1
|
Lao Z, Chen X, Chen X, Zhang H, Zhang Z, Bian Y, Zhou C, Tian K, Jin H, Fu F, Wu C, Gan K, Ruan H. Vertebral Osteoporosis in Systemic Lupus Erythematosus: A Possible Involvement of Inflammation-Related Osteoblast Ferroptosis. J Inflamm Res 2025; 18:5587-5599. [PMID: 40303004 PMCID: PMC12039848 DOI: 10.2147/jir.s523051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 04/16/2025] [Indexed: 05/02/2025] Open
Abstract
Background Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by immune system dysregulation and the production of autoantibodies, leading to widespread inflammation and multi-organ damage. Despite clinical observations have shown that approximately 1.4-68.7% of SLE patients develop vertebral osteoporosis (OP), the underlying mechanisms remain poorly defined. This study utilized the MRL/lpr mouse model, which effectively replicates human SLE manifestations, to investigate the impact of SLE on vertebral bone homeostasis. Methods Female MRL/lpr mice were employed to investigate SLE-induced bone loss. The study comprehensively evaluated bone structural changes through micro-CT analysis, histological assessment, and bone metabolic markers. Specifically, we analyzed trabecular parameters (TV, BV, BV/TV, Tb.Th), inflammatory cytokine profiles (TNF-α, IL-6, IL-1β, IL-18), osteogenic markers (RUNX2, OSTERIX, ALP, OPG), osteoclastogenic indicators (TRAP, RANKL, CTSK), and ferroptosis-related proteins (FACL4, FTH1, GPX4). Results SLE progression in MRL/lpr mice led to significant vertebral bone loss and OP phenotype, evidenced by reduced bone volume fraction (BV/TV) and trabecular thickness (Tb.Th). The inflammatory microenvironment was characterized by elevated TNF-α and IL-6 levels, which disrupted bone homeostasis by suppressing RUNX2, OSTERIX, and OPG expression while enhancing RANKL signaling. Mechanistically, SLE induced ferroptosis through increased FACL4 and FTH1 expression coupled with decreased GPX4 levels, leading to impaired osteoblast function and enhanced osteoclast activity. Conclusion SLE-associated vertebral OP is mediated by inflammation-driven ferroptosis, disrupting the balance between bone formation and resorption, offering novel insights into potential therapeutic strategies for managing bone loss in SLE patients.
Collapse
Affiliation(s)
- Zhaobai Lao
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Xiaogang Chen
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310005, People’s Republic of China
| | - Xin Chen
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Helou Zhang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Zhiguo Zhang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Yishan Bian
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Chengcong Zhou
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Kun Tian
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310005, People’s Republic of China
| | - Hongting Jin
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Fangda Fu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Chengliang Wu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Kaifeng Gan
- Department of Orthopaedic Surgery, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, 315040, People’s Republic of China
| | - Hongfeng Ruan
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310053, People’s Republic of China
| |
Collapse
|
2
|
Dogan DY, Hornung I, Pettinato M, Pagani A, Baschant U, Seebohm G, Hofbauer LC, Silvestri L, Rauner M, Steinbicker AU. Bone phenotyping of murine hemochromatosis models with deficiencies of Hjv, Alk2, or Alk3: The influence of sex and the bone compartment. FASEB J 2024; 38:e70179. [PMID: 39545682 PMCID: PMC11698015 DOI: 10.1096/fj.202401015r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/08/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
Osteopenia is frequently observed in patients with iron overload, especially in those with HFE-dependent hereditary hemochromatosis (HH). Interestingly, not all mouse models of HH show bone loss, suggesting that iron overload alone may not suffice to induce bone loss. In this study, the bone phenotypes of Hjv-/- and hepatocyte-specific Alk2- and Alk3-deficient mice as additional mouse models of HH were investigated to further clarify, how high iron levels lead to bone loss and which signaling mechanisms are operational. Neither male nor female 12-week-old Hjv-/- mice had an altered trabecular or cortical bone mass or bone turnover, despite severe iron overload. Male 12-month-old Hjv-/- mice even presented with a higher femoral trabecular bone volume compared to wildtype mice. Similarly, female mice with hepatocyte-specific Alk2 or Alk3 deficiency did not show an altered bone phenotype at 3, 6, and 12 months of age. Male hepatocyte-specific Alk3-deficient mice also had a normal trabecular bone mass at all ages analyzed, despite showing increased bone resorption and decreased bone formation parameters. Interestingly, hepatocyte-specific Alk2-deficient mice showed reduced femoral trabecular bone at 6 months of age due to suppressed bone formation. Cortical thickness at the femur was reduced in both, 6-month-old male hepatocyte-specific Alk2- and Alk3-deficient mice. Raising hepatocyte-specific Alk2-deficient male mice on an iron-deficient diet rescued the bone phenotype. Taken together, despite iron overload, trabecular bone microarchitecture was not altered in mice deficient of Hjv or Alk3. Only male hepatocyte-specific Alk2-deficient mice showed site-specific lower trabecular and cortical bone mass at the femur, which was dependent on iron. Thus, bone loss does not correlate with the extent of iron overload in these mouse models, but may relate to the amount of iron-loaded macrophages, as precursors of osteoclasts, in the bone marrow.
Collapse
Affiliation(s)
- Deniz Y. Dogan
- Department of Anesthesia, Intensive Care and Pain MedicineGoethe University FrankfurtFrankfurtGermany
| | - Isabelle Hornung
- Department of Anesthesia, Intensive Care and Pain MedicineGoethe University FrankfurtFrankfurtGermany
| | - Mariateresa Pettinato
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Alessia Pagani
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Ulrike Baschant
- Department of Medicine III & Center for Healthy Aging, Medical Faculty and University Hospital Carl Gustav CarusDresden University of TechnologyDresdenGermany
| | - Guiscard Seebohm
- IfGH– Cellular Electrophysiology, Department of Cardiology and AngiologyUniversity Hospital of MünsterMünsterGermany
| | - Lorenz C. Hofbauer
- Department of Medicine III & Center for Healthy Aging, Medical Faculty and University Hospital Carl Gustav CarusDresden University of TechnologyDresdenGermany
| | - Laura Silvestri
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyIRCCS San Raffaele Scientific InstituteMilanItaly
- School of MedicineVita‐Salute San Raffaele UniversityMilanItaly
| | - Martina Rauner
- Department of Medicine III & Center for Healthy Aging, Medical Faculty and University Hospital Carl Gustav CarusDresden University of TechnologyDresdenGermany
| | - Andrea U. Steinbicker
- Department of Anesthesia, Intensive Care and Pain MedicineGoethe University FrankfurtFrankfurtGermany
- Present address:
Faculty of Medicine and University Hospital of Cologne, Department of Anaesthesiology and Intensive Care MedicineUniversity of CologneCologneGermany
| |
Collapse
|
3
|
Baschant U, Fuqua BK, Ledesma-Colunga M, Vulpe CD, McLachlan S, Hofbauer LC, Lusis AJ, Rauner M. Effects of dietary iron deficiency or overload on bone: Dietary details matter. Bone 2024; 184:117092. [PMID: 38575048 DOI: 10.1016/j.bone.2024.117092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/28/2024] [Accepted: 03/31/2024] [Indexed: 04/06/2024]
Abstract
PURPOSE Bone is susceptible to fluctuations in iron homeostasis, as both iron deficiency and overload are linked to poor bone strength in humans. In mice, however, inconsistent results have been reported, likely due to different diet setups or genetic backgrounds. Here, we assessed the effect of different high and low iron diets on bone in six inbred mouse strains (C57BL/6J, A/J, BALB/cJ, AKR/J, C3H/HeJ, and DBA/2J). METHODS Mice received a high (20,000 ppm) or low-iron diet (∼10 ppm) after weaning for 6-8 weeks. For C57BL/6J males, we used two dietary setups with similar amounts of iron, yet different nutritional compositions that were either richer ("TUD study") or poorer ("UCLA study") in minerals and vitamins. After sacrifice, liver, blood and bone parameters as well as bone turnover markers in the serum were analyzed. RESULTS Almost all mice on the UCLA study high iron diet had a significant decrease of cortical and trabecular bone mass accompanied by high bone resorption. Iron deficiency did not change bone microarchitecture or turnover in C57BL/6J, A/J, and DBA/2J mice, but increased trabecular bone mass in BALB/cJ, C3H/HeJ and AKR/J mice. In contrast to the UCLA study, male C57BL/6J mice in the TUD study did not display any changes in trabecular bone mass or turnover on high or low iron diet. However, cortical bone parameters were also decreased in TUD mice on the high iron diet. CONCLUSION Thus, these data show that cortical bone is more susceptible to iron overload than trabecular bone and highlight the importance of a nutrient-rich diet to potentially mitigate the negative effects of iron overload on bone.
Collapse
Affiliation(s)
- Ulrike Baschant
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Germany
| | - Brie K Fuqua
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Maria Ledesma-Colunga
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Germany
| | - Christopher D Vulpe
- Department of Physiological Sciences, University of Florida Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | | | - Lorenz C Hofbauer
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Germany
| | - Aldons J Lusis
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Martina Rauner
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Germany.
| |
Collapse
|
4
|
Tian B, Li X, Li W, Shi Z, He X, Wang S, Zhu X, Shi N, Li Y, Wan P, Zhu C. CRYAB suppresses ferroptosis and promotes osteogenic differentiation of human bone marrow stem cells via binding and stabilizing FTH1. Aging (Albany NY) 2024; 16:8965-8979. [PMID: 38787373 PMCID: PMC11164484 DOI: 10.18632/aging.205851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/25/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Bone formation and homeostasis are greatly dependent on the osteogenic differentiation of human bone marrow stem cells (BMSCs). Therefore, revealing the mechanisms underlying osteogenic differentiation of BMSCs will provide new candidate therapeutic targets for osteoporosis. METHODS The osteogenic differentiation of BMSCs was measured by analyzing ALP activity and expression levels of osteogenic markers. Cellular Fe and ROS levels and cell viability were applied to evaluate the ferroptosis of BMSCs. qRT-PCR, Western blotting, and co-immunoprecipitation assays were harnessed to study the molecular mechanism. RESULTS The mRNA level of CRYAB was decreased in the plasma of osteoporosis patients. Overexpression of CRYAB increased the expression of osteogenic markers including OCN, OPN, RUNX2, and COLI, and also augmented the ALP activity in BMSCs, on the contrary, knockdown of CRYAB had opposite effects. IP-MS technology identified CRYAB-interacted proteins and further found that CRYAB interacted with ferritin heavy chain 1 (FTH1) and maintained the stability of FTH1 via the proteasome mechanism. Mechanically, we unraveled that CRYAB regulated FTH1 protein stability in a lactylation-dependent manner. Knockdown of FTH1 suppressed the osteogenic differentiation of BMSCs, and increased the cellular Fe and ROS levels, and eventually promoted ferroptosis. Rescue experiments revealed that CRYAB suppressed ferroptosis and promoted osteogenic differentiation of BMSCs via regulating FTH1. The mRNA level of FTH1 was decreased in the plasma of osteoporosis patients. CONCLUSIONS Downregulation of CRYAB boosted FTH1 degradation and increased cellular Fe and ROS levels, and finally improved the ferroptosis and lessened the osteogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Bo Tian
- Scientific Research Section, The First People’s Hospital of Yunnan Province, Kunming 650032, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, China
| | - Xiaolu Li
- Geriatric Department, The First People’s Hospital of Yunnan Province, Kunming 650032, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, China
| | - Weiyuan Li
- Geriatric Department, The First People’s Hospital of Yunnan Province, Kunming 650032, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, China
| | - Zhizhou Shi
- Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Xu He
- Geriatric Department, The First People’s Hospital of Yunnan Province, Kunming 650032, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, China
| | - Shengyu Wang
- Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Xun Zhu
- Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Na Shi
- Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Yan Li
- Geriatric Department, The First People’s Hospital of Yunnan Province, Kunming 650032, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, China
| | - Ping Wan
- Geriatric Department, The First People’s Hospital of Yunnan Province, Kunming 650032, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, China
| | - Chongtao Zhu
- Laser Medical Center, The First People’s Hospital of Yunnan Province, Kunming 650032, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, China
| |
Collapse
|
5
|
Ma HD, Shi L, Li HT, Wang XD, Yang MW. Polycytosine RNA-binding protein 1 regulates osteoblast function via a ferroptosis pathway in type 2 diabetic osteoporosis. World J Diabetes 2024; 15:977-987. [PMID: 38766437 PMCID: PMC11099367 DOI: 10.4239/wjd.v15.i5.977] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/22/2024] [Accepted: 03/15/2024] [Indexed: 05/10/2024] Open
Abstract
BACKGROUND Recently, type 2 diabetic osteoporosis (T2DOP) has become a research hotspot for the complications of diabetes, but the specific mechanism of its occurrence and development remains unknown. Ferroptosis caused by iron overload is con-sidered an important cause of T2DOP. Polycytosine RNA-binding protein 1 (PCBP1), an iron ion chaperone, is considered a protector of ferroptosis. AIM To investigate the existence of ferroptosis and specific role of PCBP1 in the development of type 2 diabetes. METHODS A cell counting kit-8 assay was used to detect changes in osteoblast viability under high glucose (HG) and/or ferroptosis inhibitors at different concentrations and times. Transmission electron microscopy was used to examine the morphological changes in the mitochondria of osteoblasts under HG, and western blotting was used to detect the expression levels of PCBP1, ferritin, and the ferroptosis-related protein glutathione peroxidase 4 (GPX4). A lentivirus silenced and overexpressed PCBP1. Western blotting was used to detect the expression levels of the osteoblast functional proteins osteoprotegerin (OPG) and osteocalcin (OCN), whereas flow cytometry was used to detect changes in reactive oxygen species (ROS) levels in each group. RESULTS Under HG, the viability of osteoblasts was considerably decreased, the number of mitochondria undergoing atrophy was considerably increased, PCBP1 and ferritin expression levels were increased, and GPX4 expression was decreased. Western blotting results demonstrated that infection with lentivirus overexpressing PCBP1, increased the expression levels of ferritin, GPX4, OPG, and OCN, compared with the HG group. Flow cytometry results showed a reduction in ROS, and an opposite result was obtained after silencing PCBP1. CONCLUSION PCBP1 may protect osteoblasts and reduce the harm caused by ferroptosis by promoting ferritin expression under a HG environment. Moreover, PCBP1 may be a potential therapeutic target for T2DOP.
Collapse
Affiliation(s)
- Hong-Dong Ma
- Department of Orthopedics, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Lei Shi
- Department of Orthopedics, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Hai-Tian Li
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Xin-Dong Wang
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Mao-Wei Yang
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
6
|
Mengjia W, Jun J, Xin Z, Jiahao Z, Jie G. GPX4-mediated bone ferroptosis under mechanical stress decreased bone formation via the YAP-TEAD signalling pathway. J Cell Mol Med 2024; 28:e18231. [PMID: 38494855 PMCID: PMC10945084 DOI: 10.1111/jcmm.18231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 03/19/2024] Open
Abstract
Fracture of the alveolar bone resorption is a common complication in orthodontic treatment, which mainly caused by extreme mechanical loading. However, the ferroptosis with orthodontic tooth movement(OTM) relationship has not been thoroughly described. We here analysed whether ferroptosis is involved in OTM-associated alveolar bone loss. Mouse osteoblasts (MC-3T3) and knockdown glutathione peroxidase 4 (GPX4) MC-3T3 were stimulated with compressive force loading and ferrostatin-1 (Fer-1, a ferroptosis inhibitor), and the changes in lipid peroxidation morphology, expression of ferroptosis-related factors and osteogenesis levels were detected. After establishing the rat experimental OTM model, the changes in ferroptosis-related factors and osteogenesis levels were reevaluated in the same manner. Ferroptosis was involved in mechanical stress regulating osteoblast remodelling, and Fer-1 and erastin affected osteoblasts under compression force loading. Fer-1 regulated ferroptosis and autophagy in MC-3T3 and promoted bone proliferation. GPX4-dependent ferroptosis stimulated the YAP (homologous oncoproteins Yes-associated protein) pathway, and GPX4 promoted ferroptosis via the YAP-TEAD (transcriptional enhanced associate domain) signal pathway under mechanical compression force. The in vivo experiment results were consistent with the in vitro experiment results. Ferroptosis transpires during the motion of orthodontic teeth, with compression force side occurring earlier than stretch side within 4 h. GPX4 plays an important role in alveolar bone loss, while Fer-1 can inhibit the compression force-side alveolar bone loss. GPX4's Hippo-YAP pathway is activated by the lack of compression force in the lateral alveolar bone.
Collapse
Affiliation(s)
- Wang Mengjia
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesJinanShandongChina
| | - Ji Jun
- Department of OrthodonticsNanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing UniversityNanjingChina
| | - Zhang Xin
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesJinanShandongChina
| | - Zhang Jiahao
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesJinanShandongChina
| | - Guo Jie
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesJinanShandongChina
| |
Collapse
|
7
|
Ledesma-Colunga MG, Passin V, Vujic Spasic M, Hofbauer LC, Baschant U, Rauner M. Comparison of the effects of high dietary iron levels on bone microarchitecture responses in the mouse strains 129/Sv and C57BL/6J. Sci Rep 2024; 14:4887. [PMID: 38418857 PMCID: PMC10902348 DOI: 10.1038/s41598-024-55303-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/22/2024] [Indexed: 03/02/2024] Open
Abstract
Iron is an essential nutrient for all living organisms. Both iron deficiency and excess can be harmful. Bone, a highly metabolic active organ, is particularly sensitive to fluctuations in iron levels. In this study, we investigated the effects of dietary iron overload on bone homeostasis with a specific focus on two frequently utilized mouse strains: 129/Sv and C57BL/6J. Our findings revealed that after 6 weeks on an iron-rich diet, 129/Sv mice exhibited a decrease in trabecular and cortical bone density in both vertebral and femoral bones, which was linked to reduced bone turnover. In contrast, there was no evidence of bone changes associated with iron overload in age-matched C57BL/6J mice. Interestingly, 129/Sv mice exposed to an iron-rich diet during their prenatal development were protected from iron-induced bone loss, suggesting the presence of potential adaptive mechanisms. Overall, our study underscores the critical role of genetic background in modulating the effects of iron overload on bone health. This should be considered when studying effects of iron on bone.
Collapse
Affiliation(s)
- Maria G Ledesma-Colunga
- Department of Medicine III & Center for Healthy Aging, Medical Faculty and University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Vanessa Passin
- Department of Medicine III & Center for Healthy Aging, Medical Faculty and University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Maja Vujic Spasic
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III & Center for Healthy Aging, Medical Faculty and University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Ulrike Baschant
- Department of Medicine III & Center for Healthy Aging, Medical Faculty and University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III & Center for Healthy Aging, Medical Faculty and University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany.
| |
Collapse
|
8
|
Zhang H, Yang F, Cao Z, Xu Y, Wang M. The influence of iron on bone metabolism disorders. Osteoporos Int 2024; 35:243-253. [PMID: 37857915 DOI: 10.1007/s00198-023-06937-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023]
Abstract
Iron is a necessary trace element in the human body, and it participates in many physiological processes. Disorders of iron metabolism can cause lesions in many tissues and organs, including bone. Recently, iron has gained attention as an independent factor influencing bone metabolism disorders, especially the involvement of iron overload in osteoporosis. The aim of this review was to summarize the findings from clinical and animal model research regarding the involvement of iron in bone metabolism disorders and to elucidate the mechanisms behind iron overload and osteoporosis. Lastly, we aimed to describe the association between bone loss and iron overload. We believe that a reduction in iron accumulation can be used as an alternative treatment to assist in the treatment of osteoporosis, to improve bone mass, and to improve the quality of life of patients.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Fan Yang
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Zihou Cao
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Youjia Xu
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| | - Mingyong Wang
- Murui Biological Technology Co., Ltd, Suzhou Industrial Park, Suzhou, China.
| |
Collapse
|
9
|
Robin F, Chappard D, Leroyer P, Latour C, Mabilleau G, Monbet V, Cavey T, Horeau M, Derbré F, Roth MP, Ropert M, Guggenbuhl P, Loréal O. Differences in bone microarchitecture between genetic and secondary iron-overload mouse models suggest a role for hepcidin deficiency in iron-related osteoporosis. FASEB J 2023; 37:e23245. [PMID: 37874260 DOI: 10.1096/fj.202301184r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/04/2023] [Accepted: 09/25/2023] [Indexed: 10/25/2023]
Abstract
Iron overload is one of the secondary osteoporosis etiologies. Cellular and molecular mechanisms involved in iron-related osteoporosis are not fully understood. AIM The aim of the study was to investigate the respective roles of iron excess and hepcidin, the systemic iron regulator, in the development of iron-related osteoporosis. MATERIAL AND METHODS We used mice models with genetic iron overload (GIO) related to hepcidin deficiency (Hfe-/- and Bmp6-/- ) and secondary iron overload (SIO) exhibiting a hepcidin increase secondary to iron excess. Iron concentration and transferrin saturation levels were evaluated in serum and hepatic, spleen, and bone iron concentrations were assessed by ICP-MS and Perl's staining. Gene expression was evaluated by quantitative RT-PCR. Bone micro-architecture was evaluated by micro-CT. The osteoblastic MC3T3 murine cells that are able to mineralize were exposed to iron and/or hepcidin. RESULTS Despite an increase of bone iron concentration in all overloaded mice models, bone volume/total volume (BV/TV) and trabecular thickness (Tb.Th) only decreased significantly in GIO, at 12 months for Hfe-/- and from 6 months for Bmp6-/- . Alterations in bone microarchitecture in the Bmp6-/- model were positively correlated with hepcidin levels (BV/TV (ρ = +.481, p < .05) and Tb.Th (ρ = +.690, p < .05). Iron deposits were detected in the bone trabeculae of Hfe-/- and Bmp6-/- mice, while iron deposits were mainly visible in bone marrow macrophages in secondary iron overload. In cell cultures, ferric ammonium citrate exposure abolished the mineralization process for concentrations above 5 μM, with a parallel decrease in osteocalcin, collagen 1, and alkaline phosphatase mRNA levels. Hepcidin supplementation of cells had a rescue effect on the collagen 1 and alkaline phosphatase expression level decrease. CONCLUSION Together, these data suggest that iron in excess alone is not sufficient to induce osteoporosis and that low hepcidin levels also contribute to the development of osteoporosis.
Collapse
Affiliation(s)
- François Robin
- INSERM, Univ Rennes, INRAE, CHU Rennes, U 1241, Institut NuMeCan (Nutrition Metabolisms and Cancer), Rennes, France
| | - Daniel Chappard
- GEROM, LHEA, IRIS-IBS Biology Institut, Angers cedex, France
| | - Patricia Leroyer
- INSERM, Univ Rennes, INRAE, CHU Rennes, U 1241, Institut NuMeCan (Nutrition Metabolisms and Cancer), Rennes, France
| | - Chloé Latour
- IRSD, Univ Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Guillaume Mabilleau
- Univ Angers, Nantes Université, Oniris, Inserm, RMeS, REGOS, SFR ICAT, Angers, France
| | | | - Thibault Cavey
- INSERM, Univ Rennes, INRAE, CHU Rennes, U 1241, Institut NuMeCan (Nutrition Metabolisms and Cancer), Rennes, France
| | - Mathieu Horeau
- INSERM, Univ Rennes, INRAE, CHU Rennes, U 1241, Institut NuMeCan (Nutrition Metabolisms and Cancer), Rennes, France
- Laboratory "Movement Sport and Health Sciences" EA7470, University of Rennes/ENS Rennes, Rennes, France
| | - Frédéric Derbré
- Laboratory "Movement Sport and Health Sciences" EA7470, University of Rennes/ENS Rennes, Rennes, France
| | | | - Martine Ropert
- INSERM, Univ Rennes, INRAE, CHU Rennes, U 1241, Institut NuMeCan (Nutrition Metabolisms and Cancer), Rennes, France
- AEM2 Platform, Univ Rennes, University Hospital, Rennes, France
| | - Pascal Guggenbuhl
- INSERM, Univ Rennes, INRAE, CHU Rennes, U 1241, Institut NuMeCan (Nutrition Metabolisms and Cancer), Rennes, France
| | - Olivier Loréal
- INSERM, Univ Rennes, INRAE, CHU Rennes, U 1241, Institut NuMeCan (Nutrition Metabolisms and Cancer), Rennes, France
- AEM2 Platform, Univ Rennes, University Hospital, Rennes, France
| |
Collapse
|
10
|
Saleh H, Seaman LAK, Palmer WC. Proposed dietary recommendations for iron overload: a guide for physician practice. Curr Opin Gastroenterol 2023; 39:146-149. [PMID: 36976854 DOI: 10.1097/mog.0000000000000923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
PURPOSE OF REVIEW Iron overload disorders such as hemochromatosis involve unregulated absorption of dietary iron, leading to excessive iron accumulation in multiple organs. Phlebotomy is the standard of care for removal of excess iron, but dietary modification is not standardized in practice. The purpose of this article is to help standardize hemochromatosis diet counseling based on commonly asked patient questions. RECENT FINDINGS The clinical benefit regarding dietary modification in iron overload patients is limited due to lack of large clinical trials, but preliminary results are promising. Recent studies suggest diet modification could reduce iron burden in hemochromatosis patients resulting in less annual phlebotomy as supported through small patient studies, concepts of physiology, and animal studies. SUMMARY This article is a guide for physicians to counsel hemochromatosis patients based on commonly asked questions such as foods to avoid, foods to consume, use of alcohol, and use of supplements. The goal of this guide is to help standardize hemochromatosis diet counseling to reduce phlebotomy amount in patients. Standardization of diet counseling could help facilitate future patient studies to analyze the clinical significance.
Collapse
Affiliation(s)
| | | | - William C Palmer
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
11
|
Fighting age-related orthopedic diseases: focusing on ferroptosis. Bone Res 2023; 11:12. [PMID: 36854703 PMCID: PMC9975200 DOI: 10.1038/s41413-023-00247-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/03/2023] [Accepted: 01/11/2023] [Indexed: 03/02/2023] Open
Abstract
Ferroptosis, a unique type of cell death, is characterized by iron-dependent accumulation and lipid peroxidation. It is closely related to multiple biological processes, including iron metabolism, polyunsaturated fatty acid metabolism, and the biosynthesis of compounds with antioxidant activities, including glutathione. In the past 10 years, increasing evidence has indicated a potentially strong relationship between ferroptosis and the onset and progression of age-related orthopedic diseases, such as osteoporosis and osteoarthritis. Therefore, in-depth knowledge of the regulatory mechanisms of ferroptosis in age-related orthopedic diseases may help improve disease treatment and prevention. This review provides an overview of recent research on ferroptosis and its influences on bone and cartilage homeostasis. It begins with a brief overview of systemic iron metabolism and ferroptosis, particularly the potential mechanisms of ferroptosis. It presents a discussion on the role of ferroptosis in age-related orthopedic diseases, including promotion of bone loss and cartilage degradation and the inhibition of osteogenesis. Finally, it focuses on the future of targeting ferroptosis to treat age-related orthopedic diseases with the intention of inspiring further clinical research and the development of therapeutic strategies.
Collapse
|
12
|
Baschant U, Altamura S, Steele-Perkins P, Muckenthaler MU, Spasić MV, Hofbauer LC, Steinbicker AU, Rauner M. Iron effects versus metabolic alterations in hereditary hemochromatosis driven bone loss. Trends Endocrinol Metab 2022; 33:652-663. [PMID: 35871125 DOI: 10.1016/j.tem.2022.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/08/2022] [Accepted: 06/26/2022] [Indexed: 11/18/2022]
Abstract
Hereditary hemochromatosis (HH) is a genetic disorder in which mutations affect systemic iron homeostasis. Most subtypes of HH result in low hepcidin levels and iron overload. Accumulation of iron in various tissues can lead to widespread organ damage and to various complications, including liver cirrhosis, arthritis, and diabetes. Osteoporosis is another frequent complication of HH, and the underlying mechanisms are poorly understood. Currently, it is unknown whether iron overload in HH directly damages bone or whether complications associated with HH, such as liver cirrhosis or hypogonadism, affect bone secondarily. This review summarizes current knowledge of bone metabolism in HH and highlights possible implications of metabolic dysfunction in HH-driven bone loss. We further discuss therapeutic considerations managing osteoporosis in HH.
Collapse
Affiliation(s)
- Ulrike Baschant
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Sandro Altamura
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Peter Steele-Perkins
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Martina U Muckenthaler
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Maja Vujić Spasić
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Andrea U Steinbicker
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Martina Rauner
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
13
|
Supplementation with High or Low Iron Reduces Colitis Severity in an AOM/DSS Mouse Model. Nutrients 2022; 14:nu14102033. [PMID: 35631174 PMCID: PMC9147005 DOI: 10.3390/nu14102033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 11/17/2022] Open
Abstract
The relationship between colitis-associated colorectal cancer (CAC) and the dysregulation of iron metabolism has been implicated. However, studies on the influence of dietary iron deficiency on the incidence of CAC are limited. This study investigated the effects of dietary iron deficiency and dietary non-heme iron on CAC development in an azoxymethane/dextran sodium sulfate (AOM/DSS) mouse model. The four-week-old mice were divided into the following groups: iron control (IC; 35 ppm iron/kg) + normal (NOR), IC + AOM/DSS, iron deficient (ID; <5 ppm iron/kg diet) + AOM/DSS, and iron overload (IOL; approximately 2000 ppm iron/kg) + AOM/DSS. The mice were fed the respective diets for 13 weeks, and the AOM/DSS model was established at week five. FTH1 expression increased in the mice’s colons in the IC + AOM/DSS group compared with that observed in the ID and IOL + AOM/DSS groups. The reduced number of colonic tumors in the ID + AOM/DSS and IOL + AOM/DSS groups was accompanied by the downregulated expression of cell proliferation regulators (PCNA, cyclin D1, and c-Myc). Iron overload inhibited the increase in the expression of NF-κB and its downstream inflammatory cytokines (IL-6, TNFα, iNOS, COX2, and IL-1β), likely due to the elevated expression of antioxidant genes (SOD1, TXN, GPX1, GPX4, CAT, HMOX1, and NQO1). ID + AOM/DSS may hinder tumor development in the AOM/DSS model by inhibiting the PI3K/AKT pathway by increasing the expression of Ndrg1. Our study suggests that ID and IOL diets suppress AOM/DSS-induced tumors and that long-term iron deficiency or overload may negate CAC progression.
Collapse
|
14
|
Wei Z, Ge F, Che Y, Wu S, Dong X, Song D. Metabolomics Coupled with Pathway Analysis Provides Insights into Sarco-Osteoporosis Metabolic Alterations and Estrogen Therapeutic Effects in Mice. Biomolecules 2021; 12:41. [PMID: 35053189 PMCID: PMC8773875 DOI: 10.3390/biom12010041] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
Postmenopausal osteoporosis (PMOP) and sarcopenia are common diseases that predominantly affect postmenopausal women. In the occurrence and development of these two diseases, they are potentially pathologically connected with each other at various molecular levels. However, the application of metabolomics in sarco-osteoporosis and the metabolic rewiring happening throughout the estrogen loss-replenish process have not been reported. To investigate the metabolic alteration of sarco-osteoporosis and the possible therapeutical effects of estradiol, 24 mice were randomly divided into sham surgery, ovariectomy (OVX), and estradiol-treated groups. Three-dimensional reconstructions and histopathology examination showed significant bone loss after ovariectomy. Estrogen can well protect against OVX-induced bone loss deterioration. UHPLC-Q-TOF/MS was preformed to profile semi- polar metabolites of skeletal muscle samples from all groups. Metabolomics analysis revealed metabolic rewiring occurred in OVX group, most of which can be reversed by estrogen supplementation. In total, 65 differential metabolites were identified, and pathway analysis revealed that sarco-osteoporosis was related to the alterations in purine metabolism, glycerophospholipid metabolism, arginine biosynthesis, tryptophan metabolism, histidine metabolism, oxidative phosphorylation, and thermogenesis, which provided possible explanations for the metabolic mechanism of sarco-osteoporosis. This study indicates that an UHPLC-Q-TOF/MS-based metabolomics approach can elucidate the metabolic reprogramming mechanisms of sarco-osteoporosis and provide biological evidence of the therapeutical effects of estrogen on sarco-osteoporosis.
Collapse
Affiliation(s)
- Ziheng Wei
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201620, China;
| | - Fei Ge
- School of Medicine, Shanghai University, Shanghai 200444, China; (F.G.); (Y.C.)
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Yanting Che
- School of Medicine, Shanghai University, Shanghai 200444, China; (F.G.); (Y.C.)
- College of Sciences, Shanghai University, Shanghai 200444, China
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Si Wu
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xin Dong
- School of Medicine, Shanghai University, Shanghai 200444, China; (F.G.); (Y.C.)
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Dianwen Song
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201620, China;
| |
Collapse
|
15
|
Xu G, Li X, Zhu Z, Wang H, Bai X. Iron Overload Induces Apoptosis and Cytoprotective Autophagy Regulated by ROS Generation in Mc3t3-E1 Cells. Biol Trace Elem Res 2021; 199:3781-3792. [PMID: 33405076 DOI: 10.1007/s12011-020-02508-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/19/2020] [Indexed: 12/18/2022]
Abstract
Iron overload has been found very common in diseases such as hereditary hemochromatosis, thalassemia, and sickle cell disease and in healthy postmenopausal women. Recent studies have shown that iron overload is considered an independent risk factor for osteoporosis. Studies have demonstrated that iron overload could induce apoptosis and inhibit viability in osteoblasts. However, the underlying mechanism still remains poorly understood. The purpose of the present study is to investigate possible mechanism of iron overload-induced apoptosis, and the roles autophagy and reactive oxygen species (ROS) played under iron overload conditions. Ferric ammonium citrate (FAC) (100-1600 μM) was utilized as iron donor to induce iron overload conditions. Intracellular iron concentration was measured using Iron Assay Kit. The viability was assessed by CCK-8 assay. Cell apoptosis was examined using Annexin V-FITC/PI staining with a flow cytometry, and levels of Bax, Bcl-2, cleaved caspase-3, and cleaved PARP were evaluated with Western blot. Cell autophagy was detected by evaluating LC3 with immunofluorescence and Western blot. The expressions of Beclin-1 and P62 were also assessed with Western blot. The intracellular ROS level was evaluated using a DCFH-DA probe with a flow cytometry, and NADPH oxidase 4 (Nox4) expressions were assessed with Western blot. Our results showed that FAC increased intracellular iron concentration and significantly inhibited cell viability. Furthermore, iron overload induced apoptosis and autophagy in osteoblast cells. What's more, pretreatment with autophagy inhibitor chloroquine (CQ) enhanced iron overload-induced osteoblast apoptosis via the activation of caspases. Moreover, iron overload increased ROS production and Nox4 expression. Inhibition of autophagy increased ROS production, and scavenging of ROS by antioxidant N-Acetyl-L-cysteine (NAC) inhibited caspases activity and rescued iron overload-induced apoptosis. These results suggested that autophagy exerted cytoprotective effect, and scavenging excessive intracellular ROS could be a novel approach for the treatment of iron overload-induced osteoporosis.
Collapse
Affiliation(s)
- Guanpeng Xu
- Department of Sports Medicine and Joint Surgery, The People's Hospital of China Medical University, 33 Wenyi Road, Shenhe District, Shenyang, 110016, People's Republic of China
| | - Xi Li
- Department of Sports Medicine and Joint Surgery, The People's Hospital of China Medical University, 33 Wenyi Road, Shenhe District, Shenyang, 110016, People's Republic of China
| | - Zhiyong Zhu
- Department of Sports Medicine and Joint Surgery, The People's Hospital of China Medical University, 33 Wenyi Road, Shenhe District, Shenyang, 110016, People's Republic of China
| | - Huisheng Wang
- Department of Sports Medicine and Joint Surgery, The People's Hospital of China Medical University, 33 Wenyi Road, Shenhe District, Shenyang, 110016, People's Republic of China
| | - Xizhuang Bai
- Department of Sports Medicine and Joint Surgery, The People's Hospital of China Medical University, 33 Wenyi Road, Shenhe District, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
16
|
Ledesma-Colunga MG, Weidner H, Vujic Spasic M, Hofbauer LC, Baschant U, Rauner M. Shaping the bone through iron and iron-related proteins. Semin Hematol 2021; 58:188-200. [PMID: 34389111 DOI: 10.1053/j.seminhematol.2021.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/18/2021] [Accepted: 06/08/2021] [Indexed: 01/04/2023]
Abstract
Well-controlled iron levels are indispensable for health. Iron deficiency is the most common cause of anemia, whereas iron overload, either hereditary or secondary due to disorders of ineffective erythropoiesis, causes widespread organ failure. Bone is particularly sensitive to fluctuations in systemic iron levels as both iron deficiency and overload are associated with low bone mineral density and fragility. Recent studies have shown that not only iron itself, but also iron-regulatory proteins that are mutated in hereditary hemochromatosis can control bone mass. This review will summarize the current knowledge on the effects of iron on bone homeostasis and bone cell activities, and on the role of proteins that regulate iron homeostasis, i.e. hemochromatosis proteins and proteins of the bone morphogenetic protein pathway, on bone remodeling. As disorders of iron homeostasis are closely linked to bone fragility, deeper insights into common regulatory mechanisms may provide new opportunities to concurrently treat disorders affecting iron homeostasis and bone.
Collapse
Affiliation(s)
- Maria G Ledesma-Colunga
- Divisions of Endocrinology and Molecular Bone Biology, Department of Medicine III & University Center for Healty Aging, Technische Universität Dresden, Dresden, Germany
| | - Heike Weidner
- Divisions of Endocrinology and Molecular Bone Biology, Department of Medicine III & University Center for Healty Aging, Technische Universität Dresden, Dresden, Germany
| | - Maja Vujic Spasic
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Lorenz C Hofbauer
- Divisions of Endocrinology and Molecular Bone Biology, Department of Medicine III & University Center for Healty Aging, Technische Universität Dresden, Dresden, Germany
| | - Ulrike Baschant
- Divisions of Endocrinology and Molecular Bone Biology, Department of Medicine III & University Center for Healty Aging, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Divisions of Endocrinology and Molecular Bone Biology, Department of Medicine III & University Center for Healty Aging, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
17
|
Rosa JT, Laizé V, Gavaia PJ, Cancela ML. Fish Models of Induced Osteoporosis. Front Cell Dev Biol 2021; 9:672424. [PMID: 34179000 PMCID: PMC8222987 DOI: 10.3389/fcell.2021.672424] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/28/2021] [Indexed: 12/13/2022] Open
Abstract
Osteopenia and osteoporosis are bone disorders characterized by reduced bone mineral density (BMD), altered bone microarchitecture and increased bone fragility. Because of global aging, their incidence is rapidly increasing worldwide and novel treatments that would be more efficient at preventing disease progression and at reducing the risk of bone fractures are needed. Preclinical studies are today a major bottleneck to the collection of new data and the discovery of new drugs, since they are commonly based on rodent in vivo systems that are time consuming and expensive, or in vitro systems that do not exactly recapitulate the complexity of low BMD disorders. In this regard, teleost fish, in particular zebrafish and medaka, have recently emerged as suitable alternatives to study bone formation and mineralization and to model human bone disorders. In addition to the many technical advantages that allow faster and larger studies, the availability of several fish models that efficiently mimic human osteopenia and osteoporosis phenotypes has stimulated the interest of the academia and industry toward a better understanding of the mechanisms of pathogenesis but also toward the discovery of new bone anabolic or antiresorptive compounds. This mini review recapitulates the in vivo teleost fish systems available to study low BMD disorders and highlights their applications and the recent advances in the field.
Collapse
Affiliation(s)
- Joana T Rosa
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences, University of Algarve, Faro, Portugal.,S2 AQUA - Sustainable and Smart Aquaculture Collaborative Laboratory, Olhão, Portugal
| | - Paulo J Gavaia
- Centre of Marine Sciences, University of Algarve, Faro, Portugal.,GreenCoLab - Associação Oceano Verde, Faro, Portugal.,Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - M Leonor Cancela
- Centre of Marine Sciences, University of Algarve, Faro, Portugal.,Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal.,Algarve Biomedical Center, University of Algarve, Faro, Portugal
| |
Collapse
|
18
|
Musculoskeletal complications associated with pathological iron toxicity and its molecular mechanisms. Biochem Soc Trans 2021; 49:747-759. [PMID: 33929529 DOI: 10.1042/bst20200672] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/25/2022]
Abstract
Iron is fundamental for several biological functions, but when in excess can lead to the development of toxic events. Some tissues and cells are more susceptible than others, but systemic iron levels can be controlled by treating patients with iron-chelating molecules and phlebotomy. An early diagnostic can be decisive to limit the progression of musculoskeletal complications like osteoarthritis and osteoporosis because of iron toxicity. In iron-related osteoarthritis, aggravation can be associated to a few events that can contribute to joints articular cartilage exposure to high iron concentrations, which can promote articular degeneration with very little chance of tissue regeneration. In contrast, bone metabolism is much more dynamic than cartilage, but progressive iron accumulation and ageing can be decisive factors for bone health. The iron overload associated with hereditary diseases like hemochromatosis, hemophilias, thalassemias and other hereditary anaemias increase the negative impact of iron toxicity in joints and bone, as well as in life quality, even when iron levels can be controlled. The molecular mechanisms by which iron can compromise cartilage and bone have been illusive and only in the last 20 years studies have started to shed some light into the molecular mechanisms associated with iron toxicity. Ferroptosis and the regulation of intracellular iron levels is instrumental in the balance between detoxification and induced cell death. In addition, these complications are accompanied with multiple susceptibility factors that can aggravate iron toxicity and should be identified. Therefore, understanding tissues microenvironment and cell communication is fundamental to contextualize iron toxicity.
Collapse
|
19
|
Zhang J, Zhao H, Yao G, Qiao P, Li L, Wu S. Therapeutic potential of iron chelators on osteoporosis and their cellular mechanisms. Biomed Pharmacother 2021; 137:111380. [PMID: 33601146 DOI: 10.1016/j.biopha.2021.111380] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/30/2021] [Accepted: 02/08/2021] [Indexed: 12/22/2022] Open
Abstract
Iron is an essential trace element in the metabolism of almost all living organisms. Iron overload can disrupt bone homeostasis by significant inhibition of osteogenic differentiation and stimulation of osteoclastogenesis, consequently leading to osteoporosis. Iron accumulation is also involved in the osteoporosis induced by multiple factors, such as estrogen deficiency, ionizing radiation, and mechanical unloading. Iron chelators are first developed for treating iron overloaded disorders. However, growing evidence suggests that iron chelators can be potentially used for the treatment of bone loss. In this review, we focus on the therapeutic effects of iron chelators on bone loss. Iron chelators have therapeutic effects not only on iron overload induced osteoporosis, but also on osteoporosis induced by estrogen deficiency, ionizing radiation, and mechanical unloading, and in Alzheimer's disease-associated osteoporotic deficits. Iron chelators differently affect the cellular behaviors of bone cells. For osteoblast lineage cells (bone mesenchymal stem cells and osteoblasts), iron chelation stimulates osteogenic differentiation. Conversely, iron chelation significantly inhibits osteoclast differentiation. These different responses may be associated with the different needs of iron during differentiation. Fibroblast growth factor 23, angiogenesis, and antioxidant capability are also involved in the osteoprotective effects of iron chelators.
Collapse
Affiliation(s)
- Jian Zhang
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China.
| | - Hai Zhao
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Gang Yao
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Penghai Qiao
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Longfei Li
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Shuguang Wu
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
20
|
Ledesma-Colunga MG, Baschant U, Fiedler IAK, Busse B, Hofbauer LC, Muckenthaler MU, Altamura S, Rauner M. Disruption of the hepcidin/ferroportin regulatory circuitry causes low axial bone mass in mice. Bone 2020; 137:115400. [PMID: 32380257 DOI: 10.1016/j.bone.2020.115400] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022]
Abstract
Ferroportin (FPN) is the only known iron exporter. Mutations conferring resistance of FPN to hepcidin-mediated degradation cause the iron overload disorder hereditary hemochromatosis type 4. While iron overload is associated with low bone mass, the mechanisms involved are not completely understood. Here, we aimed to investigate whether the disruption in the hepcidin/FPN axis in FpnC326S mice and subsequent systemic iron accumulation impacts on bone tissue to a similar extent as in Hfe-/- mice, which are hallmarked by a milder iron overload phenotype. Hfe-/- and FpnC326S mice show increased plasma iron levels and liver iron content, whereas iron overload was more pronounced in FpnC326S compared to Hfe-/- mice. Bone volume fraction and trabecular thickness at the femur were not different between 10 and 14-week-old male wild-type (WT), Hfe-/- and FpnC326S mice. By contrast, both Hfe-/- and FpnC326S mice exhibited a lower bone volume fraction [Hfe-/-, 24%; FpnC326S, 33%; p < 0.05] and trabecular thickness [Hfe-/-, 10%; FpnC326S, 15%; p < 0.05] in the fourth lumbar vertebra compared to WT mice. Analysis of the bone formation rate at the tibia showed no difference in both genotypes, but it was reduced in the vertebral bone of FpnC326S [36%, p < 0.05] compared to WT mice. Serum levels of the bone formation marker, P1NP, were significantly reduced in both, Hfe-/- and FpnC326S compared with WT mice [Hfe-/-, 35%; FpnC326S, 40%; p < 0.05]. Also, the intrinsic differentiation capacity of FpnC326S osteoblasts was impaired. Osteoclast parameters were not grossly affected. Interestingly, the liver iron content and plasma iron levels negatively correlated with the bone formation rate and serum levels of P1NP. Thus, disruption of the hepcidin/ferroportin regulatory axis in FpnC326S mice results in axial bone loss due to suppressed bone formation.
Collapse
Affiliation(s)
- Maria G Ledesma-Colunga
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany; Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Ulrike Baschant
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany; Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Imke A K Fiedler
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany; Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Martina U Muckenthaler
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Sandro Altamura
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Martina Rauner
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany; Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
21
|
Jandl NM, Rolvien T, Schmidt T, Mussawy H, Nielsen P, Oheim R, Amling M, Barvencik F. Impaired Bone Microarchitecture in Patients with Hereditary Hemochromatosis and Skeletal Complications. Calcif Tissue Int 2020; 106:465-475. [PMID: 31989186 DOI: 10.1007/s00223-020-00658-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023]
Abstract
Hereditary hemochromatosis (HHC) is characterized by excessive intestinal iron absorption resulting in a pathological increase of iron levels. Parenchyma damage may be a consequence of iron deposition in affected organs (e.g., liver, pancreas, gonads) as well as bones and joints, leading to osteoporosis with increased fracture risk and arthropathy. Up to date, it is not known whether HHC can also be considered as a risk factor for osteonecrosis. Likewise, the underlying skeletal changes are unknown regarding, e.g., microstructural properties of bone. We aimed to study the spectrum of skeletal complications in HHC and the possible underlying microarchitectural changes. Therefore, we retrospectively analyzed all patients with HHC (n = 10) presenting in our outpatient clinic for bone diseases. In addition to dual-energy X-ray absorptiometry (DXA), high-resolution peripheral quantitative computed tomography (HR-pQCT) was performed and bone turnover markers, 25-OH-D3, ferritin and transferrin saturation were measured. Cortical volumetric bone mineral density (Ct.BMD) and cortical thickness (Ct.Th) were reduced, whereas trabecular microstructure (Tb.Th) and volumetric bone mineral density (Tb.BMD) were preserved compared to age- and gender-adjusted reference values from the literature. Interestingly, the occurrence of bone complications was age dependent; while younger patients presented with osteonecroses or transient bone marrow edema, patients older than 65 years presented with fractures. Our study provides first insights into altered bone microarchitecture in HHC and sheds new light on the occurrence of osteonecrosis. If available, HR-pQCT is a useful complement to fracture risk assessment and to determine microstructural deterioration and volumetric bone mineralization deficits.
Collapse
Affiliation(s)
- Nico Maximilian Jandl
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529, Hamburg, Germany.
- Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529, Hamburg, Germany
- Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529, Hamburg, Germany
| | - Haider Mussawy
- Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Nielsen
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529, Hamburg, Germany
| | - Florian Barvencik
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529, Hamburg, Germany
| |
Collapse
|
22
|
Corbier JR, Downs BW, Kushner S, Aloisio T, Bagchi D, Bagchi M. VMP35 MNC, a novel iron-free supplement, enhances cytoprotection against anemia in human subjects: a novel hypothesis. Food Nutr Res 2019; 63:3410. [PMID: 31105509 PMCID: PMC6510707 DOI: 10.29219/fnr.v63.3410] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/27/2019] [Accepted: 04/05/2019] [Indexed: 12/22/2022] Open
Abstract
Background The American Society of Hematology reported that according to the National Heart, Lung, and Blood Institute (NHLBI) anemia is the most common blood disorder, which affects more than 3 million Americans, while the Global Burden of Disease 2016 (GBD 2016) reported that iron deficiency anemia (IDA) is the leading cause of anemia, which affects 1.93 billion people worldwide. Anemia is intricately linked to chronic inflammation, chronic kidney disease, gastrointestinal and gynecological malignancies, and autoimmune disorders. Hemorrhagic anemia results in substantial loss of blood, which causes significant alterations in all blood parameters, including reduced iron. The other type of anemia is chronic anemia syndrome (CAS), which is a constellation of disorders and chronic inflammatory events caused by an increasing anaerobic/acidic environment (promoting the growth of anaerobic organisms), inducing a defensive expenditure of alkalinizing buffers in hemoglobin (i.e. histidine), to prevent a dangerous lowering of blood pH. In this process, iron is cleaved from heme groups and transferred out of blood circulation into other organs, like the liver, appearing to be IDA, where excessive accumulation can lead to hemochromatosis, also known as 'iron overload anemia'. Design A pilot clinical study was conducted in 38 subjects (men = 10; women = 28; age = 22-82 years) to evaluate the rate of absorption and effects on blood of VMP35 multi-nutrient complex (MNC), a non-iron containing liquid nutraceutical supplement. Subjects consumed either placebo or VMP35 (30 mL) over a period of 0, 5, or 30 min. Methods Changes in peripheral blood smears from 38 subjects were observed using live blood cell imaging (LBCI) with phase contrast microscopy. Adverse events were rigorously monitored. Results VMP35 caused positive changes in the blood, including morphological, hematological (including restoration of hemoglobin), and rheological changes following 5 min of administration, which were sustained for at least 30 min. Conclusion Overall, the non-iron containing VMP35 can induce improvements in blood properties and potential benefits for subjects even with compromised digestive systems. No adverse events were reported. Further research studies are in progress to explore the mechanistic insight.
Collapse
Affiliation(s)
- Jean-Ronel Corbier
- Brain Restoration Clinic, A Division of Integra Wellness Center, Indian Land, SC, USA
| | | | | | | | - Debasis Bagchi
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston college of Pharmacy, Houston, TX, USA
| | | |
Collapse
|
23
|
Simão M, Camacho A, Ostertag A, Cohen-Solal M, Pinto IJ, Porto G, Ea HK, Cancela ML. Correction: Iron-enriched diet contributes to early onset of osteoporotic phenotype in a mouse model of hereditary hemochromatosis. PLoS One 2019; 14:e0216377. [PMID: 31034507 PMCID: PMC6488066 DOI: 10.1371/journal.pone.0216377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|