1
|
Cook AL, Sur S, Dobbyn L, Watson E, Cohen JD, Ptak B, Lee BS, Paul S, Hsiue E, Popoli M, Vogelstein B, Papadopoulos N, Bettegowda C, Gabrielson K, Zhou S, Kinzler KW, Wyhs N. Identification of nonsense-mediated decay inhibitors that alter the tumor immune landscape. eLife 2025; 13:RP95952. [PMID: 39960487 PMCID: PMC11832170 DOI: 10.7554/elife.95952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
Despite exciting developments in cancer immunotherapy, its broad application is limited by the paucity of targetable antigens on the tumor cell surface. As an intrinsic cellular pathway, nonsense-mediated decay (NMD) conceals neoantigens through the destruction of the RNA products from genes harboring truncating mutations. We developed and conducted a high-throughput screen, based on the ratiometric analysis of transcripts, to identify critical mediators of NMD in human cells. This screen implicated disruption of kinase SMG1's phosphorylation of UPF1 as a potential disruptor of NMD. This led us to design a novel SMG1 inhibitor, KVS0001, that elevates the expression of transcripts and proteins resulting from human and murine truncating mutations in vitro and murine cells in vivo. Most importantly, KVS0001 concomitantly increased the presentation of immune-targetable human leukocyte antigens (HLA) class I-associated peptides from NMD-downregulated proteins on the surface of human cancer cells. KVS0001 provides new opportunities for studying NMD and the diseases in which NMD plays a role, including cancer and inherited diseases.
Collapse
Affiliation(s)
- Ashley L Cook
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Surojit Sur
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Oncology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
- Sidney Kimmel Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Laura Dobbyn
- Department of Oncology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
| | - Evangeline Watson
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Joshua D Cohen
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Oncology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
- Sidney Kimmel Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Blair Ptak
- Department of Oncology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
| | - Bum Seok Lee
- Department of Oncology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
| | - Suman Paul
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Oncology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
- Sidney Kimmel Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Emily Hsiue
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Maria Popoli
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Bert Vogelstein
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Oncology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
- Sidney Kimmel Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
- Howard Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Nickolas Papadopoulos
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Oncology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
- Sidney Kimmel Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Chetan Bettegowda
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Oncology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
- Sidney Kimmel Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Neurosurgery, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Kathy Gabrielson
- Department of Oncology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
- Sidney Kimmel Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Shibin Zhou
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Oncology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
- Sidney Kimmel Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Kenneth W Kinzler
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Oncology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
- Sidney Kimmel Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Nicolas Wyhs
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Oncology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
- Sidney Kimmel Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
2
|
Che X, Oh JH, Kang YJ, Kim DW, Kim SG, Choi JY, Garagiola U. 4-Hexylresorcinol Enhances Glut4 Expression and Glucose Homeostasis via AMPK Activation and Histone H3 Acetylation. Int J Mol Sci 2024; 25:12281. [PMID: 39596347 PMCID: PMC11594624 DOI: 10.3390/ijms252212281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
This study investigates the potential of 4-hexylresorcinol (4HR) as a novel antidiabetic agent by assessing its effects on blood glucose levels, Glut4 expression, AMPK phosphorylation, and Histone H3 acetylation (Ac-H3) in the liver. In vitro experiments utilized Huh7 and HepG2 cells treated with varying concentrations of 4HR. Glut4, p-AMPK, and Ac-H3 expression levels were quantified via Western blotting. Additionally, GAPDH activity and glucose uptake were evaluated. In vivo experiments employed streptozotocin (STZ)-induced diabetic rats, with or without 4HR treatment, monitoring blood glucose, body weight, and hepatic levels of Glut4, p-AMPK, and Ac-H3. In vitro, 4HR treatment increased GAPDH activity and glucose uptake. Elevated Glut4, p-AMPK, and Ac-H3 levels were observed 8 h after 4HR administration. Inhibition of p-AMPK using compound C reduced 4HR-mediated Glut4 expression. In STZ-induced diabetic rats, 4HR significantly upregulated Glut4, p-AMPK, and Ac-H3 expression in the liver. Periodic 4HR injections mitigated weight loss and lowered blood glucose levels in STZ-injected animals. Histological analysis revealed increased glycogen storage in hepatocytes of the 4HR-treated group. Overall, 4HR enhanced Glut4 expression through upregulation of AMPK activity and histone H3 acetylation in vitro and in vivo, improving hepatic glucose homeostasis and suggesting potential as a candidate for diabetes treatment.
Collapse
Affiliation(s)
- Xiangguo Che
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea;
| | - Ji-Hyeon Oh
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea; (J.-H.O.); (Y.-J.K.)
| | - Yei-Jin Kang
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea; (J.-H.O.); (Y.-J.K.)
| | - Dae-Won Kim
- Department of Oral Biochemistry, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea;
| | - Seong-Gon Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea; (J.-H.O.); (Y.-J.K.)
| | - Je-Yong Choi
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea;
| | - Umberto Garagiola
- Maxillofacial and Dental Unit, Biomedical, Surgical and Oral Sciences Department, School of Dentistry, University of Milan, 20122 Milan, Italy;
| |
Collapse
|
3
|
Cook AL, Sur S, Dobbyn L, Watson E, Cohen JD, Ptak B, Lee BS, Paul S, Hsiue E, Popoli M, Vogelstein B, Papadopoulos N, Bettegowda C, Gabrielson K, Zhou S, Kinzler KW, Wyhs N. Identification of nonsense-mediated decay inhibitors that alter the tumor immune landscape. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.28.573594. [PMID: 38234817 PMCID: PMC10793421 DOI: 10.1101/2023.12.28.573594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Despite exciting developments in cancer immunotherapy, its broad application is limited by the paucity of targetable antigens on the tumor cell surface. As an intrinsic cellular pathway, nonsense-mediated decay (NMD) conceals neoantigens through the destruction of the RNA products from genes harboring truncating mutations. We developed and conducted a high throughput screen, based on the ratiometric analysis of transcripts, to identify critical mediators of NMD. This screen implicated disruption of kinase SMG1's phosphorylation of UPF1 as a potential disruptor of NMD. This led us to design a novel SMG1 inhibitor, KVS0001, that elevates the expression of transcripts and proteins resulting from truncating mutations in vivo and in vitro . Most importantly, KVS0001 concomitantly increased the presentation of immune-targetable HLA class I-associated peptides from NMD-downregulated proteins on the surface of cancer cells. KVS0001 provides new opportunities for studying NMD and the diseases in which NMD plays a role, including cancer and inherited diseases. One Sentence Summary Disruption of the nonsense-mediated decay pathway with a newly developed SMG1 inhibitor with in-vivo activity increases the expression of T-cell targetable cancer neoantigens resulting from truncating mutations.
Collapse
|
4
|
Cheruiyot A, Li S, Nonavinkere Srivatsan S, Ahmed T, Chen Y, Lemacon DS, Li Y, Yang Z, Wadugu BA, Warner WA, Pruett-Miller SM, Obeng EA, Link DC, He D, Xiao F, Wang X, Bailis JM, Walter MJ, You Z. Nonsense-Mediated RNA Decay Is a Unique Vulnerability of Cancer Cells Harboring SF3B1 or U2AF1 Mutations. Cancer Res 2021; 81:4499-4513. [PMID: 34215620 DOI: 10.1158/0008-5472.can-20-4016] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/26/2021] [Accepted: 06/30/2021] [Indexed: 11/16/2022]
Abstract
Nonsense-mediated RNA decay (NMD) is recognized as an RNA surveillance pathway that targets aberrant mRNAs with premature translation termination codons (PTC) for degradation, however, its molecular mechanisms and roles in health and disease remain incompletely understood. In this study, we developed a novel reporter system to accurately measure NMD activity in individual cells. A genome-wide CRISPR-Cas9 knockout screen using this reporter system identified novel NMD-promoting factors, including multiple components of the SF3B complex and other U2 spliceosome factors. Interestingly, cells with mutations in the spliceosome genes SF3B1 and U2AF1, which are commonly found in myelodysplastic syndrome (MDS) and cancers, have overall attenuated NMD activity. Compared with wild-type (WT) cells, SF3B1- and U2AF1-mutant cells were more sensitive to NMD inhibition, a phenotype that is accompanied by elevated DNA replication obstruction, DNA damage, and chromosomal instability. Remarkably, the sensitivity of spliceosome mutant cells to NMD inhibition was rescued by overexpression of RNase H1, which removes R-loops in the genome. Together, these findings shed new light on the functional interplay between NMD and RNA splicing and suggest a novel synthetic lethal strategy for the treatment of MDS and cancers with spliceosome mutations. SIGNIFICANCE: This study has developed a novel NMD reporter system and identified a potential therapeutic approach of targeting the NMD pathway to treat cancer with spliceosome gene mutations.
Collapse
Affiliation(s)
- Abigael Cheruiyot
- Department of Cell Biology and Physiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Shan Li
- Department of Cell Biology and Physiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Sridhar Nonavinkere Srivatsan
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Washington University School in St. Louis, St. Louis, Missouri
| | - Tanzir Ahmed
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Washington University School in St. Louis, St. Louis, Missouri
| | - Yuhao Chen
- Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Delphine S Lemacon
- Department of Cell Biology and Physiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Ying Li
- Department of Cell Biology and Physiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri.,Clinical Biobank, The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Zheng Yang
- Department of Cell Biology and Physiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri.,Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China
| | - Brian A Wadugu
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Washington University School in St. Louis, St. Louis, Missouri
| | - Wayne A Warner
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Washington University School in St. Louis, St. Louis, Missouri
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Esther A Obeng
- Molecular Oncology Division, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Daniel C Link
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Washington University School in St. Louis, St. Louis, Missouri
| | - Dalin He
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China
| | - Fei Xiao
- Clinical Biobank, The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Xiaowei Wang
- Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | | | - Matthew J Walter
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Washington University School in St. Louis, St. Louis, Missouri
| | - Zhongsheng You
- Department of Cell Biology and Physiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri.
| |
Collapse
|
5
|
Le Berre G, Hossard V, Riou JF, Guieysse-Peugeot AL. Repression of TERRA Expression by Subtelomeric DNA Methylation Is Dependent on NRF1 Binding. Int J Mol Sci 2019; 20:E2791. [PMID: 31181625 PMCID: PMC6600276 DOI: 10.3390/ijms20112791] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/29/2019] [Accepted: 06/04/2019] [Indexed: 12/25/2022] Open
Abstract
Chromosome ends are transcribed into long noncoding telomeric repeat-containing RNA (TERRA) from subtelomeric promoters. A class of TERRA promoters are associated with CpG islands embedded in repetitive DNA tracts. Cytosines in these subtelomeric CpG islands are frequently methylated in telomerase-positive cancer cells, and demethylation induced by depletion of DNA methyltransferases is associated with increased TERRA levels. However, the direct evidence and the underlying mechanism regulating TERRA expression through subtelomeric CpG islands methylation are still to establish. To analyze TERRA regulation by subtelomeric DNA methylation in human cell line (HeLa), we used an epigenetic engineering tool based on CRISPR-dCas9 (clustered regularly interspaced short palindromic repeats - dead CRISPR associated protein 9) associated with TET1 (ten-eleven 1 hydroxylase) to specifically demethylate subtelomeric CpG islands. This targeted demethylation caused an up-regulation of TERRA, and the enhanced TERRA production depended on the methyl-sensitive transcription factor NRF1 (nuclear respiratory factor 1). Since AMPK (AMP-activated protein kinase) is a well-known activator of NRF1, we treated cells with an AMPK inhibitor (compound C). Surprisingly, compound C treatment increased TERRA levels but did not inhibit AMPK activity in these experimental conditions. Altogether, our results provide new insight in the fine-tuning of TERRA at specific subtelomeric promoters and could allow identifying new regulators of TERRA.
Collapse
Affiliation(s)
- Gabriel Le Berre
- Structure et Instabilité des Génomes, Muséum National d'Histoire Naturelle, CNRS UMR 7196, INSERM U1154, 43 rue Cuvier, F-75005 Paris, France.
| | - Virginie Hossard
- Structure et Instabilité des Génomes, Muséum National d'Histoire Naturelle, CNRS UMR 7196, INSERM U1154, 43 rue Cuvier, F-75005 Paris, France.
| | - Jean-Francois Riou
- Structure et Instabilité des Génomes, Muséum National d'Histoire Naturelle, CNRS UMR 7196, INSERM U1154, 43 rue Cuvier, F-75005 Paris, France.
| | - Anne-Laure Guieysse-Peugeot
- Structure et Instabilité des Génomes, Muséum National d'Histoire Naturelle, CNRS UMR 7196, INSERM U1154, 43 rue Cuvier, F-75005 Paris, France.
| |
Collapse
|