytical technology combined with chemometrics methods in four aspects, including origin, processing methods, cultivation methods, and adulteration of HMs have also been discussed and illustrated by a few typical studies. This article offers a general workflow of analytical methods that have been applied for HMs authentication and explains that the accuracy of authentication in favor of the quality assurance of HMs. It was provided reference value for the development and application of modern HMs.
Collapse
Affiliation(s)
- Chunlu Liu
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhitian Zuo
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Furong Xu
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
12
|
Interspecific hybridization between Ganoderma lingzhi and G. applanatum through protoplast fusion. World J Microbiol Biotechnol 2021; 37:114. [PMID: 34115218 DOI: 10.1007/s11274-021-03084-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
Interspecific hybridization between Ganoderma lingzhi and G. applanatum was attempted through polyethylene glycol (PEG) induced fusion technique. The protoplast isolation procedure was simplified, and we obtained a significant number of protoplasts from both Ganoderma species. The number of protoplasts obtained was 5.27 ± 0.31 × 107/mL in G. lingzhi and 5.57 ± 0.49 × 106/mL in G. applanatum. Osmotic stabilizer NaCl (0.4 M) at pH 5.8 and enzymolysis time 3.5 h have supported high frequency of protoplast regeneration. G. lingzhi and G. applanatum regeneration frequency was 1.73 ± 0.04% and 0.23 ± 0.02%, respectively. 40% of PEG induced high number of protoplast fusion the regeneration frequency was 0.09% on a minimal medium. Two hundred fifty-two fusant colonies were isolated from the following four individual experiments. Among them, ten fusants showed the mycelial morphological difference compared to their parents and other fusant isolates. The fruiting body could be generated on oak sawdust and wheat bran substrate, and a few of them showed recombined morphology of the parental strains. The highest yield and biological efficacy (BE) were recorded in GF248, while least in GF244. The hybridity of the fusant was established based on mycelia, fruiting morphology, and PCR fingerprinting. ISSR and RAPD profile analysis of ten fusants and parents depicted that fusants contained polymorphic bands, which specified the rearrangement and deletion of DNA in the fusants. A Dendrogram was constructed based on the RAPD profile, and the clustering data exhibited two major clusters: cluster I included the G. lingzhi and Cluster II, including the G. applanatum and fusant lines. Total polysaccharide (α, β and total glucan) content was compared with fusants and parental strains. The present study highlighted the efficient methods for protoplast isolation from Ganoderma species. PEG-induced fusants showed high polymorphic frequency index, while the phenotypic characters showed high similarity to G. applanatum. A significant difference was observed in the mushroom yield and its total polysaccharide between the fusants and parental strains.
Collapse
|
13
|
The Effects of Plasma-Activated Water on Heavy Metals Accumulation in Water Spinach. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11115304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Toxic heavy metals accumulate in crops from the environment through different routes and may interfere with biochemical reactions in humans, causing serious health consequences. Plasma technology has been assessed for the promotion of seed germination and plant growth in several past studies. Therefore, the aim of the present study was to evaluate whether the growth rate of plants can be increased with the application of non-thermal plasma, as well as to reduce the accumulation of heavy metals in leafy vegetables (water spinach). In this study, several kinds of plasma treatments were applied, such as treatment on the seeds (PTS + NTW), irrigation water (NTS + PAW) or both (PTS + PAW). The results of the study showed that the heavy metals accumulated in water spinach were affected by the heavy metals available in the soil. The bioconcentration factor (BCF) of Cd in water spinach decreased from 0.864 to 0.543 after plasma treatment in seed or irrigating water, while the BCF of Pb was low and did not show any significant changes. Therefore, the results suggest that plasma treatment may suppress Cd absorption, but not for Pb. In this study, plasma treatment did not help to improve the product yield of water spinach planted in Cd-added soil. In the future, fertilizers can be used to supply nutrients that are not provided by plasma-activated water to support the growth of water spinach.
Collapse
|
14
|
Liu C, Zhao Y, Xu D, Zheng X, Huang Q. A green and facile approach to a graphene-based peroxidase-like nanozyme and its application in sensitive colorimetric detection of L-cysteine. Anal Bioanal Chem 2021; 413:4013-4022. [PMID: 33961104 DOI: 10.1007/s00216-021-03352-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/08/2021] [Accepted: 04/15/2021] [Indexed: 11/29/2022]
Abstract
A facile and green approach to the preparation of peroxidase-like nanozymes by reducing and functionalizing graphene oxide (rGO) with Ganoderma polysaccharide (GP) has been achieved in this work. Our results showed that the as-fabricated nanozyme, namely rGO-GP, possessed the excellent property of simulating peroxidase with higher catalytic activity compared with GO or rGO obtained by using chitosan, which may be due to the better dispersion of rGO-GP in the solution. Steady-state kinetics studies further showed that the catalytic process conformed to Michaelis-Menten equation and ping-pong mechanism. Benefiting from the excellent peroxidase property of rGO-GP, we have also successfully established a highly sensitive and selective colorimetric detection approach to trace detection of L-cysteine (L-Cys). The limit of detection (LOD) of L-cysteine is 0.1 μM and the linear detection range is 2-30 μM. Furthermore, the nanozyme was successfully applied for detecting L-cysteine in serum. This work therefore demonstrates the advantages of rGO-GP as an effective nanozyme in both its green synthesis and detecting application.
Collapse
Affiliation(s)
- Chao Liu
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institute of IntelligentAgriculture, Institute of Intelligent Machines,Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, 230031, Anhui, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yunmeng Zhao
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institute of IntelligentAgriculture, Institute of Intelligent Machines,Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, 230031, Anhui, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Di Xu
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institute of IntelligentAgriculture, Institute of Intelligent Machines,Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, 230031, Anhui, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Xinxin Zheng
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institute of IntelligentAgriculture, Institute of Intelligent Machines,Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, 230031, Anhui, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Qing Huang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institute of IntelligentAgriculture, Institute of Intelligent Machines,Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, 230031, Anhui, China. .,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, Anhui, China.
| |
Collapse
|
15
|
Enhancement of U(VI) biosorption by Trichoderma harzianum mutant obtained by a cold atmospheric plasma jet. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07615-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Elhussiny NI, Khattab AENA, El-Refai HA, Mohamed SS, Shetaia YM, Amin HA. Biotransesterification capabilities of Mucorales whole-cell lipase isolates and mutants. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Li Y, Shen Y, Yao CL, Guo DA. Quality assessment of herbal medicines based on chemical fingerprints combined with chemometrics approach: A review. J Pharm Biomed Anal 2020; 185:113215. [DOI: 10.1016/j.jpba.2020.113215] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 01/08/2020] [Accepted: 02/26/2020] [Indexed: 12/30/2022]
|
18
|
Elhussiny NI, Khattab AENA, El-Refai HA, Mohamed SS, Shetaia YM, Amin HA. Assessment of waste frying oil transesterification capacities of local isolated Aspergilli species and mutants. MYCOSCIENCE 2020. [DOI: 10.1016/j.myc.2020.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Chen Z, Chen J, Liu J, Li L, Qin S, Huang Q. Transcriptomic and metabolic analysis of an astaxanthin-hyperproducing Haematococcus pluvialis mutant obtained by low-temperature plasma (LTP) mutagenesis under high light irradiation. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101746] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Kick-starting evolution efficiency with an autonomous evolution mutation system. Metab Eng 2019; 54:127-136. [DOI: 10.1016/j.ymben.2019.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/19/2019] [Accepted: 03/30/2019] [Indexed: 01/25/2023]
|