1
|
Song X, Pan Z, Zhang Y, Yang W, Zhang T, Wang H, Chen Y, Yu X, Ding H, Li R, Ge P, Xu L, Dong G, Jiang F. Excessive MYC Orchestrates Macrophages induced Chromatin Remodeling to Sustain Micropapillary-Patterned Malignancy in Lung Adenocarcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2403851. [PMID: 39899538 PMCID: PMC11948069 DOI: 10.1002/advs.202403851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 01/15/2025] [Indexed: 02/05/2025]
Abstract
Current understanding of micropapillary (MP)-subtype lung adenocarcinoma (LUAD) remains confined to biological activities and genomic landscapes. Unraveling the major regulatory programs underlying MP patterned malignancy offers opportunities to identify more feasible therapeutic targets for patients with MP LUAD. This study shows that patients with MP subtype LUAD have aberrant activation of the MYC pathway compared to patients with other subtypes. In vitro and xenograft mouse model studies reveal that MP pattern in malignancy cannot be solely due to aberrant MYC expression but requires the involvement of M2-like macrophages. Excessively expressed MYC leads to the accumulation of M2-like macrophages from the bone marrow, which secretes TGFβ, to induce the expression of FOSL2 in tumor cells, thereby remodeling chromatin accessibility at promoter regions of MP-pattern genes to promote the MYC-mediated de novo transcriptional regulation of these genes. Additionally, the MP-pattern in malignancy can be effectively alleviated by disrupting the TGFβ-FOSL2 axis. These findings reveal new functions for the M2-like macrophage-TGFβ-FOSL2 axis in MYC-overexpressing MP-subtype LUAD, identifying targetable vulnerabilities in this pathway.
Collapse
Affiliation(s)
- Xuming Song
- Department of Thoracic SurgeryNanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer ResearchNanjing210009P. R. China
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu ProvinceNanjing210000P. R. China
- The Fourth Clinical College of Nanjing Medical UniversityNanjing210000P. R. China
| | - Zehao Pan
- Department of Thoracic SurgeryNanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer ResearchNanjing210009P. R. China
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu ProvinceNanjing210000P. R. China
- The Fourth Clinical College of Nanjing Medical UniversityNanjing210000P. R. China
| | - Yi Zhang
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu ProvinceNanjing210000P. R. China
- Department of PathologyNanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer ResearchNanjing210009P. R. China
| | - Wenmin Yang
- Department of Thoracic SurgeryNanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer ResearchNanjing210009P. R. China
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu ProvinceNanjing210000P. R. China
- Department of PathologyNanjing Drum Tower hospitalNanjing210008P.R. China
| | - Te Zhang
- Department of Thoracic SurgeryNanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer ResearchNanjing210009P. R. China
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu ProvinceNanjing210000P. R. China
- Department of Biochemistry and Molecular GeneticsFeinberg School of MedicineNorthwestern UniversityChicagoIllinois60201USA
| | - Hui Wang
- Department of Thoracic SurgeryNanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer ResearchNanjing210009P. R. China
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu ProvinceNanjing210000P. R. China
- The Fourth Clinical College of Nanjing Medical UniversityNanjing210000P. R. China
| | - Yuzhong Chen
- Department of Thoracic SurgeryNanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer ResearchNanjing210009P. R. China
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu ProvinceNanjing210000P. R. China
- The Fourth Clinical College of Nanjing Medical UniversityNanjing210000P. R. China
| | - Xinnian Yu
- Department of Thoracic SurgeryNanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer ResearchNanjing210009P. R. China
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu ProvinceNanjing210000P. R. China
- The Fourth Clinical College of Nanjing Medical UniversityNanjing210000P. R. China
| | - Hanlin Ding
- Department of Thoracic SurgeryNanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer ResearchNanjing210009P. R. China
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu ProvinceNanjing210000P. R. China
- The Fourth Clinical College of Nanjing Medical UniversityNanjing210000P. R. China
| | - Rutao Li
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu ProvinceNanjing210000P. R. China
- Department of Thoracic SurgeryThe Fourth Affiliated Hospital of Soochow UniversityNanjing215000P. R. China
| | - Pengfei Ge
- Department of Thoracic SurgeryNanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer ResearchNanjing210009P. R. China
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu ProvinceNanjing210000P. R. China
- The Fourth Clinical College of Nanjing Medical UniversityNanjing210000P. R. China
| | - Lin Xu
- Department of Thoracic SurgeryNanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer ResearchNanjing210009P. R. China
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu ProvinceNanjing210000P. R. China
- Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjing211116P. R. China
| | - Gaochao Dong
- Department of Thoracic SurgeryNanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer ResearchNanjing210009P. R. China
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu ProvinceNanjing210000P. R. China
| | - Feng Jiang
- Department of Thoracic SurgeryNanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer ResearchNanjing210009P. R. China
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu ProvinceNanjing210000P. R. China
| |
Collapse
|
2
|
Umeda D, Harada A, Motooka D, Tahara S, Kurashige M, Kido K, Takashima T, Kiyokawa H, Ukon K, Matsui T, Matsumoto S, Shintani Y, Okuzaki D, Kikuchi A, Nojima S, Morii E. Hypoxia drives the formation of lung micropapillary adenocarcinoma-like structure through hypoxia-inducible factor-1α. Sci Rep 2024; 14:31642. [PMID: 39738173 PMCID: PMC11685966 DOI: 10.1038/s41598-024-80280-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/18/2024] [Indexed: 01/01/2025] Open
Abstract
Micropapillary adenocarcinoma (MPC) is an aggressive histological subtype of lung adenocarcinoma (LUAD). MPC is composed of small clusters of cancer cells exhibiting inverted polarity. However, the mechanism underlying its formation is poorly understood. Here we show that hypoxia is involved in MPC formation. Hypoxia induced the formation of MPC-like structures (MLSs) in a three-dimensional culture system using A549 human LUAD cells, and HIF-1α was indispensable for MLS formation. RNA sequencing analysis demonstrated that A549 cells forming MLSs exhibited a gene expression signature similar to that of lung MPC. Moreover, MLS formation enhanced the resistance of A549 cells to natural killer cell cytotoxicity. Our findings suggest that hypoxia drives lung MPC formation through HIF-1α and that immune escape from natural killer cells might underlie the aggressiveness of MPC.
Collapse
Affiliation(s)
- Daisuke Umeda
- Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Akikazu Harada
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Daisuke Motooka
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shinichiro Tahara
- Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masako Kurashige
- Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kansuke Kido
- Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tsuyoshi Takashima
- Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroki Kiyokawa
- Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Koto Ukon
- Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takahiro Matsui
- Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shinji Matsumoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Yasushi Shintani
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Daisuke Okuzaki
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Akira Kikuchi
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Satoshi Nojima
- Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- RNA Frontier Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
3
|
Ruan Y, Cao W, Han J, Yang A, Xu J, Zhang T. Prognostic impact of the newly revised IASLC proposed grading system for invasive lung adenocarcinoma: a systematic review and meta-analysis. World J Surg Oncol 2024; 22:302. [PMID: 39543564 PMCID: PMC11566641 DOI: 10.1186/s12957-024-03584-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND This study aimed to evaluate the prognostic value of the newly revised International Association for the Study of Lung Cancer (IASLC) grading system (2020) on the 5-year overall survival (OS) and recurrence-free survival (RFS) in patients with lung adenocarcinoma (LADC). METHODS Clinical studies that investigated the prognostic value of revised IASLC staging system in patients with LADC were retrieved from the PubMed, Web of Science, ScienceDirect, and Cochrane Library databases. This study was conducted in accordance to the 2020 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and checklists. RESULTS Based on inclusion and exclusion criteria, we included 12 studies for analysis. The grade of LADC was assessed by revised IASLC system, which included three grades. Compared to Grade 3 LADC, grade 1 (total [95% CI]: 1.38 [1.19, 1.60]) and grade 2 (total [95% CI]: 1.29 [1.15, 1.44]) LADC had higher 5-year OS rates. Similarly, Grade 1 (total [95% CI]: 1.76 [1.42, 2.18]) and Grade 2 (total [95% CI]: 1.51 [1.28, 1.77]) had higher 5-year RFS rates Grade 3 LADC. However, 5-year OS and RFS had no significant difference between Grade 1 and Grade 2 patients. CONCLUSION This systematic review and meta-analysis provides evidence that the newly revised IASLC grading system is significantly associated with the prognosis of patients with LADC, where Grade 3 indicated unfavorable prognosis.
Collapse
Affiliation(s)
- Yingding Ruan
- Department of Thoracic Surgery, The First People's Hospital of Jiande, Jiande, China
| | - Wenjun Cao
- Department of Thoracic Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Jianwei Han
- Department of Thoracic Surgery, The First People's Hospital of Jiande, Jiande, China
| | - Aiming Yang
- Department of Thoracic Surgery, The First People's Hospital of Jiande, Jiande, China
| | - Jincheng Xu
- Department of Thoracic Surgery, The First People's Hospital of Jiande, Jiande, China
| | - Ting Zhang
- Department of Thoracic Surgery, The First People's Hospital of Jiande, Jiande, China.
- Radiotherapy Department, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, Zhejiang Province, 310009, China.
| |
Collapse
|
4
|
Yu L, Lin N, Ye Y, Zhuang H, Zou S, Song Y, Chen X, Wang Q. The prognosis, chemotherapy and immunotherapy efficacy of the SUMOylation pathway signature and the role of UBA2 in lung adenocarcinoma. Aging (Albany NY) 2024; 16:4378-4395. [PMID: 38407971 PMCID: PMC10968705 DOI: 10.18632/aging.205594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/23/2024] [Indexed: 02/28/2024]
Abstract
Lung adenocarcinoma (LUAD) is one of the most common malignant tumors worldwide. Small Ubiquitin-like Modifier (SUMO)-ylation plays a crucial role in tumorigenesis. However, the SUMOylation pathway landscape and its clinical implications in LUAD remain unclear. Here, we analyzed genes involved in the SUMOylation pathway in LUAD and constructed a SUMOylation pathway signature (SUMOPS) using the LASSO-Cox regression model, validated in independent cohorts. Our analysis revealed significant dysregulation of SUMOylation-related genes in LUAD, comprising of favorable or unfavorable prognostic factors. The SUMOPS model was associated with established molecular and histological subtypes of LUAD, highlighting its clinical relevance. The SUMOPS stratified LUAD patients into SUMOPS-high and SUMOPS-low subtypes with distinct survival outcomes and adjuvant chemotherapy responses. The SUMOPS-low subtype showed favorable responses to adjuvant chemotherapy. The correlations between SUMOPS scores and immune cell infiltration suggested that patients with the SUMOPS-high subtype exhibited favorable immune profiles for immune checkpoint inhibitor (ICI) treatment. Additionally, we identified UBA2 as a key SUMOylation-related gene with an increased expression and a poor prognosis in LUAD. Cell function experiment confirmed the role of UBA2 in promoting LUAD cell proliferation, invasion, and migration. These findings provide valuable insights into the SUMOylation pathway and its prognostic implications in LUAD, paving the way for personalized treatment strategies and the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Liying Yu
- Central Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Na Lin
- Department of Pathology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Yan Ye
- Jiangxi Health Commission Key Laboratory of Leukemia, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi 341000, China
| | - Haohan Zhuang
- Laboratory Animal Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Shumei Zou
- 900 Hospital of The Joint Logistics Team, Fuzhou, Fujian 350001, China
| | - Yingfang Song
- 900 Hospital of The Joint Logistics Team, Fuzhou, Fujian 350001, China
- Department of Pulmonary and Critical Care Medicine, Fuzong Clinical College of Fujian Medical University, Fuzhou, Fujian 350001, China
- Dongfang Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| | - Xiaoli Chen
- Jiangxi Health Commission Key Laboratory of Leukemia, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi 341000, China
| | - Qingshui Wang
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350001, China
| |
Collapse
|
5
|
Juul NH, Yoon JK, Martinez MC, Rishi N, Kazadaeva YI, Morri M, Neff NF, Trope WL, Shrager JB, Sinha R, Desai TJ. KRAS(G12D) drives lepidic adenocarcinoma through stem-cell reprogramming. Nature 2023; 619:860-867. [PMID: 37468622 PMCID: PMC10423036 DOI: 10.1038/s41586-023-06324-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 06/14/2023] [Indexed: 07/21/2023]
Abstract
Many cancers originate from stem or progenitor cells hijacked by somatic mutations that drive replication, exemplified by adenomatous transformation of pulmonary alveolar epithelial type II (AT2) cells1. Here we demonstrate a different scenario: expression of KRAS(G12D) in differentiated AT1 cells reprograms them slowly and asynchronously back into AT2 stem cells that go on to generate indolent tumours. Like human lepidic adenocarcinoma, the tumour cells slowly spread along alveolar walls in a non-destructive manner and have low ERK activity. We find that AT1 and AT2 cells act as distinct cells of origin and manifest divergent responses to concomitant WNT activation and KRAS(G12D) induction, which accelerates AT2-derived but inhibits AT1-derived adenoma proliferation. Augmentation of ERK activity in KRAS(G12D)-induced AT1 cells increases transformation efficiency, proliferation and progression from lepidic to mixed tumour histology. Overall, we have identified a new cell of origin for lung adenocarcinoma, the AT1 cell, which recapitulates features of human lepidic cancer. In so doing, we also uncover a capacity for oncogenic KRAS to reprogram a differentiated and quiescent cell back into its parent stem cell en route to adenomatous transformation. Our work further reveals that irrespective of a given cancer's current molecular profile and driver oncogene, the cell of origin exerts a pervasive and perduring influence on its subsequent behaviour.
Collapse
Affiliation(s)
- Nicholas H Juul
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jung-Ki Yoon
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Marina C Martinez
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Neha Rishi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Yana I Kazadaeva
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - Winston L Trope
- Division of Thoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph B Shrager
- Division of Thoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Tushar J Desai
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
6
|
Jiao M, Liu H, Liu X. Transcriptional patterns reveal tumor histologic heterogeneity and immunotherapy response in lung adenocarcinoma. Front Immunol 2022; 13:957751. [PMID: 36003401 PMCID: PMC9393366 DOI: 10.3389/fimmu.2022.957751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/27/2022] [Indexed: 12/02/2022] Open
Abstract
Tumoral heterogeneity has proven to be a leading cause of difference in prognosis and acquired drug resistance. High intratumor heterogeneity often means poor clinical response and prognosis. Histopathological subtypes suggest tumor heterogeneity evolved during the progression of lung adenocarcinoma, but the exploration of its molecular mechanisms remains limited. In this work, we first verified that transcriptional patterns of a set of differentially expressed genes profoundly revealed the histologic progression of lung adenocarcinoma. Next, a predictive model based on the transcriptional patterns was established to accurately distinguish histologic subtypes. Two crucial genes were identified and used to construct a tumor heterogeneous scoring model (L2SITH) to stratify patients, and we found that patients with low heterogeneity score had better prognosis. Low L2SITH scores implied low tumor purity and beneficial tumor microenvironment. Moreover, L2SITH effectively identified cohorts with better responses to anti–PD-1 immunotherapy.
Collapse
Affiliation(s)
| | - Hui Liu
- *Correspondence: Hui Liu, ; Xuejun Liu,
| | | |
Collapse
|
7
|
Jang HJ, Lee HS, Yu W, Ramineni M, Truong CY, Ramos D, Splawn T, Choi JM, Jung SY, Lee JS, Wang DY, Sederstrom JM, Pietropaolo M, Kheradmand F, Amos CI, Wheeler TM, Ripley RT, Burt BM. Therapeutic Targeting of Macrophage Plasticity Remodels the Tumor-Immune Microenvironment. Cancer Res 2022; 82:2593-2609. [PMID: 35709756 PMCID: PMC9296613 DOI: 10.1158/0008-5472.can-21-3506] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/31/2022] [Accepted: 05/04/2022] [Indexed: 01/21/2023]
Abstract
SIGNIFICANCE Comprehensive single-cell proteomics analyses of lung adenocarcinoma progression reveal the role of tumor-associated macrophages in resistance to PD-1 blockade therapy. See related commentary by Lee et al., p. 2515.
Collapse
Affiliation(s)
- Hee-Jin Jang
- Systems Onco-Immunology Laboratory, Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA.,Hee-Jin Jang and Hyun-Sung Lee have equally contributed as first authors
| | - Hyun-Sung Lee
- Systems Onco-Immunology Laboratory, Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA.,Hee-Jin Jang and Hyun-Sung Lee have equally contributed as first authors.,Hyun-Sung Lee and Bryan M. Burt have equally contributed as corresponding authors
| | - Wendong Yu
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maheshwari Ramineni
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cynthia Y. Truong
- Systems Onco-Immunology Laboratory, Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniela Ramos
- Systems Onco-Immunology Laboratory, Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Taylor Splawn
- Systems Onco-Immunology Laboratory, Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jong Min Choi
- Systems Onco-Immunology Laboratory, Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sung Yun Jung
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ju-Seog Lee
- Department of Systems Biology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Daniel Y. Wang
- Division of Hemato-Oncology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joel M. Sederstrom
- Advanced Technology Cores, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Massimo Pietropaolo
- Division of Endocrinology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Farrah Kheradmand
- Division of Pulmonology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.,Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Department of Veterans Affairs, Houston, TX, United States
| | - Christopher I. Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX
| | - Thomas M. Wheeler
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - R. Taylor Ripley
- Systems Onco-Immunology Laboratory, Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bryan M. Burt
- Systems Onco-Immunology Laboratory, Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA.,Hyun-Sung Lee and Bryan M. Burt have equally contributed as corresponding authors
| |
Collapse
|
8
|
Nguyen TT, Lee HS, Burt BM, Wu J, Zhang J, Amos CI, Cheng C. A lepidic gene signature predicts patient prognosis and sensitivity to immunotherapy in lung adenocarcinoma. Genome Med 2022; 14:5. [PMID: 35016696 PMCID: PMC8753834 DOI: 10.1186/s13073-021-01010-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 11/24/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lung adenocarcinoma, the most common type of lung cancer, has a high level of morphologic heterogeneity and is composed of tumor cells of multiple histological subtypes. It has been reported that immune cell infiltration significantly impacts clinical outcomes of patients with lung adenocarcinoma. However, it is unclear whether histologic subtyping can reflect the tumor immune microenvironment, and whether histologic subtyping can be applied for therapeutic stratification of the current standard of care. METHODS We inferred immune cell infiltration levels using a histological subtype-specific gene expression dataset. From differential gene expression analysis between different histological subtypes, we developed two gene signatures to computationally determine the relative abundance of lepidic and solid components (denoted as the L-score and S-score, respectively) in lung adenocarcinoma samples. These signatures enabled us to investigate the relationship between histological composition and clinical outcomes in lung adenocarcinoma using previously published datasets. RESULTS We found dramatic immunological differences among histological subtypes. Differential gene expression analysis showed that the lepidic and solid subtypes could be differentiated based on their gene expression patterns while the other subtypes shared similar gene expression patterns. Our results indicated that higher L-scores were associated with prolonged survival, and higher S-scores were associated with shortened survival. L-scores and S-scores were also correlated with global genomic features such as tumor mutation burdens and driver genomic events. Interestingly, we observed significantly decreased L-scores and increased S-scores in lung adenocarcinoma samples with EGFR gene amplification but not in samples with EGFR gene mutations. In lung cancer cell lines, we observed significant correlations between L-scores and cell sensitivity to a number of targeted drugs including EGFR inhibitors. Moreover, lung cancer patients with higher L-scores were more likely to benefit from immune checkpoint blockade therapy. CONCLUSIONS Our findings provided further insights into evaluating histology composition in lung adenocarcinoma. The established signatures reflected that lepidic and solid subtypes in lung adenocarcinoma would be associated with prognosis, genomic features, and responses to targeted therapy and immunotherapy. The signatures therefore suggested potential clinical translation in predicting patient survival and treatment responses. In addition, our framework can be applied to other types of cancer with heterogeneous histological subtypes.
Collapse
Affiliation(s)
- Thinh T Nguyen
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hyun-Sung Lee
- Division of General Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Bryan M Burt
- Division of General Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jia Wu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Imaging Physics, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Chao Cheng
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
9
|
Mechanism of BIP-4 mediated inhibition of InsP3Kinase-A. Biosci Rep 2021; 41:229216. [PMID: 34232294 PMCID: PMC8292763 DOI: 10.1042/bsr20211259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 11/17/2022] Open
Abstract
Overexpression of the neuronal InsP3kinase-A increases malignancy of different tumor types. Since InsP3kinase-A highly selectively binds Ins(1,4,5)P3, small molecules competing with Ins(1,4,5)P3 provide a promising approach for the therapeutic targeting of InsP3kinase-A. Based on this consideration, we analyzed the binding mechanism of BIP-4 (2-[3,5-dimethyl-1-(4-nitrophenyl)-1H-pyrazol-4-yl]-5, 8-dinitro-1H-benzo[de]isoquinoline-1,3(2H)-dione), a known competitive small-molecule inhibitor of Ins(1,4,5)P3. We tested a total of 80 BIP-4 related compounds in biochemical assays. The results of these experiments revealed that neither the nitrophenyl nor the benzisochinoline group inhibited InsP3kinase-A activity. Moreover, none of the BIP-4 related compounds competed for Ins(1,4,5)P3, demonstrating the high selectivity of BIP-4. To analyze the inhibition mechanism of BIP-4, mutagenesis experiments were performed. The results of these experiments suggest that the nitro groups attached to the benzisochinoline ring compete for binding of Ins(1,4,5)P3 while the nitrophenyl group is associated with amino acids of the ATP-binding pocket. Our results now offer the possibility to optimize BIP-4 to design specific InsP3Kinase-A inhibitors suitable for therapeutic targeting of the enzyme.
Collapse
|
10
|
Anciaux M, Demetter P, De Wind R, Gomez Galdon M, Vande Velde S, Lens G, Craciun L, Deleruelle A, Larsimont D, Lenaerts T, Sclafani F, Deleporte A, Donckier V, Hendlisz A, Vandeputte C. Infiltrative tumour growth pattern correlates with poor outcome in oesophageal cancer. BMJ Open Gastroenterol 2021; 7:bmjgast-2020-000431. [PMID: 32675198 PMCID: PMC7368551 DOI: 10.1136/bmjgast-2020-000431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/12/2020] [Accepted: 05/22/2020] [Indexed: 11/25/2022] Open
Abstract
Objective Oesophageal cancer (OEC) is an aggressive disease with a poor survival rate. Prognostic markers are thus urgently needed. Due to the demonstrated prognostic value of histopathological growth pattern (HGP) in other cancers, we performed a retrospective assessment of HGP in patients suffering from invasive OEC. Design A first cohort composed of 89 treatment-naïve operated patients with OEC from The Cancer Genome Atlas (TCGA) public database was constituted, from which H&E images and RNA-sequencing data were retrieved. Next, a second cohort composed of 99 patients with OEC treated and operated in a Belgian hospital was established. H&E-stained sections and extracted tumorous RNA were obtained from the samples. HGP were assessed on H&E slides as infiltrative (IGP) or expansive (EGP). TCGA RNA-sequencing data were analysed through the gene set enrichment analysis and Cytoscape softwares. Real-time quantitative PCR (qPCR) experiments were performed to assess gene expression in the Belgian cohort. Results IGP patients displayed a grim prognosis compared with EGP patients, while IGP was found as associated with numerous lymphovascular emboli and perinervous infiltrations. Analyses of the TCGA expression data showed that angiogenesis, epithelial-to-mesenchymal transition (EMT) and inflammation were significantly upregulated in IGP compared with EGP samples. qPCR experiments of three genes appearing as highly upregulated in each pathway showed no difference in expression according to the HGP. Conclusion The current study demonstrates the poor prognostic value carried by IGP in OC and suggests angiogenesis, EMT and inflammation as key carcinogenetic pathways upregulated in this pattern.
Collapse
Affiliation(s)
- Maelle Anciaux
- Digestive Oncology Laboratory, Institut Jules Bordet, Bruxelles, Belgium
| | - Pieter Demetter
- Department of Pathology, Institut Jules Bordet, Bruxelles, Belgium
| | - Roland De Wind
- Department of Pathology, Institut Jules Bordet, Bruxelles, Belgium
| | | | - Sylvie Vande Velde
- Machine Learning Group, ULB, Bruxelles, Belgium.,Interuniversity Institute of Bioinformatics in Brussels (ULB-VUB), Brussels, Belgium
| | - Gaspard Lens
- Computer Science Unit, Haute Ecole Leonard de Vinci Institut Paul Lambin, Bruxelles, Belgium
| | - Ligia Craciun
- Department of Pathology, Institut Jules Bordet, Bruxelles, Belgium
| | - Amélie Deleruelle
- Digestive Oncology Laboratory, Institut Jules Bordet, Bruxelles, Belgium
| | - Denis Larsimont
- Department of Pathology, Institut Jules Bordet, Bruxelles, Belgium
| | - Tom Lenaerts
- Machine Learning Group, ULB, Bruxelles, Belgium.,Interuniversity Institute of Bioinformatics in Brussels (ULB-VUB), Brussels, Belgium
| | - Francesco Sclafani
- Digestive Oncology Laboratory, Institut Jules Bordet, Bruxelles, Belgium.,Gastrointestinal Oncology Unit, Medical Oncology, Institut Jules Bordet, Bruxelles, Belgium
| | - Amélie Deleporte
- Gastrointestinal Oncology Unit, Medical Oncology, Institut Jules Bordet, Bruxelles, Belgium
| | - Vincent Donckier
- Department of Surgery, Institut Jules Bordet, Bruxelles, Belgium
| | - Alain Hendlisz
- Gastrointestinal Oncology Unit, Medical Oncology, Institut Jules Bordet, Bruxelles, Belgium
| | | |
Collapse
|
11
|
Shaosheng W, Shaochuang W, Lichun F, Na X, Xiaohong Z. ITPKA induces cell senescence, inhibits ovarian cancer tumorigenesis and can be downregulated by miR-203. Aging (Albany NY) 2021; 13:11822-11832. [PMID: 33879633 PMCID: PMC8109125 DOI: 10.18632/aging.202880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/14/2021] [Indexed: 01/26/2023]
Abstract
Overcoming senescence is a feature of ovarian cancer cells; however, the mechanisms underlying senescence regulation in ovarian cancer cells remain largely unknown. In this study, we found that ITPKA was downregulated in ovarian cancer samples, and the lower expression correlated with poor survival. Overexpression of ITPKA inhibited the anchorage-independent growth of ovarian cancer cells and induced senescence. However, knockdown of ITPKA promoted the anchorage-independent growth of ovarian cancer cells and inhibited senescence. Mechanistically, ITPKA was found to interact with MDM2, which stabilized P53, an essential regulator of senescence. Moreover, ITPKA was negatively regulated by miR-203, a microRNA that has been previously reported to be upregulated in ovarian cancer. Taken together, the results of this study demonstrated the tumor suppressive roles of ITPKA in ovarian cancer and provided a good explanation for the oncogenic roles of miR-203.
Collapse
Affiliation(s)
- Wang Shaosheng
- Maternity Service Center of Pengzhou Maternal & Children Health Care Hospital, Chengdu, Sichuan Province 611930, People’s Republic of China
| | - Wang Shaochuang
- Department of Hepatobiliary and Pancreatic Surgery, Huai’an First People’s Hospital, Nanjing Medical University, Huai'an 223300, Jiangsu Province, People’s Republic of China
| | - Fan Lichun
- Hainan Maternal and Children’s Medical Center, Haikou 570206, Hainan Province, People’s Republic of China
| | - Xie Na
- Department of Pathology, The Affiliated Hospital of Hainan Medical University, Haikou 571101, Hainan Province, People’s Republic of China
| | - Zhao Xiaohong
- Hainan Maternal and Children’s Medical Center, Haikou 570206, Hainan Province, People’s Republic of China
| |
Collapse
|
12
|
Ci B, Yang DM, Cai L, Yang L, Girard L, Fujimoto J, Wistuba II, Xie Y, Minna JD, Travis W, Xiao G. Molecular differences across invasive lung adenocarcinoma morphological subgroups. Transl Lung Cancer Res 2020; 9:1029-1040. [PMID: 32953482 PMCID: PMC7481608 DOI: 10.21037/tlcr-19-321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Lung adenocarcinomas (ADCs) show heterogeneous morphological patterns that are classified into five subgroups: lepidic predominant, papillary predominant, acinar predominant, micropapillary predominant and solid predominant. The morphological classification of ADCs has been reported to be associated with patient prognosis and adjuvant chemotherapy response. However, the molecular mechanisms underlying the morphology differences among different subgroups remain largely unknown. Methods Using the molecular profiling data from The Cancer Genome Atlas (TCGA) lung ADC (LUAD) cohort, we studied the molecular differences across invasive ADC morphological subgroups. Results We showed that the expression of proteins and mRNAs, but not the gene mutations copy number alterations (CNA), were significantly associated with lung ADC morphological subgroups. In addition, expression of the FOXM1 gene (which is negatively associated with patient survival) likely plays an important role in the morphological differences among different subgroups. Moreover, we found that protein abundance of PD-L1 were associated with the malignancy of subgroups. These results were validated in an independent cohort. Conclusions This study provides insights into the molecular differences among different lung ADC morphological subgroups, which could lead to potential subgroup-specific therapies.
Collapse
Affiliation(s)
- Bo Ci
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Donghan M Yang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ling Cai
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lin Yang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Pathology, National Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Luc Girard
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Junya Fujimoto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yang Xie
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - William Travis
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
13
|
Sata Y, Nakajima T, Fukuyo M, Matsusaka K, Hata A, Morimoto J, Rahmutulla B, Ito Y, Suzuki H, Yoshino I, Kaneda A. High expression of CXCL14 is a biomarker of lung adenocarcinoma with micropapillary pattern. Cancer Sci 2020; 111:2588-2597. [PMID: 32403160 PMCID: PMC7385370 DOI: 10.1111/cas.14456] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 04/23/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
Lung adenocarcinoma with micropapillary pattern (MPP) has an aggressive malignant behavior. Limited resection should be avoided because of its high recurrence rate. If adenocarcinoma with MPP is diagnosed preoperatively, the selection of proper treatment is possible. To explore a preoperative biomarker for diagnosing MPP, we undertook RNA sequencing analysis of 25 clinical samples as the training set, including 6 MPP, 16 other adenocarcinoma subtypes, and 3 normal lung tissues. Unsupervised hierarchical clustering analysis suggested a presence of subgroup with MPP showing different gene expression phenotype. We extracted differentially expressed genes with high expression levels in MPP samples, and chose VSIG1, CXCL14, and BAMBI as candidate biomarkers for MPP. Reverse transcription-quantitative PCR analysis confirmed a significantly higher expression of VSIG1 (P = .03) and CXCL14 (P = .02) in MPP than others. In a validation set of 4 MPP and 4 non-MPP samples, CXCL14 expression was validated to be significantly higher in MPP than in non-MPP (P = .04). Comparing a total of 10 MPP and 20 non-MPP samples, the area under the curve of CXCL14 to distinguish MPP from others was 0.89. The threshold value was 0.0116, corresponding to sensitivity 80% and specificity 90%. In immunostaining of CXCL14, the staining score was significantly higher in MPP cases than others, where not only the MPP component but also other components showed heterogeneous staining in adenocarcinoma tissues with MPP. Moreover, a higher staining score of CXCL14 was significantly associated with poorer prognosis in all patients (P = .01) or within cases in stage I-III (P = .01). In summary, we identified CXCL14 as a possible diagnostic biomarker of MPP.
Collapse
Affiliation(s)
- Yuki Sata
- Department of General Thoracic SurgeryGraduate School of MedicineChiba UniversityChibaJapan
- Department of Molecular OncologyGraduate School of MedicineChiba UniversityChibaJapan
| | - Takahiro Nakajima
- Department of General Thoracic SurgeryGraduate School of MedicineChiba UniversityChibaJapan
| | - Masaki Fukuyo
- Department of Molecular OncologyGraduate School of MedicineChiba UniversityChibaJapan
| | - Keisuke Matsusaka
- Department of Molecular OncologyGraduate School of MedicineChiba UniversityChibaJapan
- Department of PathologyChiba University HospitalChibaJapan
| | - Atsushi Hata
- Department of General Thoracic SurgeryGraduate School of MedicineChiba UniversityChibaJapan
- Department of Molecular OncologyGraduate School of MedicineChiba UniversityChibaJapan
| | - Junichi Morimoto
- Department of General Thoracic SurgeryGraduate School of MedicineChiba UniversityChibaJapan
| | - Bahityar Rahmutulla
- Department of Molecular OncologyGraduate School of MedicineChiba UniversityChibaJapan
| | - Yuki Ito
- Department of General Thoracic SurgeryGraduate School of MedicineChiba UniversityChibaJapan
- Department of Molecular OncologyGraduate School of MedicineChiba UniversityChibaJapan
| | - Hidemi Suzuki
- Department of General Thoracic SurgeryGraduate School of MedicineChiba UniversityChibaJapan
| | - Ichiro Yoshino
- Department of General Thoracic SurgeryGraduate School of MedicineChiba UniversityChibaJapan
| | - Atsushi Kaneda
- Department of Molecular OncologyGraduate School of MedicineChiba UniversityChibaJapan
| |
Collapse
|
14
|
Halvorsen AR, Ragle Aure M, Õjlert ÅK, Brustugun OT, Solberg S, Nebdal D, Helland Å. Identification of microRNAs involved in pathways which characterize the expression subtypes of NSCLC. Mol Oncol 2019; 13:2604-2615. [PMID: 31505091 PMCID: PMC6887593 DOI: 10.1002/1878-0261.12571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/28/2019] [Accepted: 09/06/2019] [Indexed: 12/17/2022] Open
Abstract
Dysregulation of microRNAs is a common mechanism in the development of lung cancer, but the relationship between microRNAs and expression subtypes in non‐small‐cell lung cancer (NSCLC) is poorly explored. Here, we analyzed microRNA expression from 241 NSCLC samples and correlated this with the expression subtypes of adenocarcinomas (AD) and squamous cell carcinomas (SCC) to identify microRNAs specific for each subtype. Gene set variation analysis and the hallmark gene set were utilized to calculate gene set scores specific for each sample, and these were further correlated with the expression of the subtype‐specific microRNAs. In ADs, we identified nine aberrantly regulated microRNAs in the terminal respiratory unit (TRU), three in the proximal inflammatory (PI), and nine in the proximal proliferative subtype (PP). In SCCs, 1, 5, 5, and 9 microRNAs were significantly dysregulated in the basal, primitive, classical, and secretory subtypes, respectively. The subtype‐specific microRNAs were highly correlated to specific gene sets, and a distinct pattern of biological processes with high immune activity for the AD PI and SCC secretory subtypes, and upregulation of cell cycle‐related processes in AD PP, SCC primitive, and SCC classical subtypes were found. Several in silico predicted targets within the gene sets were identified for the subtype‐specific microRNAs, underpinning the findings. The results were significantly validated in the LUAD (n = 492) and LUSC (n = 380) TCGA dataset (False discovery rates‐corrected P‐value < 0.05). Our study provides novel insight into how expression subtypes determined with discrete biological processes may be regulated by subtype‐specific microRNAs. These results may have importance for the development of combinatory therapeutic strategies for lung cancer patients.
Collapse
Affiliation(s)
- Ann Rita Halvorsen
- Department of Cancer Genetics, Institute for Cancer Research, OUS Radiumhospitalet, Oslo, Norway.,Institute for Clinical Medicine, University of Oslo, Norway
| | - Miriam Ragle Aure
- Department of Cancer Genetics, Institute for Cancer Research, OUS Radiumhospitalet, Oslo, Norway
| | - Åsa Kristina Õjlert
- Department of Cancer Genetics, Institute for Cancer Research, OUS Radiumhospitalet, Oslo, Norway
| | - Odd Terje Brustugun
- Department of Cancer Genetics, Institute for Cancer Research, OUS Radiumhospitalet, Oslo, Norway
| | - Steinar Solberg
- Department of Cardiothoracic Surgery, Oslo University Hospital-Rikshospitalet, Norway
| | - Daniel Nebdal
- Department of Cancer Genetics, Institute for Cancer Research, OUS Radiumhospitalet, Oslo, Norway
| | - Åslaug Helland
- Department of Cancer Genetics, Institute for Cancer Research, OUS Radiumhospitalet, Oslo, Norway.,Institute for Clinical Medicine, University of Oslo, Norway
| |
Collapse
|