1
|
Yang L, Fang S, Liu L, Zhao L, Chen W, Li X, Xu Z, Chen S, Wang H, Yu D. WRKY transcription factors: Hubs for regulating plant growth and stress responses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:488-509. [PMID: 39815727 DOI: 10.1111/jipb.13828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/21/2024] [Indexed: 01/18/2025]
Abstract
As sessile organisms, plants must directly face various stressors. Therefore, plants have evolved a powerful stress resistance system and can adjust their growth and development strategies appropriately in different stressful environments to adapt to complex and ever-changing conditions. Nevertheless, prioritizing defensive responses can hinder growth; this is a crucial factor for plant survival but is detrimental to crop production. As such, comprehending the impact of adverse environments on plant growth is not only a fundamental scientific inquiry but also imperative for the agricultural industry and for food security. The traditional view that plant growth is hindered during defense due to resource allocation trade-offs is challenged by evidence that plants exhibit both robust growth and defensive capabilities through human intervention. These findings suggest that the growth‒defense trade-off is not only dictated by resource limitations but also influenced by intricate transcriptional regulatory mechanisms. Hence, it is imperative to conduct thorough investigations on the central genes that govern plant resistance and growth in unfavorable environments. Recent studies have consistently highlighted the importance of WRKY transcription factors in orchestrating stress responses and plant-specific growth and development, underscoring the pivotal role of WRKYs in modulating plant growth under stressful conditions. Here, we review recent advances in understanding the dual roles of WRKYs in the regulation of plant stress resistance and growth across diverse stress environments. This information will be crucial for elucidating the intricate interplay between plant stress response and growth and may aid in identifying gene loci that could be utilized in future breeding programs to develop crops with enhanced stress resistance and productivity.
Collapse
Affiliation(s)
- Lu Yang
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Siyu Fang
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Lei Liu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
| | - Lirong Zhao
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
| | - Wanqin Chen
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Xia Li
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650092, China
| | - Zhiyu Xu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Shidie Chen
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650092, China
| | - Houping Wang
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Diqiu Yu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650092, China
| |
Collapse
|
2
|
Ferioun M, Zouitane I, Bouhraoua S, Elouattassi Y, Belahcen D, Errabbani A, Louahlia S, Sayyed R, El Ghachtouli N. Applying microbial biostimulants and drought-tolerant genotypes to enhance barley growth and yield under drought stress. FRONTIERS IN PLANT SCIENCE 2025; 15:1494987. [PMID: 39840355 PMCID: PMC11747827 DOI: 10.3389/fpls.2024.1494987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/13/2024] [Indexed: 01/23/2025]
Abstract
With climate change, the frequency of regions experiencing water scarcity is increasing annually, posing a significant challenge to crop yield. Barley, a staple crop consumed and cultivated globally, is particularly susceptible to the detrimental effects of drought stress, leading to reduced yield production. Water scarcity adversely affects multiple aspects of barley growth, including seed germination, biomass production, shoot and root characteristics, water and osmotic status, photosynthesis, and induces oxidative stress, resulting in considerable losses in grain yield and its components. In this context, the present review aims to underscore the importance of selecting drought-tolerant barley genotypes and utilizing bio-inoculants constructed from beneficial microorganisms as an agroecological approach to enhance barley growth and production resilience under varying environmental conditions. Selecting barley genotypes with robust physiological and agronomic tolerance can mitigate losses under diverse environmental conditions. Plant Growth Promoting Rhizobacteria (PGPR) play a crucial role in promoting plant growth through nutrient solubilization, nitrogen fixation, phytohormone production, exopolysaccharide secretion, enzyme activity enhancement, and many other mechanisms. Applying drought-tolerant genotypes with bio-inoculants containing PGPR, improves barley's drought tolerance thereby minimizing losses caused by water scarcity.
Collapse
Affiliation(s)
- Mohamed Ferioun
- Natural Resources and Environmental Laboratory, Taza Polydisciplinary Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technology Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Ilham Zouitane
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technology Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Said Bouhraoua
- Natural Resources and Environmental Laboratory, Taza Polydisciplinary Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Yasmine Elouattassi
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technology Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Douae Belahcen
- Natural Resources and Environmental Laboratory, Taza Polydisciplinary Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Abdellatif Errabbani
- Natural Resources and Environmental Laboratory, Taza Polydisciplinary Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Said Louahlia
- Natural Resources and Environmental Laboratory, Taza Polydisciplinary Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Riyaz Sayyed
- Department of Biological Science and Chemistry, College of Arts and Science, University of Nizwa, Nizwa, Oman
| | - Naïma El Ghachtouli
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technology Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
3
|
Saleh H, Badr A, Zayed EM, Soliman ERS. Genetic Diversity and Drought Stress Tolerance of a Global Collection of Pearl Millet at Germination and Early Seedling Growth Stages. Biochem Genet 2024:10.1007/s10528-024-10965-5. [PMID: 39714523 DOI: 10.1007/s10528-024-10965-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 10/29/2024] [Indexed: 12/24/2024]
Abstract
Pearl millet {Pennisetum glaucum (L.) R. Br} is a C4 panicoid cereal millet crop grown in arid and semi-arid regions in Africa and Asia for food and fodder. This study involves the evaluation of the genetic diversity of 28 worldwide germplasm collection of pearl millet by genetic markers polymorphism and drought tolerance indices. The genetic diversity was expressed by 51 alleles of 9 ISSR markers that showed 96.43% total polymorphism and 11.76 alleles per marker. Cluster analysis of ISSR markers polymorphism divided the 28 genotypes into four clusters partially in agreement with their origin. The application of drought stress simulated by 20% PEG6000 treatment, retarded the germination percentage, and reduced shoot and root length, seedling fresh and dry weights. Drought tolerance indices (DTIs) were calculated based on the response of the seedling traits under drought stress compared to the control seedlings. ANOVA revealed statistically significant variation among the genotypes (P ≤ 0.05), except for seedling fresh weight (P = 0.17 > 0.05) under control conditions and seedling dry weight (P = 0.99 > 0.05) under drought conditions. Genotypes having higher DTIs for three traits are regarded drought resistant, i.e., those from India, Ethiopia, Pakistan, and Nigeria. The calculated heritability values indicated that seedlings dry weight is the least trait affected by drought stress whereas root length is the most influenced trait. Hierarchical clustering, based on the DTI values, also grouped the genotypes partially concomitant to their origin. The correlation analysis demonstrated a modest positive correlation between shoot length and root length. A low correlation of r ≤ 0.12 was observed between the morphological DTI matrix and the genetic matrix. Nevertheless, high levels of genetic diversity were identified among the examined genotypes that may face genetic erosion by climatic constraints, and a high potential for creating agronomically superior cultivars by crossing widely divergent genotypes.
Collapse
Affiliation(s)
- Haitham Saleh
- Botany and Microbiology Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, 11795, Egypt
| | - Abdelfattah Badr
- Botany and Microbiology Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, 11795, Egypt
| | - Ehab M Zayed
- Cell Study Research Department, Field Crops Research Institute, Agricultural Research Center, Giza, 12619, Egypt
| | - Elham R S Soliman
- Botany and Microbiology Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, 11795, Egypt.
| |
Collapse
|
4
|
Slawin C, Ajayi O, Mahalingam R. Association mapping unravels the genetic basis for drought related traits in different developmental stages of barley. Sci Rep 2024; 14:25121. [PMID: 39448604 PMCID: PMC11502909 DOI: 10.1038/s41598-024-73618-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024] Open
Abstract
Drought stress significantly reduces crop yields at all stages of plant development. Barley, known for its abiotic-stress adaptation among cereals was used to examine the genetic basis of drought tolerance. A population of 164 spring barley lines was subjected to polyethylene glycol (PEG) induced drought stress during germination and seedling development. Six traits were measured, including germination percentage and rate, seedling length and weight, and root-to-shoot ratios. Seedling area, volume, and root and shoot diameter was acquired with a flatbed scanner. This population was also subjected to short-term drought during the heading stage in the greenhouse. Root and shoot weight and grain yield data were collected from well watered and droughted plants. Significant variation within traits were observed and several of them exhibited strong correlations with each other. In this population, two genotypes had 100% germination under PEG-induced drought and drought tolerance throughout the heading stage of plant development. A genome-wide association scan (GWAS) revealed 64 significant marker-trait associations across all seven barley chromosomes. Candidate genes related to abiotic stress and germination were identified within a 0.5Mbp interval around these SNPs. In silico analysis indicated a high frequency of differential expression of the candidate genes in response to stress. This study enabled identification of barley lines useful for drought tolerance breeding and pinpointed candidate genes for enhancing drought resiliency in barley.
Collapse
Affiliation(s)
- Connor Slawin
- Cereal Crops Research Unit, USDA-ARS, 502 Walnut Street, Madison, WI, 53726, USA
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Oyeyemi Ajayi
- Cereal Crops Research Unit, USDA-ARS, 502 Walnut Street, Madison, WI, 53726, USA
| | | |
Collapse
|
5
|
Sallam A, El-Defrawy MMH, Dawood MFA, Hashem M. Screening Wheat Genotypes for Specific Genes Linked to Drought Tolerance. Genes (Basel) 2024; 15:1119. [PMID: 39336710 PMCID: PMC11431628 DOI: 10.3390/genes15091119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/30/2024] Open
Abstract
Drought stress, which significantly affects growth and reduces grain yield, is one of the main problems for wheat crops. Producing promising drought-tolerant wheat cultivars with high yields is one of the main targets for wheat breeders. In this study, a total of seven drought-tolerant wheat genotypes were screened for the presence of 19 specific drought tolerance genes. The genotypes were tested under normal and drought conditions for two growing seasons. Four spike traits, namely, spike length (SPL), grain number per spike (GNPS), number of spikelets per spike (NSPS), and grain yield per spike (GYPS), were scored. The results revealed that drought stress decreased the SPL, GNPS, NSPS, and GYPS, with ranges ranging from 2.14 (NSPS) to 13.92% (GNPS) and from 2.40 (NSPS) to 11.09% (GYPS) in the first and second seasons, respectively. ANOVA revealed high genetic variation among the genotypes for each trait under each treatment. According to the drought tolerance indices, Omara 007 presented the highest level of drought tolerance (average of sum ranks = 3), whereas both Giza-36 genotypes presented the lowest level of drought tolerance (average of sum ranks = 4.8) among the genotypes tested. Among the 19 genes tested, 11 were polymorphic among the selected genotypes. Omara 007 and Omara 002 presented the greatest number of specific drought tolerance genes (nine) tested in this study, whereas Sohag-5, Giza-36, and PI469072 presented the lowest number of drought tolerance genes (four). The number of different genes between each pair of genotypes was calculated. Seven different genes were found between Omara 007 and Giza-36, Omara 007 and Sohag-5, and Omara 002 and PI469072. The results of this study may help to identify the best genotypes for crossing candidate genotypes, and not merely to genetically improve drought tolerance in wheat.
Collapse
Affiliation(s)
- Ahmed Sallam
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt; (M.M.H.E.-D.); (M.H.)
| | - Mohamed M. H. El-Defrawy
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt; (M.M.H.E.-D.); (M.H.)
| | - Mona F. A. Dawood
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut 71516, Egypt;
| | - Mostafa Hashem
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt; (M.M.H.E.-D.); (M.H.)
| |
Collapse
|
6
|
Wen X, Liu C, Yang F, Wei Z, Li L, Chen H, Han X, Jiao C, Sha A. Accurate Long-Read RNA Sequencing Analysis Reveals the Key Pathways and Candidate Genes under Drought Stress in the Seed Germination Stage in Faba Bean. Int J Mol Sci 2024; 25:8875. [PMID: 39201560 PMCID: PMC11354372 DOI: 10.3390/ijms25168875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/26/2024] [Accepted: 08/11/2024] [Indexed: 09/02/2024] Open
Abstract
Faba bean is an important pulse. It provides proteins for the human diet and is used in industrial foodstuffs, such as flours. Drought stress severely reduces the yield of faba bean, and this can be efficiently overcome through the identification and application of key genes in response to drought. In this study, PacBio and Illumina RNA sequencing techniques were used to identify the key pathways and candidate genes involved in drought stress response. During seed germination, a total of 17,927 full-length transcripts and 12,760 protein-coding genes were obtained. There were 1676 and 811 differentially expressed genes (DEGs) between the varieties E1 and C105 at 16 h and 64 h under drought stress, respectively. Six and nine KEGG pathways were significantly enriched at 16 h and 64 h under drought stress, which produced 40 and 184 nodes through protein-protein interaction (PPI) analysis, respectively. The DEGs of the PPI nodes were involved in the ABA (abscisic acid) and MAPK (mitogen-activated protein kinase) pathways, N-glycosylation, sulfur metabolism, and sugar metabolism. Furthermore, the ectopic overexpression of a key gene, AAT, encoding aspartate aminotransferase (AAT), in tobacco, enhanced drought tolerance. The activities of AAT and peroxidase (POD), the contents of cysteine and isoleucine, were increased, and the contents of malonaldehyde (MDA) and water loss decreased in the overexpressed plants. This study provides a novel insight into genetic response to drought stress and some candidate genes for drought tolerance genetic improvements in this plant.
Collapse
Affiliation(s)
- Xin Wen
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province)/Engineering Research Center of Ecology and Agricultural Use of Wetland of Ministry of Education, College of Agriculture, Yangtze University, Jingzhou 434025, China; (X.W.); (Z.W.)
| | - Changyan Liu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Food Crop Germplasm and Genetic, Wuhan 430064, China; (C.L.); (L.L.); (H.C.); (X.H.)
| | - Fangwen Yang
- Shanghai Agrobiological Gene Center, Shanghai 201106, China;
| | - Zhengxin Wei
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province)/Engineering Research Center of Ecology and Agricultural Use of Wetland of Ministry of Education, College of Agriculture, Yangtze University, Jingzhou 434025, China; (X.W.); (Z.W.)
| | - Li Li
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Food Crop Germplasm and Genetic, Wuhan 430064, China; (C.L.); (L.L.); (H.C.); (X.H.)
| | - Hongwei Chen
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Food Crop Germplasm and Genetic, Wuhan 430064, China; (C.L.); (L.L.); (H.C.); (X.H.)
| | - Xuesong Han
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Food Crop Germplasm and Genetic, Wuhan 430064, China; (C.L.); (L.L.); (H.C.); (X.H.)
| | - Chunhai Jiao
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Food Crop Germplasm and Genetic, Wuhan 430064, China; (C.L.); (L.L.); (H.C.); (X.H.)
| | - Aihua Sha
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province)/Engineering Research Center of Ecology and Agricultural Use of Wetland of Ministry of Education, College of Agriculture, Yangtze University, Jingzhou 434025, China; (X.W.); (Z.W.)
| |
Collapse
|
7
|
Bamodu OA, Chung CC. Cancer Care Disparities: Overcoming Barriers to Cancer Control in Low- and Middle-Income Countries. JCO Glob Oncol 2024; 10:e2300439. [PMID: 39173080 DOI: 10.1200/go.23.00439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/25/2024] [Accepted: 07/18/2024] [Indexed: 08/24/2024] Open
Abstract
The rising global burden of cancer disproportionately affects low- and middle-income countries (LMICs), which account for over half of new patients and cancer deaths worldwide. However, LMIC health systems face profound challenges in implementing comprehensive cancer control programs because of limited health care resources and infrastructure. This analytical review explores contemporary evidence on barriers undermining cancer control efforts in resource-constrained LMIC settings. We conducted a comprehensive literature review of peer-reviewed evidence on cancer control challenges and solutions tailored to resource-limited settings. We provide a conceptual framework categorizing these barriers across the cancer care continuum, from raising public awareness to palliative care. We also appraise evidence-based strategies proposed to overcome identified obstacles to cancer control in the published literature, including task-shifting to nonspecialist health workers, strategic prioritization of high-impact interventions, regional collaborations, patient navigation systems, and novel financing mechanisms. Developing strong primary care delivery platforms integrated with specialized oncology care, alongside flexible and resilient health system models tailored to local contexts, will be critical to curb the rising tide of cancer in resource-limited settings. Urgent global commitments and investments are needed to dismantle barriers and expand access to prevention, early detection, diagnosis, treatment, and palliation services for all patients with cancer residing in LMICs as an ethical imperative. The review elucidates priority areas for policy actions, health systems strengthening, and future research to guide international efforts toward more equitable cancer control globally.
Collapse
Affiliation(s)
- Oluwaseun Adebayo Bamodu
- Directorate of Postgraduate Studies, School of Clinical Medicine, Muhimbili University of Health and Allied Sciences, Ilala District, Dar es Salaam, Tanzania
- Ocean Road Cancer Institute, Ilala District, Dar es Salaam, Tanzania
- Department of Prevention and Community Health, Milken Institute School of Public Health, The George Washington University, Washington DC
| | - Chen-Chih Chung
- Department of Neurology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
| |
Collapse
|
8
|
Choudry MW, Riaz R, Nawaz P, Ashraf M, Ijaz B, Bakhsh A. CRISPR-Cas9 mediated understanding of plants' abiotic stress-responsive genes to combat changing climatic patterns. Funct Integr Genomics 2024; 24:132. [PMID: 39078500 DOI: 10.1007/s10142-024-01405-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/31/2024]
Abstract
Multiple abiotic stresses like extreme temperatures, water shortage, flooding, salinity, and exposure to heavy metals are confronted by crop plants with changing climatic patterns. Prolonged exposure to these adverse environmental conditions leads to stunted plant growth and development with significant yield loss in crops. CRISPR-Cas9 genome editing tool is being frequently employed to understand abiotic stress-responsive genes. Noteworthy improvements in CRISPR-Cas technology have been made over the years, including upgradation of Cas proteins fidelity and efficiency, optimization of transformation protocols for different crop species, base and prime editing, multiplex gene-targeting, transgene-free editing, and graft-based heritable CRISPR-Cas9 approaches. These developments helped to improve the knowledge of abiotic stress tolerance in crops that could potentially be utilized to develop knock-out varieties and over-expressed lines to tackle the adverse effects of altered climatic patterns. This review summarizes the mechanistic understanding of heat, drought, salinity, and metal stress-responsive genes characterized so far using CRISPR-Cas9 and provides data on potential candidate genes that can be exploited by modern-day biotechnological tools to develop transgene-free genome-edited crops with better climate adaptability. Furthermore, the importance of early-maturing crop varieties to withstand abiotic stresses is also discussed in this review.
Collapse
Affiliation(s)
| | - Rabia Riaz
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Pashma Nawaz
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Maria Ashraf
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Bushra Ijaz
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.
| | - Allah Bakhsh
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
9
|
Sallam A, Dawood MFA, Jarquín D, Mohamed EA, Hussein MY, Börner A, Ahmed AAM. Genome-wide scanning to identify and validate single nucleotide polymorphism markers associated with drought tolerance in spring wheat seedlings. THE PLANT GENOME 2024; 17:e20444. [PMID: 38476036 DOI: 10.1002/tpg2.20444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024]
Abstract
Unlike other growth stages of wheat, very few studies on drought tolerance have been done at the seedling stage, and this is due to the complexity and sensitivity of this stage to drought stress resulting from climate change. As a result, the drought tolerance of wheat seedlings is poorly understood and very few genes associated with drought tolerance at this stage were identified. To address this challenge, a set of 172 spring wheat genotypes representing 20 different countries was evaluated under drought stress at the seedling stage. Drought stress was applied on all tested genotypes by water withholding for 13 days. Two types of traits, namely morphological and physiological traits were scored on the leaves of all tested genotypes. Genome-wide association study (GWAS) is one of the effective genetic analysis methods that was used to identify target single nucleotide polymorphism (SNP) markers and candidate genes for later use in marker-assisted selection. The tested plant materials were genotyped using 25k Infinium iSelect array (25K) (herein after it will be identified as 25K) (for 172 genotypes) and genotyping-by-sequencing (GBS) (for 103 genotypes), respectively. The results of genotyping revealed 21,093 25K and 11,362 GBS-SNPs, which were used to perform GWAS analysis for all scored traits. The results of GWAS revealed that 131 and 55 significant SNPs were controlling morphological and physiological traits, respectively. Moreover, a total of eight and seven SNP markers were found to be associated with more than one morphological and physiological trait under drought stress, respectively. Remarkably, 10 significant SNPs found in this study were previously reported for their association with drought tolerance in wheat. Out of the 10 validated SNP markers, four SNPs were associated with drought at the seedling stage, while the remaining six SNPs were associated with drought stress at the reproductive stage. Moreover, the results of gene enrichment revealed 18 and six pathways as highly significant biological and molecular pathways, respectively. The selection based on drought-tolerant alleles revealed 15 genotypes with the highest number of different drought-tolerant alleles. These genotypes can be used as candidate parents in future breeding programs to produce highly drought-tolerant genotypes with high genetic diversity. Our findings in this study provide novel markers and useful information on the genetic basis of drought tolerance at early growth stages.
Collapse
Affiliation(s)
- Ahmed Sallam
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Stadt Seeland, Germany
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt
| | - Mona F A Dawood
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, Egypt
| | - Diego Jarquín
- Department of Agronomy, University of Florida, Gainesville, Florida, USA
| | - Elsayed A Mohamed
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt
| | - Mohamed Y Hussein
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt
| | - Andreas Börner
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Stadt Seeland, Germany
| | - Asmaa A M Ahmed
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt
| |
Collapse
|
10
|
Marinov-Serafimov P, Golubinova I, Zapryanova N, Valcheva E, Nikolov B, Petrova S. Optimizing Allelopathy Screening Bioassays by Using Nano Silver. Life (Basel) 2024; 14:687. [PMID: 38929669 PMCID: PMC11204856 DOI: 10.3390/life14060687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Nano solutions are widely used in medicine and also have the potential to be used when performing allelopathy screening studies. The present experiment aimed to test the effectiveness of colloidal nano silver Silver-Amber© with nanoparticles of 20 nm (>20 mg/L at a purity level of 99.99%) as a carrier of allelochemicals in laboratory conditions. The influence of eleven concentrations of Silver-Amber© (0.10, 0.20, 0.39, 0.78, 1.56, 3.13, 6.25, 12.5, 25.0, 50.0 and 100.0% v/v) on the germination and initial development of test plant Lactuca sativa L. in 0.75% agar medium was studied. Data revealed that when increasing the quantitative ratio of Silver-Amber©, an inhibitory effect on seed germination (from 37.8 to 94.3%) and on the plant growth (from 54.0 to 98.9%) appeared. Lower concentrations (0.63 to 0.04 ppm) had an indifferent to statistically unproven stimulatory effect on the germination and initial development of L. sativa (GI ranged from 88.7-94.6%). Therefore, nano silver can be used as carrier of allelochemicals in allelopathic studies in laboratory conditions.
Collapse
Affiliation(s)
- Plamen Marinov-Serafimov
- Agricultural Academy, Institute of Decorative and Medicinal Plants, Negovan, 1222 Sofia, Bulgaria
| | - Irena Golubinova
- Agricultural Academy, Institute of Decorative and Medicinal Plants, Negovan, 1222 Sofia, Bulgaria
| | - Nadezhda Zapryanova
- Agricultural Academy, Institute of Decorative and Medicinal Plants, Negovan, 1222 Sofia, Bulgaria
| | | | - Bogdan Nikolov
- University of Plovdiv Paisii Hilendarski, 24 Tsar Asen Str., 4000 Plovdiv, Bulgaria
| | - Slaveya Petrova
- Agricultural University, 12 Mendeleev Blvd., 4000 Plovdiv, Bulgaria
- University of Plovdiv Paisii Hilendarski, 24 Tsar Asen Str., 4000 Plovdiv, Bulgaria
| |
Collapse
|
11
|
Tian Z, Zhao M, Wang J, Yang Q, Ma Y, Yang X, Ma L, Qi Y, Li J, Quinet M, Shi B, Meng Y. Exogenous melatonin improves germination rate in buckwheat under high temperature stress by regulating seed physiological and biochemical characteristics. PeerJ 2024; 12:e17136. [PMID: 38590707 PMCID: PMC11000643 DOI: 10.7717/peerj.17136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/28/2024] [Indexed: 04/10/2024] Open
Abstract
The germinations of three common buckwheat (Fagopyrum esculentum) varieties and two Tartary buckwheat (Fagopyrum tataricum) varieties seeds are known to be affected by high temperature. However, little is known about the physiological mechanism affecting germination and the effect of melatonin (MT) on buckwheat seed germination under high temperature. This work studied the effects of exogenous MT on buckwheat seed germination under high temperature. MT was sprayed. The parameters, including growth, and physiological factors, were examined. The results showed that exogenous MT significantly increased the germination rate (GR), germination potential (GP), radicle length (RL), and fresh weight (FW) of these buckwheat seeds under high-temperature stress and enhanced the content of osmotic adjustment substances and enzyme activity. Comprehensive analysis revealed that under high-temperature stress during germination, antioxidant enzymes play a predominant role, while osmotic adjustment substances work synergistically to reduce the extent of damage to the membrane structure, serving as the primary key indicators for studying high-temperature resistance. Consequently, our results showed that MT had a positive protective effect on buckwheat seeds exposed to high temperature stress, providing a theoretical basis for improving the ability to adapt to high temperature environments.
Collapse
Affiliation(s)
- Zemiao Tian
- Hebei Agricultrual University, Baoding, China
- Chinese Academy of Agricultural Sciences, Institute of Crop Sciences, Beijing, China
| | - Mengyu Zhao
- Chinese Academy of Agricultural Sciences, Institute of Crop Sciences, Beijing, China
| | - Junzhen Wang
- Liangshan Yi Autonomous Prefecture Academy of Agricultural Sciences, Xichang, China
| | - Qian Yang
- Hebei Agricultrual University, Baoding, China
| | - Yini Ma
- Hebei Agricultrual University, Baoding, China
| | - Xinlei Yang
- Hebei Agricultrual University, Baoding, China
| | - Luping Ma
- Hebei Agricultrual University, Baoding, China
| | - Yongzhi Qi
- Hebei Agricultrual University, Baoding, China
| | - Jinbo Li
- Luoyang Normal University, Luoyang, China
| | - Muriel Quinet
- Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | - Yu Meng
- Hebei Agricultrual University, Baoding, China
| |
Collapse
|
12
|
Karki M, Chu C, Anderson K, Nandety RS, Fiedler JD, Schachterle J, Bruggeman RS, Liu Z, Yang S. Genome-Wide Association Study of Host Resistance to Hessian Fly in Barley. PHYTOPATHOLOGY 2024; 114:752-759. [PMID: 37913750 DOI: 10.1094/phyto-06-23-0192-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The Hessian fly (HF), Mayetiola destructor (Diptera: Cecidomyiidae), is one of the most devastating insect pests of cereals including wheat, barley, and rye. Although wheat is the preferred host for HF, this continuously evolving pest has been emerging as a threat to barley production. However, characterization and identification of genetic resistance to HF has not been conducted in barley. In the present study, we used a genome-wide association study (GWAS) to identify barley resistance loci to HF using a geographically diverse set of 234 barley accessions. The results showed that around 90% of barley lines were highly susceptible, indicating a significant vulnerability to HF in barley, and a total of 29 accessions were resistant, serving as potential resistance resources. GWAS with a mixed linear model revealed two marker-trait associations, both on chromosome 4H. The resistance loci and associated markers will facilitate barley improvement and development for breeders. In addition, our results are fundamental for genetic studies to understand the HF resistance mechanism in barley.
Collapse
Affiliation(s)
- Manila Karki
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102
| | - Chenggen Chu
- Sugarbeet and Potato Research Unit, Edward T. Schafer Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Fargo, ND 58102
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102
| | - Kirk Anderson
- Cereals Crops Research Unit, Edward T. Schafer Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Fargo, ND 58102
| | - Raja Sekhar Nandety
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102
- Cereals Crops Research Unit, Edward T. Schafer Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Fargo, ND 58102
| | - Jason D Fiedler
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102
- Cereals Crops Research Unit, Edward T. Schafer Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Fargo, ND 58102
| | - Jeffrey Schachterle
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102
- Cereals Crops Research Unit, Edward T. Schafer Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Fargo, ND 58102
| | - Robert S Bruggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164
| | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102
| | - Shengming Yang
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102
- Cereals Crops Research Unit, Edward T. Schafer Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Fargo, ND 58102
| |
Collapse
|
13
|
Huang D, An Q, Huang S, Tan G, Quan H, Chen Y, Zhou J, Liao H. Biomod2 modeling for predicting the potential ecological distribution of three Fritillaria species under climate change. Sci Rep 2023; 13:18801. [PMID: 37914761 PMCID: PMC10620159 DOI: 10.1038/s41598-023-45887-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023] Open
Abstract
The Fritillaria species ranked as a well-known traditional medicine in China and has become rare due to excessive harvesting. To find reasonable strategy for conservation and cultivation, identification of new ecological distribution of Fritillaria species together with prediction of those responses to climate change are necessary. In terms of current occurrence records and bioclimatic variables, the suitable habitats for Fritillaria delavayi, Fritillaria taipaiensis, and Fritillaria wabuensis were predicted. In comparison with Maxent and GARP, Biomod2 obtained the best AUC, KAPPA and TSS values of larger than 0.926 and was chosen to construct model. Temperature seasonality was indicated to put the greatest influence on Fritillaria taipaiensis and Fritillaria wabuensis, while isothermality was of most importance for Fritillaria delavayi. The current suitable areas for three Fritillaria species were distributed in south-west China, accounting for approximately 17.72%, 23.06% and 20.60% of China's total area, respectively. During 2021-2100 period, the suitable habitats of F. delavayi and F. wabuensis reached the maximum under SSP585 scenario, while that of F. taipaiensis reached the maximum under SSP126 scenario. The high niche overlap among three Fritillaria species showed correlation with the chemical composition (P ≤ 0.05), while no correlation was observed between niche overlap and DNA barcodes, indicating that spatial distribution had a major influence on chemical composition in the Fritillaria species. Finally, the acquisition of species-specific habitats would contribute to decrease in habitat competition, and future conservation and cultivation of Fritillaria species.
Collapse
Affiliation(s)
- Deya Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Qiuju An
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Sipei Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Guodong Tan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Huige Quan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Yineng Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Jiayu Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| | - Hai Liao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| |
Collapse
|
14
|
Genievskaya Y, Zatybekov A, Abugalieva S, Turuspekov Y. Identification of Quantitative Trait Loci Associated with Powdery Mildew Resistance in Spring Barley under Conditions of Southeastern Kazakhstan. PLANTS (BASEL, SWITZERLAND) 2023; 12:2375. [PMID: 37376001 DOI: 10.3390/plants12122375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023]
Abstract
Barley (Hordeum vulgare L.) is one of the most produced cereal crops in the world. It has traditionally been used for the production of animal feed and for malting, as well as for human consumption. However, its production is highly affected by biotic stress factors, particularly the fungal pathogen Blumeria graminis (DC.) f. sp. hordei (Bgh), which causes powdery mildew (PM). In this study, a collection of 406 barley accessions from the USA, Kazakhstan, Europe, and Africa were assessed for resistance to PM over a 3-year period in southeastern Kazakhstan. The collection was grown in the field in 2020, 2021, and 2022 and was genotyped using the 9K SNP Illumina chip. A genome-wide association study (GWAS) was conducted to identify the quantitative trait loci (QTLs) associated with PM resistance. As a result, seven QTLs for PM resistance were detected on chromosomes 4H, 5H, and 7H (FDR p-values < 0.05). Genetic positions of two QTLs were similar to those of PM resistance QTLs previously reported in the scientific literature, suggesting that the five remaining QTLs are novel putative genetic factors for the studied trait. Haplotype analysis for seven QTLs revealed three haplotypes which were associated with total PM resistance and one haplotype associated with the high PM severity in the barley collection. Identified QTLs and haplotypes associated with the PM resistance of barley may be used for further analysis, trait pyramiding, and marker-assisted selection.
Collapse
Affiliation(s)
- Yuliya Genievskaya
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Alibek Zatybekov
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
| | - Saule Abugalieva
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Yerlan Turuspekov
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| |
Collapse
|
15
|
Singh V, Gupta K, Singh S, Jain M, Garg R. Unravelling the molecular mechanism underlying drought stress response in chickpea via integrated multi-omics analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1156606. [PMID: 37287713 PMCID: PMC10242046 DOI: 10.3389/fpls.2023.1156606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/18/2023] [Indexed: 06/09/2023]
Abstract
Drought stress affects growth and productivity significantly in chickpea. An integrated multi-omics analysis can provide a better molecular-level understanding of drought stress tolerance. In the present study, comparative transcriptome, proteome and metabolome analyses of two chickpea genotypes with contrasting responses to drought stress, ICC 4958 (drought-tolerant, DT) and ICC 1882 (drought-sensitive, DS), was performed to gain insights into the molecular mechanisms underlying drought stress response/tolerance. Pathway enrichment analysis of differentially abundant transcripts and proteins suggested the involvement of glycolysis/gluconeogenesis, galactose metabolism, and starch and sucrose metabolism in the DT genotype. An integrated multi-omics analysis of transcriptome, proteome and metabolome data revealed co-expressed genes, proteins and metabolites involved in phosphatidylinositol signaling, glutathione metabolism and glycolysis/gluconeogenesis pathways, specifically in the DT genotype under drought. These stress-responsive pathways were coordinately regulated by the differentially abundant transcripts, proteins and metabolites to circumvent the drought stress response/tolerance in the DT genotype. The QTL-hotspot associated genes, proteins and transcription factors may further contribute to improved drought tolerance in the DT genotype. Altogether, the multi-omics approach provided an in-depth understanding of stress-responsive pathways and candidate genes involved in drought tolerance in chickpea.
Collapse
Affiliation(s)
- Vikram Singh
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Khushboo Gupta
- Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, India
| | - Shubhangi Singh
- Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, India
| | - Mukesh Jain
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rohini Garg
- Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, India
| |
Collapse
|
16
|
Zhan C, Zhu P, Chen Y, Chen X, Liu K, Chen S, Hu J, He Y, Xie T, Luo S, Yang Z, Chen S, Tang H, Zhang H, Cheng J. Identification of a key locus, qNL3.1, associated with seed germination under salt stress via a genome-wide association study in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:58. [PMID: 36912929 PMCID: PMC10011300 DOI: 10.1007/s00122-023-04252-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 12/07/2022] [Indexed: 06/18/2023]
Abstract
Two causal OsTTL and OsSAPK1 genes of the key locus qNL3.1 significantly associated with seed germination under salt stress were identified via a genome-wide association study, which could improve rice seed germination under salt stress. Rice is a salt-sensitive crop, and its seed germination determines subsequent seedling establishment and yields. In this study, 168 accessions were investigated for the genetic control of seed germination under salt stress based on the germination rate (GR), germination index (GI), time at which 50% germination was achieved (T50) and mean level (ML). Extensive natural variation in seed germination was observed among accessions under salt stress. Correlation analysis showed significantly positive correlations among GR, GI and ML and a negative correlation with T50 during seed germination under salt stress. Forty-nine loci significantly associated with seed germination under salt stress were identified, and seven of these were identified in both years. By comparison, 16 loci were colocated with the previous QTLs, and the remaining 33 loci might be novel. qNL3.1, colocated with qLTG-3, was simultaneously identified with the four indices in two years and might be a key locus for seed germination under salt stress. Analysis of candidate genes showed that two genes, the similar to transthyretin-like protein OsTTL and the serine/threonine protein kinase OsSAPK1, were the causal genes of qNL3.1. Germination tests indicated that both Osttl and Ossapk1 mutants significantly reduced seed germination under salt stress compared to the wild type. Haplotype analysis showed that Hap.1 of OsTTL and Hap.1 of OsSAPK1 genes were excellent alleles, and their combination resulted in high seed germination under salt stress. Eight accessions with elite performance of seed germination under salt stress were identified, which could improve rice seed germination under salt stress.
Collapse
Affiliation(s)
- Chengfang Zhan
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Peiwen Zhu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yongji Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xinyi Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Kexin Liu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shanshan Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jiaxiao Hu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ying He
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ting Xie
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shasha Luo
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zeyuan Yang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Sunlu Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Haijuan Tang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hongsheng Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China.
| | - Jinping Cheng
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
17
|
Marček T, Hamow KÁ, Janda T, Darko E. Effects of High Voltage Electrical Discharge (HVED) on Endogenous Hormone and Polyphenol Profile in Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:1235. [PMID: 36986924 PMCID: PMC10054893 DOI: 10.3390/plants12061235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/15/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
High voltage electrical discharge (HVED) is an eco-friendly low-cost method based on the creation of plasma-activated water (PAW) through the release of electrical discharge in water which results in the formation of reactive particles. Recent studies have reported that such novel plasma technologies promote germination and growth but their hormonal and metabolic background is still not known. In the present work, the HVED-induced hormonal and metabolic changes were studied during the germination of wheat seedlings. Hormonal changes including abscisic acid (ABA), gibberellic acids (GAs), indol acetic acid (IAA) and jasmonic acid (JA) and the polyphenol responses were detected in the early (2nd day) and late (5th day) germination phases of wheat as well as their redistribution in shoot and root. HVED treatment significantly stimulated germination and growth both in the shoot and root. The root early response to HVED involved the upregulation of ABA and increased phaseic and ferulic acid content, while the active form of gibberellic acid (GA1) was downregulated. In the later phase (5th day of germination), HVED had a stimulatory effect on the production of benzoic and salicylic acid. The shoot showed a different response: HVED induced the synthesis of JA_Le_Ile, an active form of JA, and provoked the biosynthesis of cinnamic, p-coumaric and caffeic acid in both phases of germination. Surprisingly, in 2-day-old shoots, HVED decreased the GA20 levels, being intermediate in the synthesis of bioactive gibberellins. These HVED-provoked metabolic changes indicated a stress-related response that could contribute to germination in wheat.
Collapse
Affiliation(s)
- Tihana Marček
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia
| | - Kamirán Áron Hamow
- Agricultural Institute, Centre for Agricultural Research, ELKH, 2462 Martonvásár, Hungary
| | - Tibor Janda
- Agricultural Institute, Centre for Agricultural Research, ELKH, 2462 Martonvásár, Hungary
| | - Eva Darko
- Agricultural Institute, Centre for Agricultural Research, ELKH, 2462 Martonvásár, Hungary
| |
Collapse
|
18
|
Schierenbeck M, Alqudah AM, Thabet SG, Lohwasser U, Simón MR, Börner A. Association mapping unravels the genetics controlling seedling drought stress tolerance in winter wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1061845. [PMID: 36818842 PMCID: PMC9933780 DOI: 10.3389/fpls.2023.1061845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Drought is a major constraint in wheat (Triticum aestivum L.) grain yield. The present work aimed to identify quantitative trait nucleotides (QTNs)/ candidate genes influencing drought tolerance-related traits at the seedling stage in 261 accessions of a diverse winter wheat panel. Seeds from three consecutive years were exposed to polyethylene glycol 12% (PEG-6000) and a control treatment (distilled water). The Farm-CPU method was used for the association analysis with 17,093 polymorphic SNPs. PEG treatment reduced shoot length (SL) (-36.3%) and root length (RL) (-11.3%) compared with control treatments, while the coleoptile length (CL) was increased by 11% under drought conditions, suggesting that it might be considered as an indicator of stress-tolerance. Interestingly, we revealed 70 stable QTN across 17 chromosomes. Eight QTNs related to more than one trait were detected on chromosomes 1B, 2A (2), 2B, 2D, 4B, 7A, and 7B and located nearby or inside candidate genes within the linkage disequilibrium (LD) interval. For instance, the QTN on chromosome 2D is located inside the gene TraesCS2D02G133900 that controls the variation of CL_S and SL_C. The allelic variation at the candidate genes showed significant influence on the associated traits, demonstrating their role in controlling the natural variation of multi-traits of drought stress tolerance. The gene expression of these candidate genes under different stress conditions validates their biological role in stress tolerance. Our findings offer insight into understanding the genetic factors and diverse mechanisms in response to water shortage conditions that are important for wheat improvement and adaptation at early developmental stages.
Collapse
Affiliation(s)
- Matías Schierenbeck
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Seeland, Germany
- Cereals, Faculty of Agricultural Sciences and Forestry, National University of La Plata, La Plata, Argentina
- CONICET CCT La Plata, La Plata, Argentina
| | - Ahmad M. Alqudah
- Biological Science Program, Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, Doha, Qatar
| | - Samar G. Thabet
- Department of Botany, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Ulrike Lohwasser
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Seeland, Germany
| | - María Rosa Simón
- Cereals, Faculty of Agricultural Sciences and Forestry, National University of La Plata, La Plata, Argentina
- CONICET CCT La Plata, La Plata, Argentina
| | - Andreas Börner
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Seeland, Germany
| |
Collapse
|
19
|
Mohamed EA, Ahmed AAM, Schierenbeck M, Hussein MY, Baenziger PS, Börner A, Sallam A. Screening Spring Wheat Genotypes for TaDreb-B1 and Fehw3 Genes under Severe Drought Stress at the Germination Stage Using KASP Technology. Genes (Basel) 2023; 14:373. [PMID: 36833301 PMCID: PMC9957104 DOI: 10.3390/genes14020373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
Drought stress is a major yield-limiting factor throughout the world in wheat (Triticum aestivum L.), causing losses of up to 80% of the total yield. The identification of factors affecting drought stress tolerance in the seedling stage is especially important to increase adaptation and accelerate the grain yield potential. In the current study, 41 spring wheat genotypes were tested for their tolerance to drought at the germination stage under two different polyethylene glycol concentrations (PEG) of 25% and 30%. For this purpose, twenty seedlings from each genotype were evaluated in triplicate with a randomized complete block design (RCBD) in a controlled growth chamber. The following nine parameters were recorded: germination pace (GP), germination percentage (G%), number of roots (NR), shoot length (SL), root length (RL), shoot-root length ratio (SRR), fresh biomass weight (FBW), dry biomass weight (DBW), and water content (WC). An analysis of variance (ANOVA) revealed highly significant differences (p < 0.01) among the genotypes, treatments (PEG25%, PEG30%) and genotypes × treatment interaction, for all traits. The broad-sense heritability (H2) estimates were very high in both concentrations. They ranged from 89.4 to 98.9% under PEG25% and from 70.8 to 98.7% under PEG30%. Citr15314 (Afghanistan) was among the best performing genotypes under both concentrations for most of the germination traits. Two KASP markers for TaDreb-B1 and Fehw3 genes were used to screen all genotypes and to study the effect of these on drought tolerance at the germination stage. All genotypes with Fehw3 (only) showed a better performance for most traits under both concentrations compared to other genotypes having TaDreb-B1 or having both genes. To our knowledge, this work is the first report showing the effect of the two genes on germination traits under severe drought stress conditions.
Collapse
Affiliation(s)
- Elsayed A. Mohamed
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | - Asmaa A. M. Ahmed
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | - Matías Schierenbeck
- Resources Genetics and Reproduction, Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
- CONICET CCT La Plata, 8 N°1467, La Plata 1900, Argentina
| | - Mohamed Y. Hussein
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | - P. Stephen Baenziger
- Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE 68583, USA
| | - Andreas Börner
- Resources Genetics and Reproduction, Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
| | - Ahmed Sallam
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
- Resources Genetics and Reproduction, Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
| |
Collapse
|
20
|
Wu C, Wang Y, Sun H. Targeted and untargeted metabolomics reveals deep analysis of drought stress responses in needles and roots of Pinus taeda seedlings. FRONTIERS IN PLANT SCIENCE 2023; 13:1031466. [PMID: 36798806 PMCID: PMC9927248 DOI: 10.3389/fpls.2022.1031466] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/28/2022] [Indexed: 06/01/2023]
Abstract
Drought stress is one of major environmental stresses affecting plant growth and yield. Although Pinus taeda trees are planted in rainy southern China, local drought sometime occurs and can last several months, further affecting their growth and resin production. In this study, P. taeda seedlings were treated with long-term drought (42 d), and then targeted and untargeted metabolomics analysis were carried out to evaluate drought tolerance of P. taeda. Targeted metabolomics analysis showed that levels of some sugars, phytohormones, and amino acids significantly increased in the roots and needles of water-stressed (WS) P. taeda seedlings, compared with well-watered (WW) pine seedlings. These metabolites included sucrose in pine roots, the phytohormones abscisic acid and sacylic acid in pine needles, the phytohormone gibberellin (GA4) and the two amino acids, glycine and asparagine, in WS pine roots. Compared with WW pine seedlings, the neurotransmitter acetylcholine significantly increased in needles of WS pine seedlings, but significantly reduced in their roots. The neurotransmitters L-glutamine and hydroxytyramine significantly increased in roots and needles of WS pine seedlings, respectively, compared with WW pine seedlings, but the neurotransmitter noradrenaline significantly reduced in needles of WS pine seedlings. Levels of some unsaturated fatty acids significantly reduced in roots or needles of WS pine seedlings, compared with WW pine seedlings, such as linoleic acid, oleic acid, myristelaidic acid, myristoleic acid in WS pine roots, and palmitelaidic acid, erucic acid, and alpha-linolenic acid in WS pine needles. However, three saturated fatty acids significantly increased in WS pine seedlings, i.e., dodecanoic acid in WS pine needles, tricosanoic acid and heptadecanoic acid in WS pine roots. Untargeted metabolomics analysis showed that levels of some metabolites increased in WS pine seedlings, especially sugars, long-chain lipids, flavonoids, and terpenoids. A few of specific metabolites increased greatly, such as androsin, piceatanol, and panaxatriol in roots and needles of WS pine seedlings. Comparing with WW pine seedlings, it was found that the most enriched pathways in WS pine needles included flavone and flavonol biosynthesis, ABC transporters, diterpenoid biosynthesis, plant hormone signal transduction, and flavonoid biosynthesis; in WS pine roots, the most enriched pathways included tryptophan metabolism, caffeine metabolism, sesquiterpenoid and triterpenoid biosynthesis, plant hormone signal transduction, biosynthesis of phenylalanine, tyrosine, and tryptophan. Under long-term drought stress, P. taeda seedlings showed their own metabolomics characteristics, and some new metabolites and biosynthesis pathways were found, providing a guideline for breeding drought-tolerant cultivars of P. taeda.
Collapse
Affiliation(s)
- Chu Wu
- College of Horticulture & Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Yun Wang
- College of Life Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Honggang Sun
- Institute of Subtropic Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang, China
| |
Collapse
|
21
|
Identification of Drought-Tolerance Genes in the Germination Stage of Soybean. BIOLOGY 2022; 11:biology11121812. [PMID: 36552318 PMCID: PMC9775293 DOI: 10.3390/biology11121812] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/10/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Drought stress influences the vigor of plant seeds and inhibits seed germination, making it one of the primary environmental factors adversely affecting food security. The seed germination stage is critical to ensuring the growth and productivity of soybeans in soils prone to drought conditions. We here examined the genetic diversity and drought-tolerance phenotypes of 410 accessions of a germplasm diversity panel for soybean and conducted quantitative genetics analyses to identify loci associated with drought tolerance of seed germination. We uncovered significant differences among the diverse genotypes for four growth indices and five drought-tolerance indices, which revealed abundant variation among genotypes, upon drought stress, and for genotype × treatment effects. We also used 158,327 SNP markers and performed GWAS for the drought-related traits. Our data met the conditions (PCA + K) for using a mixed linear model in TASSEL, and we thus identified 26 SNPs associated with drought tolerance indices for germination stage distributed across 10 chromosomes. Nine SNP sites, including, for example, Gm20_34956219 and Gm20_36902659, were associated with two or more phenotypic indices, and there were nine SNP markers located in or adjacent to (within 500 kb) previously reported drought tolerance QTLs. These SNPs led to our identification of 41 candidate genes related to drought tolerance in the germination stage. The results of our study contribute to a deeper understanding of the genetic mechanisms underlying drought tolerance in soybeans at the germination stage, thereby providing a molecular basis for identifying useful soybean germplasm for breeding new drought-tolerant varieties.
Collapse
|
22
|
Elbasyoni IS, Eltaher S, Morsy S, Mashaheet AM, Abdallah AM, Ali HG, Mariey SA, Baenziger PS, Frels K. Novel Single-Nucleotide Variants for Morpho-Physiological Traits Involved in Enhancing Drought Stress Tolerance in Barley. PLANTS (BASEL, SWITZERLAND) 2022; 11:3072. [PMID: 36432800 PMCID: PMC9696095 DOI: 10.3390/plants11223072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/14/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Barley (Hordeum vulgare L.) thrives in the arid and semi-arid regions of the world; nevertheless, it suffers large grain yield losses due to drought stress. A panel of 426 lines of barley was evaluated in Egypt under deficit (DI) and full irrigation (FI) during the 2019 and 2020 growing seasons. Observations were recorded on the number of days to flowering (NDF), total chlorophyll content (CH), canopy temperature (CAN), grain filling duration (GFD), plant height (PH), and grain yield (Yield) under DI and FI. The lines were genotyped using the 9K Infinium iSelect single nucleotide polymorphisms (SNP) genotyping platform, which resulted in 6913 high-quality SNPs. In conjunction with the SNP markers, the phenotypic data were subjected to a genome-wide association scan (GWAS) using Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK). The GWAS results indicated that 36 SNPs were significantly associated with the studied traits under DI and FI. Furthermore, eight markers were significant and common across DI and FI water regimes, while 14 markers were uniquely associated with the studied traits under DI. Under DI and FI, three (11_10326, 11_20042, and 11_20170) and five (11_20099, 11_10326, 11_20840, 12_30298, and 11_20605) markers, respectively, had pleiotropic effect on at least two traits. Among the significant markers, 24 were annotated to known barley genes. Most of these genes were involved in plant responses to environmental stimuli such as drought. Overall, nine of the significant markers were previously reported, and 27 markers might be considered novel. Several markers identified in this study could enable the prediction of barley accessions with optimal agronomic performance under DI and FI.
Collapse
Affiliation(s)
- Ibrahim S. Elbasyoni
- Crop Science Department, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Shamseldeen Eltaher
- Department of Plant Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City (USC), Sadat City 32897, Egypt
| | - Sabah Morsy
- Crop Science Department, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt
| | - Alsayed M. Mashaheet
- Plant Pathology Department, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt
| | - Ahmed M. Abdallah
- Natural Resources and Agricultural Engineering Department, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt
| | - Heba G. Ali
- Barley Research Department, Field Crops Research Institute, Agricultural Research Center, 9 Gamma Street-Giza, Cairo 12619, Egypt
| | - Samah A. Mariey
- Barley Research Department, Field Crops Research Institute, Agricultural Research Center, 9 Gamma Street-Giza, Cairo 12619, Egypt
| | - P. Stephen Baenziger
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Katherine Frels
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
23
|
Giridhar M, Meier B, Imani J, Kogel KH, Peiter E, Vothknecht UC, Chigri F. Comparative analysis of stress-induced calcium signals in the crop species barley and the model plant Arabidopsis thaliana. BMC PLANT BIOLOGY 2022; 22:447. [PMID: 36114461 PMCID: PMC9482192 DOI: 10.1186/s12870-022-03820-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Plants are continuously exposed to changing environmental conditions and biotic attacks that affect plant growth. In crops, the inability to respond appropriately to stress has strong detrimental effects on agricultural production and yield. Ca2+ signalling plays a fundamental role in the response of plants to most abiotic and biotic stresses. However, research on stimulus-specific Ca2+ signals has mostly been pursued in Arabidopsis thaliana, while in other species these events are little investigated . RESULTS In this study, we introduced the Ca2+ reporter-encoding gene APOAEQUORIN into the crop species barley (Hordeum vulgare). Measurements of the dynamic changes in [Ca2+]cyt in response to various stimuli such as NaCl, mannitol, H2O2, and flagellin 22 (flg22) revealed the occurrence of dose- as well as tissue-dependent [Ca2+]cyt transients. Moreover, the Ca2+ signatures were unique for each stimulus, suggesting the involvement of different Ca2+ signalling components in the corresponding stress response. Alongside, the barley Ca2+ signatures were compared to those produced by the phylogenetically distant model plant Arabidopsis. Notable differences in temporal kinetics and dose responses were observed, implying species-specific differences in stress response mechanisms. The plasma membrane Ca2+ channel blocker La3+ strongly inhibited the [Ca2+]cyt response to all tested stimuli, indicating a critical role of extracellular Ca2+ in the induction of stress-associated Ca2+ signatures in barley. Moreover, by analysing spatio-temporal dynamics of the [Ca2+]cyt transients along the developmental gradient of the barley leaf blade we demonstrate that different parts of the barley leaf show quantitative differences in [Ca2+]cyt transients in response to NaCl and H2O2. There were only marginal differences in the response to flg22, indicative of developmental stage-dependent Ca2+ responses specifically to NaCl and H2O2. CONCLUSION This study reveals tissue-specific Ca2+ signals with stimulus-specific kinetics in the crop species barley, as well as quantitative differences along the barley leaf blade. A number of notable differences to the model plants Arabidopsis may be linked to different stimulus sensitivity. These transgenic barley reporter lines thus present a valuable tool to further analyse mechanisms of Ca2+ signalling in this crop and to gain insights into the variation of Ca2+-dependent stress responses between stress-susceptible and -resistant species.
Collapse
Affiliation(s)
- Maya Giridhar
- Plant Cell Biology, IZMB, University of Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Bastian Meier
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Betty Heimann Str. 3, D-06120, Halle (Saale), Germany
| | - Jafargholi Imani
- Research Centre for BioSystems, Land Use and Nutrition (IFZ), Institute for Phytopathology, Justus Liebig University Gießen, Heinrich-Buff-Ring 26-32, D-35392, Gießen, Germany
| | - Karl-Heinz Kogel
- Research Centre for BioSystems, Land Use and Nutrition (IFZ), Institute for Phytopathology, Justus Liebig University Gießen, Heinrich-Buff-Ring 26-32, D-35392, Gießen, Germany
| | - Edgar Peiter
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Betty Heimann Str. 3, D-06120, Halle (Saale), Germany.
| | - Ute C Vothknecht
- Plant Cell Biology, IZMB, University of Bonn, Kirschallee 1, D-53115, Bonn, Germany.
| | - Fatima Chigri
- Plant Cell Biology, IZMB, University of Bonn, Kirschallee 1, D-53115, Bonn, Germany
| |
Collapse
|
24
|
Zhang Y, Dai T, Liu Y, Wang J, Wang Q, Zhu W. Effect of Exogenous Glycine Betaine on the Germination of Tomato Seeds under Cold Stress. Int J Mol Sci 2022; 23:ijms231810474. [PMID: 36142386 PMCID: PMC9502054 DOI: 10.3390/ijms231810474] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Cold stress is known to influence tomato growth, development, and yield. In this study, we analyzed the germination of tomato seeds treated with exogenous glycine betaine (GB) at a low temperature (14 °C). The results showed that cold stress inhibited tomato seed germination, and pretreatment with exogenous GB reduced this inhibition and enhanced the germination rate (GR), germination index (GI), and viability of tomato seeds at low temperatures. Analysis of gene expression and metabolism revealed that GB positively regulated endogenous hormone gibberellin (GA) content and negatively regulated abscisic acid (ABA) content, while GB reduced the starch content in the seeds by up-regulating the amylase gene expression. Gene expression analysis showed that the key genes (SlSOD, SlPOD, and SlchlAPX) involved in reactive oxygen species (ROS) scavenging systems were up-regulated in GB-pretreated tomato seeds compared with the control. At the same time, levels of malondialdehyde and hydrogen peroxide were significantly lower, while the proline content and peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) levels were elevated compared with those in the control. These results demonstrate that exogenous GB as a positive regulator effectively alleviated the inhibition of tomato seed germination under cold stress by different signal pathways.
Collapse
Affiliation(s)
- Yingying Zhang
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Taoyu Dai
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- College of Life Science, Shanghai Normal University, Shanghai 201400, China
| | - Yahui Liu
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Jinyan Wang
- Innovation Center of Jiangsu, Academy of Agricultural Sciences, Nanjing 210014, China
| | - Quanhua Wang
- College of Life Science, Shanghai Normal University, Shanghai 201400, China
| | - Weimin Zhu
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Correspondence:
| |
Collapse
|
25
|
Liu H, Yuan L, Guo W, Wu W. Transcription factor TERF1 promotes seed germination under osmotic conditions by activating gibberellin acid signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 322:111350. [PMID: 35709980 DOI: 10.1016/j.plantsci.2022.111350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/22/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Seed germination is the first step of seedling establishment, which is particularly sensitive to drought stress. Elucidating the mechanism regulating seed germination under drought stress is of great importance. We showed that overexpressing Tomato Ethylene Responsive Factor 1 (TERF1), an ERF transcription factor in the ethylene signaling pathway, significantly reduced seed sensitivity to mannitol treatment during seed germination. Germination assay demonstrated that TERF1 could activate gibberellin acid (GA) signaling pathway independent on GA metabolism during germination. By comparative transcriptome analysis (mannitol vs normal germination condition, mannitol vs mannitol plus paclobutrazol (PAC, an inhibitor of GA biosynthesis)) we identified the genes regulated by TERF1 specifically under mannitol treatment and confirmed that TERF1 could activate GA signaling pathway independent on GA metabolism, which were consistent with the germination assay with mannitol and mannitol plus PAC treatment. Based on sugar, gene expression and germination analysis we proved that TERF1 promoted seed germination through glucose signaling pathway mediated by GA. Thus our study provides an underlying mechanism for activating GA signaling pathway by TERF1 during seed germination under osmotic conditions.
Collapse
Affiliation(s)
- Hongzhi Liu
- Graduate School of Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing 100081, PR China
| | - Long Yuan
- Graduate School of Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing 100081, PR China
| | - Wei Guo
- Graduate School of Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing 100081, PR China.
| | - Wei Wu
- Graduate School of Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing 100081, PR China.
| |
Collapse
|
26
|
Makhtoum S, Sabouri H, Gholizadeh A, Ahangar L, Katouzi M. QTLs Controlling Physiological and Morphological Traits of Barley (Hordeum vulgare L.) Seedlings under Salinity, Drought, and Normal Conditions. BIOTECH 2022; 11:biotech11030026. [PMID: 35892931 PMCID: PMC9326576 DOI: 10.3390/biotech11030026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
To identify the genomic regions for the physiological and morphological traits of barley genotypes under normal salinity and drought, a set of 103 recombinant inbred line (RIL) populations, developed between Badia and Kavir crosses, was evaluated under phytotron conditions in a completely randomized design in 2019. Linkage maps were prepared using 152 SSR markers, 72 ISSR, 7 IRAP, 29 CAAT, 27 SCoT, and 15 iPBS alleles. The markers were assigned to seven barley chromosomes and covered 999.29 centimorgans (cM) of the barley genome. In addition, composite interval mapping showed 8, 9, and 26 quantitative trait loci (QTLs) under normal, drought, and salinity stress conditions, respectively. Our results indicate the importance of chromosomes 1, 4, 5, and 7 in salinity stress. These regions were involved in genes controlling stomata length (LR), leaf number (LN), leaf weight (LW), and genetic score (SCR). Three major stable pleiotropic QTLs (i.e., qSCS-1, qRLS-1, and qLNN-1) were associated with SCR, root length (RL), and root number (RN) in both treatments (i.e., normal and salinity), and two major stable pleiotropic QTLs (i.e., qSNN-3 and qLWS-3) associated with the stomata number (SN) and LW appeared to be promising for marker-assisted selection (MAS). Two major-effect QTLs (i.e., SCot8-B-CAAT5-D and HVM54-Bmag0571) on chromosomes 1 and 2 were characterized for their positive allele effect, which can be used to develop barley varieties concerning drought conditions. The new alleles (i.e., qLWS-4a, qSLS-4, qLNS-7b, qSCS-7, and qLNS-7a) identified in this study are useful in pyramiding elite alleles for molecular breeding and marker assisted selection for improving salinity tolerance in barley.
Collapse
Affiliation(s)
- Somayyeh Makhtoum
- Department of Plant Production, Faculty of Agriculture Science and Natural Resources, Gonbad Kavous University, Gonbad 4971799151, Iran; (S.M.); (A.G.); (L.A.)
| | - Hossein Sabouri
- Department of Plant Production, Faculty of Agriculture Science and Natural Resources, Gonbad Kavous University, Gonbad 4971799151, Iran; (S.M.); (A.G.); (L.A.)
- Correspondence: or (H.S.); (M.K.); Tel.: +98-91-1143-8917 (H.S.); +41-77-9660486 (M.K.)
| | - Abdollatif Gholizadeh
- Department of Plant Production, Faculty of Agriculture Science and Natural Resources, Gonbad Kavous University, Gonbad 4971799151, Iran; (S.M.); (A.G.); (L.A.)
| | - Leila Ahangar
- Department of Plant Production, Faculty of Agriculture Science and Natural Resources, Gonbad Kavous University, Gonbad 4971799151, Iran; (S.M.); (A.G.); (L.A.)
| | - Mahnaz Katouzi
- Crop Génome Dynamics Group, Agroscope Changins, 1260 Nyon, Switzerland
- Correspondence: or (H.S.); (M.K.); Tel.: +98-91-1143-8917 (H.S.); +41-77-9660486 (M.K.)
| |
Collapse
|
27
|
Hasseb NM, Sallam A, Karam MA, Gao L, Wang RRC, Moursi YS. High-LD SNP markers exhibiting pleiotropic effects on salt tolerance at germination and seedlings stages in spring wheat. PLANT MOLECULAR BIOLOGY 2022; 108:585-603. [PMID: 35217965 PMCID: PMC8967789 DOI: 10.1007/s11103-022-01248-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/25/2022] [Indexed: 06/01/2023]
Abstract
Salt tolerance at germination and seedling growth stages was investigated. GWAS revealed nine genomic regions with pleiotropic effects on salt tolerance. Salt tolerant genotypes were identified for future breeding program. With 20% of the irrigated land worldwide affected by it, salinity is a serious threat to plant development and crop production. While wheat is the most stable food source worldwide, it has been classified as moderately tolerant to salinity. In several crop plants; such as barley, maize and rice, it has been shown that salinity tolerance at seed germination and seedling establishment is under polygenic control. As yield was the ultimate goal of breeders and geneticists, less attention has been paid to understanding the genetic architecture of salt tolerance at early stages. Thus, the genetic control of salt tolerance at these stages is poorly understood relative to the late stages. In the current study, 176 genotypes of spring wheat were tested for salinity tolerance at seed germination and seedling establishment. Genome-Wide Association Study (GWAS) has been used to identify the genomic regions/genes conferring salt tolerance at seed germination and seedling establishment. Salinity stress negatively impacted all germination and seedling development parameters. A set of 137 SNPs showed significant association with the traits of interest. Across the whole genome, 33 regions showed high linkage disequilibrium (LD). These high LD regions harbored 15 SNPs with pleiotropic effect (i.e. SNPs that control more than one trait). Nine genes belonging to different functional groups were found to be associated with the pleiotropic SNPs. Noteworthy, chromosome 2B harbored the gene TraesCS2B02G135900 that acts as a potassium transporter. Remarkably, one SNP marker, reported in an early study, associated with salt tolerance was validated in this study. Our findings represent potential targets of genetic manipulation to understand and improve salinity tolerance in wheat.
Collapse
Affiliation(s)
- Nouran M Hasseb
- Department of Botany, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt
| | - Ahmed Sallam
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt.
| | - Mohamed A Karam
- Department of Botany, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt
| | - Liangliang Gao
- Department of Plant Pathology and Wheat Genetics Resource Center, Kansas State Univ, Manhattan, KS, 66502, USA
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Buxin Road 97, Dapeng-District, Shenzhen, 518120, Guangdong, China
| | - Richard R C Wang
- USDA-ARS Forage and Range Research Lab, Utah State University, Logan, UT, 84322-6300, USA
| | - Yasser S Moursi
- Department of Botany, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt
| |
Collapse
|
28
|
Seed germination and vigor: ensuring crop sustainability in a changing climate. Heredity (Edinb) 2022; 128:450-459. [PMID: 35013549 DOI: 10.1038/s41437-022-00497-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 12/29/2021] [Accepted: 01/02/2022] [Indexed: 11/08/2022] Open
Abstract
In the coming decades, maintaining a steady food supply for the increasing world population will require high-yielding crop plants which can be productive under increasingly variable conditions. Maintaining high yields will require the successful and uniform establishment of plants in the field under altered environmental conditions. Seed vigor, a complex agronomic trait that includes seed longevity, germination speed, seedling growth, and early stress tolerance, determines the duration and success of this establishment period. Elevated temperature during early seed development can decrease seed size, number, and fertility, delay germination and reduce seed vigor in crops such as cereals, legumes, and vegetable crops. Heat stress in mature seeds can reduce seed vigor in crops such as lettuce, oat, and chickpea. Warming trends and increasing temperature variability can increase seed dormancy and reduce germination rates, especially in crops that require lower temperatures for germination and seedling establishment. To improve seed germination speed and success, much research has focused on selecting quality seeds for replanting, priming seeds before sowing, and breeding varieties with improved seed performance. Recent strides in understanding the genetic basis of variation in seed vigor have used genomics and transcriptomics to identify candidate genes for improving germination, and several studies have explored the potential impact of climate change on the percentage and timing of germination. In this review, we discuss these recent advances in the genetic underpinnings of seed performance as well as how climate change is expected to affect vigor in current varieties of staple, vegetable, and other crops.
Collapse
|
29
|
iTRAQ based protein profile analysis revealed key proteins involved in regulation of drought-tolerance during seed germination in Adzuki bean. Sci Rep 2021; 11:23725. [PMID: 34887505 PMCID: PMC8660776 DOI: 10.1038/s41598-021-03178-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/29/2021] [Indexed: 01/21/2023] Open
Abstract
Adzuki bean is an important legume crop due to its high-quality protein, fiber, vitamins, minerals as well as rich bioactive substances. However, it is vulnerable to drought at the germination stage. However, little information is available about the genetic control of drought tolerance during seed germination in adzuki bean. In this study, some differential expression proteins (DEPs) were identified during seed germination between the drought-tolerant variety 17235 and drought-sensitive variety 17033 in adzuki bean using iTRAQ method. A total of 2834 proteins were identified in the germinating seeds of these two adzuki beans. Compared with the variety 17033, 87 and 80 DEPs were increased and decreased accumulation in variety 17235 under drought, respectively. Meanwhile, in the control group, a few DEPs, including 9 up-regulated and 21 down-regulated proteins, were detected in variety 17235, respectively. GO, KEGG, and PPI analysis revealed that the DEPs related to carbohydrate metabolism and energy production were significantly increased in response to drought stresses. To validate the proteomic function, the ectopic overexpression of V-ATPase in tobacco was performed and the result showed that V-ATPase upregulation could enhance the drought tolerance of tobacco. The results provide valuable insights into genetic response to drought stress in adzuki bean, and the DEPs could be applied to develop biomarkers related to drought tolerant in adzuki bean breeding projects.
Collapse
|
30
|
Thabet SG, Sallam A, Moursi YS, Karam MA, Alqudah AM. Genetic factors controlling nTiO 2 nanoparticles stress tolerance in barley (Hordeum vulgare) during seed germination and seedling development. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:1288-1301. [PMID: 34706214 DOI: 10.1071/fp21129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Titanium dioxide nanoparticle (nTiO2) is one of the most produced nanoparticles worldwide. Its mechanism on crop development and performance is unclear as it is hard to predict their toxicity or benefit. Therefore, understanding the genetics of crop development under nTiO2 is a prerequisite for their applications in agriculture and crop improvement. Here, we aimed to examine the influnce of 300ppm nTiO2 on seed germination, seedling morphology, root-related traits in 121 worldwide spring barley (Hordeum vulgare L.) accessions. Results show that nTiO2 significantley affected all traits scored in this study. Response to nTiO2 treatment, clear wide natural variation among accesions was detected. Remarkably, 10 genotypes showed increased root length under nTiO2 at the seedling stage indicating that nTiO2 enhanced the root elongation. Genome-wide association scan (GWAS) was applied using 9K single nucleotide polymorphism (SNPs) in a mixed-linear model that revealed 86 significant marker-trait associations with all traits scored in this study. Many significant SNPs were physically located near candidate genes, of which 191 genes were detected within the linkage disequilibrium and distributed over all barley chromosomes. Mostly, the genes harboured by chromosome 2H, specially calcium-binding genes family, regulate the variation of seedling length-related traits. Candidate genes on 7H encode zinc finger protein that controls the rate of germination. Therefore, these genomic regions at 2H and 7H can be targeted to select for improved seedling development and seed germination under nTiO2 stress in soils. These results improve understanding the genetic control of seed germination and seedling development under high levels of nTiO2 that can support plant breeding and crop improvement programmes.
Collapse
Affiliation(s)
- Samar G Thabet
- Department of Botany, Faculty of Science, University of Fayoum, 63514 Fayoum, Egypt
| | - Ahmed Sallam
- Department of Genetics, Faculty of Agriculture, Assiut University, 71526 Assiut, Egypt
| | - Yasser S Moursi
- Department of Botany, Faculty of Science, University of Fayoum, 63514 Fayoum, Egypt
| | - Mohamed A Karam
- Department of Botany, Faculty of Science, University of Fayoum, 63514 Fayoum, Egypt
| | - Ahmad M Alqudah
- Department of Agroecology, Aarhus University, Flakkebjerg, 4200 Slagelse, Denmark
| |
Collapse
|
31
|
Application of High Voltage Electrical Discharge Treatment to Improve Wheat Germination and Early Growth under Drought and Salinity Conditions. PLANTS 2021; 10:plants10102137. [PMID: 34685946 PMCID: PMC8538633 DOI: 10.3390/plants10102137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 11/21/2022]
Abstract
The environmentally friendly, physical method of high voltage electrical discharge (HVED) was developed to improve the drought and salinity tolerance of two wheat genotypes. Unlike other plasma technologies, HVED treatment involves the discharge of electricity in water. In this study, the effect of HVED pretreatment on wheat germination and early vegetative growth under drought (0%, 15%, 20% and 30% PEG) and salinity (0, 90, 160 and 230 mM NaCl) stress conditions was investigated. HVED-exposed seeds showed altered seed surfaces and became more permeable to water uptake, resulting in higher germination percentages, germination index values, and shoot and root growth under the control and all drought and salinity concentrations. Moreover, the electrical conductivity of the water medium increased significantly, indicating HVED-induced reactions of ionization and dissociations of water molecules occurred. In addition, HVED pretreatment in the salt experiment improved the tolerance index values of the shoots and roots. The most pronounced genotypic variations occurred under the highest stress levels (30% PEG or 230 mM NaCl) and varied with the stress intensity and growth stage. The study results indicate that HVED pretreatment has the potential to improve drought and salt tolerance in wheat.
Collapse
|
32
|
Borrego-Benjumea A, Carter A, Zhu M, Tucker JR, Zhou M, Badea A. Genome-Wide Association Study of Waterlogging Tolerance in Barley ( Hordeum vulgare L.) Under Controlled Field Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:711654. [PMID: 34512694 PMCID: PMC8427447 DOI: 10.3389/fpls.2021.711654] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/21/2021] [Indexed: 06/01/2023]
Abstract
Waterlogging is one of the main abiotic stresses severely reducing barley grain yield. Barley breeding programs focusing on waterlogging tolerance require an understanding of genetic loci and alleles in the current germplasm. In this study, 247 worldwide spring barley genotypes grown under controlled field conditions were genotyped with 35,926 SNPs with minor allele frequency (MAF) > 0.05. Significant phenotypic variation in each trait, including biomass, spikes per plant, grains per plant, kernel weight per plant, plant height and chlorophyll content, was observed. A genome-wide association study (GWAS) based on linkage disequilibrium (LD) for waterlogging tolerance was conducted. Population structure analysis divided the population into three subgroups. A mixed linkage model using both population structure and kinship matrix (Q+K) was performed. We identified 17 genomic regions containing 51 significant waterlogging-tolerance-associated markers for waterlogging tolerance response, accounting for 5.8-11.5% of the phenotypic variation, with a majority of them localized on chromosomes 1H, 2H, 4H, and 5H. Six novel QTL were identified and eight potential candidate genes mediating responses to abiotic stresses were located at QTL associated with waterlogging tolerance. To our awareness, this is the first GWAS for waterlogging tolerance in a worldwide barley collection under controlled field conditions. The marker-trait associations could be used in the marker-assisted selection of waterlogging tolerance and will facilitate barley breeding.
Collapse
Affiliation(s)
- Ana Borrego-Benjumea
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB, Canada
| | - Adam Carter
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB, Canada
| | - Min Zhu
- College of Agriculture, Yangzhou University, Yangzhou, China
| | - James R. Tucker
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB, Canada
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Ana Badea
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB, Canada
| |
Collapse
|
33
|
Lateef D, Mustafa K, Tahir N. Screening of Iraqi barley accessions under PEG-induced drought conditions. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1917456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Djshwar Lateef
- Biotechnology and Crop Sciences Department, College of Agricultural Engineering Sciences, University of Sulaimani, Sulaimani, Iraq
| | - Kamil Mustafa
- Biotechnology and Crop Sciences Department, College of Agricultural Engineering Sciences, University of Sulaimani, Sulaimani, Iraq
| | - Nawroz Tahir
- Horticulture Department, College of Agricultural Engineering Sciences, University of Sulaimani, Sulaimani, Iraq
| |
Collapse
|
34
|
Liang J, Sun J, Ye Y, Yan X, Yan T, Rao Y, Zhou H, Le M. QTL mapping of PEG-induced drought tolerance at the early seedling stage in sesame using whole genome re-sequencing. PLoS One 2021; 16:e0247681. [PMID: 33626101 PMCID: PMC7904189 DOI: 10.1371/journal.pone.0247681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 02/10/2021] [Indexed: 11/19/2022] Open
Abstract
Improvement in sesame drought tolerance at seedling stage is important for yield stability. Genetic approaches combing with conventional breeding is the most effective way to develop drought-tolerant cultivars. In this study, three traits and their relative values, including seedling weight (SW), shoot length (SL) and root length (RL), were evaluated under control and osmotic conditions in a recombinant inbred line (RIL) population derived from cross of Zhushanbai and Jinhuangma. Significant variation and high broad sense heritability were observed for all traits except SW under stress condition in the population. With this population, a high-density linkage map with 1354 bin markers was constructed through whole genome re-sequencing (WGS) strategy. Quantitative trait loci (QTL) mapping was performed for all the traits. A total of 34 QTLs were detected on 10 chromosomes. Among them, 13 stable QTLs were revealed in two independent experiments, eight of them were associated with traits under water stress condition. One region on chromosome 12 related to RL under osmotic condition and relative RL had the highest LOD value and explained the largest phenotypic variation among all the QTLs detected under water stress condition. These findings will provide new genetic resources for molecular improvement of drought tolerance and candidate gene identification in sesame.
Collapse
Affiliation(s)
- Junchao Liang
- Crop Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Nanchang Branch of National Center of Oilcrops Improvement, Nanchang, China
- Jiangxi Province Key Laboratory of Oilcrops Biology, Nanchang, China
| | - Jian Sun
- Crop Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Nanchang Branch of National Center of Oilcrops Improvement, Nanchang, China
- Jiangxi Province Key Laboratory of Oilcrops Biology, Nanchang, China
- * E-mail: (JS); (ML)
| | - Yanying Ye
- Crop Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Nanchang Branch of National Center of Oilcrops Improvement, Nanchang, China
- Jiangxi Province Key Laboratory of Oilcrops Biology, Nanchang, China
| | - Xiaowen Yan
- Crop Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Nanchang Branch of National Center of Oilcrops Improvement, Nanchang, China
- Jiangxi Province Key Laboratory of Oilcrops Biology, Nanchang, China
| | - Tingxian Yan
- Crop Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Nanchang Branch of National Center of Oilcrops Improvement, Nanchang, China
- Jiangxi Province Key Laboratory of Oilcrops Biology, Nanchang, China
| | - Yueliang Rao
- Crop Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Nanchang Branch of National Center of Oilcrops Improvement, Nanchang, China
- Jiangxi Province Key Laboratory of Oilcrops Biology, Nanchang, China
| | - Hongying Zhou
- Crop Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Nanchang Branch of National Center of Oilcrops Improvement, Nanchang, China
- Jiangxi Province Key Laboratory of Oilcrops Biology, Nanchang, China
| | - Meiwang Le
- Nanchang Branch of National Center of Oilcrops Improvement, Nanchang, China
- Jiangxi Province Key Laboratory of Oilcrops Biology, Nanchang, China
- Horticulture Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- * E-mail: (JS); (ML)
| |
Collapse
|
35
|
Hassan MJ, Geng W, Zeng W, Raza MA, Khan I, Iqbal MZ, Peng Y, Zhu Y, Li Z. Diethyl Aminoethyl Hexanoate Priming Ameliorates Seed Germination via Involvement in Hormonal Changes, Osmotic Adjustment, and Dehydrins Accumulation in White Clover Under Drought Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:709187. [PMID: 34394164 PMCID: PMC8358406 DOI: 10.3389/fpls.2021.709187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/05/2021] [Indexed: 05/03/2023]
Abstract
Drought is a serious outcome of climate change reducing the productivity of forage species under arid and semi-arid conditions worldwide. Diethyl aminoethyl hexanoate (DA-6), a novel plant growth regulator, has proven to be involved in the amelioration of critical physiological functions in many agricultural crops under various abiotic stresses, but the role of the DA-6 in improving seed germination has never been investigated under drought stress. The present study was carried out to elucidate the impact of the DA-6 priming on seeds germination of white clover under drought stress. Results showed that seed priming with the DA-6 significantly mitigated the drought-induced reduction in germination percentage, germination vigor, germination index, seed vigor index, root length, shoot length, and fresh weight after 7 days of seed germination. The DA-6 significantly increased the endogenous indole-3-acetic acid, gibberellin, and cytokinin content with marked reduction in abscisic acid content in seedlings under drought stress. In addition, the DA-6 significantly accelerated starch catabolism by enhancing the activities of hydrolases contributing toward enhanced soluble sugars, proline content and ameliorated the antioxidant defense system to enhance the ability of reactive oxygen species scavenging under drought stress. Furthermore, exogenous DA-6 application significantly increased dehydrins accumulation and upregulated transcript levels of genes encoding dehydrins (SK2, Y2SK, or DHNb) during seeds germination under water deficient condition. These findings suggested that the DA-6 mediated seeds germination and drought tolerance associated with changes in endogenous phytohormones resulting in increased starch degradation, osmotic adjustment, antioxidants activity, and dehydrins accumulation during seed germination under water deficient condition.
Collapse
Affiliation(s)
- Muhammad Jawad Hassan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Wan Geng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Weihang Zeng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Muhammad Ali Raza
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Imran Khan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Muhammad Zafar Iqbal
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yongqun Zhu
- Soil and Fertilizer Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
- *Correspondence: Yongqun Zhu,
| | - Zhou Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
- Zhou Li,
| |
Collapse
|
36
|
Radyukevich T, Kartasheva L, Danilov D. Assessment of the adaptive potential and ecological plasticity of a new variety of spring barley Fermerskiy for Northwest Russia. BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20213700034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In Northwest Russia, creation and introduction of new varieties of cereals characterized by early maturity, high adaptive potential and ecological plasticity is one of the most important tasks. A new generation of barley varieties is needed that combines high yields with early maturity, high feed qualities of grain, and resistance to lodging and grain shedding. We carried out field and laboratory studies of a new variety of spring barley Fermerskiy in an experimental field of the Leningrad Research Institute of Agriculture "Belogorka". In 2021, Fermersky was transferred for state variety testing. The variety is midseason and the growing season is 72–87 days. Over three years of competitive variety testing (2018–2020), the yield increase was 1.25 t/ha relative to the Suzdalets standard (3.12 t/ha). The highest yield of 5.27 t/ha was obtained in 2019, under conditions of low moisture supply. The average index of ecological plasticity (Jsp) was 1.48 (min 1.11, max 1.94). The adaptive potential (ds/dk) was 7.91 (min 6.92, max 9.08), The Fermerskiy variety consistently formed a high yield and was characterized by ecological plasticity, early maturity, and resistance to diseases and lodging.
Collapse
|
37
|
Bernau VM, Jardón Barbolla L, McHale LK, Mercer KL. Germination response of diverse wild and landrace chile peppers (Capsicum spp.) under drought stress simulated with polyethylene glycol. PLoS One 2020; 15:e0236001. [PMID: 33196641 PMCID: PMC7668591 DOI: 10.1371/journal.pone.0236001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/10/2020] [Indexed: 11/19/2022] Open
Abstract
Responses to drought within a single species may vary based on plant developmental stage, drought severity, and the avoidance or tolerance mechanisms employed. Early drought stress can restrict emergence and seedling growth. Thus, in areas where water availability is limited, rapid germination leading to early plant establishment may be beneficial. Alternatively, germination without sufficient water to support the seedling may lead to early senescence, so reduced germination under low moisture conditions may be adaptive at the level of the population. We studied the germination response to osmotic stress of diverse chile pepper germplasm collected in southern Mexico from varied ecozones, cultivation systems, and of named landraces. Drought stress was simulated using polyethylene glycol solutions. Overall, survival time analysis revealed delayed germination at the 20% concentration of PEG across all ecozones. The effect was most pronounced in the genotypes from hotter, drier ecozones. Additionally, accessions from wetter and cooler ecozones had the fastest rate of germination. Moreover, accessions of the landraces Costeño Rojo and Tusta germinated more slowly and incompletely if sourced from a drier ecozone than a wetter one, indicating that slower, reduced germination under drought stress may be an adaptive avoidance mechanism. Significant differences were also observed between named landraces, with more domesticated types from intensive cultivation systems nearly always germinating faster than small-fruited backyard- or wild-types, perhaps due to the fact that the smaller-fruited accessions may have undergone less selection. Thus, we conclude that there is evidence of local adaptation to both ecozone of origin and source cultivation system in germination characteristics of diverse chile peppers.
Collapse
Affiliation(s)
- Vivian M. Bernau
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, United States of America
| | - Lev Jardón Barbolla
- Centro de Investigaciones Interdisciplinarias en Ciencias y Humanidades, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Leah K. McHale
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, United States of America
| | - Kristin L. Mercer
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
38
|
Moursi YS, Thabet SG, Amro A, Dawood MFA, Baenziger PS, Sallam A. Detailed Genetic Analysis for Identifying QTLs Associated with Drought Tolerance at Seed Germination and Seedling Stages in Barley. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9111425. [PMID: 33114292 PMCID: PMC7690857 DOI: 10.3390/plants9111425] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/14/2020] [Accepted: 10/16/2020] [Indexed: 05/08/2023]
Abstract
Drought induces several challenges for plant development, growth, and production. These challenges become more severe, in particular, in arid and semiarid countries like Egypt. In terms of production, barley ranks fourth after wheat, maize, and rice. Seed germination and seedling stages are critical stages for plant establishment and growth. In the current study, 60 diverse barley genotypes were tested for drought tolerance using two different treatments: control (0-PEG) and drought (20%-PEG). Twenty-two traits were estimated for seed germination and seedling parameters. All traits were reduced under drought stress, and a significant variation was found among genotypes under control and stress conditions. The broad-sense heritability estimates were very high under both control and drought for all traits. It ranged from 0.63 to 0.97 under the control condition and from 0.89 to 0.97 under drought, respectively. These high heritabilities suggested that genetic improvement of drought tolerance in barley at both stages is feasible. The principal component analysis revealed that root-related parameters account for the largest portion of phenotypic variation in this collection. The single-marker analysis (SMA) resulted in 71 quantitative trait loci (QTLs) distributed across the seven chromosomes of barley. Thirty-three QTLs were detected for root-length-related traits. Many hotspots of QTLs were detected for various traits. Interestingly, some markers controlled many traits in a pleiotropic manner; thus, they can be used to control multiple traits at a time. Some QTLs were constitutive, i.e., they are mapped under control and drought, and targeting these QTLs makes the selection for drought tolerance a single-step process. The results of gene annotation analysis revealed very potential candidate genes that can be targeted to select for drought tolerance.
Collapse
Affiliation(s)
- Yasser S. Moursi
- Department of Botany, Faculty of Science, University of Fayoum, Fayoum 63514, Egypt; (Y.S.M.); (S.G.T.)
| | - Samar G. Thabet
- Department of Botany, Faculty of Science, University of Fayoum, Fayoum 63514, Egypt; (Y.S.M.); (S.G.T.)
| | - Ahmed Amro
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Asyut 71516, Egypt; (A.A.); (M.F.A.D.)
| | - Mona F. A. Dawood
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Asyut 71516, Egypt; (A.A.); (M.F.A.D.)
| | - P. Stephen Baenziger
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588, USA;
| | - Ahmed Sallam
- Department of Genetics, Faculty of Agriculture, Assiut University, Asyut 71526, Egypt
- Correspondence:
| |
Collapse
|
39
|
Bai Y, Xiao S, Zhang Z, Zhang Y, Sun H, Zhang K, Wang X, Bai Z, Li C, Liu L. Melatonin improves the germination rate of cotton seeds under drought stress by opening pores in the seed coat. PeerJ 2020; 8:e9450. [PMID: 32704446 PMCID: PMC7346864 DOI: 10.7717/peerj.9450] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022] Open
Abstract
The germination of cotton (Gossypium hirsutum L.) seeds is affected by drought stress; however, little is known about the physiological mechanism affecting germination and the effect of melatonin (MT) on cotton seed germination under drought stress. Therefore, we studied the effects of exogenous MT on the antioxidant capacity and epidermal microstructure of cotton under drought stress. The results demonstrated a retarded water absorption capacity of testa under drought stress, significantly inhibiting germination and growth in cotton seeds. Drought stress led to the accumulation of reactive oxygen species (ROS), malondialdehyde (MDA), and osmoregulatory substances (e.g., proline, soluble protein, and soluble sugars); it also decreased the activity of antioxidant enzymes and α-amylase. Drought stress inhibited gibberellin acid (GA3) synthesis and increased abscisic acid (ABA) content, seriously affecting seed germination. However, seeds pre-soaked with MT (100 µM) showed a positive regulation in the number and opening of stomata in cotton testa. The exogenous application of MT increased the germination rate, germination potential, radical length, and fresh weight, as well as the activities of superoxide dismutase (SOD), peroxidase (POD), and α-amylase. In addition, MT application increased the contents of organic osmotic substances by decreasing the hydrogen peroxide (H2O2), superoxide anion (O2 -), and MDA levels under drought stress. Further analysis demonstrated that seeds pre-soaked with MT alleviated drought stress by affecting the ABA and GA3 contents. Our findings show that MT plays a positive role in protecting cotton seeds from drought stress.
Collapse
Affiliation(s)
- Yandan Bai
- College of Agronomy, HeBei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, Hebei Province, China, Baoding, China
| | - Shuang Xiao
- College of Agronomy, HeBei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, Hebei Province, China, Baoding, China
| | - Zichen Zhang
- College of Agronomy, HeBei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, Hebei Province, China, Baoding, China
| | - Yongjiang Zhang
- College of Agronomy, HeBei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, Hebei Province, China, Baoding, China
| | - Hongchun Sun
- College of Agronomy, HeBei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, Hebei Province, China, Baoding, China
| | - Ke Zhang
- College of Agronomy, HeBei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, Hebei Province, China, Baoding, China
| | - Xiaodan Wang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultrual University, Baoding, China
| | - Zhiying Bai
- College of Life Science, Hebei Agricultrual University, Baoding, China
| | - Cundong Li
- College of Agronomy, HeBei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, Hebei Province, China, Baoding, China
| | - Liantao Liu
- College of Agronomy, HeBei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, Hebei Province, China, Baoding, China
| |
Collapse
|
40
|
Hernandez J, Meints B, Hayes P. Introgression Breeding in Barley: Perspectives and Case Studies. FRONTIERS IN PLANT SCIENCE 2020; 11:761. [PMID: 32595671 PMCID: PMC7303309 DOI: 10.3389/fpls.2020.00761] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/13/2020] [Indexed: 05/04/2023]
Abstract
Changing production scenarios resulting from unstable climatic conditions are challenging crop improvement efforts. A deeper and more practical understanding of plant genetic resources is necessary if these assets are to be used effectively in developing improved varieties. In general, current varieties and potential varieties have a narrow genetic base, making them prone to suffer the consequences of new and different abiotic and biotic stresses that can reduce crop yield and quality. The deployment of genomic technologies and sophisticated statistical analysis procedures has generated a dramatic change in the way we characterize and access genetic diversity in crop plants, including barley. Various mapping strategies can be used to identify the genetic variants that lead to target phenotypes and these variants can be assigned coordinates in reference genomes. In this way, new genes and/or new alleles at known loci present in wild ancestors, germplasm accessions, land races, and un-adapted introductions can be located and targeted for introgression. In principle, the introgression process can now be streamlined and linkage drag reduced. In this review, we present an overview of (1) past and current efforts to identify diversity that can be tapped to improve barley yield and quality, and (2) case studies of our efforts to introgress resistance to stripe and stem rust from un-adapted germplasm. We conclude with a description of a modified Nested Association Mapping (NAM) population strategy that we are implementing for the development of multi-use naked barley for organic systems and share perspectives on the use of genome editing in introgression breeding.
Collapse
Affiliation(s)
- Javier Hernandez
- Department Crop and Soil Science, Oregon State University, Corvallis, OR, United States
| | | | | |
Collapse
|
41
|
Thabet SG, Moursi YS, Karam MA, Börner A, Alqudah AM. Natural Variation Uncovers Candidate Genes for Barley Spikelet Number and Grain Yield under Drought Stress. Genes (Basel) 2020; 11:genes11050533. [PMID: 32403266 PMCID: PMC7290517 DOI: 10.3390/genes11050533] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 01/01/2023] Open
Abstract
Drought stress can occur at any growth stage and can affect crop productivity, which can result in large yield losses all over the world. In this respect, understanding the genetic architecture of agronomic traits under drought stress is essential for increasing crop yield potential and harvest. Barley is considered the most abiotic stress-tolerant cereal, particularly with respect to drought. In the present study, worldwide spring barley accessions were exposed to drought stress beginning from the early reproductive stage with 35% field capacity under field conditions. Drought stress had significantly reduced the agronomic and yield-related traits such as spike length, awn length, spikelet per spike, grains per spike and thousand kernel weight. To unravel the genetic factors underlying drought tolerance at the early reproductive stage, genome-wide association scan (GWAS) was performed using 121 spring barley accessions and a 9K single nucleotide polymorphisms (SNPs) chip. A total number of 101 significant SNPs, distributed over all seven barley chromosomes, were found to be highly associated with the studied traits, of which five genomic regions were associated with candidate genes at chromosomes 2 and 3. On chromosome 2H, the region between 6469300693-647258342 bp includes two candidate drought-specific genes (HORVU2Hr1G091030 and HORVU2Hr1G091170), which are highly associated with spikelet and final grain number per spike under drought stress conditions. Interestingly, the gene expression profile shows that the candidate genes were highly expressed in spikelet, grain, spike and leaf organs, demonstrating their pivotal role in drought tolerance. To the best of our knowledge, we reported the first detailed study that used GWAS with bioinformatic analyses to define the causative alleles and putative candidate genes underlying grain yield-related traits under field drought conditions in diverse barley germplasm. The identified alleles and candidate genes represent valuable resources for future functional characterization towards the enhancement of barley cultivars for drought tolerance.
Collapse
Affiliation(s)
- Samar G. Thabet
- Department of Botany, Faculty of Science, University of Fayoum, Fayoum 63514, Egypt; (S.G.T.); (Y.S.M.); (M.A.K.)
| | - Yasser S. Moursi
- Department of Botany, Faculty of Science, University of Fayoum, Fayoum 63514, Egypt; (S.G.T.); (Y.S.M.); (M.A.K.)
| | - Mohamed A. Karam
- Department of Botany, Faculty of Science, University of Fayoum, Fayoum 63514, Egypt; (S.G.T.); (Y.S.M.); (M.A.K.)
| | - Andreas Börner
- Research Group Resources Genetics and Reproduction, Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Seeland OT Gatersleben, Germany;
| | - Ahmad M. Alqudah
- Research Group Resources Genetics and Reproduction, Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Seeland OT Gatersleben, Germany;
- Correspondence: or
| |
Collapse
|
42
|
Liu Z, Li H, Gou Z, Zhang Y, Wang X, Ren H, Wen Z, Kang BK, Li Y, Yu L, Gao H, Wang D, Qi X, Qiu L. Genome-wide association study of soybean seed germination under drought stress. Mol Genet Genomics 2020; 295:661-673. [PMID: 32008123 DOI: 10.1007/s00438-020-01646-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 01/09/2020] [Indexed: 10/25/2022]
Abstract
Drought stress, which is increasing with climate change, is a serious threat to agricultural sustainability worldwide. Seed germination is an essential growth phase that ensures the successful establishment and productivity of soybean, which can lose substantial productivity in soils with water deficits. However, only limited genetic information is available about how germinating soybean seeds may exert drought tolerance. In this study, we examined the germinating seed drought-tolerance phenotypes and genotypes of a panel of 259 released Chinese soybean cultivars panel. Based on 4616 Single-Nucleotide Polymorphisms (SNPs), we conducted a mixed-linear model GWAS that identified a total of 15 SNPs associated with at least one drought-tolerance index. Notably, three of these SNPs were commonly associated with two drought-tolerance indices. Two of these SNPs are positioned upstream of genes, and 11 of them are located in or near regions where QTLs have been previously mapped by linkage analysis, five of which are drought-related. The SNPs detected in this study can both drive hypothesis-driven research to deepen our understanding of genetic basis of soybean drought tolerance at the germination stage and provide useful genetic resources that can facilitate the selection of drought stress traits via genomic-assisted selection.
Collapse
Affiliation(s)
- Zhangxiong Liu
- National Key Facility for Gene Resources and Genetic Improvement/Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huihui Li
- National Key Facility for Gene Resources and Genetic Improvement/Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zuowang Gou
- Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Yanjun Zhang
- Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Xingrong Wang
- Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Honglei Ren
- Maize Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Zixiang Wen
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, 48824, USA
| | - Beom-Kyu Kang
- Upland Crop Breeding Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, Miryang, 52402, Korea
| | - Yinghui Li
- National Key Facility for Gene Resources and Genetic Improvement/Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lili Yu
- National Key Facility for Gene Resources and Genetic Improvement/Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huawei Gao
- National Key Facility for Gene Resources and Genetic Improvement/Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dechun Wang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, 48824, USA
| | - Xusheng Qi
- Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Lijuan Qiu
- National Key Facility for Gene Resources and Genetic Improvement/Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
43
|
Badr A, El-Shazly HH, Tarawneh RA, Börner A. Screening for Drought Tolerance in Maize ( Zea mays L.) Germplasm Using Germination and Seedling Traits under Simulated Drought Conditions. PLANTS (BASEL, SWITZERLAND) 2020; 9:E565. [PMID: 32365550 PMCID: PMC7284379 DOI: 10.3390/plants9050565] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 11/17/2022]
Abstract
Maize is known to be susceptible to drought stress, which negatively affects vegetative growth and biomass production, as well as the formation of reproductive organs and yield parameters. In this study, 27 responsive traits of germination (G) and seedlings growth were evaluated for 40 accessions of the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) germplasm collection, under no stress and simulated drought stress treatments by 10%, 15%, and 20% of polyethylene glycol (PEG). The three treatments significantly reduced G% and retarded seedlings growth, particularly the 15% and 20% PEG treatments; these two treatments also resulted in a significant increase of abnormal seedlings (AS). The heritability (H2) and correlations of the traits were estimated, and drought tolerance indices (DTIs) were calculated for traits and accessions. The H2 of G% values were reduced, and H2 for AS% increased as the PEG stress increased. Positive correlations were found between most trait pairs, particularly shoot and root traits, with 48 highly significant correlations under no stress and 25 highly significant correlations under the 10% PEG treatments, particularly for shoot and root traits. The medium to high heritability of shoot and root seedling traits provides a sound basis for further genetic analyses. PCA analysis clearly grouped accessions with high DTIs together and the accessions with low DTIs together, indicating that the DTI indicates the stress tolerance level of maize germplasm. However, the resemblance in DTI values does not clearly reflect the origin or taxonomic assignments to subspecies and varieties of the examined accessions.
Collapse
Affiliation(s)
- Abdelfattah Badr
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo 11790, Egypt
| | - Hanaa H. El-Shazly
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo 11341, Egypt;
| | - Rasha A. Tarawneh
- Gene Bank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Corrensstr. 3, D-06466 Seeland, OT Gatersleben, Germany;
| | - Andreas Börner
- Gene Bank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Corrensstr. 3, D-06466 Seeland, OT Gatersleben, Germany;
| |
Collapse
|
44
|
Alqudah AM, Sallam A, Stephen Baenziger P, Börner A. GWAS: Fast-forwarding gene identification and characterization in temperate Cereals: lessons from Barley - A review. J Adv Res 2020; 22:119-135. [PMID: 31956447 PMCID: PMC6961222 DOI: 10.1016/j.jare.2019.10.013] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/07/2019] [Accepted: 10/31/2019] [Indexed: 11/28/2022] Open
Abstract
Understanding the genetic complexity of traits is an important objective of small grain temperate cereals yield and adaptation improvements. Bi-parental quantitative trait loci (QTL) linkage mapping is a powerful method to identify genetic regions that co-segregate in the trait of interest within the research population. However, recently, association or linkage disequilibrium (LD) mapping using a genome-wide association study (GWAS) became an approach for unraveling the molecular genetic basis underlying the natural phenotypic variation. Many causative allele(s)/loci have been identified using the power of this approach which had not been detected in QTL mapping populations. In barley (Hordeum vulgare L.), GWAS has been successfully applied to define the causative allele(s)/loci which can be used in the breeding crop for adaptation and yield improvement. This promising approach represents a tremendous step forward in genetic analysis and undoubtedly proved it is a valuable tool in the identification of candidate genes. In this review, we describe the recently used approach for genetic analyses (linkage mapping or association mapping), and then provide the basic genetic and statistical concepts of GWAS, and subsequently highlight the genetic discoveries using GWAS. The review explained how the candidate gene(s) can be detected using state-of-art bioinformatic tools.
Collapse
Affiliation(s)
- Ahmad M. Alqudah
- Resources Genetics and Reproduction, Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
| | - Ahmed Sallam
- Department of Genetics, Faculty of Agriculture, Assiut University, 71526- Assiut, Egypt
| | - P. Stephen Baenziger
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, 68583-Lincoln, NE, USA
| | - Andreas Börner
- Resources Genetics and Reproduction, Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
| |
Collapse
|
45
|
Muthusamy M, Yoon EK, Kim JA, Jeong MJ, Lee SI. Brassica Rapa SR45a Regulates Drought Tolerance via the Alternative Splicing of Target Genes. Genes (Basel) 2020; 11:genes11020182. [PMID: 32050656 PMCID: PMC7074037 DOI: 10.3390/genes11020182] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/25/2020] [Accepted: 02/07/2020] [Indexed: 01/02/2023] Open
Abstract
The emerging evidence has shown that plant serine/arginine-rich (SR) proteins play a crucial role in abiotic stress responses by regulating the alternative splicing (AS) of key genes. Recently, we have shown that drought stress enhances the expression of SR45a (also known as SR-like 3) in Brassica rapa. Herein, we unraveled the hitherto unknown functions of BrSR45a in drought stress response by comparing the phenotypes, chlorophyll a fluorescence and splicing patterns of the drought-responsive genes of Arabidopsis BrSR45a overexpressors (OEs), homozygous mutants (SALK_052345), and controls (Col-0). Overexpression and loss of function did not result in aberrant phenotypes; however, the overexpression of BrSR45a was positively correlated with drought tolerance and the stress recovery rate in an expression-dependent manner. Moreover, OEs showed a higher drought tolerance index during seed germination (38.16%) than the control lines. Additionally, the overexpression of BrSR45a induced the expression of the drought stress-inducible genes RD29A, NCED3, and DREB2A under normal conditions. To further illustrate the molecular linkages between BrSR45a and drought tolerance, we investigated the AS patterns of key drought-tolerance and BrSR45a interacting genes in OEs, mutants, and controls under both normal and drought conditions. The splicing patterns of DCP5, RD29A, GOLS1, AKR, U2AF, and SDR were different between overexpressors and mutants under normal conditions. Furthermore, drought stress altered the splicing patterns of NCED2, SQE, UPF1, U4/U6-U5 tri-snRNP-associated protein, and UPF1 between OEs and mutants, indicating that both overexpression and loss of function differently influenced the splicing patterns of target genes. This study revealed that BrSR45a regulates the drought stress response via the alternative splicing of target genes in a concentration-dependent manner.
Collapse
Affiliation(s)
- Muthusamy Muthusamy
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea; (M.M.); (J.A.K.); (M.-J.J.)
| | - Eun Kyung Yoon
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore;
| | - Jin A Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea; (M.M.); (J.A.K.); (M.-J.J.)
| | - Mi-Jeong Jeong
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea; (M.M.); (J.A.K.); (M.-J.J.)
| | - Soo In Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea; (M.M.); (J.A.K.); (M.-J.J.)
- Correspondence: ; Tel.: +82-63-238-4618; Fax: +82-63-238-4604
| |
Collapse
|
46
|
Kim KH, Kim JY, Lim WJ, Jeong S, Lee HY, Cho Y, Moon JK, Kim N. Genome-wide association and epistatic interactions of flowering time in soybean cultivar. PLoS One 2020; 15:e0228114. [PMID: 31968016 PMCID: PMC6975553 DOI: 10.1371/journal.pone.0228114] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/07/2020] [Indexed: 12/02/2022] Open
Abstract
Genome-wide association studies (GWAS) have enabled the discovery of candidate markers that play significant roles in various complex traits in plants. Recently, with increased interest in the search for candidate markers, studies on epistatic interactions between single nucleotide polymorphism (SNP) markers have also increased, thus enabling the identification of more candidate markers along with GWAS on single-variant-additive-effect. Here, we focused on the identification of candidate markers associated with flowering time in soybean (Glycine max). A large population of 2,662 cultivated soybean accessions was genotyped using the 180k Axiom® SoyaSNP array, and the genomic architecture of these accessions was investigated to confirm the population structure. Then, GWAS was conducted to evaluate the association between SNP markers and flowering time. A total of 93 significant SNP markers were detected within 59 significant genes, including E1 and E3, which are the main determinants of flowering time. Based on the GWAS results, multilocus epistatic interactions were examined between the significant and non-significant SNP markers. Two significant and 16 non-significant SNP markers were discovered as candidate markers affecting flowering time via interactions with each other. These 18 candidate SNP markers mapped to 18 candidate genes including E1 and E3, and the 18 candidate genes were involved in six major flowering pathways. Although further biological validation is needed, our results provide additional information on the existing flowering time markers and present another option to marker-assisted breeding programs for regulating flowering time of soybean.
Collapse
Affiliation(s)
- Kyoung Hyoun Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Jae-Yoon Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Won-Jun Lim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Seongmun Jeong
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Ho-Yeon Lee
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Youngbum Cho
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Jung-Kyung Moon
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| | - Namshin Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
47
|
Wiśniewska A, Andryka-Dudek P, Czerwiński M, Chołuj D. Fodder beet is a reservoir of drought tolerance alleles for sugar beet breeding. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 145:120-131. [PMID: 31677543 DOI: 10.1016/j.plaphy.2019.10.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/12/2019] [Accepted: 10/23/2019] [Indexed: 05/20/2023]
Abstract
Drought leads to serious yield losses and followed by increasing food prices. Thereby, drought tolerance is one of most important, pivotal issues for plant breeding and is determined by the very complex genetic architecture, which involves a lot of genes engaged in many cell processes. Within genomes of currently cultivated sugar beet forms, the number of favourable allelic variants is limited. However, there is a potential to identify genes related to drought tolerance deposited in genomes of wild or fodder relatives. Therefore, the goal of our study, was to identify the source of allelic variants involved in drought tolerance using a large spectrum of sugar or fodder beets and their wild relatives for analyses. Based on the drought tolerance index, calculated for morphophysiological traits, it was demonstrated that some of selected fodder beets showed the highest level of drought tolerance. The most drought tolerant fodder beet genotype did not show differences in the level of expression of genes engaged in osmoprotection and the antioxidative system, between control and drought condition, compared to sugar and wild beets. The genetic distance between selected beet forms was broad and ranged from 18 to 87%, however the most drought tolerant sugar, fodder and wild beets showed high genetic similarity and formed the common clade. Based on obtained results we propose that an adequate broad source of genes related to drought tolerance occurs in fodder beets, the crossing with which is easier, less time-consuming and more cost-effective than with wild forms of beets.
Collapse
Affiliation(s)
- Anita Wiśniewska
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland.
| | - Paulina Andryka-Dudek
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Mateusz Czerwiński
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Danuta Chołuj
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| |
Collapse
|
48
|
Liu J, Hasanuzzaman M, Wen H, Zhang J, Peng T, Sun H, Zhao Q. High temperature and drought stress cause abscisic acid and reactive oxygen species accumulation and suppress seed germination growth in rice. PROTOPLASMA 2019; 256:1217-1227. [PMID: 31001689 DOI: 10.1007/s00709-019-01354-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/04/2019] [Indexed: 05/10/2023]
Abstract
Seed germination is one of the most important biological processes in the life cycle of plants, and temperature and water are the two most critical environmental factors that influence seed germination. In the present study, we investigated the roles of the plant hormone abscisic acid (ABA) and reactive oxygen species (ROS) in high temperature (HT) and drought-induced inhibition of rice seed germination. HT and drought stress caused ABA accumulation in seeds and inhibited seed germination and seedling establishment. Quantitative real-time polymerase chain reaction analysis revealed that HT and drought stress induced the expression of OsNCED3, a key gene in ABA synthesis in rice seeds. In addition, ROS (O2•- and H2O2) and malondialdehyde contents were increased in germinating seeds under HT and drought stress. Moreover, we adopted the non-invasive micro-test technique to detect H2O2 and Ca2+ fluxes at the site of coleoptile emergence. HT and drought stress resulted in a H2O2 efflux, but only drought stress significantly induced Ca2+ influx. Antioxidant enzyme assays revealed that superoxide dismutase (SOD), peroxidase, catalase (CAT), and ascorbate peroxidase (APX) activity were reduced by HT and drought stress, consistent with the expression of OsCu/ZnSOD, OsCATc, and OsAPX2 during seed germination. Altogether, these results suggest that ABA and ROS accumulation under HT and drought conditions can inhibit rice seed germination and growth.
Collapse
Affiliation(s)
- Juan Liu
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Biology, Henan Agricultural University, Zhengzhou, China
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Huili Wen
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Biology, Henan Agricultural University, Zhengzhou, China
| | - Jing Zhang
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Biology, Henan Agricultural University, Zhengzhou, China
| | - Ting Peng
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Biology, Henan Agricultural University, Zhengzhou, China
| | - Huwei Sun
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Biology, Henan Agricultural University, Zhengzhou, China
| | - Quanzhi Zhao
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Biology, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
49
|
Sallam A, Alqudah AM, Dawood MFA, Baenziger PS, Börner A. Drought Stress Tolerance in Wheat and Barley: Advances in Physiology, Breeding and Genetics Research. Int J Mol Sci 2019; 20:ijms20133137. [PMID: 31252573 DOI: 10.3390/ijms.20133137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/11/2019] [Accepted: 06/18/2019] [Indexed: 05/26/2023] Open
Abstract
Climate change is a major threat to most of the agricultural crops grown in tropical and sub-tropical areas globally. Drought stress is one of the consequences of climate change that has a negative impact on crop growth and yield. In the past, many simulation models were proposed to predict climate change and drought occurrences, and it is extremely important to improve essential crops to meet the challenges of drought stress which limits crop productivity and production. Wheat and barley are among the most common and widely used crops due to their economic and social values. Many parts of the world depend on these two crops for food and feed, and both crops are vulnerable to drought stress. Improving drought stress tolerance is a very challenging task for wheat and barley researchers and more research is needed to better understand this stress. The progress made in understanding drought tolerance is due to advances in three main research areas: physiology, breeding, and genetic research. The physiology research focused on the physiological and biochemical metabolic pathways that plants use when exposed to drought stress. New wheat and barley genotypes having a high degree of drought tolerance are produced through breeding by making crosses from promising drought-tolerant genotypes and selecting among their progeny. Also, identifying genes contributing to drought tolerance is very important. Previous studies showed that drought tolerance is a polygenic trait and genetic constitution will help to dissect the gene network(s) controlling drought tolerance. This review explores the recent advances in these three research areas to improve drought tolerance in wheat and barley.
Collapse
Affiliation(s)
- Ahmed Sallam
- Department of Genetics, Faculty of Agriculture, Assiut University, 71526 Assiut, Egypt.
| | - Ahmad M Alqudah
- Resources Genetics and Reproduction, Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben D-06466 Stadt Seeland, Germany.
| | - Mona F A Dawood
- Department of Botany & Microbiology, Faculty of Science, Assiut University, 71516 Assiut, Egypt
| | - P Stephen Baenziger
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Andreas Börner
- Resources Genetics and Reproduction, Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben D-06466 Stadt Seeland, Germany
| |
Collapse
|
50
|
Sallam A, Alqudah AM, Dawood MFA, Baenziger PS, Börner A. Drought Stress Tolerance in Wheat and Barley: Advances in Physiology, Breeding and Genetics Research. Int J Mol Sci 2019; 20:E3137. [PMID: 31252573 PMCID: PMC6651786 DOI: 10.3390/ijms20133137] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/11/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023] Open
Abstract
Climate change is a major threat to most of the agricultural crops grown in tropical and sub-tropical areas globally. Drought stress is one of the consequences of climate change that has a negative impact on crop growth and yield. In the past, many simulation models were proposed to predict climate change and drought occurrences, and it is extremely important to improve essential crops to meet the challenges of drought stress which limits crop productivity and production. Wheat and barley are among the most common and widely used crops due to their economic and social values. Many parts of the world depend on these two crops for food and feed, and both crops are vulnerable to drought stress. Improving drought stress tolerance is a very challenging task for wheat and barley researchers and more research is needed to better understand this stress. The progress made in understanding drought tolerance is due to advances in three main research areas: physiology, breeding, and genetic research. The physiology research focused on the physiological and biochemical metabolic pathways that plants use when exposed to drought stress. New wheat and barley genotypes having a high degree of drought tolerance are produced through breeding by making crosses from promising drought-tolerant genotypes and selecting among their progeny. Also, identifying genes contributing to drought tolerance is very important. Previous studies showed that drought tolerance is a polygenic trait and genetic constitution will help to dissect the gene network(s) controlling drought tolerance. This review explores the recent advances in these three research areas to improve drought tolerance in wheat and barley.
Collapse
Affiliation(s)
- Ahmed Sallam
- Department of Genetics, Faculty of Agriculture, Assiut University, 71526 Assiut, Egypt.
| | - Ahmad M Alqudah
- Resources Genetics and Reproduction, Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben D-06466 Stadt Seeland, Germany.
| | - Mona F A Dawood
- Department of Botany & Microbiology, Faculty of Science, Assiut University, 71516 Assiut, Egypt
| | - P Stephen Baenziger
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Andreas Börner
- Resources Genetics and Reproduction, Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben D-06466 Stadt Seeland, Germany
| |
Collapse
|