1
|
Verbaarschot C, Karapetyan V, Greenspon CM, Boninger ML, Bensmaia SJ, Sorger B, Gaunt RA. Conveying tactile object characteristics through customized intracortical microstimulation of the human somatosensory cortex. Nat Commun 2025; 16:4017. [PMID: 40312384 PMCID: PMC12046030 DOI: 10.1038/s41467-025-58616-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 03/26/2025] [Indexed: 05/03/2025] Open
Abstract
Microstimulation of the somatosensory cortex can evoke tactile percepts in people with spinal cord injury, providing a means to restore touch. While location and intensity can be reliably conveyed, two issues that prevent creating more complex naturalistic sensations are a lack of methods to effectively scan the large stimulus parameter space and difficulties with assessing percept quality. Here, we address both challenges with an experimental paradigm that enables three male individuals with tetraplegia to control their stimulation parameters in a blinded fashion to create sensations for different virtual objects. Using this method, participants can reliably create object-specific sensations and report vivid object-appropriate characteristics. Moreover, both linear classifiers and participants can match stimulus profiles with their respective objects significantly above chance without any visual cues. Confusion between two sensations increases as the associated objects share more tactile characteristics. We conclude that while visual information contributes to the experience of the artificially evoked sensations, microstimulation in the somatosensory cortex itself can evoke intuitive percepts with a variety of tactile properties. This self-guided stimulation approach may be used to effectively characterize percepts from future stimulation paradigms.
Collapse
Affiliation(s)
- Ceci Verbaarschot
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vahagn Karapetyan
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Charles M Greenspon
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Michael L Boninger
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sliman J Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Bettina Sorger
- Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Robert A Gaunt
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Cady SR, Lambrecht JM, Dsouza KT, Dunning JL, Anderson JR, Malone KJ, Chepla KJ, Graczyk EL, Tyler DJ. First-in-human implementation of a bidirectional somatosensory neuroprosthetic system with wireless communication. J Neuroeng Rehabil 2025; 22:90. [PMID: 40269935 PMCID: PMC12020317 DOI: 10.1186/s12984-025-01613-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/21/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Limitations in upper limb prosthesis function and lack of sensory feedback are major contributors to high prosthesis abandonment rates. Peripheral nerve stimulation and intramuscular recording can restore touch and relay motor intentions for individuals with upper limb loss. Percutaneous systems have enabled significant progress in implanted neural interfaces but require chronic lead maintenance and unwieldy external equipment. Fully implanted sensorimotor systems without percutaneous leads are crucial for advancing implanted neuroprosthetic technologies to long-term community use and commercialization. METHODS We present the first-in-human technical performance of the implanted Somatosensory Electrical Neurostimulation and Sensing (iSens®) system-an implanted, high-channel count myoelectric sensing and nerve stimulation system that uses wireless communication for advanced prosthetic systems. Two individuals with unilateral transradial amputations received iSens® with four 16-channel composite Flat Interface Nerve Electrodes (C-FINEs) and four Tetra Intramuscular (TIM) electrodes. This study achieved two key objectives to demonstrate system feasibility prior to long-term community use: (1) evaluating the chronic stability of extraneural cuff electrodes, intramuscular electrodes, and active implantable devices in a wirelessly connected system and (2) assessing the impacts of peripheral nerve stimulation on three degree-of-freedom controller performance in a wirelessly connected system to validate iSens® as a bidirectional interface. RESULTS Similar to prior percutaneous systems, we demonstrate chronically stable extraneural cuff electrodes and intramuscular electrodes in a wirelessly connected implanted system for more than two years in one participant and four months in the second participant, whose iSens® system was explanted due to an infection of unknown origin. Using an artificial neural network controller trained on implanted electromyographic data collected during known hand movements, one participant commanded a virtual hand and sensorized prosthesis in 3 degrees-of-freedom. The iSens® system simultaneously produced stimulation for sensation while recording high resolution muscle activity for real-time control. Although restored sensation did not significantly improve initial trials of prosthetic controller performance, the participant reported that sensation was helpful for functional tasks. CONCLUSIONS This case series describes a wirelessly connected, bidirectional neuroprosthetic system with somatosensory feedback and advanced myoelectric prosthetic control that is ready for implementation in long-term home use clinical trials. TRIAL REGISTRATION ClinicalTrials.gov ID: NCT04430218, 2020-06-30.
Collapse
Affiliation(s)
- Sedona R Cady
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, 44106, USA
| | - Joris M Lambrecht
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, 44106, USA
| | - Karina T Dsouza
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, 44106, USA
| | - Jeremy L Dunning
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, 44106, USA
| | - J Robert Anderson
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, 44106, USA
- University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Kevin J Malone
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, 44106, USA
- University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Kyle J Chepla
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, 44106, USA
- MetroHealth Medical Center, Cleveland, OH, 44109, USA
| | - Emily L Graczyk
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, 44106, USA
| | - Dustin J Tyler
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, 44106, USA.
| |
Collapse
|
3
|
Diaz-Hernandez O. A worldwide research overview of Artificial Proprioception in prosthetics. PLOS DIGITAL HEALTH 2025; 4:e0000809. [PMID: 40261833 PMCID: PMC12013951 DOI: 10.1371/journal.pdig.0000809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Proprioception is the body's ability to sense its position and movement, which is essential for motor control. Its loss after amputation poses significant challenges for prosthesis users. Artificial Proprioception enhances sensory feedback and motor control in prosthetic devices. This review provides a global overview of current research and technology in the field, emphasizing feedback mechanisms, neural interfaces, and biomechatronic integration. This work examines innovations in sensory feedback for amputees, including electrotactile and vibrotactile stimulation, artificial intelligence, and neural interfaces to enhance prosthetic control. The methodology involved reviewing studies from Scopus, Web of Science, and PubMed on prosthetic proprioceptive feedback from 2004 to 2024, evaluating sensory feedback research by author, country, and affiliation with a synthesis provided. Countries like the United States and Italy are collaborating to advance global research. The paper concludes with potential developments, such as advanced, user-centered prosthetics that meet amputees' sensory needs and significantly enhance their quality of life.
Collapse
Affiliation(s)
- Octavio Diaz-Hernandez
- Escuela Nacional de Estudios Superiores Unidad Juriquilla, Universidad Nacional Autónoma de México, Mexico City, México
| |
Collapse
|
4
|
Parker SR, Lee XJ, Calvert JS, Borton DA. xDev: a mixed-signal, software-defined neurotechnology interface platform for accelerated system development. J Neural Eng 2025; 22:026012. [PMID: 40066693 PMCID: PMC11894552 DOI: 10.1088/1741-2552/adb7bf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/27/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025]
Abstract
Objective.Advances in electronics and materials science have led to the development of sophisticated components for clinical and research neurotechnology systems. However, instrumentation to easily evaluate how these components function in a complete system does not yet exist. In this work, we set out to design and validate a software-defined mixed-signal routing fabric, 'xDev', that enables neurotechnology system designers to rapidly iterate, evaluate, and deploy advanced multi-component systems.Approach.We developed a set of system requirements for xDev, and implemented a design based on a 16 × 16 analog crosspoint multiplexer. We then tested the impedance and switching characteristics of the design, assessed signal gain and crosstalk attenuation across biological and high-speed digital signaling frequencies, and evaluated the ability of xDev to flexibly reroute microvolt-scale amplitude and high-speed signals. Finally, we conducted an intraoperativein vivodeployment of xDev to rapidly conduct neuromodulation experiments using diverse neurotechnology submodules.Main results.The xDev system impedance matching, crosstalk attenuation, and frequency response characteristics accurately transmitted signals over a broad range of frequencies, encapsulating features typical of biosignals and extending into high-speed digital ranges. Microvolt-scale biosignals and 600 Mbps Ethernet connections were accurately routed through the fabric. These performance characteristics culminated in anin vivodemonstration of the flexibility of the system via implanted spinal electrode arrays in an ovine model.Significance.xDev represents a first-of-its-kind, low-cost, software-defined neurotechnology development accelerator platform. Through the public, open-source distribution of our designs, we lower the obstacles facing the development of future neurotechnology systems.
Collapse
Affiliation(s)
- Samuel R Parker
- Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, RI, United States of America
- School of Engineering, Brown University, Providence, RI, United States of America
| | - Xavier J Lee
- School of Engineering, Brown University, Providence, RI, United States of America
| | - Jonathan S Calvert
- Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, RI, United States of America
- School of Engineering, Brown University, Providence, RI, United States of America
| | - David A Borton
- Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, RI, United States of America
- School of Engineering, Brown University, Providence, RI, United States of America
- Carney Institute for Brain Science, Brown University, Providence, RI, United States of America
- Department of Neurosurgery, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, United States of America
| |
Collapse
|
5
|
Jeon J, Choe JP, Song K. Development of a flexible fabric-based variable shape actuator for enhanced multi-DoF haptic feedback. Sci Rep 2025; 15:7398. [PMID: 40033071 DOI: 10.1038/s41598-025-91981-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/24/2025] [Indexed: 03/05/2025] Open
Abstract
Conventional haptic feedback devices that rely on rigid components to achieve multiple degrees of freedom (DoF) often result in bulky, complex systems that hinder natural movement and increase user discomfort. This study addresses these limitations by substituting rigid materials with flexible, fabric-based materials to develop a variable shape actuator (VSA). The VSA is designed to provide multi-DoF haptic feedback by integrating contraction and expansion mechanisms within a lightweight, fabric structure. The actuator consists of a tactile feedback actuator (TFA) for delivering tactile sensations and a joint angle actuator (JAA) for kinesthetic feedback, allowing the system to dynamically alter its shape. Experimental results demonstrate that the VSA successfully produces multi-DoF haptic feedback on the palmar surface of the hand, enhancing the haptic experience in virtual environments. This advancement in haptic feedback technology paves the way for more diverse and immersive feedback systems, significantly narrowing the gap between virtual reality and physical reality.
Collapse
Affiliation(s)
- Junsang Jeon
- Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jun-Pil Choe
- Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Kahye Song
- Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
| |
Collapse
|
6
|
Tian Y, Valle G, Cederna PS, Kemp SWP. The Next Frontier in Neuroprosthetics: Integration of Biomimetic Somatosensory Feedback. Biomimetics (Basel) 2025; 10:130. [PMID: 40136784 PMCID: PMC11940524 DOI: 10.3390/biomimetics10030130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/28/2025] [Accepted: 02/01/2025] [Indexed: 03/27/2025] Open
Abstract
The development of neuroprosthetic limbs-robotic devices designed to restore lost limb functions for individuals with limb loss or impairment-has made significant strides over the past decade, reaching the stage of successful human clinical trials. A current research focus involves providing somatosensory feedback to these devices, which was shown to improve device control performance and embodiment. However, widespread commercialization and clinical adoption of somatosensory neuroprosthetic limbs remain limited. Biomimetic neuroprosthetics, which seeks to resemble the natural sensory processing of tactile information and to deliver biologically relevant inputs to the nervous system, offer a promising path forward. This method could bridge the gap between existing neurotechnology and the future realization of bionic limbs that more closely mimic biological limbs. In this review, we examine the recent key clinical trials that incorporated somatosensory feedback on neuroprosthetic limbs through biomimetic neurostimulation for individuals with missing or paralyzed limbs. Furthermore, we highlight the potential impact of cutting-edge advances in tactile sensing, encoding strategies, neuroelectronic interfaces, and innovative surgical techniques to create a clinically viable human-machine interface that facilitates natural tactile perception and advanced, closed-loop neuroprosthetic control to improve the quality of life of people with sensorimotor impairments.
Collapse
Affiliation(s)
- Yucheng Tian
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (Y.T.); (P.S.C.)
| | - Giacomo Valle
- Department of Electrical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden;
| | - Paul S. Cederna
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (Y.T.); (P.S.C.)
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephen W. P. Kemp
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (Y.T.); (P.S.C.)
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
7
|
Farooqui J, Nanivadekar AC, Capogrosso M, Lempka SF, Fisher LE. The effects of neuron morphology and spatial distribution on the selectivity of dorsal root ganglion stimulation. J Neural Eng 2024; 21:056030. [PMID: 39231464 PMCID: PMC11475779 DOI: 10.1088/1741-2552/ad7760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/02/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024]
Abstract
Objective.For prosthesis users, sensory feedback that appears to come from the missing limb can improve function, confidence, and phantom limb pain. Numerous pre-clinical studies have considered stimulation via penetrating microelectrodes at the dorsal root ganglion (DRG) as a potential approach for somatosensory neuroprostheses. However, to develop clinically translatable neuroprosthetic devices, a less invasive approach, such as stimulation via epineural macroelectrodes, would be preferable. This work explores the feasibility of using such electrodes to deliver focal sensory feedback by examining the mechanisms of selective activation in response to stimulation via epineural electrodes compared with penetrating electrodes.Approach.We developed computational models of the DRG, representing the biophysical properties of the DRG and surrounding tissue to evaluate neural responses to stimulation via penetrating microelectrodes and epineural macroelectrodes. To assess the role of properties such as neuron morphology and spatial arrangement we designed three models, including one that contained only axons (axon only), one with pseudounipolar neurons arranged randomly (random), and one with pseudounipolar neurons placed according to a realistic spatial distribution (realistic).Main results.Our models demonstrate that activation in response to stimulation via epineural electrodes in a realistic model is commonly initiated in the axon initial segment adjacent to the cell body, whereas penetrating electrodes commonly elicit responses in t-junctions and axons. Moreover, we see a wider dynamic range for epineural electrodes compared with penetrating electrodes. This difference appears to be driven by the spatial organization and neuron morphology of the realistic DRG.Significance.We demonstrate that the anatomical features of the DRG make it a potentially effective target for epineural stimulation to deliver focal sensations from the limbs. Specifically, we show that epineural stimulation at the DRG can be highly selective thanks to the neuroanatomical arrangement of the DRG, making this a promising approach for future neuroprosthetic development.
Collapse
Affiliation(s)
- Juhi Farooqui
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA 15219, United States of America
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - Ameya C Nanivadekar
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA 15219, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Marco Capogrosso
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA 15219, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15219, United States of America
| | - Scott F Lempka
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States of America
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Lee E Fisher
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA 15219, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15219, United States of America
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| |
Collapse
|
8
|
Benigni TR, Pena AE, Kuntaegowdanahalli SS, Abbas JJ, Jung R. Simultaneous modulation of pulse charge and burst period elicits two differentiable referred sensations. J Neural Eng 2024; 21:056026. [PMID: 39321845 DOI: 10.1088/1741-2552/ad7f8c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/25/2024] [Indexed: 09/27/2024]
Abstract
Objective.To investigate the feasibility of delivering multidimensional feedback using a single channel of peripheral nerve stimulation by complementing intensity percepts with flutter frequency percepts controlled by burst period modulation.Approach.Two dimensions of a distally referred sensation were provided simultaneously: intensity was conveyed by the modulation of the pulse charge rate inside short discrete periods of stimulation referred to as bursts and frequency was conveyed by the modulation of the period between bursts. For this approach to be feasible, intensity percepts must be perceived independently of frequency percepts. Two experiments investigated these interactions. A series of two alternative forced choice tasks (2AFC) were used to investigate burst period modulation's role in intensity discernibility. Magnitude estimation tasks were used to determine any interactions in the gradation between the frequency and intensity percepts.Main results.The 2AFC revealed that burst periods can be individually differentiated as a gradable frequency percept in peripheral nerve stimulation. Participants could correctly rate a perceptual scale of intensity and frequency regardless of the value of the second, but the dependence of frequency differentiability on charge rate indicates that frequency was harder to detect with weaker intensity percepts. The same was not observed in intensity differentiability as the length of burst periods did not significantly alter intensity differentiation. These results suggest multidimensional encoding is a promising approach for increasing information throughput in sensory feedback systems if intensity ranges are selected properly.Significance.This study offers valuable insights into haptic feedback through the peripheral nervous system and demonstrates an encoding approach for neural stimulation that may offer enhanced information transfer in virtual reality applications and sensory-enabled prosthetic systems. This multidimensional encoding strategy for sensory feedback may open new avenues for enriched control capabilities.
Collapse
Affiliation(s)
- T R Benigni
- Institute for Integrative and Innovative Research, University of Arkansas, Fayetteville, AR, United States of America
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, United States of America
| | - A E Pena
- Institute for Integrative and Innovative Research, University of Arkansas, Fayetteville, AR, United States of America
| | - S S Kuntaegowdanahalli
- Institute for Integrative and Innovative Research, University of Arkansas, Fayetteville, AR, United States of America
| | - J J Abbas
- Institute for Integrative and Innovative Research, University of Arkansas, Fayetteville, AR, United States of America
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, United States of America
| | - R Jung
- Institute for Integrative and Innovative Research, University of Arkansas, Fayetteville, AR, United States of America
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, United States of America
| |
Collapse
|
9
|
Graczyk E, Hutchison B, Valle G, Bjanes D, Gates D, Raspopovic S, Gaunt R. Clinical Applications and Future Translation of Somatosensory Neuroprostheses. J Neurosci 2024; 44:e1237242024. [PMID: 39358021 PMCID: PMC11450537 DOI: 10.1523/jneurosci.1237-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 10/04/2024] Open
Abstract
Somatosensory neuroprostheses restore, replace, or enhance tactile and proprioceptive feedback for people with sensory impairments due to neurological disorders or injury. Somatosensory neuroprostheses typically couple sensor inputs from a wearable device, prosthesis, robotic device, or virtual reality system with electrical stimulation applied to the somatosensory nervous system via noninvasive or implanted interfaces. While prior research has mainly focused on technology development and proof-of-concept studies, recent acceleration of clinical studies in this area demonstrates the translational potential of somatosensory neuroprosthetic systems. In this review, we provide an overview of neurostimulation approaches currently undergoing human testing and summarize recent clinical findings on the perceptual, functional, and psychological impact of somatosensory neuroprostheses. We also cover current work toward the development of advanced stimulation paradigms to produce more natural and informative sensory feedback. Finally, we provide our perspective on the remaining challenges that need to be addressed prior to translation of somatosensory neuroprostheses.
Collapse
Affiliation(s)
- Emily Graczyk
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106
| | - Brianna Hutchison
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
| | - Giacomo Valle
- Department of Electrical Engineering, Chalmers University of Technology, Goteborg 41296, Sweden
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois 60637
| | - David Bjanes
- Division of Biology and Biological Engineering and Tianqiao & Chrissy Chen Brain-Machine Interface Center, California Institute of Technology, Pasadena, California 91125
| | - Deanna Gates
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Stanisa Raspopovic
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zurich, Zurich 8092, Switzerland
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna 1090, Austria
| | - Robert Gaunt
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
10
|
Elbasiouny SM. The neurophysiology of sensorimotor prosthetic control. BMC Biomed Eng 2024; 6:9. [PMID: 39350271 PMCID: PMC11443900 DOI: 10.1186/s42490-024-00084-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 07/31/2024] [Indexed: 10/04/2024] Open
Abstract
Movement is a central behavior of daily living; thus lost or compromised movement due to disease, injury, or amputation causes enormous loss of productivity and quality of life. While prosthetics have evolved enormously over the years, restoring natural sensorimotor (SM) control via a prosthesis is a difficult problem which neuroengineering has yet to solve. With a focus on upper limb prosthetics, this perspective article discusses the neurophysiology of motor control under healthy conditions and after amputation, the development of upper limb prostheses from early generations to current state-of-the art sensorimotor neuroprostheses, and how postinjury changes could complicate prosthetic control. Current challenges and future development of smart sensorimotor neuroprostheses are also discussed.
Collapse
Affiliation(s)
- Sherif M Elbasiouny
- Department of Biomedical, Industrial and Human Factors Engineering, College of Engineering and Computer Science, Wright State University, Dayton, OH, USA.
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, College of Science and Mathematics, Wright State University, Dayton, OH, USA.
| |
Collapse
|
11
|
Tebcherani TM, Loparo KA, Kaffashi F, Tyler DJ, Graczyk EL. Interleaved Multi-Contact Peripheral Nerve Stimulation to Enhance Reproduction of Tactile Sensation: A Computational Modeling Study. IEEE Trans Neural Syst Rehabil Eng 2024; 32:2302-2313. [PMID: 38885096 DOI: 10.1109/tnsre.2024.3414939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Peripheral nerve stimulation (PNS) is an effective means to elicit sensation for rehabilitation of people with loss of a limb or limb function. While most current PNS paradigms deliver current through single electrode contacts to elicit each tactile percept, multi-contact extraneural electrodes offer the opportunity to deliver PNS with groups of contacts individually or simultaneously. Multi-contact PNS strategies could be advantageous in developing biomimetic PNS paradigms to recreate the natural neural activity during touch, because they may be able to selectively recruit multiple distinct neural populations. We used computational models and optimization approaches to develop a novel biomimetic PNS paradigm that uses interleaved multi-contact (IMC) PNS to approximate the critical neural coding properties underlying touch. The IMC paradigm combines field shaping, in which two contacts are active simultaneously, with pulse-by-pulse contact and parameter variations throughout the touch stimulus. We show in simulation that IMC PNS results in better neural code mimicry than single contact PNS created with the same optimization techniques, and that field steering via two-contact IMC PNS results in better neural code mimicry than one-contact IMC PNS. We also show that IMC PNS results in better neural code mimicry than existing PNS paradigms, including prior biomimetic PNS. Future clinical studies will determine if the IMC paradigm can improve the naturalness and usefulness of sensory feedback for those with neurological disorders.
Collapse
|
12
|
Festin C, Ortmayr J, Maierhofer U, Tereshenko V, Blumer R, Schmoll M, Carrero-Rojas G, Luft M, Laengle G, Farina D, Bergmeister KD, Aszmann OC. Creation of a biological sensorimotor interface for bionic reconstruction. Nat Commun 2024; 15:5337. [PMID: 38914540 PMCID: PMC11196281 DOI: 10.1038/s41467-024-49580-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 06/12/2024] [Indexed: 06/26/2024] Open
Abstract
Neuromuscular control of bionic arms has constantly improved over the past years, however, restoration of sensation remains elusive. Previous approaches to reestablish sensory feedback include tactile, electrical, and peripheral nerve stimulation, however, they cannot recreate natural, intuitive sensations. Here, we establish an experimental biological sensorimotor interface and demonstrate its potential use in neuroprosthetics. We transfer a mixed nerve to a skeletal muscle combined with glabrous dermal skin transplantation, thus forming a bi-directional communication unit in a rat model. Morphological analyses indicate reinnervation of the skin, mechanoreceptors, NMJs, and muscle spindles. Furthermore, sequential retrograde labeling reveals specific sensory reinnervation at the level of the dorsal root ganglia. Electrophysiological recordings show reproducible afferent signals upon tactile stimulation and tendon manipulation. The results demonstrate the possibility of surgically creating an interface for both decoding efferent motor control, as well as encoding afferent tactile and proprioceptive feedback, and may indicate the way forward regarding clinical translation of biological communication pathways for neuroprosthetic applications.
Collapse
Affiliation(s)
- Christopher Festin
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Joachim Ortmayr
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Udo Maierhofer
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Vlad Tereshenko
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Roland Blumer
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Martin Schmoll
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Génova Carrero-Rojas
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Matthias Luft
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
- Department of Plastic, Aesthetic and Reconstructive Surgery, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Gregor Laengle
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Dario Farina
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Konstantin D Bergmeister
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
- Department of Plastic, Aesthetic and Reconstructive Surgery, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Oskar C Aszmann
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria.
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
13
|
Valle G, Katic Secerovic N, Eggemann D, Gorskii O, Pavlova N, Petrini FM, Cvancara P, Stieglitz T, Musienko P, Bumbasirevic M, Raspopovic S. Biomimetic computer-to-brain communication enhancing naturalistic touch sensations via peripheral nerve stimulation. Nat Commun 2024; 15:1151. [PMID: 38378671 PMCID: PMC10879152 DOI: 10.1038/s41467-024-45190-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/17/2024] [Indexed: 02/22/2024] Open
Abstract
Artificial communication with the brain through peripheral nerve stimulation shows promising results in individuals with sensorimotor deficits. However, these efforts lack an intuitive and natural sensory experience. In this study, we design and test a biomimetic neurostimulation framework inspired by nature, capable of "writing" physiologically plausible information back into the peripheral nervous system. Starting from an in-silico model of mechanoreceptors, we develop biomimetic stimulation policies. We then experimentally assess them alongside mechanical touch and common linear neuromodulations. Neural responses resulting from biomimetic neuromodulation are consistently transmitted towards dorsal root ganglion and spinal cord of cats, and their spatio-temporal neural dynamics resemble those naturally induced. We implement these paradigms within the bionic device and test it with patients (ClinicalTrials.gov identifier NCT03350061). He we report that biomimetic neurostimulation improves mobility (primary outcome) and reduces mental effort (secondary outcome) compared to traditional approaches. The outcomes of this neuroscience-driven technology, inspired by the human body, may serve as a model for advancing assistive neurotechnologies.
Collapse
Affiliation(s)
- Giacomo Valle
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland
| | - Natalija Katic Secerovic
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland
- School of Electrical Engineering, University of Belgrade, 11000, Belgrade, Serbia
- The Mihajlo Pupin Institute, University of Belgrade, 11000, Belgrade, Serbia
| | - Dominic Eggemann
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland
| | - Oleg Gorskii
- Laboratory for Neuroprosthetics, Institute of Translational Biomedicine, Saint-Petersburg State University, Saint-Petersburg, Russia
- Laboratory for Neuromodulation, Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, 199034, Russia
- Center for Biomedical Engineering, National University of Science and Technology "MISIS", 119049, Moscow, Russia
| | - Natalia Pavlova
- Laboratory for Neuroprosthetics, Institute of Translational Biomedicine, Saint-Petersburg State University, Saint-Petersburg, Russia
| | | | - Paul Cvancara
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering-IMTEK, Bernstein Center, BrainLinks-BrainTools Center of Excellence, University of Freiburg, D-79110, Freiburg, Germany
| | - Thomas Stieglitz
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering-IMTEK, Bernstein Center, BrainLinks-BrainTools Center of Excellence, University of Freiburg, D-79110, Freiburg, Germany
| | - Pavel Musienko
- Laboratory for Neuroprosthetics, Institute of Translational Biomedicine, Saint-Petersburg State University, Saint-Petersburg, Russia
- Sirius University of Science and Technology, Neuroscience Program, Sirius, Russia
- Laboratory for Neurorehabilitation Technologies, Life Improvement by Future Technologies Center "LIFT", Moscow, Russia
| | - Marko Bumbasirevic
- Orthopaedic Surgery Department, School of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Stanisa Raspopovic
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
14
|
Gonzalez MA, Nwokeabia C, Vaskov AK, Vu PP, Lu CW, Patil PG, Cederna PS, Chestek CA, Gates DH. Electrical Stimulation of Regenerative Peripheral Nerve Interfaces (RPNIs) Induces Referred Sensations in People With Upper Limb Loss. IEEE Trans Neural Syst Rehabil Eng 2024; 32:339-349. [PMID: 38145529 PMCID: PMC10938368 DOI: 10.1109/tnsre.2023.3345164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Individuals with upper limb loss lack sensation of the missing hand, which can negatively impact their daily function. Several groups have attempted to restore this sensation through electrical stimulation of residual nerves. The purpose of this study was to explore the utility of regenerative peripheral nerve interfaces (RPNIs) in eliciting referred sensation. In four participants with upper limb loss, we characterized the quality and location of sensation elicited through electrical stimulation of RPNIs over time. We also measured functional stimulation ranges (sensory perception and discomfort thresholds), sensitivity to changes in stimulation amplitude, and ability to differentiate objects of different stiffness and sizes. Over a period of up to 54 months, stimulation of RPNIs elicited sensations that were consistent in quality (e.g. tingling, kinesthesia) and were perceived in the missing hand and forearm. The location of elicited sensation was partially-stable to stable in 13 of 14 RPNIs. For 5 of 7 RPNIs tested, participants demonstrated a sensitivity to changes in stimulation amplitude, with an average just noticeable difference of 45 nC. In a case study, one participant was provided RPNI stimulation proportional to prosthetic grip force. She identified four objects of different sizes and stiffness with 56% accuracy with stimulation alone and 100% accuracy when stimulation was combined with visual feedback of hand position. Collectively, these experiments suggest that RPNIs have the potential to be used in future bi-directional prosthetic systems.
Collapse
|
15
|
Leinen M, Grandy EF, Gebel LMU, Santana TM, Rodriguez AL, Singh SK, Fernandez MI, Dalugdug JC, Garcia-Colon EM, Lybeshari K, Alexander DR, Maura MI, Gonzalez MDC, De Paula Cunha Almeida C, Anyaso-Samuel S, Datta S, Schiefer MA. Bilateral Subdiaphragmatic Vagal Nerve Stimulation Using a Novel Waveform Decreases Body Weight, Food Consumption, Adiposity, and Activity in Obesity-Prone Rats. Obes Surg 2024; 34:1-14. [PMID: 38040984 PMCID: PMC10781827 DOI: 10.1007/s11695-023-06957-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/05/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023]
Abstract
INTRODUCTION Obesity affects millions of Americans. The vagal nerves convey the degree of stomach fullness to the brain via afferent visceral fibers. Studies have found that vagal nerve stimulation (VNS) promotes reduced food intake, causes weight loss, and reduces cravings and appetite. METHODS Here, we evaluate the efficacy of a novel stimulus waveform applied bilaterally to the subdiaphragmatic vagal nerve stimulation (sVNS) for almost 13 weeks. A stimulating cuff electrode was implanted in obesity-prone Sprague Dawley rats maintained on a high-fat diet. Body weight, food consumption, and daily movement were tracked over time and compared against three control groups: sham rats on a high-fat diet that were implanted with non-operational cuffs, rats on a high-fat diet that were not implanted, and rats on a standard diet that were not implanted. RESULTS Results showed that rats on a high-fat diet that received sVNS attained a similar weight to rats on a standard diet due primarily to a reduction in daily caloric intake. Rats on a high-fat diet that received sVNS had significantly less body fat than other high-fat controls. Rats receiving sVNS also began moving a similar amount to rats on the standard diet. CONCLUSION Results from this study suggest that bilateral subdiaphragmatic vagal nerve stimulation can alter the rate of growth of rats maintained on a high-fat diet through a reduction in daily caloric intake, returning their body weight to that which is similar to rats on a standard diet over approximately 13 weeks.
Collapse
Affiliation(s)
- Monique Leinen
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, 1601 SW Archer Rd, Gainesville, FL, 32608, USA
| | - Elise F Grandy
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, 1601 SW Archer Rd, Gainesville, FL, 32608, USA
| | - Lourdes M Ubeira Gebel
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, 1601 SW Archer Rd, Gainesville, FL, 32608, USA
| | - Tahimi Machin Santana
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, 1601 SW Archer Rd, Gainesville, FL, 32608, USA
| | - Amanda L Rodriguez
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, 1601 SW Archer Rd, Gainesville, FL, 32608, USA
| | - Sundip K Singh
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, 1601 SW Archer Rd, Gainesville, FL, 32608, USA
| | - Michael I Fernandez
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, 1601 SW Archer Rd, Gainesville, FL, 32608, USA
| | - Justin C Dalugdug
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, 1601 SW Archer Rd, Gainesville, FL, 32608, USA
| | - Elaine M Garcia-Colon
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, 1601 SW Archer Rd, Gainesville, FL, 32608, USA
| | - Kamela Lybeshari
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, 1601 SW Archer Rd, Gainesville, FL, 32608, USA
| | - Daniel R Alexander
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, 1601 SW Archer Rd, Gainesville, FL, 32608, USA
| | - Maria I Maura
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, 1601 SW Archer Rd, Gainesville, FL, 32608, USA
| | - Maria D Cabrera Gonzalez
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, 1601 SW Archer Rd, Gainesville, FL, 32608, USA
| | | | - Samuel Anyaso-Samuel
- Department of Biostatistics, University of Florida, 2004 Mowry Rd, 5Th Fl, Gainesville, FL, 32603, USA
| | - Somnath Datta
- Department of Biostatistics, University of Florida, 2004 Mowry Rd, 5Th Fl, Gainesville, FL, 32603, USA
| | - Matthew A Schiefer
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, 1601 SW Archer Rd, Gainesville, FL, 32608, USA.
- Department of Biomedical Engineering, University of Florida, 1275 Center Dr, Gainesville, FL, 32611, USA.
| |
Collapse
|
16
|
Zhang J, Chou CH, Hao M, Li Y, Yu Y, Lan N. Fusion of dual modalities of non-invasive sensory feedback for object profiling with prosthetic hands. Front Neurorobot 2023; 17:1298176. [PMID: 38162892 PMCID: PMC10757719 DOI: 10.3389/fnbot.2023.1298176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Either non-invasive somatotopic or substitute sensory feedback is capable of conveying a single modality of sensory information from prosthetic hands to amputees. However, the neurocognitive ability of amputees to integrate multi-modality sensory information for functional discrimination is unclear. The purpose of this study was to assess the fusion of non-invasive somatotopic tactile and substitute aperture feedbacks for profile perception of multiple physical features during grasping objects. Methods Two left transradial amputees with somatotopic evoked tactile sensation (ETS) of five fingers participated in the study. The tactile information of prosthetic hand was provided to amputees by the ETS feedback elicited on the stump projected finger map. Hand aperture information was conveyed to amputees with substitute electrotactile stimulation on the forearm or upper arm. Two types of sensory feedback were integrated to a commercial prosthetic hand. The efficacy of somatotopic ETS feedback on object length identification task was assessed with or without substitute aperture stimulation. The object size identification task was utilized to assess how ETS stimulation at the stump may affect aperture perception with stimulation on the ipsilateral upper arm or forearm. Finally, the task of identifying combined length and size was conducted to evaluate the ability of amputees to integrate the dual modalities of sensory feedback for perceiving profile features. Results The study revealed that amputee subjects can effectively integrate the ETS feedback with electrotactile substitutive feedback for object profile discrimination. Specifically, ETS was robust to provide object length information with electrotactile stimulation at either the forearm or upper arm. However, electrotactile stimulation at the upper arm for aperture perception was less susceptible to the interference of ETS stimulation than at the forearm. Discussion Amputee subjects are able to combine somatotopic ETS and aperture feedbacks for identifying multi-dimensional features in object profiling. The two sensory streams of information can be fused effectively without mutual interference for functional discrimination.
Collapse
Affiliation(s)
- Jie Zhang
- Laboratory of NeuroRehabilitation Engineering, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chih-Hong Chou
- Laboratory of NeuroRehabilitation Engineering, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Manzhao Hao
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Li
- Laboratory of NeuroRehabilitation Engineering, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yashuo Yu
- Laboratory of NeuroRehabilitation Engineering, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ning Lan
- Laboratory of NeuroRehabilitation Engineering, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Fisher LE, Gaunt RA, Huang H. Sensory Restoration for Improved Motor Control of Prostheses. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2023; 28:100498. [PMID: 37860289 PMCID: PMC10583965 DOI: 10.1016/j.cobme.2023.100498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Somatosensory neuroprostheses are devices with the potential to restore the senses of touch and movement from prosthetic limbs for people with limb amputation or paralysis. By electrically stimulating the peripheral or central nervous system, these devices evoke sensations that appear to emanate from the missing or insensate limb, and when paired with sensors on the prosthesis, they can improve the functionality and embodiment of the prosthesis. There have been major advances in the design of these systems over the past decade, although several important steps remain before they can achieve widespread clinical adoption outside the lab setting. Here, we provide a brief overview of somatosensory neuroprostheses and explores these hurdles and potential next steps towards clinical translation.
Collapse
Affiliation(s)
- Lee E. Fisher
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Neural Basis of Cognition, Pittsburgh, PA 15213, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Robert A. Gaunt
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Neural Basis of Cognition, Pittsburgh, PA 15213, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - He Huang
- UNC/NC State Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695, USA
- UNC/NC State Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
18
|
Bensmaia SJ, Tyler DJ, Micera S. Restoration of sensory information via bionic hands. Nat Biomed Eng 2023; 7:443-455. [PMID: 33230305 PMCID: PMC10233657 DOI: 10.1038/s41551-020-00630-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 09/13/2020] [Indexed: 12/19/2022]
Abstract
Individuals who have lost the use of their hands because of amputation or spinal cord injury can use prosthetic hands to restore their independence. A dexterous prosthesis requires the acquisition of control signals that drive the movements of the robotic hand, and the transmission of sensory signals to convey information to the user about the consequences of these movements. In this Review, we describe non-invasive and invasive technologies for conveying artificial sensory feedback through bionic hands, and evaluate the technologies' long-term prospects.
Collapse
Affiliation(s)
- Sliman J Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA.
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL, USA.
- Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, Chicago, IL, USA.
| | - Dustin J Tyler
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Silvestro Micera
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.
- Translational Neural Engineering Laboratory, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Federale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
19
|
Farina D, Vujaklija I, Brånemark R, Bull AMJ, Dietl H, Graimann B, Hargrove LJ, Hoffmann KP, Huang HH, Ingvarsson T, Janusson HB, Kristjánsson K, Kuiken T, Micera S, Stieglitz T, Sturma A, Tyler D, Weir RFF, Aszmann OC. Toward higher-performance bionic limbs for wider clinical use. Nat Biomed Eng 2023; 7:473-485. [PMID: 34059810 DOI: 10.1038/s41551-021-00732-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/01/2021] [Indexed: 12/19/2022]
Abstract
Most prosthetic limbs can autonomously move with dexterity, yet they are not perceived by the user as belonging to their own body. Robotic limbs can convey information about the environment with higher precision than biological limbs, but their actual performance is substantially limited by current technologies for the interfacing of the robotic devices with the body and for transferring motor and sensory information bidirectionally between the prosthesis and the user. In this Perspective, we argue that direct skeletal attachment of bionic devices via osseointegration, the amplification of neural signals by targeted muscle innervation, improved prosthesis control via implanted muscle sensors and advanced algorithms, and the provision of sensory feedback by means of electrodes implanted in peripheral nerves, should all be leveraged towards the creation of a new generation of high-performance bionic limbs. These technologies have been clinically tested in humans, and alongside mechanical redesigns and adequate rehabilitation training should facilitate the wider clinical use of bionic limbs.
Collapse
Affiliation(s)
- Dario Farina
- Department of Bioengineering, Imperial College London, London, UK.
| | - Ivan Vujaklija
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| | - Rickard Brånemark
- Center for Extreme Bionics, Biomechatronics Group, MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anthony M J Bull
- Department of Bioengineering, Imperial College London, London, UK
| | - Hans Dietl
- Ottobock Products SE & Co. KGaA, Vienna, Austria
| | | | - Levi J Hargrove
- Center for Bionic Medicine, Shirley Ryan AbilityLab, Chicago, IL, USA
- Department of Physical Medicine & Rehabilitation, Northwestern University, Chicago, IL, USA
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, USA
| | - Klaus-Peter Hoffmann
- Department of Medical Engineering & Neuroprosthetics, Fraunhofer-Institut für Biomedizinische Technik, Sulzbach, Germany
| | - He Helen Huang
- NCSU/UNC Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, USA
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thorvaldur Ingvarsson
- Department of Research and Development, Össur Iceland, Reykjavík, Iceland
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Hilmar Bragi Janusson
- School of Engineering and Natural Sciences, University of Iceland, Reykjavík, Iceland
| | | | - Todd Kuiken
- Center for Bionic Medicine, Shirley Ryan AbilityLab, Chicago, IL, USA
- Department of Physical Medicine & Rehabilitation, Northwestern University, Chicago, IL, USA
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, USA
| | - Silvestro Micera
- The Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pontedera, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pontedera, Italy
- Bertarelli Foundation Chair in Translational NeuroEngineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Thomas Stieglitz
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering-IMTEK, BrainLinks-BrainTools Center and Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Agnes Sturma
- Department of Bioengineering, Imperial College London, London, UK
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna, Austria
| | - Dustin Tyler
- Case School of Engineering, Case Western Reserve University, Cleveland, OH, USA
- Louis Stokes Veterans Affairs Medical Centre, Cleveland, OH, USA
| | - Richard F Ff Weir
- Biomechatronics Development Laboratory, Bioengineering Department, University of Colorado Denver and VA Eastern Colorado Healthcare System, Aurora, CO, USA
| | - Oskar C Aszmann
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Cimolato A, Ciotti F, Kljajić J, Valle G, Raspopovic S. Symbiotic electroneural and musculoskeletal framework to encode proprioception via neurostimulation: ProprioStim. iScience 2023; 26:106248. [PMID: 36923003 PMCID: PMC10009292 DOI: 10.1016/j.isci.2023.106248] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/23/2022] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Peripheral nerve stimulation in amputees achieved the restoration of touch, but not proprioception, which is critical in locomotion. A plausible reason is the lack of means to artificially replicate the complex activity of proprioceptors. To uncover this, we coupled neuromuscular models from ten subjects and nerve histologies from two implanted amputees to develop ProprioStim: a framework to encode proprioception by electrical evoking neural activity in close agreement with natural proprioceptive activity. We demonstrated its feasibility through non-invasive stimulation on seven healthy subjects comparing it with standard linear charge encoding. Results showed that ProprioStim multichannel stimulation was felt more natural, and hold promises for increasing accuracy in knee angle tracking, especially in future implantable solutions. Additionally, we quantified the importance of realistic 3D-nerve models against extruded models previously adopted for further design and validation of novel neurostimulation encoding strategies. ProprioStim provides clear guidelines for the development of neurostimulation policies restoring natural proprioception.
Collapse
Affiliation(s)
- Andrea Cimolato
- Neuroengineering Lab, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092 Zürich, Switzerland
- Rehab Technologies Lab, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy
- Neuroengineering and Medical Robotics Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | - Federico Ciotti
- Neuroengineering Lab, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092 Zürich, Switzerland
| | - Jelena Kljajić
- Institute Mihajlo Pupin, Belgrade, 11060, Serbia
- School of Electrical Engineering, University of Belgrade, Belgrade, 11120, Serbia
| | - Giacomo Valle
- Neuroengineering Lab, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092 Zürich, Switzerland
| | - Stanisa Raspopovic
- Neuroengineering Lab, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
21
|
Abstract
The generation of an internal body model and its continuous update is essential in sensorimotor control. Although known to rely on proprioceptive sensory feedback, the underlying mechanism that transforms this sensory feedback into a dynamic body percept remains poorly understood. However, advances in the development of genetic tools for proprioceptive circuit elements, including the sensory receptors, are beginning to offer new and unprecedented leverage to dissect the central pathways responsible for proprioceptive encoding. Simultaneously, new data derived through emerging bionic neural machine-interface technologies reveal clues regarding the relative importance of kinesthetic sensory feedback and insights into the functional proprioceptive substrates that underlie natural motor behaviors.
Collapse
Affiliation(s)
- Paul D Marasco
- Laboratory for Bionic Integration, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA;
- Charles Shor Epilepsy Center, Cleveland Clinic, Cleveland, Ohio, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Joriene C de Nooij
- Department of Neurology and the Columbia University Motor Neuron Center, Columbia University Medical Center, New York, NY, USA;
| |
Collapse
|
22
|
Han Y, Lu Y, Zuo Y, Song H, Chou CH, Wang X, Li X, Li L, Niu CM, Hou W. Substitutive proprioception feedback of a prosthetic wrist by electrotactile stimulation. Front Neurosci 2023; 17:1135687. [PMID: 36895418 PMCID: PMC9989268 DOI: 10.3389/fnins.2023.1135687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 02/01/2023] [Indexed: 02/25/2023] Open
Abstract
Objective Sensory feedback of upper-limb prostheses is widely desired and studied. As important components of proprioception, position, and movement feedback help users to control prostheses better. Among various feedback methods, electrotactile stimulation is a potential method for coding proprioceptive information of a prosthesis. This study was motivated by the need for proprioception information for a prosthetic wrist. The flexion-extension (FE) position and movement information of the prosthetic wrist are transmitted back to the human body through multichannel electrotactile stimulation. Approach We developed an electrotactile scheme to encode the FE position and movement of the prosthetic wrist and designed an integrated experimental platform. A preliminary experiment on the sensory threshold and discomfort threshold was performed. Then, two proprioceptive feedback experiments were performed: a position sense experiment (Exp 1) and a movement sense experiment (Exp 2). Each experiment included a learning session and a test session. The success rate (SR) and discrimination reaction time (DRT) were analyzed to evaluate the recognition effect. The acceptance of the electrotactile scheme was evaluated by a questionnaire. Main results Our results showed that the average position SRs of five able-bodied subjects, amputee 1, and amputee 2 were 83.78, 97.78, and 84.44%, respectively. The average movement SR, and the direction and range SR of wrist movement in five able-bodied subjects were 76.25, 96.67%, respectively. Amputee 1 and amputee 2 had movement SRs of 87.78 and 90.00% and direction and range SRs of 64.58 and 77.08%, respectively. The average DRT of five able-bodied subjects was less than 1.5 s and that of amputees was less than 3.5 s. Conclusion The results indicate that after a short period of learning, the subjects can sense the position and movement of wrist FE. The proposed substitutive scheme has the potential for amputees to sense a prosthetic wrist, thus enhancing the human-machine interaction.
Collapse
Affiliation(s)
- Yichen Han
- Biomedical Engineering Department, Bioengineering College, Chongqing University, Chongqing, China
| | - Yinping Lu
- Biomedical Engineering Department, Bioengineering College, Chongqing University, Chongqing, China
| | - Yufeng Zuo
- Biomedical Engineering Department, Bioengineering College, Chongqing University, Chongqing, China
| | - Hongliang Song
- Biomedical Engineering Department, Bioengineering College, Chongqing University, Chongqing, China
| | - Chih-Hong Chou
- Laboratory of Neurorehabilitation Engineering, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xing Wang
- Biomedical Engineering Department, Bioengineering College, Chongqing University, Chongqing, China
| | - Xiangxin Li
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, Guangdong, China
| | - Lei Li
- Department of Rehabilitation, Southwest Hospital, Army Medical University, Chongqing, China
| | - Chuanxin M Niu
- Department of Rehabilitation Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wensheng Hou
- Biomedical Engineering Department, Bioengineering College, Chongqing University, Chongqing, China
| |
Collapse
|
23
|
Valle G. Peripheral neurostimulation for encoding artificial somatosensations. Eur J Neurosci 2022; 56:5888-5901. [PMID: 36097134 PMCID: PMC9826263 DOI: 10.1111/ejn.15822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/08/2022] [Accepted: 09/08/2022] [Indexed: 01/11/2023]
Abstract
The direct neural stimulation of peripheral or central nervous systems has been shown as an effective tool to treat neurological conditions. The electrical activation of the nervous sensory pathway can be adopted to restore the artificial sense of touch and proprioception in people suffering from sensory-motor disorders. The modulation of the neural stimulation parameters has a direct effect on the electrically induced sensations, both when targeting the somatosensory cortex and the peripheral somatic nerves. The properties of the artificial sensations perceived, as their location, quality and intensity are strongly dependent on the direct modulation of pulse width, amplitude and frequency of the neural stimulation. Different sensory encoding schemes have been tested in patients showing distinct effects and outcomes according to their impact on the neural activation. Here, I reported the most adopted neural stimulation strategies to artificially encode somatosensation into the peripheral nervous system. The real-time implementation of these strategies in bionic devices is crucial to exploit the artificial sensory feedback in prosthetics. Thus, neural stimulation becomes a tool to directly communicate with the human nervous system. Given the importance of adding artificial sensory information to neuroprosthetic devices to improve their control and functionality, the choice of an optimal neural stimulation paradigm could increase the impact of prosthetic devices on the quality of life of people with sensorimotor disabilities.
Collapse
Affiliation(s)
- Giacomo Valle
- Laboratory for Neuroengineering, Department of Health Sciences and TechnologyInstitute for Robotics and Intelligent Systems, ETH ZürichZürichSwitzerland
| |
Collapse
|
24
|
Morand R, Brusa T, Schnüriger N, Catanzaro S, Berli M, Koch VM. FeetBack-Redirecting touch sensation from a prosthetic hand to the human foot. Front Neurosci 2022; 16:1019880. [PMID: 36389246 PMCID: PMC9645020 DOI: 10.3389/fnins.2022.1019880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/28/2022] [Indexed: 11/22/2022] Open
Abstract
Introduction Adding sensory feedback to myoelectric prosthetic hands was shown to enhance the user experience in terms of controllability and device embodiment. Often this is realized non-invasively by adding devices, such as actuators or electrodes, within the prosthetic shaft to deliver the desired feedback. However, adding a feedback system in the socket adds more weight, steals valuable space, and may interfere with myoelectric signals. To circumvent said drawbacks we tested for the first time if force feedback from a prosthetic hand could be redirected to another similarly sensitive part of the body: the foot. Methods We developed a vibrotactile insole that vibrates depending on the sensed force on the prosthetic fingers. This self-controlled clinical pilot trial included four experienced users of myoelectric prostheses. The participants solved two types of tasks with the artificial hands: 1) sorting objects depending on their plasticity with the feedback insole but without audio-visual feedback, and 2) manipulating fragile, heavy, and delicate objects with and without the feedback insole. The sorting task was evaluated with Goodman-Kruskal's gamma for ranked correlation. The manipulation tasks were assessed by the success rate. Results The results from the sorting task with vibrotactile feedback showed a substantial positive effect. The success rates for manipulation tasks with fragile and heavy objects were high under both conditions (feedback on or off, respectively). The manipulation task with delicate objects revealed inferior success with feedback in three of four participants. Conclusion We introduced a novel approach to touch sensation in myoelectric prostheses. The results for the sorting task and the manipulation tasks diverged. This is likely linked to the availability of various feedback sources. Our results for redirected feedback to the feet fall in line with previous similar studies that applied feedback to the residual arm. Clinical trial registration Name: Sensor Glove and Non-Invasive Vibrotactile Feedback Insole to Improve Hand Prostheses Functions and Embodiment (FeetBack). Date of registration: 23 April 2019. Date the first participant was enrolled: 3 September 2021. ClinicalTrials.gov Identifier: NCT03924310.
Collapse
Affiliation(s)
- Rafael Morand
- Biomedical Engineering Lab, Institute for Human Centered Engineering, Bern University of Applied Sciences, Bern, Switzerland
| | - Tobia Brusa
- Biomedical Engineering Lab, Institute for Human Centered Engineering, Bern University of Applied Sciences, Bern, Switzerland
| | - Nina Schnüriger
- Division of Prosthetics and Orthotics, Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland
| | - Sabrina Catanzaro
- Division of Prosthetics and Orthotics, Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland
| | - Martin Berli
- Division of Prosthetics and Orthotics, Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland
| | - Volker M. Koch
- Biomedical Engineering Lab, Institute for Human Centered Engineering, Bern University of Applied Sciences, Bern, Switzerland
| |
Collapse
|
25
|
Nanivadekar AC, Chandrasekaran S, Helm ER, Boninger ML, Collinger JL, Gaunt RA, Fisher LE. Closed-loop stimulation of lateral cervical spinal cord in upper-limb amputees to enable sensory discrimination: a case study. Sci Rep 2022; 12:17002. [PMID: 36220864 PMCID: PMC9553970 DOI: 10.1038/s41598-022-21264-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/26/2022] [Indexed: 12/29/2022] Open
Abstract
Modern myoelectric prosthetic hands have multiple independently controllable degrees of freedom, but require constant visual attention to use effectively. Somatosensory feedback provides information not available through vision alone and is essential for fine motor control of our limbs. Similarly, stimulation of the nervous system can potentially provide artificial somatosensory feedback to reduce the reliance on visual cues to efficiently operate prosthetic devices. We have shown previously that epidural stimulation of the lateral cervical spinal cord can evoke tactile sensations perceived as emanating from the missing arm and hand in people with upper-limb amputation. In this case study, two subjects with upper-limb amputation used this somatotopically-matched tactile feedback to discriminate object size and compliance while controlling a prosthetic hand. With less than 30 min of practice each day, both subjects were able to use artificial somatosensory feedback to perform a subset of the discrimination tasks at a success level well above chance. Subject 1 was consistently more adept at determining object size (74% accuracy; chance: 33%) while Subject 2 achieved a higher accuracy level in determining object compliance (60% accuracy; chance 33%). In each subject, discrimination of the other object property was only slightly above or at chance level suggesting that the task design and stimulation encoding scheme are important determinants of which object property could be reliably identified. Our observations suggest that changes in the intensity of artificial somatosensory feedback provided via spinal cord stimulation can be readily used to infer information about object properties with minimal training.
Collapse
Affiliation(s)
- Ameya C. Nanivadekar
- grid.21925.3d0000 0004 1936 9000Rehab Neural Engineering Labs, University of Pittsburgh, 3520 Fifth Avenue, Suite 300, Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213 USA ,grid.509981.c0000 0004 7644 8442Center for Neural Basis of Cognition, Pittsburgh, PA 15213 USA
| | - Santosh Chandrasekaran
- grid.21925.3d0000 0004 1936 9000Rehab Neural Engineering Labs, University of Pittsburgh, 3520 Fifth Avenue, Suite 300, Pittsburgh, PA 15213 USA ,grid.509981.c0000 0004 7644 8442Center for Neural Basis of Cognition, Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Eric R. Helm
- grid.21925.3d0000 0004 1936 9000Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Michael L. Boninger
- grid.21925.3d0000 0004 1936 9000Rehab Neural Engineering Labs, University of Pittsburgh, 3520 Fifth Avenue, Suite 300, Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000University of Pittsburgh Clinical Translational Science Institute, Pittsburgh, PA 15213 USA
| | - Jennifer L. Collinger
- grid.21925.3d0000 0004 1936 9000Rehab Neural Engineering Labs, University of Pittsburgh, 3520 Fifth Avenue, Suite 300, Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213 USA ,grid.509981.c0000 0004 7644 8442Center for Neural Basis of Cognition, Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213 USA ,Human Engineering Research Labs, Department of Veteran Affairs, VA Center of Excellence, Pittsburgh, PA 15206 USA ,grid.147455.60000 0001 2097 0344Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA USA
| | - Robert A. Gaunt
- grid.21925.3d0000 0004 1936 9000Rehab Neural Engineering Labs, University of Pittsburgh, 3520 Fifth Avenue, Suite 300, Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213 USA ,grid.509981.c0000 0004 7644 8442Center for Neural Basis of Cognition, Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213 USA ,grid.147455.60000 0001 2097 0344Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA USA
| | - Lee E. Fisher
- grid.21925.3d0000 0004 1936 9000Rehab Neural Engineering Labs, University of Pittsburgh, 3520 Fifth Avenue, Suite 300, Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213 USA ,grid.509981.c0000 0004 7644 8442Center for Neural Basis of Cognition, Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213 USA ,grid.147455.60000 0001 2097 0344Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA USA
| |
Collapse
|
26
|
Gonzalez M, Bismuth A, Lee C, Chestek CA, Gates DH. Artificial referred sensation in upper and lower limb prosthesis users: a systematic review. J Neural Eng 2022; 19:10.1088/1741-2552/ac8c38. [PMID: 36001115 PMCID: PMC9514130 DOI: 10.1088/1741-2552/ac8c38] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/23/2022] [Indexed: 11/12/2022]
Abstract
Objective.Electrical stimulation can induce sensation in the phantom limb of individuals with amputation. It is difficult to generalize existing findings as there are many approaches to delivering stimulation and to assessing the characteristics and benefits of sensation. Therefore, the goal of this systematic review was to explore the stimulation parameters that effectively elicited referred sensation, the qualities of elicited sensation, and how the utility of referred sensation was assessed.Approach.We searched PubMed, Web of Science, and Engineering Village through January of 2022 to identify relevant papers. We included papers which electrically induced referred sensation in individuals with limb loss and excluded papers that did not contain stimulation parameters or outcome measures pertaining to stimulation. We extracted information on participant demographics, stimulation approaches, and participant outcomes.Main results.After applying exclusion criteria, 49 papers were included covering nine stimulation methods. Amplitude was the most commonly adjusted parameter (n= 25), followed by frequency (n= 22), and pulse width (n= 15). Of the 63 reports of sensation quality, most reported feelings of pressure (n= 52), paresthesia (n= 48), or vibration (n= 40) while less than half (n= 29) reported a sense of position or movement. Most papers evaluated the functional benefits of sensation (n= 33) using force matching or object identification tasks, while fewer papers quantified subjective measures (n= 16) such as pain or embodiment. Only 15 studies (36%) observed percept intensity, quality, or location over multiple sessions.Significance.Most studies that measured functional performance demonstrated some benefit to providing participants with sensory feedback. However, few studies could experimentally manipulate sensation location or quality. Direct comparisons between studies were limited by variability in methodologies and outcome measures. As such, we offer recommendations to aid in more standardized reporting for future research.
Collapse
Affiliation(s)
- Michael Gonzalez
- Department of Robotics, University of Michigan, Ann Arbor, MI, United States of America
| | - Alex Bismuth
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Christina Lee
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Cynthia A Chestek
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Deanna H Gates
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
27
|
Evaluating Virtual Hand Illusion through Realistic Appearance and Tactile Feedback. MULTIMODAL TECHNOLOGIES AND INTERACTION 2022. [DOI: 10.3390/mti6090076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We conducted a virtual reality study to explore virtual hand illusion through three levels of appearance (Appearance dimension: realistic vs. pixelated vs. toon hand appearances) and two levels of tactile feedback (Tactile dimension: no tactile vs. tactile feedback). We instructed our participants to complete a virtual assembly task in this study. Immediately afterward, we asked them to provide self-reported ratings on a survey that captured presence and five embodiment dimensions (hand ownership, touch sensation, agency and motor control, external appearance, and response to external stimuli). The results of our study indicate that (1) tactile feedback generated a stronger sense of presence, touch sensation, and response to external stimuli; (2) the pixelated hand appearance provided the least hand ownership and external appearance; and (3) in the presence of the pixelated hand, prior virtual reality experience of participants impacted their agency and motor control and their response to external stimuli ratings. This paper discusses our findings and provides design considerations for virtual reality applications with respect to the realistic appearance of virtual hands and tactile feedback.
Collapse
|
28
|
Gonzalez MA, Vu PP, Vaskov AK, Cederna PS, Chestek CA, Gates DH. Characterizing sensory thresholds and intensity sensitivity of Regenerative Peripheral Nerve Interfaces: A Case Study . IEEE Int Conf Rehabil Robot 2022; 2022:1-6. [PMID: 36176116 DOI: 10.1109/icorr55369.2022.9896481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Current prosthetic limbs offer little to no sensory feedback. Developments in peripheral nerve interfaces provide opportunities to restore some level of tactile feedback that is referred to the prosthetic limb. One such method is a Regenerative Peripheral Nerve Interface (RPNI), composed of a muscle graft wrapped around a free nerve ending. Here, we characterize perception and discomfort thresholds, as well as sensitivity to stimulation through two-alternative forced choice discrimination tasks. One person with transradial amputation who had one RPNI constructed from the median nerve and two constructed from the ulnar nerve participated. Average perception thresholds across all RPNIs were between 950 and 1120 nC with variance of less than 350 nC over a 36-month period. Discomfort thresholds were from 3880 nC to 9770 nC across all RPNIs. The just noticeable difference for the Median RPNI was 520 nC, larger than either the Ulnar-1 or Ulnar-2 RPNIs (210 nC, 470 nC, respectively). We also calculated Weber fractions to compare sensitivity between different RPNIs and relate our results to previous studies. Weber fractions for each of the Median, Ulnar-1, and Ulnar-2 RPNIs were 0.134, 0.088, 0.087, respectively. This work is the first to quantify the functional stimulation range and sensitivity of RPNIs in a human participant. Future work will focus on characterizing RPNI sensation in additional individuals to determine if these findings are generalizable to the amputee population.
Collapse
|
29
|
Zhang J, Chou CH, Wu X, Pei W, Lan N. Non-Invasive Stable Sensory Feedback for Closed-Loop Control of Hand Prosthesis. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:2344-2347. [PMID: 36086109 DOI: 10.1109/embc48229.2022.9871682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The absence of somatotopic sensory feedback limits the function of conventional prosthetic hands. In this study, we integrated a non-invasive sensory feedback system into a commercial Bebionic hand with new customized surface stimulation electrodes. Multiple modalities of tactile and hand aperture sensory information were conveyed to the amputee via the technique of evoked tactile sensation (ETS) elicited at projected finger map (PFM) of residual limb and an additional electrotactile stimulation in the ipsilateral upper arm. A previously developed anti-stimulus artifact module was used to remove the stimulus artifact from surface electromyographic (sEMG) signals, and the filtered sEMG envelops controlled the speed of open/close of the Bebionic hand. The Ag/AgCl surface stimulation electrode in 10-mm diameter was specially designed to fit the restricted PFM areas for stable perception. We evaluated the alternating-current (AC) impedance magnitude of this electrode stimulated over 12 hours. The perceptual and upper thresholds in pulse-width over 200 days at PFM areas were recorded to assess the stability of the non-invasive sensory neural interface. The efficacy of multi-modality feedback for identification of physical properties of objects was also assessed. Results showed that the AC impedance of customized surface stimulation electrode was stable over 12 hours of stimulation. The perceptual and upper thresholds were stable over 200 days. This non-invasive sensory feedback enabled a forearm amputee to identify the compliance and length of grasped objects with an accuracy of 100 %. Results illustrated that the multi-modality sensory feedback system provided stable and sufficient sensory information for perceptual discrimination of physical features of grasped objects. Clinical Relevance- This study demonstrated a promising and novel way to restore stable sensory feedback non-invasively for commercial hand prostheses.
Collapse
|
30
|
Chai G, Wang H, Li G, Sheng X, Zhu X. Electrotactile feedback improves grip force control and enables object stiffness recognition while using a myoelectric hand. IEEE Trans Neural Syst Rehabil Eng 2022; 30:1310-1320. [PMID: 35533165 DOI: 10.1109/tnsre.2022.3173329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Current myoelectric hands are limited in their ability to provide effective sensory feedback to the users, which highly affects their functionality and utility. Although the sensory information of a myoelectric hand can be acquired with equipped sensors, transforming the sensory signals into effective tactile sensations on users for functional tasks is a largely unsolved challenge. The purpose of this study aims to demonstrate that electrotactile feedback of the grip force improves the sensorimotor control of a myoelectric hand and enables object stiffness recognition. The grip force of a sensorized myoelectric hand was delivered to its users via electrotactile stimulation based on four kinds of typical encoding strategies, including graded (G), linear amplitude (LA), linear frequency (LF), and biomimetic (B) modulation. Object stiffness was encoded with the change of electrotactile sensations triggered by final grip force, as the prosthesis grasped the objects. Ten able-bodied subjects and two transradial amputees were recruited to participate in a dual-task virtual eggs test (VET) and an object stiffness discrimination test (OSDT) to quantify the prosthesis users' ability to handle fragile objects and recognize object stiffnesses, respectively. The quantified results showed that with electrotactile feedback enabled, the four kinds of encoding strategies allowed subjects to better able to handle fragile objects with similar performance, and the subjects were able to differentiate four levels of object stiffness at favorable accuracies (>86%) and high manual efficiency. Strategy LA presented the best stiffness discrimination performance, while strategy B was able to reduce the discrimination time but the discrimination accuracy was not better than the other three strategies. Electrotactile feedback also enhanced prosthesis embodiment and improved the users' confidence in prosthetic control. Outcomes indicate electrotactile feedback can be effectively exploited by the prosthesis users for grip force control and object stiffness recognition, proving the feasibility of functional sensory restoration of myoelectric prostheses equipped with electrotactile feedback.
Collapse
|
31
|
Yan D, Jiman AA, Bottorff EC, Patel PR, Meli D, Welle EJ, Ratze DC, Havton LA, Chestek CA, Kemp SWP, Bruns TM, Yoon E, Seymour JP. Ultraflexible and Stretchable Intrafascicular Peripheral Nerve Recording Device with Axon-Dimension, Cuff-Less Microneedle Electrode Array. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200311. [PMID: 35491522 PMCID: PMC9167574 DOI: 10.1002/smll.202200311] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/08/2022] [Indexed: 05/03/2023]
Abstract
Peripheral nerve mapping tools with higher spatial resolution are needed to advance systems neuroscience, and potentially provide a closed-loop biomarker in neuromodulation applications. Two critical challenges of microscale neural interfaces are 1) how to apply them to small peripheral nerves, and 2) how to minimize chronic reactivity. A flexible microneedle nerve array (MINA) is developed, which is the first high-density penetrating electrode array made with axon-sized silicon microneedles embedded in low-modulus thin silicone. The design, fabrication, acute recording, and chronic reactivity to an implanted MINA, are presented. Distinctive units are identified in the rat peroneal nerve. The authors also demonstrate a long-term, cuff-free, and suture-free fixation manner using rose bengal as a light-activated adhesive for two time-points. The tissue response is investigated at 1-week and 6-week time-points, including two sham groups and two MINA-implanted groups. These conditions are quantified in the left vagus nerve of rats using histomorphometry. Micro computed tomography (micro-CT) is added to visualize and quantify tissue encapsulation around the implant. MINA demonstrates a reduction in encapsulation thickness over previously quantified interfascicular methods. Future challenges include techniques for precise insertion of the microneedle electrodes and demonstrating long-term recording.
Collapse
Affiliation(s)
- Dongxiao Yan
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ahmad A Jiman
- Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Elizabeth C Bottorff
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Paras R Patel
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Dilara Meli
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Elissa J Welle
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - David C Ratze
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Leif A Havton
- Departments of Neurology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- James J Peters Veterans Affairs Medical Center, Bronx, NY, 10468, USA
| | - Cynthia A Chestek
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Stephen W P Kemp
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Section of Plastic Surgery, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Tim M Bruns
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Euisik Yoon
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Center for Nanomedicine, Institute for Basic Science (IBS) and Graduate Program of Nano Biomedical Engineering (Nano BME), Advanced Science Institute, Yonsei University, Seoul, South Korea
| | - John P Seymour
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Neurosurgery, UTHealth, Houston, TX, 77030, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, 77030, USA
| |
Collapse
|
32
|
Rydland J, Spiegel S, Wolfe O, Alterman B, Johnson JT, Wheaton LA. Neurorehabilitation in Adults With Traumatic Upper Extremity Amputation: A Scoping Review. Neurorehabil Neural Repair 2022; 36:208-216. [PMID: 34967259 DOI: 10.1177/15459683211070277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Most of the current literature around amputation focuses on lower extremity amputation or engineering aspects of prosthetic devices. There is a need to more clearly understand neurobehavioral mechanisms related to upper extremity amputation and how such mechanisms might influence recovery and utilization of prostheses. OBJECTIVE This scoping review aims to identify and summarize the current literature on adult traumatic upper limb amputation in regard to recovery and functional outcomes and how neuroplasticity might influence these findings. METHODS We identified appropriate articles using Academic Search Complete EBSCO, OVID Medline, and Cochrane databases. The resulting articles were then exported, screened, and reviewed based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Scoping Reviews (PRISMA-ScR) guidelines. RESULTS Eleven (11) studies met the study criteria. Of these studies, 7 focused on sensory involvement, 3 focused on neuroplastic changes post-amputation related to functional impact, and 1 study focused on motor control and learning post-amputation. Overall, these studies revealed an incomplete understanding of the neural mechanisms involved in motor rehabilitation in the central and peripheral nervous systems, while also demonstrating the value of an individualized approach to neurorehabilitation in upper limb loss. CONCLUSIONS There is a gap in our understanding of the role of neurorehabilitation following amputation. Overall, focused rehabilitation parameters, demographic information, and clarity around central and peripheral neural mechanisms are needed in future research to address neurobehavioral mechanisms to promote functional recovery following traumatic upper extremity amputation.
Collapse
Affiliation(s)
- Jake Rydland
- Division of Physical Therapy, 1371Emory University School of Medicine, Atlanta, GA, USA
| | - Stephanie Spiegel
- Division of Physical Therapy, 1371Emory University School of Medicine, Atlanta, GA, USA
| | - Olivia Wolfe
- Division of Physical Therapy, 1371Emory University School of Medicine, Atlanta, GA, USA
| | - Bennett Alterman
- School of Biological Sciences, 1372Georgia Tech, Atlanta, GA, USA
| | - John T Johnson
- School of Biological Sciences, 1372Georgia Tech, Atlanta, GA, USA
| | - Lewis A Wheaton
- School of Biological Sciences, 1372Georgia Tech, Atlanta, GA, USA
| |
Collapse
|
33
|
Kim T, Kim J, You I, Oh J, Kim SP, Jeong U. Dynamic tactility by position-encoded spike spectrum. Sci Robot 2022; 7:eabl5761. [PMID: 35171645 DOI: 10.1126/scirobotics.abl5761] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In fast and transient somatosensory processing, the relative timing of the selected spikes is more important than the spike frequency because the ensemble of the first spikes in the spike trains encodes the dynamic tactile information. Here, inspired by the functional effectiveness of the selected spikes, we propose an artificial dynamic sensory system based on position-encoded spike spectrum. We use a mixed ion-electron conductor to generate a potential spike signal. We design artificial receptors that have different ion relaxation times (τ); thus, a sequence of the spikes from the receptors creates a spike spectrum, providing the spatial information (position and motion trace) and the temporal information (speed and dynamic contact area). The artificial receptors can be incorporated by as much as 132/square centimeters by using only two global signal addressing lines for sensor operation. Structural simplicity of the device opens the possibility of scalable fabrication with dense receptor integration. With computational decoding of the position-encoded spike spectrum, the artificial sensory system can recognize complicated dynamic motions in real time. The high-resolution spatiotemporal tactile perception in the ionic artificial sensory system enables the real-time dynamic robotic manipulation.
Collapse
Affiliation(s)
- Taeyeong Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jaehun Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Insang You
- Department of Chemical Engineering, POSTECH, Pohang 37673, Republic of Korea
| | - Joosung Oh
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Sung-Phil Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
34
|
Amoruso E, Dowdall L, Kollamkulam MT, Ukaegbu O, Kieliba P, Ng T, Dempsey-Jones H, Clode D, Makin TR. Intrinsic somatosensory feedback supports motor control and learning to operate artificial body parts. J Neural Eng 2022; 19:016006. [PMID: 34983040 PMCID: PMC10431236 DOI: 10.1088/1741-2552/ac47d9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/09/2021] [Accepted: 01/04/2022] [Indexed: 11/11/2022]
Abstract
Objective.Considerable resources are being invested to enhance the control and usability of artificial limbs through the delivery of unnatural forms of somatosensory feedback. Here, we investigated whether intrinsic somatosensory information from the body part(s) remotely controlling an artificial limb can be leveraged by the motor system to support control and skill learning.Approach.We used local anaesthetic to attenuate somatosensory inputs to the big toes while participants learned to operate through pressure sensors a toe-controlled and hand-worn robotic extra finger. Motor learning outcomes were compared against a control group who received sham anaesthetic and quantified in three different task scenarios: while operating in isolation from, in synchronous coordination, and collaboration with, the biological fingers.Main results.Both groups were able to learn to operate the robotic extra finger, presumably due to abundance of visual feedback and other relevant sensory cues. Importantly, the availability of displaced somatosensory cues from the distal bodily controllers facilitated the acquisition of isolated robotic finger movements, the retention and transfer of synchronous hand-robot coordination skills, and performance under cognitive load. Motor performance was not impaired by toes anaesthesia when tasks involved close collaboration with the biological fingers, indicating that the motor system can close the sensory feedback gap by dynamically integrating task-intrinsic somatosensory signals from multiple, and even distal, body-parts.Significance.Together, our findings demonstrate that there are multiple natural avenues to provide intrinsic surrogate somatosensory information to support motor control of an artificial body part, beyond artificial stimulation.
Collapse
Affiliation(s)
- E Amoruso
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - L Dowdall
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - M T Kollamkulam
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - O Ukaegbu
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
- East London NHS Foundation Trust, London, United Kingdom
| | - P Kieliba
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - T Ng
- Royal Free London NHS Foundation Trust, London, United Kingdom
| | - H Dempsey-Jones
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - D Clode
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - T R Makin
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| |
Collapse
|
35
|
Vargas L, Huang H, Zhu Y, Hu X. Object Recognition via Evoked Sensory Feedback during Control of a Prosthetic Hand. IEEE Robot Autom Lett 2022; 7:207-214. [PMID: 35784093 PMCID: PMC9248871 DOI: 10.1109/lra.2021.3122897] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Haptic and proprioceptive feedback is critical for sensorimotor integration when we use our hand to perform daily tasks. Here, we evaluated how externally evoked haptic and proprioceptive feedback and myoelectric control strategies affected the recognition of object properties when participants controlled a prosthetic hand. Fingertip haptic sensation was elicited using a transcutaneous nerve stimulation grid to encode the prosthetic's fingertip forces. An array of tactors elicited patterned vibratory stimuli to encode tactile-proprioceptive kinematic information of the prosthetic finger joint. Myoelectric signals of the finger flexor and extensor were used to control the position or velocity of joint angles of the prosthesis. Participants were asked to perform object property (stiffness and size) recognition, by controlling the prosthetic hand with concurrent haptic and tactile-proprioceptive feedback. With the evoked feedback, intact and amputee participants recognized the object stiffness and size at success rates ranging from 50% to 100% in both position and velocity control with no significant difference across control schemes. Our findings show that evoked somatosensory feedback in a non-invasive manner can facilitate closed-loop control of the prosthetic hand and allowed for simultaneous recognition of different object properties. The outcomes can facilitate our understanding on the role of sensory feedback during bidirectional human-machine interactions, which can potentially promote user experience in object interactions using prosthetic hands.
Collapse
Affiliation(s)
- Luis Vargas
- Joint Department of Biomedical Engineering at University of North Carolina-Chapel Hill and NC State University
| | - He Huang
- Joint Department of Biomedical Engineering at University of North Carolina-Chapel Hill and NC State University
| | - Yong Zhu
- Mechanical and Aerospace Engineering Department at NC State University
| | - Xiaogang Hu
- Joint Department of Biomedical Engineering at University of North Carolina-Chapel Hill and NC State University
| |
Collapse
|
36
|
Vargas L, Huang HH, Zhu Y, Hu X. Closed-loop control of a prosthetic finger via evoked proprioceptive information. J Neural Eng 2021; 18. [PMID: 34814128 DOI: 10.1088/1741-2552/ac3c9e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/23/2021] [Indexed: 11/12/2022]
Abstract
Objective.Proprioceptive information plays an important role for recognizing and coordinating our limb's static and dynamic states relative to our body or the environment. In this study, we determined how artificially evoked proprioceptive feedback affected the continuous control of a prosthetic finger.Approach.We elicited proprioceptive information regarding the joint static position and dynamic movement of a prosthetic finger via a vibrotactor array placed around the subject's upper arm. Myoelectric signals of the finger flexor and extensor muscles were used to control the prosthesis, with or without the evoked proprioceptive feedback. Two control modes were evaluated: the myoelectric signal amplitudes were continuously mapped to either the position or the velocity of the prosthetic joint.Main results.Our results showed that the evoked proprioceptive information improved the control accuracy of the joint angle, with comparable performance in the position- and velocity-control conditions. However, greater angle variability was prominent during position-control than velocity-control. Without the proprioceptive feedback, the position-control tended to show a smaller angle error than the velocity-control condition.Significance.Our findings suggest that closed-loop control of a prosthetic device can potentially be achieved using non-invasive evoked proprioceptive feedback delivered to intact participants. Moreover, the evoked sensory information was integrated during myoelectric control effectively for both control strategies. The outcomes can facilitate our understanding of the sensorimotor integration process during human-machine interactions, which can potentially promote fine control of prosthetic hands.
Collapse
Affiliation(s)
- Luis Vargas
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, NC and North Carolina State University, Raleigh, NC, 27599, United States of America
| | - He Helen Huang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, NC and North Carolina State University, Raleigh, NC, 27599, United States of America
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, United States of America
| | - Xiaogang Hu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, NC and North Carolina State University, Raleigh, NC, 27599, United States of America
| |
Collapse
|
37
|
Gonzalez MA, Lee C, Kang J, Gillespie RB, Gates DH. Getting a Grip on the Impact of Incidental Feedback From Body-Powered and Myoelectric Prostheses. IEEE Trans Neural Syst Rehabil Eng 2021; 29:1905-1912. [PMID: 34516377 DOI: 10.1109/tnsre.2021.3111741] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sensory feedback from body-powered and myoelectric prostheses are limited, but in different ways. Currently, there are no empirical studies on how incidental feedback differs between body-powered and myoelectric prostheses, or how these differences impact grasping. Thus, the purpose of this study was to quantify differences in grasping performance between body-powered and myoelectric prosthesis users when presented with different forms of feedback. Nine adults with upper limb loss and nine without (acting as controls) completed two tasks in a virtual environment. In the first task, participants used visual, vibration, or force feedback to assist in matching target grasp apertures. In the second task, participants used either visual or force feedback to identify the stiffness of a virtual object. Participants using either prosthesis type improved their accuracy and reduced their variability compared to the no feedback condition when provided with any form of feedback (p < 0.001). However, participants using body-powered prostheses were significantly more accurate and less variable at matching grasp apertures than those using myoelectric prostheses across all feedback conditions. When identifying stiffness, body-powered prosthesis users were more accurate using force feedback (64% compared to myoelectric users' 39%) while myoelectric users were more accurate using visual feedback (65% compared to body-powered users' 53%). This study supports previous findings that body-powered prosthesis users receive limited force and proprioceptive feedback, while myoelectric prosthesis users receive almost no force or proprioceptive feedback from their device. This work can inform future supplemental feedback that enhances rather than reproduces existing incidental feedback.
Collapse
|
38
|
Marasco PD, Hebert JS, Sensinger JW, Beckler DT, Thumser ZC, Shehata AW, Williams HE, Wilson KR. Neurorobotic fusion of prosthetic touch, kinesthesia, and movement in bionic upper limbs promotes intrinsic brain behaviors. Sci Robot 2021; 6:eabf3368. [PMID: 34516746 DOI: 10.1126/scirobotics.abf3368] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Paul D Marasco
- Laboratory for Bionic Integration, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH 44195, USA.,Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 10701 East Boulevard 151 W/APT, Cleveland, OH 44106, USA
| | - Jacqueline S Hebert
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2E1, Canada.,Glenrose Rehabilitation Hospital, Alberta Health Services, 10230-111 Avenue, Edmonton, Alberta T5G 0B7, Canada
| | - Jonathon W Sensinger
- Institute of Biomedical Engineering, University of New Brunswick, 25 Dineen Drive, Fredericton, New Brunswick E3B 5A3, Canada
| | - Dylan T Beckler
- Laboratory for Bionic Integration, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH 44195, USA
| | - Zachary C Thumser
- Laboratory for Bionic Integration, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH 44195, USA.,Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 10701 East Boulevard, Research 151, Cleveland, OH 44106, USA
| | - Ahmed W Shehata
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Heather E Williams
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Kathleen R Wilson
- Institute of Biomedical Engineering, University of New Brunswick, 25 Dineen Drive, Fredericton, New Brunswick E3B 5A3, Canada
| |
Collapse
|
39
|
Resnik L, Borgia M, Cancio JM, Delikat J, Ni P. Psychometric evaluation of the Southampton hand assessment procedure (SHAP) in a sample of upper limb prosthesis users. J Hand Ther 2021; 36:110-120. [PMID: 34400030 DOI: 10.1016/j.jht.2021.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 06/22/2021] [Accepted: 07/04/2021] [Indexed: 02/09/2023]
Abstract
BACKGROUND The 26-item Southampton Hand Assessment Protocol (SHAP) is a test of prosthetic hand function that generates an Index of Functionality (IOF), and prehensile pattern (PP) scores. Prior researchers identified potential issues in SHAP scoring, proposing alternative scoring methods (LIF and W-LIF). STUDY DESIGN Cross-sectional study. PURPOSE Evaluate the psychometric properties of the SHAP IOF, LIF, and W-LIF and PP scores and develop the Prosthesis Index of Functionality (P-IOF). METHODS We examined item completion, floor andceiling effects, concurrent, discriminant, construct and structural validity. The P-IOF used increased boundary limits and information from item completion and completion time. Calibration used a nonlinear mixed model. Scores were estimated using maximum a posteriori Bayesian estimation. Mixed integer linear programing (MILP) informed development of a shorter measure. Validity analyses were repeated using the P-IOF. RESULTS 126 persons, mean age 57 (sd 15.8), 69% with transradial amputation were included. Floors effects were observed in 18.3%-19.1% for the IOF, LIF, and W-LIF. Ten items were not completed by >15% of participants. Boundary limits were problematic for all but 1 item. Correlations with dexterity measures were strong (r = 0.54-0.73). Scores differed by amputation level (p > .0001). Factor analysis did not support use of PP scores. The P-IOF used expanded boundary limits to decrease floor effects. MILP identified 10 items that could be dropped. The 26-item P-IOF and 16-item P-IOF had reduced floor effects (<7.5%), strong evidence of concurrent and discriminant validity, and construct validity. P-IOF reduced administrative burden by 9.5 (sd 5.6) minutes. DISCUSSION Floor effects limit a measure's ability to distinguish between persons with low function. CONCLUSION Analyses supported the validity of the SHAP IOF, LIF, and W-LIF, but identified large floor effects, as well as issues with structural validity of the PP scores. The 16-item P-IOF minimizes floor effects and reduces administrative burden.
Collapse
Affiliation(s)
- Linda Resnik
- Providence VA Medical Center, Providence, RI, USA; Health Services, Policy and Practice, Brown University, Providence, RI, USA.
| | | | - Jill M Cancio
- United States Army Institute of Surgical Research Burn Center, JBSA Ft. Sam Houston, TX, USA
| | | | | |
Collapse
|
40
|
Versteeg C, Rosenow JM, Bensmaia SJ, Miller LE. Encoding of limb state by single neurons in the cuneate nucleus of awake monkeys. J Neurophysiol 2021; 126:693-706. [PMID: 34010577 PMCID: PMC8409958 DOI: 10.1152/jn.00568.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 12/24/2022] Open
Abstract
The cuneate nucleus (CN) is among the first sites along the neuraxis where proprioceptive signals can be integrated, transformed, and modulated. The objective of the study was to characterize the proprioceptive representations in CN. To this end, we recorded from single CN neurons in three monkeys during active reaching and passive limb perturbation. We found that many neurons exhibited responses that were tuned approximately sinusoidally to limb movement direction, as has been found for other sensorimotor neurons. The distribution of their preferred directions (PDs) was highly nonuniform and resembled that of muscle spindles within individual muscles, suggesting that CN neurons typically receive inputs from only a single muscle. We also found that the responses of proprioceptive CN neurons tended to be modestly amplified during active reaching movements compared to passive limb perturbations, in contrast to cutaneous CN neurons whose responses were not systematically different in the active and passive conditions. Somatosensory signals thus seem to be subject to a "spotlighting" of relevant sensory information rather than uniform suppression as has been suggested previously.NEW & NOTEWORTHY The cuneate nucleus (CN) is the somatosensory gateway into the brain, and only recently has it been possible to record these signals from an awake animal. We recorded single CN neurons in monkeys. Proprioceptive CN neurons appear to receive input from very few muscles, and their sensitivity to movement changes reliably during reaching relative to passive arm perturbations. Sensitivity is generally increased, but not exclusively so, as though CN "spotlights" critical proprioceptive information during reaching.
Collapse
Affiliation(s)
- Christopher Versteeg
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
| | - Joshua M Rosenow
- Department of Neurology, Northwestern University, Chicago, Illinois
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois
| | - Sliman J Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
- Committee on Computational Neuroscience, University of Chicago, Chicago, Illinois
- Grossman Institute of Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, Chicago, Illinois
| | - Lee E Miller
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois
- Shirley Ryan AbilityLab, Chicago, Illinois
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
41
|
Montero J, Clemente F, Cipriani C. Feasibility of generating 90 Hz vibrations in remote implanted magnets. Sci Rep 2021; 11:15456. [PMID: 34326398 PMCID: PMC8322332 DOI: 10.1038/s41598-021-94240-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/29/2021] [Indexed: 11/17/2022] Open
Abstract
Limb amputation not only reduces the motor abilities of an individual, but also destroys afferent channels that convey essential sensory information to the brain. Significant efforts have been made in the area of upper limb prosthetics to restore sensory feedback, through the stimulation of residual sensory elements. Most of the past research focused on the replacement of tactile functions. On the other hand, the difficulties in eliciting proprioceptive sensations using either haptic or (neural) electrical stimulation, has limited researchers to rely on sensory substitution. Here we propose the myokinetic stimulation interface, that aims at restoring natural proprioceptive sensations by exploiting the so-called tendon illusion, elicited through the vibration of magnets implanted inside residual muscles. We present a prototype which exploits 12 electromagnetic coils to vibrate up to four magnets implanted in a forearm mockup. The results demonstrated that it is possible to generate highly directional and frequency-selective vibrations. The system proved capable of activating a single magnet, out of many. Hence, this interface constitutes a promising approach to restore naturally perceived proprioception after an amputation. Indeed, by implanting several magnets in independent muscles, it would be possible to restore proprioceptive sensations perceived as coming from single digits.
Collapse
Affiliation(s)
- Jordan Montero
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56127, Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127, Pisa, Italy
| | - Francesco Clemente
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56127, Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127, Pisa, Italy
| | - Christian Cipriani
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56127, Pisa, Italy.
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127, Pisa, Italy.
| |
Collapse
|
42
|
Karczewski AM, Dingle AM, Poore SO. The Need to Work Arm in Arm: Calling for Collaboration in Delivering Neuroprosthetic Limb Replacements. Front Neurorobot 2021; 15:711028. [PMID: 34366820 PMCID: PMC8334559 DOI: 10.3389/fnbot.2021.711028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/22/2021] [Indexed: 11/21/2022] Open
Abstract
Over the last few decades there has been a push to enhance the use of advanced prosthetics within the fields of biomedical engineering, neuroscience, and surgery. Through the development of peripheral neural interfaces and invasive electrodes, an individual's own nervous system can be used to control a prosthesis. With novel improvements in neural recording and signal decoding, this intimate communication has paved the way for bidirectional and intuitive control of prostheses. While various collaborations between engineers and surgeons have led to considerable success with motor control and pain management, it has been significantly more challenging to restore sensation. Many of the existing peripheral neural interfaces have demonstrated success in one of these modalities; however, none are currently able to fully restore limb function. Though this is in part due to the complexity of the human somatosensory system and stability of bioelectronics, the fragmentary and as-yet uncoordinated nature of the neuroprosthetic industry further complicates this advancement. In this review, we provide a comprehensive overview of the current field of neuroprosthetics and explore potential strategies to address its unique challenges. These include exploration of electrodes, surgical techniques, control methods, and prosthetic technology. Additionally, we propose a new approach to optimizing prosthetic limb function and facilitating clinical application by capitalizing on available resources. It is incumbent upon academia and industry to encourage collaboration and utilization of different peripheral neural interfaces in combination with each other to create versatile limbs that not only improve function but quality of life. Despite the rapidly evolving technology, if the field continues to work in divided "silos," we will delay achieving the critical, valuable outcome: creating a prosthetic limb that is right for the patient and positively affects their life.
Collapse
Affiliation(s)
| | - Aaron M. Dingle
- Division of Plastic Surgery, Department of Surgery, University of Wisconsin–Madison, Madison, WI, United States
| | | |
Collapse
|
43
|
Vargas L, Huang H(H, Zhu Y, Hu X. Static and dynamic proprioceptive recognition through vibrotactile stimulation. J Neural Eng 2021; 18:10.1088/1741-2552/ac0d43. [PMID: 34153955 PMCID: PMC8715509 DOI: 10.1088/1741-2552/ac0d43] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/21/2021] [Indexed: 11/12/2022]
Abstract
Objective.Proprioceptive information provides individuals with a sense of our limb's static position and dynamic movement. Impaired or a lack of such feedback can diminish our ability to perform dexterous motions with our biological limbs or assistive devices. Here we seek to determine whether both static and dynamic components of proprioception can be recognized using variation of the spatial and temporal components of vibrotactile feedback.Approach.An array of five vibrotactors was placed on the forearm of each subject. Each tactor was encoded to represent one of the five forearm postures. Vibratory stimulus was elicited to convey the static position and movement of the forearm. Four experimental blocks were performed to test each subject's recognition of a forearm's simulated static position, rotational amplitude, rotational amplitude and direction, and rotational speed.Main results.Our results showed that the subjects were able to perform proprioceptive recognition based on the delivered vibrotactile information. Specifically, rotational amplitude recognition resulted in the highest level of accuracy (99.0%), while the recognition accuracy of the static position and the rotational amplitude-direction was the lowest (91.7% and 90.8%, respectively). Nevertheless, all proprioceptive properties were perceived with >90% accuracy, indicating that the implemented vibrotactile encoding scheme could effectively provide proprioceptive information to the users.Significance.The outcomes suggest that information pertaining to static and dynamic aspects of proprioception can be accurately delivered using an array of vibrotactors. This feedback approach could be used to potentially evaluate the sensorimotor integration processes during human-machine interactions, and to improve sensory feedback in clinical populations with somatosensory impairments.
Collapse
Affiliation(s)
- Luis Vargas
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, NC and North Carolina State University, 10206B Mary Ellen Jones Bldg, Raleigh, NC 27599, United States of America
| | - He (Helen) Huang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, NC and North Carolina State University, 10206B Mary Ellen Jones Bldg, Raleigh, NC 27599, United States of America
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, United States of America
| | - Xiaogang Hu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, NC and North Carolina State University, 10206B Mary Ellen Jones Bldg, Raleigh, NC 27599, United States of America
| |
Collapse
|
44
|
Wang L, Ma L, Yang J, Wu J. Human Somatosensory Processing and Artificial Somatosensation. CYBORG AND BIONIC SYSTEMS 2021; 2021:9843259. [PMID: 36285142 PMCID: PMC9494715 DOI: 10.34133/2021/9843259] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/30/2021] [Indexed: 11/06/2022] Open
Abstract
In the past few years, we have gained a better understanding of the information processing mechanism in the human brain, which has led to advances in artificial intelligence and humanoid robots. However, among the various sensory systems, studying the somatosensory system presents the greatest challenge. Here, we provide a comprehensive review of the human somatosensory system and its corresponding applications in artificial systems. Due to the uniqueness of the human hand in integrating receptor and actuator functions, we focused on the role of the somatosensory system in object recognition and action guidance. First, the low-threshold mechanoreceptors in the human skin and somatotopic organization principles along the ascending pathway, which are fundamental to artificial skin, were summarized. Second, we discuss high-level brain areas, which interacted with each other in the haptic object recognition. Based on this close-loop route, we used prosthetic upper limbs as an example to highlight the importance of somatosensory information. Finally, we present prospective research directions for human haptic perception, which could guide the development of artificial somatosensory systems.
Collapse
Affiliation(s)
- Luyao Wang
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, China
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| | - Lihua Ma
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, China
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| | - Jiajia Yang
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Jinglong Wu
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, China
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| |
Collapse
|
45
|
Rangwani R, Park H. A new approach of inducing proprioceptive illusion by transcutaneous electrical stimulation. J Neuroeng Rehabil 2021; 18:73. [PMID: 33941209 PMCID: PMC8094608 DOI: 10.1186/s12984-021-00870-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neurotraumas or neurodegenerative diseases often result in proprioceptive deficits, which makes it challenging for the nervous system to adapt to the compromised sensorimotor conditions. Also, in human machine interactions, such as prosthesis control and teleoperation, proprioceptive mismatch limits accuracy and intuitiveness of controlling active joints in robotic agents. To address these proprioceptive deficits, several invasive and non-invasive approaches like vibration, electrical nerve stimulation, and skin stretch have been introduced. However, proprioceptive modulation is still challenging as the current solutions have limitations in terms of effectiveness, usability, and consistency. In this paper, we propose a new way of modulating proprioception using transcutaneous electrical stimulation. We hypothesized that transcutaneous electrical stimulation on elbow flexor muscles will induce illusion of elbow joint extension. METHOD Eight healthy human subjects participated in the study to test the hypothesis. Transcutaneous electrodes were placed on different locations targeting elbow flexor muscles on human subjects and experiments were conducted to identify the best locations for electrode placement, and best electrical stimulation parameters, to maximize induced proprioceptive effect. Arm matching experiments and Pinocchio illusion test were performed for quantitative and qualitative analysis of the observed effects. One-way repeated ANOVA test was performed on the data collected in arm matching experiment for statistical analysis. RESULTS We identified the best location for transcutaneous electrodes to induce the proprioceptive illusion, as one electrode on the muscle belly of biceps brachii short head and the other on the distal myotendinous junction of brachioradialis. The results for arm-matching and Pinocchio illusion tests showed that transcutaneous electrical stimulation using identified electrode location and electrical stimulation parameters evoked the illusion of elbow joint extension for all eight subjects, which supports our hypothesis. On average, subjects reported 6.81° angular illusion of elbow joint extension in arm-matching tests and nose elongated to 1.78 × height in Pinocchio illusion test. CONCLUSIONS Transcutaneous electrical stimulation, applied between the the synergistic elbow flexor muscles, consistently modulated elbow joint proprioception with the illusion of elbow joint extension, which has immense potential to be translated into various real-world applications, including neuroprosthesis, rehabilitation, teleoperation, mixed reality, and etc.
Collapse
Affiliation(s)
- Rohit Rangwani
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Hangue Park
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
46
|
Vargas L, Huang HH, Zhu Y, Hu X. Perception of Static Position and Kinesthesia of the Finger using Vibratory Stimulation. INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING : [PROCEEDINGS]. INTERNATIONAL IEEE EMBS CONFERENCE ON NEURAL ENGINEERING 2021; 2021:1087-1090. [PMID: 34966480 PMCID: PMC8713187 DOI: 10.1109/ner49283.2021.9441255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Proprioception provides information regarding the state of an individual's limb in terms of static position and kinesthesia (dynamic movement). When such feedback is lost or impaired, the performance of dexterous control of our biological limbs or assistive devices tends to deteriorate. In this study, we determined if external vibratory stimulation patterns could allow for the perception of a finger's static position and kinesthesia. Using four tactors and two stimulus levels, eight vibratory settings corresponded to eight discrete finger positions. The transition patterns between these eight settings corresponded to kinesthesia. Three experimental blocks assessed the perception of a finger's static position, speed, and movement (amplitude and direction). Our results demonstrated that both position and kinesthesia could be recognized with over 93% accuracy. The outcomes suggest that vibratory stimulus can inform subjects of static and dynamic aspects of finger proprioception. This sensory stimulation approach can be implemented to improve outcomes in clinical populations with sensory deficits, and to enhance user experience when users interact with assistive devices.
Collapse
Affiliation(s)
- Luis Vargas
- Department of Biomedical Engineering at University of North Carolina-Chapel Hill and NC State University
| | - He Helen Huang
- Department of Biomedical Engineering at University of North Carolina-Chapel Hill and NC State University
| | - Yong Zhu
- Department of Mechanical Engineering at NC State University
| | - Xiaogang Hu
- Department of Biomedical Engineering at University of North Carolina-Chapel Hill and NC State University
| |
Collapse
|
47
|
Pena AE, Abbas JJ, Jung R. Channel-hopping during surface electrical neurostimulation elicits selective, comfortable, distally referred sensations. J Neural Eng 2021; 18. [PMID: 33770781 DOI: 10.1088/1741-2552/abf28c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 03/23/2021] [Indexed: 11/12/2022]
Abstract
Objective.Lack of sensation from a hand or prosthesis can result in substantial functional deficits. Surface electrical stimulation of the peripheral nerves is a promising non-invasive approach to restore lost sensory function. However, the utility of standard surface stimulation methods has been hampered by localized discomfort caused by unintended activation of afferents near the electrodes and limited ability to specifically target underlying neural tissue. The objectives of this work were to develop and evaluate a novel channel-hopping interleaved pulse scheduling (CHIPS) strategy for surface stimulation that is designed to activate deep nerves while reducing activation of fibers near the electrodes.Approach.The median nerve of able-bodied subjects was activated by up to two surface stimulating electrode pairs placed around their right wrist. Subjects received biphasic current pulses either from one electrode pair at a time (single-channel), or interleaved between two electrode pairs (multi-channel). Percept thresholds were characterized for five pulse durations under each approach, and psychophysical questionnaires were used to interrogate the perceived modality, quality and location of evoked sensations.Main results.Stimulation with CHIPS elicited enhanced tactile percepts that were distally referred, while avoiding the distracting sensations and discomfort associated with localized charge densities. These effects were reduced after introduction of large delays between interleaved pulses.Significance.These findings demonstrate that our pulse scheduling strategy can selectively elicit referred sensations that are comfortable, thus overcoming the primary limitations of standard surface stimulation methods. Implementation of this strategy with an array of spatially distributed electrodes may allow for rapid and effective stimulation fitting. The ability to elicit comfortable and referred tactile percepts may enable the use of this neurostimulation strategy to provide meaningful and intuitive feedback from a prosthesis, enhance tactile feedback after sensory loss secondary to nerve damage, and deliver non-invasive stimulation therapies to treat various pain conditions.
Collapse
Affiliation(s)
- A E Pena
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States of America
| | - J J Abbas
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States of America
| | - R Jung
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States of America
| |
Collapse
|
48
|
The Neural Representation of Force across Grasp Types in Motor Cortex of Humans with Tetraplegia. eNeuro 2021; 8:ENEURO.0231-20.2020. [PMID: 33495242 PMCID: PMC7920535 DOI: 10.1523/eneuro.0231-20.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 11/21/2022] Open
Abstract
Intracortical brain-computer interfaces (iBCIs) have the potential to restore hand grasping and object interaction to individuals with tetraplegia. Optimal grasping and object interaction require simultaneous production of both force and grasp outputs. However, since overlapping neural populations are modulated by both parameters, grasp type could affect how well forces are decoded from motor cortex in a closed-loop force iBCI. Therefore, this work quantified the neural representation and offline decoding performance of discrete hand grasps and force levels in two human participants with tetraplegia. Participants attempted to produce three discrete forces (light, medium, hard) using up to five hand grasp configurations. A two-way Welch ANOVA was implemented on multiunit neural features to assess their modulation to force and grasp Demixed principal component analysis (dPCA) was used to assess for population-level tuning to force and grasp and to predict these parameters from neural activity. Three major findings emerged from this work: (1) force information was neurally represented and could be decoded across multiple hand grasps (and, in one participant, across attempted elbow extension as well); (2) grasp type affected force representation within multiunit neural features and offline force classification accuracy; and (3) grasp was classified more accurately and had greater population-level representation than force. These findings suggest that force and grasp have both independent and interacting representations within cortex, and that incorporating force control into real-time iBCI systems is feasible across multiple hand grasps if the decoder also accounts for grasp type.
Collapse
|
49
|
Page DM, George JA, Wendelken SM, Davis TS, Kluger DT, Hutchinson DT, Clark GA. Discriminability of multiple cutaneous and proprioceptive hand percepts evoked by intraneural stimulation with Utah slanted electrode arrays in human amputees. J Neuroeng Rehabil 2021; 18:12. [PMID: 33478534 PMCID: PMC7819250 DOI: 10.1186/s12984-021-00808-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 01/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Electrical stimulation of residual afferent nerve fibers can evoke sensations from a missing limb after amputation, and bionic arms endowed with artificial sensory feedback have been shown to confer functional and psychological benefits. Here we explore the extent to which artificial sensations can be discriminated based on location, quality, and intensity. METHODS We implanted Utah Slanted Electrode Arrays (USEAs) in the arm nerves of three transradial amputees and delivered electrical stimulation via different electrodes and frequencies to produce sensations on the missing hand with various locations, qualities, and intensities. Participants performed blind discrimination trials to discriminate among these artificial sensations. RESULTS Participants successfully discriminated cutaneous and proprioceptive sensations ranging in location, quality and intensity. Performance was significantly greater than chance for all discrimination tasks, including discrimination among up to ten different cutaneous location-intensity combinations (15/30 successes, p < 0.0001) and seven different proprioceptive location-intensity combinations (21/40 successes, p < 0.0001). Variations in the site of stimulation within the nerve, via electrode selection, enabled discrimination among up to five locations and qualities (35/35 successes, p < 0.0001). Variations in the stimulation frequency enabled discrimination among four different intensities at the same location (13/20 successes, p < 0.0005). One participant also discriminated among individual stimulation of two different USEA electrodes, simultaneous stimulation on both electrodes, and interleaved stimulation on both electrodes (20/24 successes, p < 0.0001). CONCLUSION Electrode location, stimulation frequency, and stimulation pattern can be modulated to evoke functionally discriminable sensations with a range of locations, qualities, and intensities. This rich source of artificial sensory feedback may enhance functional performance and embodiment of bionic arms endowed with a sense of touch.
Collapse
Affiliation(s)
| | - Jacob A George
- Division of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, UT, 84112, USA.
| | - Suzanne M Wendelken
- Department of Anesthesiology, Maine Medical Center, Portland, ME, 04102, USA
| | - Tyler S Davis
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, 84112, USA
| | | | | | - Gregory A Clark
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
50
|
Pastor F, Garcia-Gonzalez J, Gandarias JM, Medina D, Closas P, Garcia-Cerezo AJ, Gomez-de-Gabriel JM. Bayesian and Neural Inference on LSTM-Based Object Recognition From Tactile and Kinesthetic Information. IEEE Robot Autom Lett 2021. [DOI: 10.1109/lra.2020.3038377] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|