1
|
Qin N, Liu H, Wang X, Liu Y, Chang H, Xia X. Sargassum fusiforme polysaccharides protect mice against Citrobacter rodentium infection via intestinal microbiota-driven microRNA-92a-3p-induced Muc2 production. Int J Biol Macromol 2025; 300:140271. [PMID: 39863236 DOI: 10.1016/j.ijbiomac.2025.140271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/07/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Sargassum fusiforme, widely consumed in Asian countries, has been proven to have various biological activities. However, the impacts and mechanisms of Sargassum fusiforme polysaccharides (SFPs) on intestinal bacterial infection are not yet fully understood. Our findings indicate that SFPs pretreatment ameliorates intestinal inflammation by reducing C. rodentium colonization, increasing colon length and levels of IL-10 and IL-22, decreasing IL-1β, IL-6, TNF-α, and IL-17 levels, inhibiting colonic crypt elongation and hyperplasia, and enhancing the intestinal mucosal barrier. The protective effects against intestinal bacterial infection are linked to enhanced clearance of C. rodentium and improvements in the intestinal mucosal barrier and C. rodentium-induced intestinal microbiota dysbiosis. Fecal microbiota transplantation experiments were conducted to evaluate the functional impact of microbiota induced by SFPs. The results suggest that intestinal microbiota modified by SFPs effectively countered C. rodentium infection. In addition, our study identified that miRNA-92a-3p is partially complementary to the 3'-UTR of the Notch1 gene, thereby repressing the Notch1-Hes1 signaling pathway and enhancing Muc2 secretion. Taken together, these findings reveal that SFPs protect mice from C. rodentium infection by activating the miR-92a-3p/Notch1-Hes1 regulatory axis driven by the intestinal microbiota, which stimulates Muc2 production to maintain intestinal barrier homeostasis.
Collapse
Affiliation(s)
- Ningbo Qin
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Hongxu Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xinru Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hong Chang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaodong Xia
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
2
|
Giambra V, Caldarelli M, Franza L, Rio P, Bruno G, di Iasio S, Mastrogiovanni A, Gasbarrini A, Gambassi G, Cianci R. The Role of Notch Signaling and Gut Microbiota in Autoinflammatory Diseases: Mechanisms and Future Views. Biomedicines 2025; 13:768. [PMID: 40299348 PMCID: PMC12024679 DOI: 10.3390/biomedicines13040768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/06/2025] [Accepted: 03/18/2025] [Indexed: 04/30/2025] Open
Abstract
Notch signaling is an evolutionarily conserved, multifunctional pathway involved in cell fate determination and immune modulation and contributes to the pathogenesis of autoinflammatory diseases. Emerging evidence reveals a bidirectional interaction between Notch and the gut microbiota (GM), whereby GM composition is capable of modulating Notch signaling through the binding of microbial elements to Notch receptors, leading to immune modulation. Furthermore, Notch regulates the GM by promoting SCFA-producing bacteria while suppressing proinflammatory strains. Beneficial microbes, such as Lactobacillus and Akkermansia muciniphila, modulate Notch and reduce proinflammatory cytokine production (such as IL-6 and TNF-α). The interaction between GM and Notch can either amplify or attenuate inflammatory pathways in inflammatory bowel diseases (IBDs), Behçet's disease, and PAPA syndrome. Together, these findings provide novel therapeutic perspectives for autoinflammatory diseases by targeting the GM via probiotics or inhibiting Notch signaling. This review focuses on Notch-GM crosstalk and how GM-based and/or Notch-targeted approaches may modulate immune responses and promote better clinical outcomes.
Collapse
Affiliation(s)
- Vincenzo Giambra
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (V.G.)
| | - Mario Caldarelli
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (A.M.); (G.G.); (R.C.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Laura Franza
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
- Department of Emergency Medicine, AOU Modena, 41125 Modena, Italy
| | - Pierluigi Rio
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (A.M.); (G.G.); (R.C.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Gaja Bruno
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (V.G.)
| | - Serena di Iasio
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (V.G.)
| | - Andrea Mastrogiovanni
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (A.M.); (G.G.); (R.C.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (A.M.); (G.G.); (R.C.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Giovanni Gambassi
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (A.M.); (G.G.); (R.C.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (A.M.); (G.G.); (R.C.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| |
Collapse
|
3
|
Li Y, Guo Y, Geng C, Song S, Yang W, Li X, Wang C. Vitamin D/vitamin D receptor protects intestinal barrier against colitis by positively regulating Notch pathway. Front Pharmacol 2024; 15:1421577. [PMID: 39130644 PMCID: PMC11310051 DOI: 10.3389/fphar.2024.1421577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024] Open
Abstract
Objective Vitamin D/Vitamin D receptor (VD/VDR) signaling and the Notch pathway are involved in intestinal barrier restoration in colitis; however, their relationship and underlying mechanism are largely unknown. Therefore, this study aimed to investigate the role and mechanism of VD/VDR and the Notch pathways in intestinal barrier protection. Methods Genetic Vdr knockout (VDR KO) and VD deficient (VDd) mice were established, and colitis was induced by feeding 2.5% dextran sodium sulfate (DSS) water. Mechanistic studies, including real-time PCR, immunofluorescence, Western blotting and dual-luciferase reporter assays, were performed on cultured Caco-2 cells and intestinal organoids. Results VD deficiency and VDR genetical KO increased the severity of DSS-induced colitis in mice, which presented a higher disease activity index score, increased intestinal permeability, and more severe intestinal histological damage than controls, accompanied by decreased and disrupted claudin-1 and claudin-3. Moreover, inhibition of Notch pathway by LY411,575 aggravated the severity of DSS-induced colitis and intestinal injury. In Caco-2 cells and intestinal organoids, the expression of Notch-1, N1ICD and Hes1 decreased upon downregulation or KO of VDR but increased upon paricalcitol (PAR, a VDR agonist) treatment. Meanwhile, PAR rescued claudin-1 and claudin-3 impairments that resulted from TNF-α exposure but failed to restore claudin-3 upon Notch inhibition. The dual-luciferase reporter assay further suggested that VD/VDR positively regulated the Notch signaling pathway by modulating Notch-1 transcription. Conclusion VD/VDR positively modulates Notch activation by promoting Notch-1 transcription to maintain intestinal tight junction integrity and barrier function. This highlights the VD/VDR-Notch pathway as a potential new therapeutic target for protecting the intestinal barrier against ulcerative colitis.
Collapse
Affiliation(s)
- Yanni Li
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Yaoyu Guo
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Chong Geng
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Shuailing Song
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Wenjuan Yang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiao Li
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Chunhui Wang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Willits AB, Kader L, Eller O, Roberts E, Bye B, Strope T, Freudenthal BD, Umar S, Chintapalli S, Shankar K, Pei D, Christianson J, Baumbauer KM, Young EE. Spinal cord injury-induced neurogenic bowel: A role for host-microbiome interactions in bowel pain and dysfunction. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100156. [PMID: 38601267 PMCID: PMC11004406 DOI: 10.1016/j.ynpai.2024.100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024]
Abstract
Background and aims Spinal cord injury (SCI) affects roughly 300,000 Americans with 17,000 new cases added annually. In addition to paralysis, 60% of people with SCI develop neurogenic bowel (NB), a syndrome characterized by slow colonic transit, constipation, and chronic abdominal pain. The knowledge gap surrounding NB mechanisms after SCI means that interventions are primarily symptom-focused and largely ineffective. The goal of the present studies was to identify mechanism(s) that initiate and maintain NB after SCI as a critical first step in the development of evidence-based, novel therapeutic treatment options. Methods Following spinal contusion injury at T9, we observed alterations in bowel structure and function reflecting key clinical features of NB. We then leveraged tissue-specific whole transcriptome analyses (RNAseq) and fecal 16S rRNA amplicon sequencing in combination with histological, molecular, and functional (Ca2+ imaging) approaches to identify potential mechanism(s) underlying the generation of the NB phenotype. Results In agreement with prior reports focused on SCI-induced changes in the skin, we observed a rapid and persistent increase in expression of calcitonin gene-related peptide (CGRP) expression in the colon. This is suggestive of a neurogenic inflammation-like process engaged by antidromic activity of below-level primary afferents following SCI. CGRP has been shown to disrupt colon homeostasis and negatively affect peristalsis and colon function. As predicted, contusion SCI resulted in increased colonic transit time, expansion of lymphatic nodules, colonic structural and genomic damage, and disruption of the inner, sterile intestinal mucus layer corresponding to increased CGRP expression in the colon. Gut microbiome colonization significantly shifted over 28 days leading to the increase in Anaeroplasma, a pathogenic, gram-negative microbe. Moreover, colon specific vagal afferents and enteric neurons were hyperresponsive after SCI to different agonists including fecal supernatants. Conclusions Our data suggest that SCI results in overexpression of colonic CGRP which could alter colon structure and function. Neurogenic inflammatory-like processes and gut microbiome dysbiosis can also sensitize vagal afferents, providing a mechanism for visceral pain despite the loss of normal sensation post-SCI. These data may shed light on novel therapeutic interventions targeting this process to prevent NB development in patients.
Collapse
Affiliation(s)
- Adam B. Willits
- Department of Anesthesiology, Pain and Perioperative Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Leena Kader
- Department of Anesthesiology, Pain and Perioperative Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Olivia Eller
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Emily Roberts
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Bailey Bye
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS
| | - Taylor Strope
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Bret D. Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Shahid Umar
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS, United States
| | - Sree Chintapalli
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Kartik Shankar
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Dong Pei
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, United States
| | - Julie Christianson
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Kyle M. Baumbauer
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Erin E. Young
- Department of Anesthesiology, Pain and Perioperative Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
5
|
Ahmed I, Verma A, Umar S, Papineni RVL. 2-deoxy-D-glucose mitigates Citrobacter rodentium and dibenzazepine-induced gastrointestinal damage and colitis: novel implications of 2-DG polypharmacopea. Int J Radiat Biol 2023; 99:681-691. [PMID: 35946994 DOI: 10.1080/09553002.2022.2110297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
PURPOSE Citrobacter rodentium (CR) infection coupled with blocking Notch/Wnt signaling via γ-secretase inhibitor dibenzazepine (DBZ) disrupts the gastro-intestinal (GI) barrier and induces colitis, akin to ionizing radiation (IR)-induced GI-injury. We investigated the effects of 2-deoxy-D-glucose (2-DG) to ameliorate the CR-DBZ-induced GI damage. MATERIALS AND METHODS NIH:Swiss outbred mice were inoculated with 109CFUs of CR orally. DBZ was administered intraperitoneally (10 μM/kg b.wt; for 10 days 2 days post-CR infection). Mice were fed with 0.4% 2-DG (w/v) daily in drinking water. For microbiota depletion, antibiotics (Abx), 1 g/l metronidazole, and 0.2 g/l ciprofloxacin were administered for 10 days in drinking water. Oxidative stress, survival assay, colonic crypt hyperplasia, Notch/Wnt downstream signaling, immunomodulation, and bacterial dysbiosis were measured. RESULTS We show that real-time visualization of reactive oxygen species (ROS) is similar during CR-induced colonic infection and IR-induced GI-damage. The histology revealed that dietary 2-DG mitigates CR + DBZ-induced colitis and improves survival compared with CR + DBZ alone. These changes were phenocopied in Abx-treated mice. Both 2-DG and Abx reduced dysbiosis, increased proliferation, inhibited pro-inflammatory response, and restored Hes-1 and β-catenin protein levels, in the crypts. CONCLUSION The energy disruptor 2-DG mitigates bacterial infection and its responsive hyperplasia/colitis, indicating its utility as a mitigator of infection/IR-induced GI-damage.
Collapse
Affiliation(s)
- Ishfaq Ahmed
- Department of Surgery, University of Kansas, Medical Center, Kansas City, KS, USA
| | | | - Shahid Umar
- Department of Surgery, University of Kansas, Medical Center, Kansas City, KS, USA
| | - Rao V L Papineni
- Department of Surgery, University of Kansas, Medical Center, Kansas City, KS, USA
- PACT & Health LLC, Branford, CT, USA
| |
Collapse
|
6
|
Suwandi A, Alvarez KG, Galeev A, Steck N, Riedel CU, Puente JL, Baines JF, Grassl GA. B4galnt2-mediated host glycosylation influences the susceptibility to Citrobacter rodentium infection. Front Microbiol 2022; 13:980495. [PMID: 36033875 PMCID: PMC9403859 DOI: 10.3389/fmicb.2022.980495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Histo-blood group antigens in the intestinal mucosa play important roles in host–microbe interactions and modulate the susceptibility to enteric pathogens. The B4galnt2 gene, expressed in the GI tract of most mammals, including humans, encodes a beta-1,4-N-acetylgalactosaminyltransferase enzyme which catalyzes the last step in the biosynthesis of the Sd(a) and Cad blood group antigens by adding an N-acetylgalactosamine (GalNAc) residue to the precursor molecules. In our study, we found that loss of B4galnt2 expression is associated with increased susceptibility to Citrobacter rodentium infection, a murine model pathogen for human enteropathogenic Escherichia coli. We observed increased histopathological changes upon C. rodentium infection in mice lacking B4galnt2 compared to B4galnt2-expressing wild-type mice. In addition, wild-type mice cleared the C. rodentium infection faster than B4galnt2−/− knockout mice. It is known that C. rodentium uses its type 1 fimbriae adhesive subunit to bind specifically to D-mannose residues on mucosal cells. Flow cytometry analysis of intestinal epithelial cells showed the absence of GalNAc-modified glycans but an increase in mannosylated glycans in B4galnt2-deficient mice compared to B4galnt2-sufficient mice. Adhesion assays using intestinal epithelial organoid-derived monolayers revealed higher C. rodentium adherence to cells lacking B4galnt2 expression compared to wild-type cells which in turn was reduced in the absence of type I fimbriae. In summary, we show that B4galnt2 expression modulates the susceptibility to C. rodentium infection, which is partly mediated by fimbriae-mannose interaction.
Collapse
Affiliation(s)
- Abdulhadi Suwandi
- Institute of Cell Biochemistry, Center of Biochemistry, Hannover Medical School, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Kris Gerard Alvarez
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Alibek Galeev
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Natalie Steck
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Christian U. Riedel
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - José Luis Puente
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - John F. Baines
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Guntram A. Grassl
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
- *Correspondence: Guntram A. Grassl,
| |
Collapse
|
7
|
Li Z, Gao Y, Du L, Yuan Y, Huang W, Fu X, Huang Y, Zhang X, You F, Li S. Anti-inflammatory and anti-apoptotic effects of Shaoyao decoction on X-ray radiation-induced enteritis of C57BL/6 mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115158. [PMID: 35245630 DOI: 10.1016/j.jep.2022.115158] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 01/24/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a typical heat-clearing prescription, Shaoyao decoction (SYD) has a robust function of clearing viscera heat for the treatment of several intestinal discomfort symptoms. Clinical evidence indicated that it had the potential to cure radiation enteritis. However, its underlying mechanisms remain unclear. AIM OF THE STUDY The present study was designed to probe the protective effects and the involved mechanisms of SYD on X-ray radiation-induced enteritis of C57BL/6 mice. MATERIALS AND METHODS X-ray irradiation were used to establish the radiation enteritis model. Forty-eight male C57BL/6 mice (20 ± 2 g) were randomly divided into six groups: the control group, model group, dexamethasone group (DEX, 0.12 mg/kg) and SYD groups (0.12, 0.24 and 0.36 g/mL), respectively. All mice (except the control group) were intragastrically administrated for a continuous 7 days. H&E and Masson staining were employed to evaluate the morphological and collagen fibers changes of the colon. ELISA was performed to assess the levels of MDA, SOD, COX, LPS, IL-6, IL-1β and TNF-α in serum. Moreover, TUNEL fluorescence, western blot and qRT-PCR were used to detect the levels of apoptosis-related proteins and genes of Dclk-1, ATM, MRE-11, Bcl-2, Bax, Caspase-3, and Cyto-c. Furthermore, immunofluorescent staining was applied to detect the protein levels of p53 and Claudin-1 in colon. RESULTS Treatment with SYD decreased the exfoliated and necrotic epithelial cells and prevent the proliferate from damaged fibrous tissue in the crypt layer of mucos. The levels of serum peroxidation and pro-inflammatory cytokines (MDA, COX, LPS, IL-6, IL-1β and TNF-α) were obviously inhibited, while SOD sharply increased in serum after administration. Moreover, SYD can significantly ameliorate the apoptosis of colon cells, evidenced by the reduced positive expression of TUNEL staining. Meanwhile, the results of qRT-PCR and western blot demonstrated that SYD can dramatically stimulate the expression of genes and proteins Dclk-1, ATM and MRE-11, thus promoting the expression of mitochondrial pro-apoptotic proteins Bax, Caspase-3 and Cyto-c, while increasing the level of anti-apoptotic protein Bcl-2. Furthermore, immunofluorescence revealed that SYD can notably decreased the protein level of p53 while reverse the reduction of Claudin-1. CONCLUSIONS These results indicated that radiation enteritis in C57BL/6 mice can be ameliorated by treatment with SYD. The potential protection mechanisms may be involved in ameliorating tissue fibrosis by decreasing inflammatory and apoptotic events.
Collapse
Affiliation(s)
- Zhuohong Li
- Oncology Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Ying Gao
- Oncology Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Lei Du
- Oncology Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Ye Yuan
- Oncology Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Wenbo Huang
- Oncology Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Xi Fu
- Oncology Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yongliang Huang
- Pharmacy Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Xufan Zhang
- Nuclear Medicine Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Fengming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Shijie Li
- Oncology Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
8
|
Khoramjoo SM, Kazemifard N, Baradaran Ghavami S, Farmani M, Shahrokh S, Asadzadeh Aghdaei H, Sherkat G, Zali MR. Overview of Three Proliferation Pathways (Wnt, Notch, and Hippo) in Intestine and Immune System and Their Role in Inflammatory Bowel Diseases (IBDs). Front Med (Lausanne) 2022; 9:865131. [PMID: 35677821 PMCID: PMC9170180 DOI: 10.3389/fmed.2022.865131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/14/2022] [Indexed: 12/15/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a disorder, which involves the gastrointestinal (GI) tract consisting Crohn's disease (CD) and ulcerative colitis (UC). The etiology of this disease is not yet clear and, hence, there are numerous medications and treatments for patients with IBD, although a definite and permanent treatment is still missing. Therefore, finding novel therapeutic approaches are vital for curing patients with IBD. In the GI tract, there are various lineages of cells with different roles that their existence is necessary for the barrier function of intestinal epithelial cells (IECs). Therefore, signaling pathways, which manage the hemostasis of cell lineages in intestine, such as Wnt, Notch, and Hippo, could have crucial roles in regulation of barrier function in the intestine. Additionally, these signaling pathways function as a governor of cell growth, tissue homeostasis, and organ size. In patients with IBD, recent studies have revealed that these signaling pathways are dysregulated that it could result in depletion or excess of a cell lineage in the intestine. Moreover, dysregulation of these signaling pathways in different cell lineages of the immune system could lead to dysregulation of the immune system's responses in IBD. In this article, we summarized the components and signaling of Wnt, Notch, and Hippo pathways and their role in the intestine and immune system. Furthermore, we reviewed latest scientific literature on the crosstalk among these three signaling pathways in IBD. An overview of these three signaling pathways and their interactions in IBD could provide a novel insight for prospective study directions into finding efficient medications or treatments.
Collapse
Affiliation(s)
- Seyed Mobin Khoramjoo
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nesa Kazemifard
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Baradaran Ghavami
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Shaghayegh Baradaran Ghavami
| | - Maryam Farmani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shabnam Shahrokh
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazal Sherkat
- Faculty of Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Russo C, Morello G, Malaguarnera R, Piro S, Furno DL, Malaguarnera L. Candidate genes of SARS-CoV-2 gender susceptibility. Sci Rep 2021; 11:21968. [PMID: 34753980 PMCID: PMC8578384 DOI: 10.1038/s41598-021-01131-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/22/2021] [Indexed: 02/08/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus (SARS-CoV-2) initiated a global viral pandemic since late 2019. Understanding that Coronavirus disease (COVID-19) disproportionately affects men than women results in great challenges. Although there is a growing body of published study on this topic, effective explanations underlying these sex differences and their effects on the infection outcome still remain uncertain. We applied a holistic bioinformatics method to investigate molecular variations of known SARS-CoV-2 interacting human proteins mainly expressed in gonadal tissues (testis and ovary), allowing for the identification of potential genetic targets for this infection. Functional enrichment and interaction network analyses were also performed to better investigate the biological differences between testicular and ovarian responses in the SARS-CoV-2 infection, paying particular attention to genes linked to immune-related pathways, reactions of host cells after intracellular infection, steroid hormone biosynthesis, receptor signaling, and the complement cascade, in order to evaluate their potential association with sexual difference in the likelihood of infection and severity of symptoms. The analysis revealed that within the testis network TMPRSS2, ADAM10, SERPING1, and CCR5 were present, while within the ovary network we found BST2, GATA1, ENPEP, TLR4, TLR7, IRF1, and IRF2. Our findings could provide potential targets for forthcoming experimental investigation related to SARS-CoV-2 treatment.
Collapse
Affiliation(s)
- Cristina Russo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giovanna Morello
- Institute for Research and Biomedical Innovation (IRIB), Italian National Research Council (CNR), Catania, Italy.
| | | | - Salvatore Piro
- Department of Clinical and Molecular Medicine, University of Catania, Catania, Italy
| | - Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Lucia Malaguarnera
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
10
|
Broner EC, Trujillo JA, Korzinkin M, Subbannayya T, Agrawal N, Ozerov IV, Zhavoronkov A, Rooper L, Kotlov N, Shen L, Pearson AT, Rosenberg AJ, Savage PA, Mishra V, Chatterjee A, Sidransky D, Izumchenko E. Doublecortin-Like Kinase 1 (DCLK1) Is a Novel NOTCH Pathway Signaling Regulator in Head and Neck Squamous Cell Carcinoma. Front Oncol 2021; 11:677051. [PMID: 34336664 PMCID: PMC8323482 DOI: 10.3389/fonc.2021.677051] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 06/29/2021] [Indexed: 12/30/2022] Open
Abstract
Despite recent advancements, the 5 year survival of head and neck squamous cell carcinoma (HNSCC) hovers at 60%. DCLK1 has been shown to regulate epithelial-to-mesenchymal transition as well as serving as a cancer stem cell marker in colon, pancreatic and renal cancer. Although it was reported that DCLK1 is associated with poor prognosis in oropharyngeal cancers, very little is known about the molecular characterization of DCLK1 in HNSCC. In this study, we performed a comprehensive transcriptome-based computational analysis on hundreds of HNSCC patients from TCGA and GEO databases, and found that DCLK1 expression positively correlates with NOTCH signaling pathway activation. Since NOTCH signaling has a recognized role in HNSCC tumorigenesis, we next performed a series of in vitro experiments in a collection of HNSCC cell lines to investigate the role of DCLK1 in NOTCH pathway regulation. Our analyses revealed that DCLK1 inhibition, using either a pharmacological inhibitor or siRNA, resulted in substantially decreased proliferation, invasion, migration, and colony formation. Furthermore, these effects paralleled downregulation of active NOTCH1, and its downstream effectors, HEY1, HES1 and HES5, whereas overexpression of DCLK1 in normal keratinocytes, lead to an upregulation of NOTCH signaling associated with increased proliferation. Analysis of 233 primary and 40 recurrent HNSCC cancer biopsies revealed that high DCLK1 expression was associated with poor prognosis and showed a trend towards higher active NOTCH1 expression in tumors with elevated DCLK1. Our results demonstrate the novel role of DCLK1 as a regulator of NOTCH signaling network and suggest its potential as a therapeutic target in HNSCC.
Collapse
Affiliation(s)
- Esther C. Broner
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| | - Jonathan A. Trujillo
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, United States
| | | | | | - Nishant Agrawal
- Section of Otolaryngology-Head and Neck Surgery, University of Chicago, Chicago, IL, United States
| | - Ivan V. Ozerov
- InSilico Medicine Hong Kong Ltd., Pak Shek Kok, Hong Kong
| | | | - Lisa Rooper
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| | - Nikita Kotlov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Le Shen
- Department of Pathology, The University of Chicago Medicine, Chicago, IL, United States
| | - Alexander T. Pearson
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, United States
| | - Ari J. Rosenberg
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, United States
| | - Peter A. Savage
- Department of Pathology, The University of Chicago Medicine, Chicago, IL, United States
| | - Vasudha Mishra
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, United States
| | - Aditi Chatterjee
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | - David Sidransky
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| | - Evgeny Izumchenko
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, United States
| |
Collapse
|
11
|
DCLK1 isoforms and aberrant Notch signaling in the regulation of human and murine colitis. Cell Death Discov 2021; 7:169. [PMID: 34226497 PMCID: PMC8257684 DOI: 10.1038/s41420-021-00526-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/10/2021] [Accepted: 04/07/2021] [Indexed: 01/19/2023] Open
Abstract
Alternative promoter usage generates long and short isoforms (DCLK1-L and DCLK1-S) of doublecortin-like kinase-1 (DCLK1). Tight control of Notch signaling is important to prevent and restitute inflammation in the intestine. Our aim was to investigate whether Notch1–DCLK1 axis regulates the mucosal immune responses to infection and whether this is phenocopied in human models of colitis. In the FFPE (formalin-fixed paraffin-embedded) sections prepared from the colons of ulcerative colitis (UC) and immune-mediated colitis (IRAEC) patients, expression of DCLK1 isoforms correlated positively with Notch1 and negatively with a transcriptional repressor, FoxD3 (Forkhead Box D3). DCLK1 protein staining in these sections was predominantly sub-epithelial (stromal) wherein DCLK1 co-localized with NICD, CD68, CD11c, and neutrophil elastase (NE). NE also co-stained with Citrullinated-H3 indicating the presence of neutrophil extracellular traps. In human neutrophils, elevated levels of DCLK1-S, CXCL-10, Ly6G, MPO, NE, and Notch1/2 in LPS-treated cells were inhibited when LPS was added in conjunction with Notch blocker dibenzazepine (DBZ; LPS + DBZ group). In CR-infected Rag1−/− mice, higher levels of DCLK1 in the colonic crypts were inhibited when mice received DBZ for 10 days coincident with significant dysbiosis, barrier disruption, and colitis. Concurrently, DCLK1 immunoreactivity shifted toward the stroma in CR + DBZ mice with predominance of DCLK1-S that coincided with higher Notch1 levels. Upon antibiotic treatment, partial restoration of crypt DCLK1, reduction in MPO activity, and increased survival followed. When intestinal epithelial cell-specific Dclk1-knockout (Dclk1ΔIEC) or Dclk1ΔIEC;Rag1−/− double knockout (DKO) mice were infected with CR and given a single dose of DBZ, they developed barrier defect and severe colitis with higher levels of stromal DCLK1-S, Ly6G, NE, and Notch1. We therefore propose that, by regulating the mucosal immune responses, the Notch–DCLK1 axis may be integral to the development of murine or human colitis.
Collapse
|
12
|
Collins M, Michot JM, Bellanger C, Mussini C, Benhadji K, Massard C, Carbonnel F. Notch inhibitors induce diarrhea, hypercrinia and secretory cell metaplasia in the human colon. EXCLI JOURNAL 2021; 20:819-827. [PMID: 34121974 PMCID: PMC8192874 DOI: 10.17179/excli2021-3572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/21/2021] [Indexed: 11/20/2022]
Abstract
In humans, inhibition of Notch oncogenic signaling leads to tumor regression. Preclinical studies indicate that Notch signaling contributes to the maintenance of intestinal homeostasis. Here, we sought to describe the intestinal effects of a first-in-human Notch inhibitor in an indication of refractory cancer. Between 2014 and 2017, adult patients treated for refractory cancer with the novel Notch inhibitor LY3039478 and who had grade ≥ 2 diarrhea were referred to the gastroenterology department of a tertiary hospital in the Paris region of France. Eleven patients (median (range) age: 72 (29-83)) were included in the study. All patients had advanced cancer: adenoid cystic carcinoma (n=3, 27 %), sarcoma (n=3, 27 %), and other types (n=5, 46 %). In all cases, digestive tract endoscopy revealed abundant mucus in the intestinal lumen, and digestive tract biopsies showed an abnormally low proportion of enterocytes and marked elevation of the proportion of pseudostratified goblet cells. Microscopic inflammation was seen in colon biopsies from 2 of the 11 patients (18 %). The clinical, endoscopic and histological abnormalities were dependent on the dose of Notch inhibitor. All patients resolved their digestive signs or symptoms after discontinuing the dose and the median (range) time interval between discontinuation of the Notch inhibitor and resolution of all the gastrointestinal signs and symptoms was 7 days (4-24). Likewise, the median time interval between discontinuation and resolution of the histological abnormalities was 7 days (1-10). Blocking Notch signaling induces secretory cell metaplasia of the intestinal epithelium, which in turn leads to transient diarrhea. Our results confirm the role of Notch signaling in intestinal homeostasis in humans.
Collapse
Affiliation(s)
- Michael Collins
- Department of Gastroenterology, Kremlin Bicêtre Hospital, Assistance Publique-Hopitaux de Paris, Le Kremlin Bicêtre, France.,Paris Sud University, Le Kremlin Bicêtre, France.,INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France; University Paris-Sud, Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, France; Assistance Publique-Hôpitaux de Paris (AP-HP), Pôle de Biologie Médicale, Paul-Brousse University Hospital, Villejuif, France
| | - Jean-Marie Michot
- Drug Development Department (DITEP), Gustave Roussy, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Christophe Bellanger
- Department of Gastroenterology, Kremlin Bicêtre Hospital, Assistance Publique-Hopitaux de Paris, Le Kremlin Bicêtre, France.,Paris Sud University, Le Kremlin Bicêtre, France
| | - Charlotte Mussini
- Department of Pathology, Kremlin Bicêtre Hospital, Assistance Publique-Hopitaux de Paris, Le Kremlin Bicêtre, France
| | | | - Christophe Massard
- Drug Development Department (DITEP), Gustave Roussy, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Franck Carbonnel
- Department of Gastroenterology, Kremlin Bicêtre Hospital, Assistance Publique-Hopitaux de Paris, Le Kremlin Bicêtre, France.,Paris Sud University, Le Kremlin Bicêtre, France
| |
Collapse
|
13
|
Kwak SY, Shim S, Park S, Kim H, Lee SJ, Kim MJ, Jang WS, Kim YH, Jang H. Ghrelin reverts intestinal stem cell loss associated with radiation-induced enteropathy by activating Notch signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 81:153424. [PMID: 33278782 DOI: 10.1016/j.phymed.2020.153424] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/15/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUD Exposure to high-dose radiation, such as after a nuclear accident or radiotherapy, elicits severe intestinal damage and is associated with a high mortality rate. In treating patients exhibiting radiation-induced intestinal dysfunction, countermeasures to radiation are required. In principle, the cellular event underlying radiation-induced gastrointestinal syndrome is intestinal stem cell (ISC) apoptosis in the crypts. High-dose irradiation induces the loss of ISCs and impairs intestinal barrier function, including epithelial regeneration and integrity. Notch signaling plays a critical role in the maintenance of the intestinal epithelium and regulates ISC self-renewal. Ghrelin, a hormone produced mainly by enteroendocrine cells in the gastrointestinal tract, has diverse physiological and biological functions. PURPOSE We investigate whether ghrelin mitigates radiation-induced enteropathy, focusing on its role in maintaining epithelial function. METHODS To investigate the effect of ghrelin in radiation-induced epithelial damage, we analyzed proliferation and Notch signaling in human intestinal epithelial cell. And we performed histological analysis, inflammatory response, barrier functional assays, and expression of notch related gene and epithelial stem cell using a mouse model of radiation-induced enteritis. RESULTS In this study, we found that ghrelin treatment accelerated the reversal of radiation-induced epithelial damage including barrier dysfunction and defective self-renewing property of ISCs by activating Notch signaling. Exogenous injection of ghrelin also attenuated the severity of radiation-induced intestinal injury in a mouse model. CONCLUSION These data suggest that ghrelin may be used as a potential therapeutic agent for radiation-induced enteropathy.
Collapse
Affiliation(s)
- Seo-Young Kwak
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul, South Korea
| | - Sehwan Shim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul, South Korea
| | - Sunhoo Park
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul, South Korea
| | - Hyewon Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul, South Korea
| | - Sun-Joo Lee
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul, South Korea
| | - Min-Jung Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul, South Korea
| | - Won-Suk Jang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul, South Korea
| | - Young-Heon Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul, South Korea
| | - Hyosun Jang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul, South Korea.
| |
Collapse
|
14
|
Pu Z, Yang F, Wang L, Diao Y, Chen D. Advancements of compounds targeting Wnt and Notch signalling pathways in the treatment of inflammatory bowel disease and colon cancer. J Drug Target 2020; 29:507-519. [PMID: 33307848 DOI: 10.1080/1061186x.2020.1864741] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Wnt and Notch signalling pathways are important for maintenance of intestinal epithelial barrier integrity by intestinal stem cells (ISCs). Dysfunction of these pathways is implicated in inflammatory bowel disease (IBD) and colon cancer. The objective of this review is to summarise advancements of drugs that regulate Wnt and Notch in the treatment of IBD and colon cancer. The compositions and biological effects of Wnt and Notch modulators in both ISCs and non-ISCs are discussed. The drugs, including phytochemicals, plant extracts, probiotics and synthetic compounds, have been found to regulate Wnt and Notch signalling pathways by targeting regulatory factors (including secreted frizzled-related proteins or pathway proteins such as β-catenin and γ-secretase) to alleviate IBD and colon cancer. This review highlights the potential for targeting Wnt and Notch pathways to treat IBD and colon cancer.
Collapse
Affiliation(s)
- Zhuonan Pu
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian, Liaoning, China
| | - Fang Yang
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian, Liaoning, China
| | - Liang Wang
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian, Liaoning, China
| | - Yunpeng Diao
- Colleage of Pharmacy, Dalian Medical University, Dalian, Liaoning, China
| | - Dapeng Chen
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
15
|
Zheng Y, Verhoeff TA, Perez Pardo P, Garssen J, Kraneveld AD. The Gut-Brain Axis in Autism Spectrum Disorder: A Focus on the Metalloproteases ADAM10 and ADAM17. Int J Mol Sci 2020; 22:ijms22010118. [PMID: 33374371 PMCID: PMC7796333 DOI: 10.3390/ijms22010118] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a spectrum of disorders that are characterized by problems in social interaction and repetitive behavior. The disease is thought to develop from changes in brain development at an early age, although the exact mechanisms are not known yet. In addition, a significant number of people with ASD develop problems in the intestinal tract. A Disintegrin And Metalloproteases (ADAMs) include a group of enzymes that are able to cleave membrane-bound proteins. ADAM10 and ADAM17 are two members of this family that are able to cleave protein substrates involved in ASD pathogenesis, such as specific proteins important for synapse formation, axon signaling and neuroinflammation. All these pathological mechanisms are involved in ASD. Besides the brain, ADAM10 and ADAM17 are also highly expressed in the intestines. ADAM10 and ADAM17 have implications in pathways that regulate gut permeability, homeostasis and inflammation. These metalloproteases might be involved in microbiota-gut-brain axis interactions in ASD through the regulation of immune and inflammatory responses in the intestinal tract. In this review, the potential roles of ADAM10 and ADAM17 in the pathology of ASD and as targets for new therapies will be discussed, with a focus on the gut-brain axis.
Collapse
Affiliation(s)
- Yuanpeng Zheng
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584CG Utrecht, The Netherlands; (Y.Z.); (T.A.V.); (P.P.P.); (J.G.)
| | - Tessa A. Verhoeff
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584CG Utrecht, The Netherlands; (Y.Z.); (T.A.V.); (P.P.P.); (J.G.)
| | - Paula Perez Pardo
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584CG Utrecht, The Netherlands; (Y.Z.); (T.A.V.); (P.P.P.); (J.G.)
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584CG Utrecht, The Netherlands; (Y.Z.); (T.A.V.); (P.P.P.); (J.G.)
- Global Centre of Excellence Immunology, Danone Nutricia Research B.V., 3584CT Utrecht, The Netherlands
| | - Aletta D. Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584CG Utrecht, The Netherlands; (Y.Z.); (T.A.V.); (P.P.P.); (J.G.)
- Correspondence: ; Tel.: +31-(0)3-02534509
| |
Collapse
|
16
|
Liu ZQ, He WF, Wu YJ, Zhao SL, Wang L, Ouyang YY, Tang SY. LncRNA SNHG1 promotes EMT process in gastric cancer cells through regulation of the miR-15b/DCLK1/Notch1 axis. BMC Gastroenterol 2020; 20:156. [PMID: 32423385 PMCID: PMC7236477 DOI: 10.1186/s12876-020-01272-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 04/08/2020] [Indexed: 12/11/2022] Open
Abstract
Background Gastric cancer (GC) is a malignant tumour originating from the gastric mucosa epithelium that seriously threatens human health. DCLK1, miR-15b and lncRNA SNHG1 play potential roles in the occurrence of GC, but the mechanism remains unclear. Methods Gene expression of DCLK1, miR-15b and lncRNA SNHG1 was investigated by qRT-PCR. Protein expression was detected by Western blotting. Migration and invasion of gastric cancer cells was tested by a Transwell assay and wound healing assay. Cell proliferation was measured by an MTT assay. Finally, the correctness of the prediction results was confirmed by a dual-luciferase reporter assay. Results The expression of DCLK1, Notch1, and SNHG1 was increased in GC tissues, while the expression of miR-15b was decreased. Overexpression of lncRNA SNHG1 promoted the expression of DCLK1 and Nothc1 in GC cells. Moreover, miR-15b targeted DCLK1 to regulate Notch1 expression and inhibited the EMT process in GC cells. SNHG1 enhanced the effects of DCLK1/Notch1 on the EMT process through regulating miR-15b expression. Conclusion SNHG1 enhances the EMT process in GC cells through DCLK1-mediated Notch1 pathway, which can be a potential target for treating GC.
Collapse
Affiliation(s)
- Zhi-Qi Liu
- Oncology Department, Brain Hospital of Hunan Province, No.427, Section, 3, Furong Middle Road, Changsha, 410007, Hunan Province, People's Republic of China
| | - Wei-Feng He
- Oncology Department, Brain Hospital of Hunan Province, No.427, Section, 3, Furong Middle Road, Changsha, 410007, Hunan Province, People's Republic of China
| | - Yang-Jie Wu
- Oncology Department of Medical, The First Affiliated hospital, University of South China, Hengyang, 421000, People's Republic of China
| | - Shun-Li Zhao
- Oncology Department, Brain Hospital of Hunan Province, No.427, Section, 3, Furong Middle Road, Changsha, 410007, Hunan Province, People's Republic of China
| | - Ling Wang
- Yichang Central People's Hospital, Yichang, 443000, People's Republic of China
| | - Yan-Yi Ouyang
- Hengyang Central Hospital, Hengyang, 421000, People's Republic of China
| | - San-Yuan Tang
- Oncology Department, Brain Hospital of Hunan Province, No.427, Section, 3, Furong Middle Road, Changsha, 410007, Hunan Province, People's Republic of China.
| |
Collapse
|
17
|
Keewan E, Naser SA. The Role of Notch Signaling in Macrophages during Inflammation and Infection: Implication in Rheumatoid Arthritis? Cells 2020; 9:cells9010111. [PMID: 31906482 PMCID: PMC7016800 DOI: 10.3390/cells9010111] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/18/2019] [Accepted: 12/30/2019] [Indexed: 12/15/2022] Open
Abstract
Notch signaling coordinates numerous cellular processes and has been implicated in many pathological conditions, including rheumatoid arthritis (RA). Although the role of Notch signaling in development, maturation, differentiation, and activation of lymphocytes has been comprehensively reported, less is known about its role in myeloid cells. Certainly, limited data are available about the role of Notch signaling in macrophages during inflammation and infection. In this review, we discuss the recent advances pertaining to the role of Notch signaling in differentiation, activation, and metabolism of macrophages during inflammation and infection. We also highlight the reciprocal interplay between Notch signaling and other signaling pathways in macrophages under different inflammatory and infectious conditions including pathogenesis of RA. Finally, we discuss approaches that could consider Notch signaling as a potential therapeutic target against infection- and inflammation-driven diseases.
Collapse
Affiliation(s)
| | - Saleh A. Naser
- Correspondence: ; Tel.: +1-407-823-0955; Fax: +1-407-823-0956
| |
Collapse
|
18
|
Song M, Chan AT, Sun J. Influence of the Gut Microbiome, Diet, and Environment on Risk of Colorectal Cancer. Gastroenterology 2020; 158:322-340. [PMID: 31586566 PMCID: PMC6957737 DOI: 10.1053/j.gastro.2019.06.048] [Citation(s) in RCA: 492] [Impact Index Per Article: 98.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/11/2019] [Accepted: 06/16/2019] [Indexed: 02/07/2023]
Abstract
Researchers have discovered associations between elements of the intestinal microbiome (including specific microbes, signaling pathways, and microbiota-related metabolites) and risk of colorectal cancer (CRC). However, it is unclear whether changes in the intestinal microbiome contribute to the development of sporadic CRC or result from it. Changes in the intestinal microbiome can mediate or modify the effects of environmental factors on risk of CRC. Factors that affect risk of CRC also affect the intestinal microbiome, including overweight and obesity; physical activity; and dietary intake of fiber, whole grains, and red and processed meat. These factors alter microbiome structure and function, along with the metabolic and immune pathways that mediate CRC development. We review epidemiologic and laboratory evidence for the influence of the microbiome, diet, and environmental factors on CRC incidence and outcomes. Based on these data, features of the intestinal microbiome might be used for CRC screening and modified for chemoprevention and treatment. Integrated prospective studies are urgently needed to investigate these strategies.
Collapse
Affiliation(s)
- Mingyang Song
- Departments of Epidemiology and Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Medicine, Microbiology/Immunology, UIC Cancer Center, University of Illinois at Chicago, Illinois.
| |
Collapse
|
19
|
Daulagala AC, Bridges MC, Kourtidis A. E-cadherin Beyond Structure: A Signaling Hub in Colon Homeostasis and Disease. Int J Mol Sci 2019; 20:E2756. [PMID: 31195621 PMCID: PMC6600153 DOI: 10.3390/ijms20112756] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/27/2019] [Accepted: 06/01/2019] [Indexed: 12/17/2022] Open
Abstract
E-cadherin is the core component of epithelial adherens junctions, essential for tissue development, differentiation, and maintenance. It is also fundamental for tissue barrier formation, a critical function of epithelial tissues. The colon or large intestine is lined by an epithelial monolayer that encompasses an E-cadherin-dependent barrier, critical for the homeostasis of the organ. Compromised barriers of the colonic epithelium lead to inflammation, fibrosis, and are commonly observed in colorectal cancer. In addition to its architectural role, E-cadherin is also considered a tumor suppressor in the colon, primarily a result of its opposing function to Wnt signaling, the predominant driver of colon tumorigenesis. Beyond these well-established traditional roles, several studies have portrayed an evolving role of E-cadherin as a signaling epicenter that regulates cell behavior in response to intra- and extra-cellular cues. Intriguingly, these recent findings also reveal tumor-promoting functions of E-cadherin in colon tumorigenesis and new interacting partners, opening future avenues of investigation. In this Review, we focus on these emerging aspects of E-cadherin signaling, and we discuss their implications in colon biology and disease.
Collapse
Affiliation(s)
- Amanda C Daulagala
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Mary Catherine Bridges
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Antonis Kourtidis
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| |
Collapse
|