1
|
Vijayan K. K. V, De Paris K. Nonhuman primate models of pediatric viral diseases. Front Cell Infect Microbiol 2024; 14:1493885. [PMID: 39691699 PMCID: PMC11649651 DOI: 10.3389/fcimb.2024.1493885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/08/2024] [Indexed: 12/19/2024] Open
Abstract
Infectious diseases are the leading cause of death in infants and children under 5 years of age. In utero exposure to viruses can lead to spontaneous abortion, preterm birth, congenital abnormalities or other developmental defects, often resulting in lifelong health sequalae. The underlying biological mechanisms are difficult to study in humans due to ethical concerns and limited sample access. Nonhuman primates (NHP) are closely related to humans, and pregnancy and immune ontogeny in infants are very similar to humans. Therefore, NHP are a highly relevant model for understanding fetal and postnatal virus-host interactions and to define immune mechanisms associated with increased morbidity and mortality in infants. We will discuss NHP models of viruses causing congenital infections, respiratory diseases in early life, and HIV. Cytomegalovirus (CMV) remains the most common cause of congenital defects worldwide. Measles is a vaccine-preventable disease, yet measles cases are resurging. Zika is an example of an emerging arbovirus with devastating consequences for the developing fetus and the surviving infant. Among the respiratory viruses, we will discuss influenza and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). We will finish with HIV as an example of a lifelong infection without a cure or vaccine. The review will highlight (i) the impact of viral infections on fetal and infant immune development, (ii) how differences in infant and adult immune responses to infection alter disease outcome, and emphasize the invaluable contribution of pediatric NHP infection models to the design of effective treatment and prevention strategies, including vaccines, for human infants.
Collapse
Affiliation(s)
- Vidya Vijayan K. K.
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
| | - Kristina De Paris
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
- Center for AIDS Research, University of North Carolina, Chapel Hill, NC, United States
- Children’s Research Institute, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
2
|
Rollman TB, Berkebile ZW, Hicks DM, Hatfield JS, Chauhan P, Pravetoni M, Schleiss MR, Milligan GN, Morgan TK, Bierle CJ. CD4+ but not CD8+ T cells are required for protection against severe guinea pig cytomegalovirus infections. PLoS Pathog 2024; 20:e1012515. [PMID: 39495799 PMCID: PMC11563410 DOI: 10.1371/journal.ppat.1012515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/14/2024] [Accepted: 09/27/2024] [Indexed: 11/06/2024] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous herpesvirus and the leading cause of infectious disease related birth defects worldwide. How the immune response modulates the risk of intrauterine transmission of HCMV after maternal infection remains poorly understood. Maternal T cells likely play a critical role in preventing infection at the maternal-fetal interface and limiting spread across the placenta, but concerns exist that immune responses to infection may also cause placental dysfunction and adverse pregnancy outcomes. This study investigated the role of CD4+ and CD8+ T cells in a guinea pig model of primary cytomegalovirus infection. Monoclonal antibodies specific to guinea pig CD4 and CD8 were used to deplete T cells in non-pregnant and in pregnant guinea pigs after mid-gestation. CD4+ T cell depletion increased the severity of illness, caused significantly elevated viral loads, and increased the rate of congenital guinea pig cytomegalovirus (GPCMV) infection relative to animals treated with control antibody. CD8+ T cell depletion was comparably well tolerated and did not significantly affect the weight of infected guinea pigs or viral loads in their blood or tissue. However, significantly more viral genomes and transcripts were detected in the placenta and decidua of CD8+ T cell depleted dams post-infection. This study corroborates earlier findings made in nonhuman primates that maternal CD4+ T cells play a critical role in limiting the severity of primary CMV infection during pregnancy while also revealing that other innate and adaptive immune responses can compensate for an absent CD8+ T cell response in α-CD8-treated guinea pigs.
Collapse
Affiliation(s)
- Tyler B. Rollman
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Zachary W. Berkebile
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Dustin M. Hicks
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jason S. Hatfield
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Priyanka Chauhan
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Marco Pravetoni
- Center for Medication Development for Substance Use Disorders and Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Mark R. Schleiss
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Gregg N. Milligan
- Division of Vaccinology, Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Terry K. Morgan
- Department of Pathology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Craig J. Bierle
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
3
|
Moström MJ, Yu S, Tran D, Saccoccio FM, Versoza CJ, Malouli D, Mirza A, Valencia S, Gilbert M, Blair RV, Hansen S, Barry P, Früh K, Jensen JD, Pfeifer SP, Kowalik TF, Permar SR, Kaur A. Protective effect of pre-existing natural immunity in a nonhuman primate reinfection model of congenital cytomegalovirus infection. PLoS Pathog 2023; 19:e1011646. [PMID: 37796819 PMCID: PMC10553354 DOI: 10.1371/journal.ppat.1011646] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/29/2023] [Indexed: 10/07/2023] Open
Abstract
Congenital cytomegalovirus (cCMV) is the leading infectious cause of neurologic defects in newborns with particularly severe sequelae in the setting of primary CMV infection in the first trimester of pregnancy. The majority of cCMV cases worldwide occur after non-primary infection in CMV-seropositive women; yet the extent to which pre-existing natural CMV-specific immunity protects against CMV reinfection or reactivation during pregnancy remains ill-defined. We previously reported on a novel nonhuman primate model of cCMV in rhesus macaques where 100% placental transmission and 83% fetal loss were seen in CD4+ T lymphocyte-depleted rhesus CMV (RhCMV)-seronegative dams after primary RhCMV infection. To investigate the protective effect of preconception maternal immunity, we performed reinfection studies in CD4+ T lymphocyte-depleted RhCMV-seropositive dams inoculated in late first / early second trimester gestation with RhCMV strains 180.92 (n = 2), or RhCMV UCD52 and FL-RhCMVΔRh13.1/SIVgag, a wild-type-like RhCMV clone with SIVgag inserted as an immunological marker, administered separately (n = 3). An early transient increase in circulating monocytes followed by boosting of the pre-existing RhCMV-specific CD8+ T lymphocyte and antibody response was observed in the reinfected dams but not in control CD4+ T lymphocyte-depleted dams. Emergence of SIV Gag-specific CD8+ T lymphocyte responses in macaques inoculated with the FL-RhCMVΔRh13.1/SIVgag virus confirmed reinfection. Placental transmission was detected in only one of five reinfected dams and there were no adverse fetal sequelae. Viral whole genome, short-read, deep sequencing analysis confirmed transmission of both reinfection RhCMV strains across the placenta with ~30% corresponding to FL-RhCMVΔRh13.1/SIVgag and ~70% to RhCMV UCD52, consistent with the mixed human CMV infections reported in infants with cCMV. Our data showing reduced placental transmission and absence of fetal loss after non-primary as opposed to primary infection in CD4+ T lymphocyte-depleted dams indicates that preconception maternal CMV-specific CD8+ T lymphocyte and/or humoral immunity can protect against cCMV infection.
Collapse
Affiliation(s)
- Matilda J. Moström
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, United States of America
| | - Shan Yu
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, United States of America
| | - Dollnovan Tran
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, United States of America
| | - Frances M. Saccoccio
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Cyril J. Versoza
- Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Daniel Malouli
- Oregon Health and Sciences University, Beaverton, Oregon, United States of America
| | - Anne Mirza
- University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Sarah Valencia
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Margaret Gilbert
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, United States of America
| | - Robert V. Blair
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, United States of America
| | - Scott Hansen
- Oregon Health and Sciences University, Beaverton, Oregon, United States of America
| | - Peter Barry
- University of California, Davis, California, United States of America
| | - Klaus Früh
- Oregon Health and Sciences University, Beaverton, Oregon, United States of America
| | - Jeffrey D. Jensen
- Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Susanne P. Pfeifer
- Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Timothy F. Kowalik
- University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Sallie R. Permar
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
- Weill Cornell Medicine, New York, New York State, United States of America
| | - Amitinder Kaur
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, United States of America
| |
Collapse
|
4
|
Moström M, Yu S, Tran D, Saccoccio F, Versoza CJ, Malouli D, Mirza A, Valencia S, Gilbert M, Blair R, Hansen S, Barry P, Früh K, Jensen JD, Pfeifer SP, Kowalik TF, Permar SR, Kaur A. Protective effect of pre-existing natural immunity in a nonhuman primate reinfection model of congenital cytomegalovirus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536057. [PMID: 37090643 PMCID: PMC10120644 DOI: 10.1101/2023.04.10.536057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Congenital cytomegalovirus (cCMV) is the leading infectious cause of neurologic defects in newborns with particularly severe sequelae in the setting of primary CMV infection in the first trimester of pregnancy. The majority of cCMV cases worldwide occur after non-primary infection in CMV-seropositive women; yet the extent to which pre-existing natural CMV-specific immunity protects against CMV reinfection or reactivation during pregnancy remains ill-defined. We previously reported on a novel nonhuman primate model of cCMV in rhesus macaques where 100% placental transmission and 83% fetal loss were seen in CD4 + T lymphocyte-depleted rhesus CMV (RhCMV)-seronegative dams after primary RhCMV infection. To investigate the protective effect of preconception maternal immunity, we performed reinfection studies in CD4+ T lymphocyte-depleted RhCMV-seropositive dams inoculated in late first / early second trimester gestation with RhCMV strains 180.92 ( n =2), or RhCMV UCD52 and FL-RhCMVΔRh13.1/SIV gag , a wild-type-like RhCMV clone with SIV gag inserted as an immunological marker ( n =3). An early transient increase in circulating monocytes followed by boosting of the pre-existing RhCMV-specific CD8+ T lymphocyte and antibody response was observed in the reinfected dams but not in control CD4+ T lymphocyte-depleted dams. Emergence of SIV Gag-specific CD8+ T lymphocyte responses in macaques inoculated with the FL-RhCMVΔRh13.1/SIV gag virus confirmed reinfection. Placental transmission was detected in only one of five reinfected dams and there were no adverse fetal sequelae. Viral whole genome, short-read, deep sequencing analysis confirmed transmission of both reinfection RhCMV strains across the placenta with ∼30% corresponding to FL-RhCMVΔRh13.1/SIV gag and ∼70% to RhCMV UCD52, consistent with the mixed human CMV infections reported in infants with cCMV. Our data showing reduced placental transmission and absence of fetal loss after non-primary as opposed to primary infection in CD4+ T lymphocyte-depleted dams indicates that preconception maternal CMV-specific CD8+ T lymphocyte and/or humoral immunity can protect against cCMV infection. Author Summary Globally, pregnancies in CMV-seropositive women account for the majority of cases of congenital CMV infection but the immune responses needed for protection against placental transmission in mothers with non-primary infection remains unknown. Recently, we developed a nonhuman primate model of primary rhesus CMV (RhCMV) infection in which placental transmission and fetal loss occurred in RhCMV-seronegative CD4+ T lymphocyte-depleted macaques. By conducting similar studies in RhCMV-seropositive dams, we demonstrated the protective effect of pre-existing natural CMV-specific CD8+ T lymphocytes and humoral immunity against congenital CMV after reinfection. A 5-fold reduction in congenital transmission and complete protection against fetal loss was observed in dams with pre-existing immunity compared to primary CMV in this model. Our study is the first formal demonstration in a relevant model of human congenital CMV that natural pre-existing CMV-specific maternal immunity can limit congenital CMV transmission and its sequelae. The nonhuman primate model of non-primary congenital CMV will be especially relevant to studying immune requirements of a maternal vaccine for women in high CMV seroprevalence areas at risk of repeated CMV reinfections during pregnancy.
Collapse
Affiliation(s)
- Matilda Moström
- Tulane National Primate Research Center, Tulane University, Covington LA
| | - Shan Yu
- Tulane National Primate Research Center, Tulane University, Covington LA
| | - Dollnovan Tran
- Tulane National Primate Research Center, Tulane University, Covington LA
| | | | - Cyril J. Versoza
- Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, AZ
| | | | - Anne Mirza
- University of Massachusetts Chan Medical School, Worcester, MA
| | - Sarah Valencia
- Duke Human Vaccine Institute, Duke University, Durham, NC
| | - Margaret Gilbert
- Tulane National Primate Research Center, Tulane University, Covington LA
| | - Robert Blair
- Tulane National Primate Research Center, Tulane University, Covington LA
| | - Scott Hansen
- Oregon Health and Sciences University, Beaverton, OR
| | | | - Klaus Früh
- Oregon Health and Sciences University, Beaverton, OR
| | - Jeffrey D. Jensen
- Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, AZ
| | - Susanne P. Pfeifer
- Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, AZ
| | | | - Sallie R. Permar
- Duke Human Vaccine Institute, Duke University, Durham, NC
- Weill Cornell Medicine, New York, NY
| | - Amitinder Kaur
- Tulane National Primate Research Center, Tulane University, Covington LA
| |
Collapse
|
5
|
Yee JL, Strelow LI, White JA, Rosenthal AN, Barry PA. Horizontal transmission of endemic viruses among rhesus macaques (Macaca mulatta): Implications for human cytomegalovirus vaccine/challenge design. J Med Primatol 2023; 52:53-63. [PMID: 36151734 PMCID: PMC9825633 DOI: 10.1111/jmp.12621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Rhesus macaques are natural hosts to multiple viruses including rhesus cytomegalovirus (RhCMV), rhesus rhadinovirus (RRV), and Simian Foamy Virus (SFV). While viral infections are ubiquitous, viral transmissions to uninfected animals are incompletely defined. Management procedures of macaque colonies include cohorts that are Specific Pathogen Free (SPF). Greater understanding of viral transmission would augment SPF protocols. Moreover, vaccine/challenge studies of human viruses would be enhanced by leveraging transmission of macaque viruses to recapitulate expected challenges of human vaccine trials. MATERIALS AND METHODS This study characterizes viral transmissions to uninfected animals following inadvertent introduction of RhCMV/RRV/SFV-infected adults to a cohort of uninfected juveniles. Following co-housing with virus-positive adults, juveniles were serially evaluated for viral infection. RESULTS Horizontal viral transmission was rapid and absolute, reaching 100% penetrance between 19 and 78 weeks. CONCLUSIONS This study provides insights into viral natural histories with implications for colony management and modeling vaccine-mediated immune protection studies.
Collapse
Affiliation(s)
- JoAnn L Yee
- California National Primate Research Center, Davis, California, USA
- University of California, Davis, Davis, California, USA
| | - Lisa I Strelow
- California National Primate Research Center, Davis, California, USA
- University of California, Davis, Davis, California, USA
- Center for Immunology and Infectious Diseases, Davis, California, USA
| | - Jessica A White
- California National Primate Research Center, Davis, California, USA
- University of California, Davis, Davis, California, USA
| | - Ann N Rosenthal
- California National Primate Research Center, Davis, California, USA
- University of California, Davis, Davis, California, USA
| | - Peter A Barry
- California National Primate Research Center, Davis, California, USA
- University of California, Davis, Davis, California, USA
- Center for Immunology and Infectious Diseases, Davis, California, USA
| |
Collapse
|
6
|
A Review on Zoonotic Pathogens Associated with Non-Human Primates: Understanding the Potential Threats to Humans. Microorganisms 2023; 11:microorganisms11020246. [PMID: 36838210 PMCID: PMC9964884 DOI: 10.3390/microorganisms11020246] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/07/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Non-human primates (NHP) share a close relationship with humans due to a genetic homology of 75-98.5%. NHP and humans have highly similar tissue structures, immunity, physiology, and metabolism and thus often can act as hosts to the same pathogens. Agriculture, meat consumption habits, tourism development, religious beliefs, and biological research have led to more extensive and frequent contact between NHPs and humans. Deadly viruses, such as rabies virus, herpes B virus, Marburg virus, Ebola virus, human immunodeficiency virus, and monkeypox virus can be transferred from NHP to humans. Similarly, herpes simplex virus, influenza virus, and yellow fever virus can be transmitted to NHP from humans. Infectious pathogens, including viruses, bacteria, and parasites, can affect the health of both primates and humans. A vast number of NHP-carrying pathogens exhibit a risk of transmission to humans. Therefore, zoonotic infectious diseases should be evaluated in future research. This article reviews the research evidence, diagnostic methods, prevention, and treatment measures that may be useful in limiting the spread of several common viral pathogens via NHP and providing ideas for preventing zoonotic diseases with epidemic potential.
Collapse
|
7
|
Pathogenesis of wild-type-like rhesus cytomegalovirus strains following oral exposure of immune-competent rhesus macaques. J Virol 2021; 96:e0165321. [PMID: 34788083 DOI: 10.1128/jvi.01653-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhesus cytomegalovirus (RhCMV) infection of rhesus macaques (Macaca mulatta) is a valuable nonhuman primate model of human CMV (HCMV) persistence and pathogenesis. In vivo studies predominantly use tissue culture-adapted variants of RhCMV that contain multiple genetic mutations compared to wild-type (WT) RhCMV. In many studies, animals have been inoculated by non-natural routes (e.g., subcutaneous, intravenous) that do not recapitulate disease progression via the normative route of mucosal exposure. Accordingly, the natural history of RhCMV would be more accurately reproduced by infecting macaques with strains of RhCMV that reflect the WT genome using natural routes of mucosal transmission. Herein, we tested two WT-like RhCMV strains, UCD52 and UCD59, and demonstrated that systemic infection and frequent, high-titer viral shedding in bodily fluids occurred following oral inoculation. RhCMV disseminated to a broad range of tissues, including the central nervous system and reproductive organs. Commonly infected tissues included the thymus, spleen, lymph nodes, kidneys, bladder, and salivary glands. Histological examination revealed prominent nodular hyperplasia in spleens and variable levels of lymphoid lymphofollicular hyperplasia in lymph nodes. One of six inoculated animals had limited viral dissemination and shedding, with commensurately weak antibody responses to RhCMV antigens. These data suggest that long-term RhCMV infection parameters might be restricted by local innate factors and/or de novo host immune responses in a minority of primary infections. Together, we have established an oral RhCMV infection model that mimics natural HCMV infection. The virological and immunological parameters characterized in this study will greatly inform HCMV vaccine designs for human immunization. IMPORTANCE Human cytomegalovirus (HCMV) is globally ubiquitous with high seroprevalence rates in all communities. HCMV infections can occur vertically following mother-to-fetus transmission across the placenta and horizontally following shedding of virus in bodily fluids in HCMV infected hosts and subsequent exposure of susceptible individuals to virus-laden fluids. Intrauterine HCMV has long been recognized as an infectious threat to fetal growth and development. Since vertical HCMV infections occur following horizontal HCMV transmission to the pregnant mother, the nonhuman primate model of HCMV pathogenesis was used to characterize the virological and immunological parameters of infection following primary mucosal exposures to rhesus cytomegalovirus.
Collapse
|
8
|
Sarfas C, White AD, Sibley L, Morrison AL, Gullick J, Lawrence S, Dennis MJ, Marsh PD, Fletcher HA, Sharpe SA. Characterization of the Infant Immune System and the Influence and Immunogenicity of BCG Vaccination in Infant and Adult Rhesus Macaques. Front Immunol 2021; 12:754589. [PMID: 34707617 PMCID: PMC8542880 DOI: 10.3389/fimmu.2021.754589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
In many countries where tuberculosis (TB) is endemic, the Bacillus Calmette–Guérin (BCG) vaccine is given as close to birth as possible to protect infants and children from severe forms of TB. However, BCG has variable efficacy and is not as effective against adult pulmonary TB. At present, most animal models used to study novel TB vaccine candidates rely on the use of adult animals. Human studies show that the infant immune system is different to that of an adult. Understanding how the phenotypic profile and functional ability of the immature host immune system compares to that of a mature adult, together with the subsequent BCG immune response, is critical to ensuring that new TB vaccines are tested in the most appropriate models. BCG-specific immune responses were detected in macaques vaccinated within a week of birth from six weeks after immunization indicating that neonatal macaques are able to generate a functional cellular response to the vaccine. However, the responses measured were significantly lower than those typically observed following BCG vaccination in adult rhesus macaques and infant profiles were skewed towards the activation and attraction of macrophages and monocytes and the synthesis in addition to release of pro-inflammatory cytokines such as IL-1, IL-6 and TNF-α. The frequency of specific immune cell populations changed significantly through the first three years of life as the infants developed into young adult macaques. Notably, the CD4:CD8 ratio significantly declined as the macaques aged due to a significant decrease in the proportion of CD4+ T-cells relative to a significant increase in CD8+ T-cells. Also, the frequency of both CD4+ and CD8+ T-cells expressing the memory marker CD95, and memory subset populations including effector memory, central memory and stem cell memory, increased significantly as animals matured. Infant macaques, vaccinated with BCG within a week of birth, possessed a significantly higher frequency of CD14+ classical monocytes and granulocytes which remained different throughout the first three years of life compared to unvaccinated age matched animals. These findings, along with the increase in monokines following vaccination in infants, may provide an insight into the mechanism by which vaccination with BCG is able to provide non-specific immunity against non-mycobacterial organisms.
Collapse
Affiliation(s)
- Charlotte Sarfas
- National Infection Service, UK Health Security Agency, Salisbury, United Kingdom
| | - Andrew D White
- National Infection Service, UK Health Security Agency, Salisbury, United Kingdom
| | - Laura Sibley
- National Infection Service, UK Health Security Agency, Salisbury, United Kingdom
| | - Alexandra L Morrison
- National Infection Service, UK Health Security Agency, Salisbury, United Kingdom
| | - Jennie Gullick
- National Infection Service, UK Health Security Agency, Salisbury, United Kingdom
| | - Steve Lawrence
- National Infection Service, UK Health Security Agency, Salisbury, United Kingdom
| | - Mike J Dennis
- National Infection Service, UK Health Security Agency, Salisbury, United Kingdom
| | - Philip D Marsh
- National Infection Service, UK Health Security Agency, Salisbury, United Kingdom
| | - Helen A Fletcher
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sally A Sharpe
- National Infection Service, UK Health Security Agency, Salisbury, United Kingdom
| |
Collapse
|
9
|
Van de Perre P, Molès J, Nagot N, Tuaillon E, Ceccaldi P, Goga A, Prendergast AJ, Rollins N. Revisiting Koch's postulate to determine the plausibility of viral transmission by human milk. Pediatr Allergy Immunol 2021; 32:835-842. [PMID: 33594740 PMCID: PMC8359252 DOI: 10.1111/pai.13473] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 12/18/2022]
Abstract
As breastfeeding is of utmost importance for child development and survival, identifying whether breast milk is a route of transmission for human viruses is critical. Based on the principle of Koch's postulate, we propose an analytical framework to determine the plausibility of viral transmission by breast milk. This framework is based on five criteria: viral infection in children receiving breast milk from infected mothers; the presence of virus, viral antigen, or viral genome in the breast milk of infected mothers; the evidence for the virus in breast milk being infectious; the attempts to rule out other transmission modalities; and the reproduction of viral transmission by oral inoculation in an animal model. We searched for evidence in published reports to determine whether the 5 criteria are fulfilled for 16 human viruses that are suspected to be transmissible by breast milk. We considered breast milk transmission is proven if all 5 criteria are fulfilled, as probable if 4 of the 5 criteria are met, as possible if 3 of the 5 criteria are fulfilled, and as unlikely if less than 3 criteria are met. Only five viruses have proven transmission through breast milk: human T-cell lymphotropic virus 1, human immunodeficiency virus, human cytomegalovirus, dengue virus, and Zika virus. The other 11 viruses fulfilled some but not all criteria and were categorized accordingly. Our framework analysis is useful for guiding public health recommendations and for identifying knowledge gaps amenable to original experiments.
Collapse
Affiliation(s)
- Philippe Van de Perre
- Pathogenesis and Control of Chronic and Emerging InfectionsUniversity of MontpellierINSERMEtablissement Français du SangAntilles UniversityMontpellierFrance
- CHU MontpellierMontpellierFrance
| | - Jean‐Pierre Molès
- Pathogenesis and Control of Chronic and Emerging InfectionsUniversity of MontpellierINSERMEtablissement Français du SangAntilles UniversityMontpellierFrance
- CHU MontpellierMontpellierFrance
| | - Nicolas Nagot
- Pathogenesis and Control of Chronic and Emerging InfectionsUniversity of MontpellierINSERMEtablissement Français du SangAntilles UniversityMontpellierFrance
- CHU MontpellierMontpellierFrance
| | - Edouard Tuaillon
- Pathogenesis and Control of Chronic and Emerging InfectionsUniversity of MontpellierINSERMEtablissement Français du SangAntilles UniversityMontpellierFrance
- CHU MontpellierMontpellierFrance
| | - Pierre‐Emmanuel Ceccaldi
- Unité Epidémiologie et Physiopathologie des Virus OncogènesCNRS UMR 3569Institut PasteurUniversité de ParisParisFrance
| | - Ameena Goga
- HIV Prevention Research UnitSouth African Medical Research CouncilCape TownSouth Africa
- Department of Paediatrics and Child HealthUniversity of PretoriaPretoriaSouth Africa
| | - Andrew J. Prendergast
- Blizard InstituteQueen Mary University of LondonUK
- Zvitambo Institute for Maternal and Child Health ResearchHarareZimbabwe
| | - Nigel Rollins
- Department of Maternal, Newborn, Child and Adolescent Health and AgeingWorld Health OrganizationGenevaSwitzerland
| |
Collapse
|
10
|
Pomplun NL, Vosler L, Weisgrau KL, Furlott J, Weiler AM, Abdelaal HM, Evans DT, Watkins DI, Matano T, Skinner PJ, Friedrich TC, Rakasz EG. Immunophenotyping of Rhesus CMV-Specific CD8 T-Cell Populations. Cytometry A 2020; 99:278-288. [PMID: 32713108 PMCID: PMC7855655 DOI: 10.1002/cyto.a.24197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/12/2020] [Accepted: 07/20/2020] [Indexed: 01/06/2023]
Abstract
A vaccine to ameliorate cytomegalovirus (CMV)-related pathogenicity in transplantation patients is considered a top priority. A therapeutic vaccine must include components that elicit both neutralizing antibodies, and highly effective CD8 T-cell responses. The most important translational model of vaccine development is the captive-bred rhesus macaque (Macaca mulatta) of Indian origin. There is a dearth of information on rhesus cytomegalovirus (rhCMV)-specific CD8 T cells due to the absence of well-defined CD8 T-cell epitopes presented by classical MHC-I molecules. In the current study, we defined two CD8 T-cell epitopes restricted by high-frequency Mamu alleles: the Mamu-A1*002:01 restricted VY9 (VTTLGMALY aa291-299) epitope of protein IE-1, and the Mamu-A1*008:01 restricted NP8 (NPTDRPIP aa96-103) epitope of protein phosphoprotein 65-2. We developed tetramers and determined the level, phenotype, and functional capability of the two epitope-specific T-cell populations in circulation and various tissues. We demonstrated the value of these tetramers for in situ tetramer staining. Here, we first provided critical reagents and established a flow cytometric staining strategy to study rhCMV-specific T-cell responses in up to 40% of captive-bred rhesus macaques. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals LLC on behalf of International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Nicholas L Pomplun
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Logan Vosler
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kim L Weisgrau
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jessica Furlott
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Andrea M Weiler
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Hadia M Abdelaal
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - David T Evans
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David I Watkins
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Pamela J Skinner
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Thomas C Friedrich
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Eva G Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
11
|
Roark HK, Jenks JA, Permar SR, Schleiss MR. Animal Models of Congenital Cytomegalovirus Transmission: Implications for Vaccine Development. J Infect Dis 2020; 221:S60-S73. [PMID: 32134481 PMCID: PMC7057791 DOI: 10.1093/infdis/jiz484] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although cytomegaloviruses (CMVs) are species-specific, the study of nonhuman CMVs in animal models can help to inform and direct research aimed at developing a human CMV (HCMV) vaccine. Because the driving force behind the development of HCMV vaccines is to prevent congenital infection, the animal model in question must be one in which vertical transmission of virus occurs to the fetus. Fortunately, two such animal models-the rhesus macaque CMV and guinea pig CMV-are characterized by congenital infection. Hence, each model can be evaluated in "proof-of-concept" studies of preconception vaccination aimed at blocking transplacental transmission. This review focuses on similarities and differences in the respective model systems, and it discusses key insights from each model germane to the study of HCMV vaccines.
Collapse
Affiliation(s)
- Hunter K Roark
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Jennifer A Jenks
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Sallie R Permar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Mark R Schleiss
- Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota Medical School, Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, Minneapolis, Minnesota, USA
| |
Collapse
|
12
|
Truitt LL, Yang D, Espinoza DA, Fan X, Ram DR, Moström MJ, Tran D, Sprehe LM, Reeves RK, Donahue RE, Kaur A, Dunbar CE, Wu C. Impact of CMV Infection on Natural Killer Cell Clonal Repertoire in CMV-Naïve Rhesus Macaques. Front Immunol 2019; 10:2381. [PMID: 31649681 PMCID: PMC6794559 DOI: 10.3389/fimmu.2019.02381] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/23/2019] [Indexed: 02/01/2023] Open
Abstract
Recent functional, gene expression, and epigenetic studies have suggested the presence of a subset of mature natural killer (NK) cells responsible for maintaining NK cell memory. The lack of endogenous clonal markers in NK cells impedes understanding the genesis of these cell populations. In humans, primates, and mice, this phenotype and memory or adaptive functions have been strongly linked to cytomegalovirus or related herpes virus infections. We have used transplantation of lentivirally-barcoded autologous hematopoietic stem and progenitor cells (HSPC) to track clonal hematopoiesis in rhesus macaques and previously reported striking oligoclonal expansions of NK-biased barcoded clones within the CD56−CD16+ NK cell subpopulation, clonally distinct from ongoing output of myeloid, B cell, T cell, and CD56+16− NK cells from HSPC. These CD56−CD16+ NK cell clones segregate by expression of specific KIR surface receptors, suggesting clonal expansion in reaction to specific environmental stimuli. We have now used this model to investigate the impact of rhesus CMV(RhCMV) infection on NK clonal dynamics. Following transplantation, RhCMVneg rhesus macaques display less dominant and oligoclonal CD16+ NK cells biased clones compared to RhCMVpos animals, however these populations of cells are still clearly present. Upon RhCMV infection, CD16+ NK cells proliferate, followed by appearance of new groups of expanded NK clones and disappearance of clones present prior to RhCMV infection. A second superinfection with RhCMV resulted in rapid viral clearance without major change in the mature NK cell clonal landscape. Our findings suggest that RhCMV is not the sole driver of clonal expansion and peripheral maintenance of mature NK cells; however, infection of macaques with this herpesvirus does result in selective expansion and persistence of specific NK cell clones, providing further information relevant to adaptive NK cells and the development of NK cell therapies.
Collapse
Affiliation(s)
- Lauren L Truitt
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Di Yang
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States.,Institute of Hematology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Diego A Espinoza
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Xing Fan
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Daniel R Ram
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Matilda J Moström
- Tulane National Primate Research Center, Covington, LA, United States
| | - Dollnovan Tran
- Tulane National Primate Research Center, Covington, LA, United States
| | - Lesli M Sprehe
- Tulane National Primate Research Center, Covington, LA, United States
| | - R Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA, United States
| | - Robert E Donahue
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Amitinder Kaur
- Tulane National Primate Research Center, Covington, LA, United States
| | - Cynthia E Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Chuanfeng Wu
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|