1
|
de Castro PA, Akiyama DY, Pinzan CF, dos Reis TF, Delbaje E, Rocha P, Izidoro MA, Schenkman S, Sugimoto S, Takeshita N, Steffen K, Aycock JL, Dolan SK, Rokas A, Fill T, Goldman GH. Aspergillus fumigatus secondary metabolite pyripyropene is important for the dual biofilm formation with Pseudomonas aeruginosa. mBio 2025; 16:e0036325. [PMID: 40094363 PMCID: PMC11980569 DOI: 10.1128/mbio.00363-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 02/12/2025] [Indexed: 03/19/2025] Open
Abstract
The human pathogenic fungus Aspergillus fumigatus establishes dual biofilm interactions in the lungs with the pathogenic bacterium Pseudomonas aeruginosa. Screening of 21 A. fumigatus null mutants revealed seven mutants (two G protein-coupled receptors, three mitogen-activated protein kinase receptors, a Gα protein, and one histidine kinase receptor) with reduced biofilm formation, specifically in the presence of P. aeruginosa. Transcriptional profiling and metabolomics analysis of secondary metabolites produced by one of these mutants, ΔgpaB (gpaB encodes a Gα protein), showed GpaB controls the production of several important metabolites for the dual biofilm interaction, including pyripyropene A, a potent inhibitor of mammalian acyl-CoA cholesterol acyltransferase. Deletion of pyr2, encoding a non-reducing polyketide synthase essential for pyripyropene biosynthesis, showed reduced A. fumigatus Δpyr2-P. aeruginosa biofilm growth, altered macrophage responses, and attenuated mouse virulence in a chemotherapeutic murine model. We identified pyripyropene as a novel player in the ecology and pathogenic interactions of this important human fungal pathogen.IMPORTANCEAspergillus fumigatus and Pseudomonas aeruginosa are two important human pathogens. Both organisms establish biofilm interactions in patients affected with chronic lung pulmonary infections, such as cystic fibrosis (CF) and chronic obstructive pulmonary disease. Colonization with A. fumigatus is associated with an increased risk of P. aeruginosa colonization in CF patients, and disease prognosis is poor when both pathogens are present. Here, we identified A. fumigatus genetic determinants important for the establishment of in vitro dual A. fumigatus-P. aeruginosa biofilm interactions. Among them, an A. fumigatus Gα protein GpaB is important for this interaction controlling the production of the secondary metabolite pyripyropene. We demonstrate that the lack of pyripyropene production decreases the dual biofilm interaction between the two species as well as the virulence of A. fumigatus in a chemotherapeutic murine model of aspergillosis. These results reveal a complete novel role for this secondary metabolite in the ecology and pathogenic interactions of this important human fungal pathogen.
Collapse
Affiliation(s)
- Patricia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Camila Figueiredo Pinzan
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Thaila Fernanda dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Endrews Delbaje
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Peter Rocha
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Sérgio Schenkman
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Shinya Sugimoto
- Department of Bacteriology, Jikei Center for Biofilm Science and Technology, Laboratory of Amyloid Regulation, The Jikei University School of Medicine, Tokyo, Japan
| | - Norio Takeshita
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Karin Steffen
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Jessica L. Aycock
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, USA
| | - Stephen K. Dolan
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Taícia Fill
- Instituto de Química, Universidade Estadual de Campinas, Campinas, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, São Paulo, Brazil
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, São Paulo, Brazil
| |
Collapse
|
2
|
Gouveia MIM, do Socorro Nascimento Falcão Sarges E, Dos Reis HS, Sardinha DM, Dos Santos PAS, Ribeiro LR, Silva MJA, de Melo MVH, Quaresma AJPG, Brasiliense DM, Lima LNGC, Lima KVB, Rodrigues YC. Unveiling the molecular epidemiology of Pseudomonas aeruginosa in lung infections among cystic fibrosis patients in the Brazilian Amazon. BMC Microbiol 2025; 25:203. [PMID: 40205346 PMCID: PMC11984257 DOI: 10.1186/s12866-025-03920-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/20/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is a major pathogen in cystic fibrosis (CF), where chronic and intermittent infections significantly affect patient outcomes. This study aimed to investigate the molecular epidemiology of P. aeruginosa in CF patients from the Brazilian Amazon, focusing on genotypic diversity, resistance profiles, and virulence factors. METHODS A cross-sectional study included 72 P. aeruginosa isolates from 44 CF patients treated at a regional reference center between 2018 and 2019. Antimicrobial susceptibility patterns were determined using VITEK-2 system and Kirby-Bauer disk diffusion. Virulotypes were defined by molecular detection of exoS, exoU, exoT, exoY, algU, and algD genes. Genetic diversity was assessed using multilocus sequence typing (MLST). Demographic data, clinical severity, and spirometry results were also collected. RESULTS Among the patients, 54.55% experienced intermittent infections, while 45.45% had chronic infections. Chronic infections were associated with older age, lower FEV1, and reduced Shwachman-Kulczycki scores. Multidrug resistance was observed in 15.3% of isolates, particularly against ciprofloxacin and piperacillin/tazobactam. The exoU gene was present in 55.56% of isolates, an uncommon finding in CF populations. High genetic diversity was evident, with 37 sequence types (STs), including 14 novel STs. High-risk clones (HRCs) constituted 25% of isolates, with ST274 being the most prevalent (12.5%). Longitudinal analysis revealed transient colonization in intermittent infections, while chronic infections were dominated by stable clones. CONCLUSION This study highlights the molecular and clinical dynamics of P. aeruginosa in CF patients from the Brazilian Amazon. Chronic infections were linked to severe lung impairment , while intermittent infections were dominated by HRCs. These findings underscore the need for robust genotypic surveillance to mitigate the burden of P. aeruginosa in CF populations.
Collapse
Affiliation(s)
- Maria Isabel Montoril Gouveia
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua, PA, 67030-000, Brazil
- Bacteriology and Mycology Section, Evandro Chagas Institute (SEBAC/IEC), Ministry of Health, Ananindeua, PA, 67030-000, Brazil
| | | | - Herald Souza Dos Reis
- Bacteriology and Mycology Section, Evandro Chagas Institute (SEBAC/IEC), Ministry of Health, Ananindeua, PA, 67030-000, Brazil
| | - Danielle Melo Sardinha
- Bacteriology and Mycology Section, Evandro Chagas Institute (SEBAC/IEC), Ministry of Health, Ananindeua, PA, 67030-000, Brazil
| | - Pabllo Antonny Silva Dos Santos
- Bacteriology and Mycology Section, Evandro Chagas Institute (SEBAC/IEC), Ministry of Health, Ananindeua, PA, 67030-000, Brazil
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Belém, PA, 66087-662, Brazil
| | - Layana Rufino Ribeiro
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua, PA, 67030-000, Brazil
- Bacteriology and Mycology Section, Evandro Chagas Institute (SEBAC/IEC), Ministry of Health, Ananindeua, PA, 67030-000, Brazil
| | - Marcos Jessé Abrahão Silva
- Bacteriology and Mycology Section, Evandro Chagas Institute (SEBAC/IEC), Ministry of Health, Ananindeua, PA, 67030-000, Brazil
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Belém, PA, 66087-662, Brazil
| | - Marcos Vinicios Hino de Melo
- Bacteriology and Mycology Section, Evandro Chagas Institute (SEBAC/IEC), Ministry of Health, Ananindeua, PA, 67030-000, Brazil
| | - Ana Judith Pires Garcia Quaresma
- Bacteriology and Mycology Section, Evandro Chagas Institute (SEBAC/IEC), Ministry of Health, Ananindeua, PA, 67030-000, Brazil
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Belém, PA, 66087-662, Brazil
| | - Danielle Murici Brasiliense
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua, PA, 67030-000, Brazil
- Bacteriology and Mycology Section, Evandro Chagas Institute (SEBAC/IEC), Ministry of Health, Ananindeua, PA, 67030-000, Brazil
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Belém, PA, 66087-662, Brazil
| | - Luana Nepomuceno Godim Costa Lima
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua, PA, 67030-000, Brazil
- Bacteriology and Mycology Section, Evandro Chagas Institute (SEBAC/IEC), Ministry of Health, Ananindeua, PA, 67030-000, Brazil
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Belém, PA, 66087-662, Brazil
| | - Karla Valéria Batista Lima
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua, PA, 67030-000, Brazil.
- Bacteriology and Mycology Section, Evandro Chagas Institute (SEBAC/IEC), Ministry of Health, Ananindeua, PA, 67030-000, Brazil.
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Belém, PA, 66087-662, Brazil.
| | - Yan Corrêa Rodrigues
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua, PA, 67030-000, Brazil.
- Bacteriology and Mycology Section, Evandro Chagas Institute (SEBAC/IEC), Ministry of Health, Ananindeua, PA, 67030-000, Brazil.
| |
Collapse
|
3
|
Felton SM, Akula N, Kolling GL, Azadi P, Black I, Kumar A, Heiss C, Capobianco J, Uknalis J, Papin JA, Berger BW. Applying a polysaccharide lyase from Stenotrophomonas maltophilia to disrupt alginate exopolysaccharide produced by Pseudomonas aeruginosa clinical isolates. Appl Environ Microbiol 2025; 91:e0185324. [PMID: 39670718 PMCID: PMC11784403 DOI: 10.1128/aem.01853-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024] Open
Abstract
Pseudomonas aeruginosa is considered one of the most challenging, drug-resistant, opportunistic pathogens partly due to its ability to synthesize robust biofilms. Biofilm is a mixture of extracellular polymeric substances (EPS) that encapsulates microbial cells, leading to immune evasion, antibiotic resistance, and thus higher risk of infection. In the cystic fibrosis lung environment, P. aeruginosa undergoes a mucoid transition, defined by overproduction of the exopolysaccharide alginate. Alginate encapsulation results in bacterial resistance to antibiotics and the host immune system. Given its role in airway inflammation and chronic infection, alginate is an obvious target to improve treatment for P. aeruginosa infection. Previously, we demonstrated polysaccharide lyase Smlt1473 from Stenotrophomonas maltophilia strain k279a can catalyze the degradation of multiple polyuronides in vitro, including D-mannuronic acid (poly-ManA). Poly-ManA is a major constituent of P. aeruginosa alginate, suggesting that Smlt1473 could have potential application against multidrug-resistant P. aeruginosa and perhaps other microbes with related biofilm composition. In this study, we demonstrate that Smlt1473 can inhibit and degrade alginate from P. aeruginosa. Additionally, we show that tested P. aeruginosa strains are dominant in acetylated alginate and that all but one have similar M-to-G ratios. These results indicate that variation in enzyme efficacy among the isolates is not primarily due to differences in total EPS or alginate chemical composition. Overall, these results demonstrate Smlt1473 can inhibit and degrade P. aeruginosa alginate and suggest that other factors including rate of EPS production, alginate sequence/chain length, or non-EPS components may explain differences in enzyme efficacy. IMPORTANCE Pseudomonas aeruginosa is a major opportunistic human pathogen in part due to its ability to synthesize biofilms that confer antibiotic resistance. Biofilm is a mixture of polysaccharides, DNA, and proteins that encapsulate cells, protecting them from antibiotics, disinfectants, and other cleaning agents. Due to its ability to increase antibiotic and immune resistance, the exopolysaccharide alginate plays a large role in airway inflammation and chronic P. aeruginosa infection. As a result, colonization with P. aeruginosa is the leading cause of morbidity and mortality in CF patients. Thus, it is an obvious target to improve the treatment regimen for P. aeruginosa infection. In this study, we demonstrate that polysaccharide lyase, Smlt1473, inhibits alginate secretion and degrades established alginate from a variety of mucoid P. aeruginosa clinical isolates. Additionally, Smlt1473 differs from other alginate lyases in that it is active against acetylated alginate, which is secreted during chronic lung infection. These results suggest that Smlt1473 may be useful in treating infections associated with alginate-producing P. aeruginosa, as well as have the potential to reduce P. aeruginosa EPS in non-clinical settings.
Collapse
Affiliation(s)
- Samantha M. Felton
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Nikki Akula
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Glynis L. Kolling
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Ian Black
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Ambrish Kumar
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Christian Heiss
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Joseph Capobianco
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Eastern Regional Research Center, Wyndmoor, Pennsylvania, USA
| | - Joseph Uknalis
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Eastern Regional Research Center, Wyndmoor, Pennsylvania, USA
| | - Jason A. Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Bryan W. Berger
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
4
|
Sommerfield AG, Wang M, Mamana J, Darwin AJ. In vivo and in vitro analyses of the role of the Prc protease in inducing mucoidy in Pseudomonas aeruginosa. J Bacteriol 2024; 206:e0022224. [PMID: 39287400 PMCID: PMC11500579 DOI: 10.1128/jb.00222-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
In Pseudomonas aeruginosa, alginate biosynthesis gene expression is inhibited by the transmembrane anti-sigma factor MucA, which sequesters the AlgU sigma factor. Cell envelope stress initiates cleavage of the MucA periplasmic domain by site-1 protease AlgW, followed by further MucA degradation to release AlgU. However, after colonizing the lungs of people with cystic fibrosis, P. aeruginosa converts to a mucoid form that produces alginate constitutively. Mucoid isolates often have mucA mutations, with the most common being mucA22, which truncates the periplasmic domain. MucA22 is degraded constitutively, and genetic studies suggested that the Prc protease is responsible. Some studies also suggested that Prc contributes to induction in strains with wild-type MucA, whereas others suggested the opposite. However, missing from all previous studies is a demonstration that Prc cleaves any protein directly, which leaves open the possibility that the effect of a prc null mutation is indirect. To address the ambiguities and shortfalls, we reevaluated the roles of AlgW and Prc as MucA and MucA22 site-1 proteases. In vivo analyses using three different assays and two different inducing conditions all suggested that AlgW is the only site-1 protease for wild-type MucA in any condition. In contrast, genetics suggested that AlgW or Prc act as MucA22 site-1 proteases in inducing conditions, whereas Prc is the only MucA22 site-1 protease in non-inducing conditions. For the first time, we also show that Prc is unable to degrade the periplasmic domain of wild-type MucA but does degrade the mutated periplasmic domain of MucA22 directly. IMPORTANCE After colonizing the lungs of individuals with cystic fibrosis, Pseudomonas aeruginosa undergoes mutagenic conversion to a mucoid form, worsening the prognosis. Most mucoid isolates have a truncated negative regulatory protein MucA, which leads to constitutive production of the extracellular polysaccharide alginate. The protease Prc has been implicated, but not shown, to degrade the most common MucA variant, MucA22, to trigger alginate production. This work provides the first demonstration that the molecular mechanism of Prc involvement is direct degradation of the MucA22 periplasmic domain and perhaps other truncated MucA variants as well. MucA truncation and degradation by Prc might be the predominant mechanism of mucoid conversion in cystic fibrosis infections, suggesting that Prc activity could be a useful therapeutic target.
Collapse
Affiliation(s)
- Alexis G. Sommerfield
- Department of Microbiology, NYU Grossman School of Medicine, New York, New York, USA
| | - Michelle Wang
- Department of Microbiology, NYU Grossman School of Medicine, New York, New York, USA
| | - Julia Mamana
- Department of Microbiology, NYU Grossman School of Medicine, New York, New York, USA
| | - Andrew J. Darwin
- Department of Microbiology, NYU Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
5
|
Jandl B, Dighe S, Gasche C, Makristathis A, Muttenthaler M. Intestinal biofilms: pathophysiological relevance, host defense, and therapeutic opportunities. Clin Microbiol Rev 2024; 37:e0013323. [PMID: 38995034 PMCID: PMC11391705 DOI: 10.1128/cmr.00133-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
SUMMARYThe human intestinal tract harbors a profound variety of microorganisms that live in symbiosis with the host and each other. It is a complex and highly dynamic environment whose homeostasis directly relates to human health. Dysbiosis of the gut microbiota and polymicrobial biofilms have been associated with gastrointestinal diseases, including irritable bowel syndrome, inflammatory bowel diseases, and colorectal cancers. This review covers the molecular composition and organization of intestinal biofilms, mechanistic aspects of biofilm signaling networks for bacterial communication and behavior, and synergistic effects in polymicrobial biofilms. It further describes the clinical relevance and diseases associated with gut biofilms, the role of biofilms in antimicrobial resistance, and the intestinal host defense system and therapeutic strategies counteracting biofilms. Taken together, this review summarizes the latest knowledge and research on intestinal biofilms and their role in gut disorders and provides directions toward the development of biofilm-specific treatments.
Collapse
Affiliation(s)
- Bernhard Jandl
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Satish Dighe
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Christoph Gasche
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
- Loha for Life, Center for Gastroenterology and Iron Deficiency, Vienna, Austria
| | - Athanasios Makristathis
- Department of Laboratory Medicine, Division of Clinical Microbiology, Medical University of Vienna, Vienna, Austria
| | - Markus Muttenthaler
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
6
|
Østergaard MZ, Nielsen FD, Meinfeldt MH, Kirkpatrick CL. The uncharacterized PA3040-3042 operon is part of the cell envelope stress response and a tobramycin resistance determinant in a clinical isolate of Pseudomonas aeruginosa. Microbiol Spectr 2024; 12:e0387523. [PMID: 38949386 PMCID: PMC11302039 DOI: 10.1128/spectrum.03875-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/22/2024] [Indexed: 07/02/2024] Open
Abstract
Bacteriophages (hereafter "phages") are ubiquitous predators of bacteria in the natural world, but interest is growing in their development into antibacterial therapy as complement or replacement for antibiotics. However, bacteria have evolved a huge variety of antiphage defense systems allowing them to resist phage lysis to a greater or lesser extent. In addition to dedicated phage defense systems, some aspects of the general stress response also impact phage susceptibility, but the details of this are not well known. In order to elucidate these factors in the opportunistic pathogen Pseudomonas aeruginosa, we used the laboratory-conditioned strain PAO1 as host for phage infection experiments as it is naturally poor in dedicated phage defense systems. Screening by transposon insertion sequencing indicated that the uncharacterized operon PA3040-PA3042 was potentially associated with resistance to lytic phages. However, we found that its primary role appeared to be in regulating biofilm formation, particularly in a clinical isolate of P. aeruginosa in which it also altered tobramycin resistance. Its expression was highly growth-phase dependent and responsive to phage infection and cell envelope stress. Our results suggest that this operon may be a cryptic but important locus for P. aeruginosa stress tolerance. IMPORTANCE An important category of bacterial stress response systems is bacteriophage defense, where systems are triggered by bacteriophage infection and activate a response which may either destroy the phage genome or destroy the infected cell so that the rest of the population survives. In some bacteria, the cell envelope stress response is activated by bacteriophage infection, but it is unknown whether this contributes to the survival of the infection. We have found that a conserved uncharacterized operon (PA3040-PA3042) of the cell envelope stress regulon in Pseudomonas aeruginosa, which has very few dedicated phage defense systems, responds to phage infection and stationary phase as well as envelope stress and is important for growth and biofilm formation in a clinical isolate of P. aeruginosa, even in the absence of phages. As homologs of these genes are found in other bacteria, they may be a novel component of the general stress response.
Collapse
Affiliation(s)
- Magnus Z. Østergaard
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Flemming D. Nielsen
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
| | - Mette H. Meinfeldt
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Clare L. Kirkpatrick
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
7
|
Tan Y, Dai Z. Pseudomonas aeruginosa mucinous phenotypes and algUmucABD operon mutant characteristics obtained from inpatients with bronchiectasis and their correlation with acute aggravation. Front Cell Infect Microbiol 2024; 14:1402348. [PMID: 39135639 PMCID: PMC11317387 DOI: 10.3389/fcimb.2024.1402348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/13/2024] [Indexed: 08/15/2024] Open
Abstract
Objective Although the mechanism is unclear, Pseudomonas aeruginosa (PA) infection directly affects the frequency of acute exacerbations in patients with bronchiectasis. The aims of this article are to analyze the genetic mutation characteristics of the algUmucABD operon in PA, isolated from hospitalized patients with bronchiectasis, and to explore independent risk factors for frequent acute exacerbations of bronchiectasis. Methods Based on the number of acute exacerbations that occurred in the past year, these patients with bronchiectasis were divided into those with frequent acute exacerbations (Group A) and those with non-frequent acute exacerbations (Group B). We identified the distribution of mucoid phenotypes (MPs) and alginate morphotypes (AMs) in PA, and classified them into I-IV categories based on their different AMs; otherwise, the gene mutation types (GMTs) of the algUmucABD operon were tested. Subsequently, the relationship between GMT, MP, and AM and the independent risk factors for frequent acute exacerbations in patients with bronchiectasis were explored. Results A total of 93 patients and 75 PA strains, from January 2019 to August 2023, were included in this study. The MP and AM distributions of PA were as follows: 64 strains (85.33%) of mucoid (the AMs were 38 strains of type I, 3 strains of type II, and 23 strains of type IV) and 11 strains of non-mucoid (the AM was type III only). Mucoid PA with algU, mucA, mucB, and mucD mutations accounted for 19.61%, 74.51%, 31.37%, and 50.98%, respectively. GMT was divided into the following: mucA mutations only, mucA combined with other gene mutations, other gene mutations without mucA mutations, and without gene mutations. In 91.7% of PA with type I of AM, only mucA mutations occurred, and in both separate MP and AM, the GMT differences were statistically significant. Lastly, the number of lung lobes with bronchiectasis and the number of PA with mucA mutations only were the independent risk factors for frequent acute exacerbations. Conclusion The mucA mutation was primarily responsible for the mucoid of MP and type I of AM in PA, and it was also an independent risk factor for frequent exacerbations of bronchiectasis.
Collapse
Affiliation(s)
- Yuxue Tan
- Department of Internal Medicine, The First People’s Hospital of Fuquan City, Fuquan, Guizhou, , China
| | - Zhongshang Dai
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Sommerfield AG, Wang M, Mamana J, Darwin AJ. In vivo and in vitro analysis of the role of the Prc protease in inducing mucoidy in Pseudomonas aeruginosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596254. [PMID: 38854061 PMCID: PMC11160602 DOI: 10.1101/2024.05.28.596254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
In Pseudomonas aeruginosa, alginate biosynthesis gene expression is inhibited by the transmembrane anti-sigma factor MucA, which sequesters the AlgU sigma factor. Cell envelope stress initiates cleavage of the MucA periplasmic domain by site-1 protease AlgW, followed by further MucA degradation to release AlgU. However, after colonizing the lungs of people with cystic fibrosis, P. aeruginosa converts to a mucoid form that produces alginate constitutively. Mucoid isolates often have mucA mutations, with the most common being mucA22 , which truncates the periplasmic domain. MucA22 is degraded constitutively, and genetic studies suggested that the Prc protease is responsible. Some studies also suggested that Prc contributes to induction in strains with wild type MucA, whereas others suggested the opposite. However, missing from all previous studies is a demonstration that Prc cleaves any protein directly, which leaves open the possibility that the effect of a prc null mutation is indirect. To address the ambiguities and shortfalls, we reevaluated the roles of AlgW and Prc as MucA and MucA22 site-1 proteases. In vivo analyses using three different assays, and two different inducing conditions, all suggested that AlgW is the only site-1 protease for wild type MucA in any condition. In contrast, genetics suggested that AlgW or Prc act as MucA22 site-1 proteases in inducing conditions, whereas Prc is the only MucA22 site-1 protease in non-inducing conditions. For the first time, we also show that Prc is unable to degrade the periplasmic domain of wild type MucA, but does degrade the mutated periplasmic domain of MucA22 directly. IMPORTANCE After colonizing the lungs of individuals with cystic fibrosis, P. aeruginosa undergoes mutagenic conversion to a mucoid form, worsening the prognosis. Most mucoid isolates have a truncated negative regulatory protein MucA, which leads to constitutive production of the extracellular polysaccharide alginate. The protease Prc has been implicated, but not shown, to degrade the most common MucA variant, MucA22, to trigger alginate production. This work provides the first demonstration that the molecular mechanism of Prc involvement is direct degradation of the MucA22 periplasmic domain, and perhaps other truncated MucA variants as well. MucA truncation and degradation by Prc might be the predominant mechanism of mucoid conversion in cystic fibrosis infections, suggesting that Prc activity could be a useful therapeutic target.
Collapse
|
9
|
A truncated mutation of MucA in Pseudomonas aeruginosa from a bronchiectasis patient affects T3SS expression and inflammasome activation. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1740-1747. [PMID: 36604139 PMCID: PMC9828237 DOI: 10.3724/abbs.2022169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes chronic airway infection in bronchiectasis patients and is closely associated with poor prognosis. Strains isolated from chronically infected patients typically have a mucoid phenotype due to the overproduction of alginate. In this study, we isolate a P. aeruginosa strain from the sputum of a patient with bronchiectasis and find that a truncated mutation occurred in mucA, which is named mucA117. mucA117 causes the strain to transform into a mucoid phenotype, downregulates the expression of T3SS and inflammasome ligands such as fliC and allows it to avoid inflammasome activation. The truncated mutation of the MucA protein may help P. aeruginosa escape clearance by the immune system, enabling long-term colonization.
Collapse
|
10
|
Resistance Is Not Futile: The Role of Quorum Sensing Plasticity in Pseudomonas aeruginosa Infections and Its Link to Intrinsic Mechanisms of Antibiotic Resistance. Microorganisms 2022; 10:microorganisms10061247. [PMID: 35744765 PMCID: PMC9228389 DOI: 10.3390/microorganisms10061247] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 01/01/2023] Open
Abstract
Bacteria use a cell-cell communication process called quorum sensing (QS) to orchestrate collective behaviors. QS relies on the group-wide detection of extracellular signal molecules called autoinducers (AI). Quorum sensing is required for virulence and biofilm formation in the human pathogen Pseudomonas aeruginosa. In P. aeruginosa, LasR and RhlR are homologous LuxR-type soluble transcription factor receptors that bind their cognate AIs and activate the expression of genes encoding functions required for virulence and biofilm formation. While some bacterial signal transduction pathways follow a linear circuit, as phosphoryl groups are passed from one carrier protein to another ultimately resulting in up- or down-regulation of target genes, the QS system in P. aeruginosa is a dense network of receptors and regulators with interconnecting regulatory systems and outputs. Once activated, it is not understood how LasR and RhlR establish their signaling hierarchy, nor is it clear how these pathway connections are regulated, resulting in chronic infection. Here, we reviewed the mechanisms of QS progression as it relates to bacterial pathogenesis and antimicrobial resistance and tolerance.
Collapse
|
11
|
Fischer S, Klockgether J, Gonzalez Sorribes M, Dorda M, Wiehlmann L, Tümmler B. Sequence diversity of the Pseudomonas aeruginosa population in loci that undergo microevolution in cystic fibrosis airways. Access Microbiol 2022; 3:000286. [PMID: 35024551 PMCID: PMC8749138 DOI: 10.1099/acmi.0.000286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/04/2021] [Indexed: 12/23/2022] Open
Abstract
Five hundred and thirty-four unrelated Pseudomonas aeruginosa isolates from inanimate habitats, patients with cystic fibrosis (CF) and other human infections were sequenced in 19 genes that had been identified previously as the hot spots of genomic within-host evolution in serial isolates from 12 CF lungs. Amplicon sequencing confirmed a significantly higher sequence diversity of the 19 loci in P. aeruginosa isolates from CF patients compared to those from other habitats, but this overrepresentation was mainly due to the larger share of synonymous substitutions. Correspondingly, non-synonymous substitutions were either rare (gltT, lepA, ptsP) or benign (nuoL, fleR, pelF) in some loci. Other loci, however, showed an accumulation of non-neutral coding variants. Strains from the CF habitat were often mutated at evolutionarily conserved positions in the elements of stringent response (RelA, SpoT), LPS (PagL), polyamine transport (SpuE, SpuF) and alginate biosynthesis (AlgG, AlgU). The strongest skew towards the CF lung habitat was seen for amino acid sequence variants in AlgG that clustered in the carbohydrate-binding/sugar hydrolysis domain. The master regulators of quorum sensing lasR and rhlR were frequent targets for coding variants in isolates from chronic and acute human infections. Unique variants in lasR showed strong evidence of positive selection indicated by d N/d S values of ~4. The pelA gene that encodes a multidomain enzyme involved in both the formation and dispersion of Pel biofilms carried the highest number of single-nucleotide variants among the 19 genes and was the only gene with a higher frequency of missense mutations in P. aeruginosa strains from non-CF habitats than in isolates from CF airways. PelA protein variants are widely distributed in the P. aeruginosa population. In conclusion, coding variants in a subset of the examined loci are indeed characteristic for the adaptation of P. aeruginosa to the CF airways, but for other loci the elevated mutation rate is more indicative of infections in human habitats (lasR, rhlR) or global diversifying selection (pelA).
Collapse
Affiliation(s)
- Sebastian Fischer
- Clinical Research Group 'Molecular Pathology of Cystic Fibrosis', Department for Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Jens Klockgether
- Clinical Research Group 'Molecular Pathology of Cystic Fibrosis', Department for Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Marina Gonzalez Sorribes
- Clinical Research Group 'Molecular Pathology of Cystic Fibrosis', Department for Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Marie Dorda
- Clinical Research Group 'Molecular Pathology of Cystic Fibrosis', Department for Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Research Core Unit Genomics, Hannover Medical School, Hannover, Germany
| | - Lutz Wiehlmann
- Clinical Research Group 'Molecular Pathology of Cystic Fibrosis', Department for Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Research Core Unit Genomics, Hannover Medical School, Hannover, Germany
| | - Burkhard Tümmler
- Clinical Research Group 'Molecular Pathology of Cystic Fibrosis', Department for Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Germany
| |
Collapse
|
12
|
Fernández-Barat L, Alcaraz-Serrano V, Amaro R, Torres A. Pseudomonas aeruginosa in Bronchiectasis. Semin Respir Crit Care Med 2021; 42:587-594. [PMID: 34261182 DOI: 10.1055/s-0041-1730921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Pseudomonas aeruginosa (PA) in patients with bronchiectasis (BE) is associated with a poor outcome and quality of life, and its presence is considered a marker of disease severity. This opportunistic pathogen is known for its ability to produce biofilms on biotic or abiotic surfaces and to survive environmental stress exerted by antimicrobials, inflammation, and nutrient or oxygen depletion. The presence of PA biofilms has been linked to chronic respiratory infection in cystic fibrosis but not in BE. There is considerable inconsistency in the reported infection/eradication rates of PA and chronic PA. In addition, inadequate antimicrobial treatment may potentiate the progression from intermittent to chronic infection and also the emergence of antibiotic resistance. A better comprehension of the pathophysiology of PA infections and its implications for BE is urgently needed. This can drive improvements in diagnostic accuracy, can move us toward a new consensus definition of chronic infection, can better define the follow-up of patients at risk of PA, and can achieve more successful eradication rates. In addition, the new technological advances regarding molecular diagnostics, -omics, and biomarkers require us to reconsider our traditional concepts.
Collapse
Affiliation(s)
- Laia Fernández-Barat
- Cellex Laboratory, CibeRes (Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, 06/06/0028), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,School of Medicine, University of Barcelona, Barcelona, Spain.,Department of Pneumology, Respiratory Institute, Hospital Clinic of Barcelona, Spain
| | - Victoria Alcaraz-Serrano
- Cellex Laboratory, CibeRes (Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, 06/06/0028), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,School of Medicine, University of Barcelona, Barcelona, Spain.,Department of Pneumology, Respiratory Institute, Hospital Clinic of Barcelona, Spain
| | - Rosanel Amaro
- Cellex Laboratory, CibeRes (Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, 06/06/0028), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,School of Medicine, University of Barcelona, Barcelona, Spain.,Department of Pneumology, Respiratory Institute, Hospital Clinic of Barcelona, Spain
| | - Antoni Torres
- Cellex Laboratory, CibeRes (Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, 06/06/0028), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,School of Medicine, University of Barcelona, Barcelona, Spain.,Department of Pneumology, Respiratory Institute, Hospital Clinic of Barcelona, Spain
| |
Collapse
|
13
|
Dettman JR, Kassen R. Evolutionary Genomics of Niche-Specific Adaptation to the Cystic Fibrosis Lung in Pseudomonas aeruginosa. Mol Biol Evol 2021; 38:663-675. [PMID: 32898270 PMCID: PMC7826180 DOI: 10.1093/molbev/msaa226] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The comparative genomics of the transition of the opportunistic pathogen Pseudomonas aeruginosa from a free-living environmental strain to one that causes chronic infection in the airways of cystic fibrosis (CF) patients remain poorly studied. Chronic infections are thought to originate from colonization by a single strain sampled from a diverse, globally distributed population, followed by adaptive evolution to the novel, stressful conditions of the CF lung. However, we do not know whether certain clades are more likely to form chronic infections than others and we lack a comprehensive view of the suite of genes under positive selection in the CF lung. We analyzed whole-genome sequence data from 1,000 P. aeruginosa strains with diverse ecological provenances including the CF lung. CF isolates were distributed across the phylogeny, indicating little genetic predisposition for any one clade to cause chronic infection. Isolates from the CF niche experienced stronger positive selection on core genes than those derived from environmental or acute infection sources, consistent with recent adaptation to the lung environment. Genes with the greatest differential positive selection in the CF niche include those involved in core cellular processes such as metabolism, energy production, and stress response as well as those linked to patho-adaptive processes such as antibiotic resistance, cell wall and membrane modification, quorum sensing, biofilms, mucoidy, motility, and iron homeostasis. Many genes under CF-specific differential positive selection had regulatory functions, consistent with the idea that regulatory mutations play an important role in rapid adaptation to novel environments.
Collapse
Affiliation(s)
| | - Rees Kassen
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
14
|
Schofield MC, Rodriguez DQ, Kidman AA, Cassin EK, Michaels LA, Campbell EA, Jorth PA, Tseng BS. The anti-sigma factor MucA is required for viability in Pseudomonas aeruginosa. Mol Microbiol 2021; 116:550-563. [PMID: 33905139 PMCID: PMC10069406 DOI: 10.1111/mmi.14732] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 12/16/2022]
Abstract
During decades-long infections in the cystic fibrosis (CF) airway, Pseudomonas aeruginosa undergoes selection. One bacterial genetic adaptation often observed in CF isolates is mucA mutations. MucA inhibits the sigma factor AlgU. Mutations in mucA lead to AlgU misregulation, resulting in a mucoid phenotype that is associated with poor CF disease outcomes. Due to its ability to be mutated, mucA is assumed to be dispensable for bacterial viability. Here we show that, paradoxically, a portion of mucA is essential in P. aeruginosa. We demonstrate that mucA is no longer required in a strain lacking algU, that mucA alleles encoding for proteins that do not bind to AlgU are insufficient for viability, and that mucA is no longer essential in mutant strains containing AlgU variants with reduced sigma factor activity. Furthermore, we found that overexpression of algU prevents cell growth in the absence of MucA, and that this phenotype can be rescued by the overproduction of RpoD, the housekeeping sigma factor. Together, these results suggest that in the absence of MucA, the inability to regulate AlgU activity results in the loss of bacterial viability. Finally, we speculate that the essentiality of anti-sigma factors that regulate envelope function may be a widespread phenomenon in bacteria.
Collapse
Affiliation(s)
| | | | - Amanda A Kidman
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Erin K Cassin
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Lia A Michaels
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Elizabeth A Campbell
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA
| | - Peter A Jorth
- Departments of Pathology and Laboratory Medicine, Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Boo Shan Tseng
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| |
Collapse
|
15
|
Jurado-Martín I, Sainz-Mejías M, McClean S. Pseudomonas aeruginosa: An Audacious Pathogen with an Adaptable Arsenal of Virulence Factors. Int J Mol Sci 2021; 22:3128. [PMID: 33803907 PMCID: PMC8003266 DOI: 10.3390/ijms22063128] [Citation(s) in RCA: 328] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa is a dominant pathogen in people with cystic fibrosis (CF) contributing to morbidity and mortality. Its tremendous ability to adapt greatly facilitates its capacity to cause chronic infections. The adaptability and flexibility of the pathogen are afforded by the extensive number of virulence factors it has at its disposal, providing P. aeruginosa with the facility to tailor its response against the different stressors in the environment. A deep understanding of these virulence mechanisms is crucial for the design of therapeutic strategies and vaccines against this multi-resistant pathogen. Therefore, this review describes the main virulence factors of P. aeruginosa and the adaptations it undergoes to persist in hostile environments such as the CF respiratory tract. The very large P. aeruginosa genome (5 to 7 MB) contributes considerably to its adaptive capacity; consequently, genomic studies have provided significant insights into elucidating P. aeruginosa evolution and its interactions with the host throughout the course of infection.
Collapse
Affiliation(s)
| | | | - Siobhán McClean
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4 D04 V1W8, Ireland; (I.J.-M.); (M.S.-M.)
| |
Collapse
|
16
|
Camus L, Vandenesch F, Moreau K. From genotype to phenotype: adaptations of Pseudomonas aeruginosa to the cystic fibrosis environment. Microb Genom 2021; 7:mgen000513. [PMID: 33529147 PMCID: PMC8190622 DOI: 10.1099/mgen.0.000513] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa is one of the main microbial species colonizing the lungs of cystic fibrosis patients and is responsible for the decline in respiratory function. Despite the hostile pulmonary environment, P. aeruginosa is able to establish chronic infections thanks to its strong adaptive capacity. Various longitudinal studies have attempted to compare the strains of early infection with the adapted strains of chronic infection. Thanks to new '-omics' techniques, convergent genetic mutations, as well as transcriptomic and proteomic dysregulations have been identified. As a consequence of this evolution, the adapted strains of P. aeruginosa have particular phenotypes that promote persistent infection.
Collapse
Affiliation(s)
- Laura Camus
- CIRI – Centre International de Recherche en Infectiologie, Université de Lyon/Inserm U1111/Université Claude Bernard Lyon 1/CNRS UMR5308/ENS de Lyon, Lyon, France
| | - François Vandenesch
- CIRI – Centre International de Recherche en Infectiologie, Université de Lyon/Inserm U1111/Université Claude Bernard Lyon 1/CNRS UMR5308/ENS de Lyon, Lyon, France
- Centre National de Référence des Staphylocoques, Hospices Civils de Lyon, Lyon, France
- Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Karen Moreau
- CIRI – Centre International de Recherche en Infectiologie, Université de Lyon/Inserm U1111/Université Claude Bernard Lyon 1/CNRS UMR5308/ENS de Lyon, Lyon, France
| |
Collapse
|
17
|
Schulze A, Mitterer F, Pombo JP, Schild S. Biofilms by bacterial human pathogens: Clinical relevance - development, composition and regulation - therapeutical strategies. MICROBIAL CELL (GRAZ, AUSTRIA) 2021; 8:28-56. [PMID: 33553418 PMCID: PMC7841849 DOI: 10.15698/mic2021.02.741] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/19/2022]
Abstract
Notably, bacterial biofilm formation is increasingly recognized as a passive virulence factor facilitating many infectious disease processes. In this review we will focus on bacterial biofilms formed by human pathogens and highlight their relevance for diverse diseases. Along biofilm composition and regulation emphasis is laid on the intensively studied biofilms of Vibrio cholerae, Pseudomonas aeruginosa and Staphylococcus spp., which are commonly used as biofilm model organisms and therefore contribute to our general understanding of bacterial biofilm (patho-)physiology. Finally, therapeutical intervention strategies targeting biofilms will be discussed.
Collapse
Affiliation(s)
- Adina Schulze
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
- A.S. and F.M. contributed equally to this work
| | - Fabian Mitterer
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
- A.S. and F.M. contributed equally to this work
| | - Joao P. Pombo
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
- BioTechMed Graz, Austria
- Field of Excellence Biohealth – University of Graz, Graz, Austria
| |
Collapse
|
18
|
Rosales-Reyes R, Vargas-Roldán SY, Lezana-Fernández JL, Santos-Preciado JI. Pseudomonas Aeruginosa: Genetic Adaptation, A Strategy for its Persistence in Cystic Fibrosis. Arch Med Res 2020; 52:357-361. [PMID: 33309309 DOI: 10.1016/j.arcmed.2020.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
Cystic fibrosis (CF) is a progressive autosomal recessive genetic disease that principally affects the respiratory and digestive systems. It is a chronic disease that has no cure. Symptoms often include chronic cough, lung infections, and shortness of breath. Children with cystic fibrosis present failure to thrive as manifested by low weight and height for age. CF is caused by mutations in the cystic fibrosis transmembrane conductance regulator (cftr) gene that codes for a cell membrane protein of epithelial tissues and affects multiple organ systems in the human body. Mutations on the CFTR causes dysfunctional electrolyte regulation affecting intracellular water content. Defective CFTR function in airways produce a dehydrated and sticky mucus that leads the establishment of bacterial chronic infection that ultimate decrease the lung function. During the first decade of life, affected individuals are colonized principally by non typable Haemophilus influenzae and Staphylococcus aureus. During the second decade, Pseudomonas aeruginosa becomes the most dominant pathogen and persists throughout the remainder of their lives. In this work, we describe the mechanisms used by P. aeruginosa to adapt and persist in lungs of individuals with cystic fibrosis.
Collapse
Affiliation(s)
- Roberto Rosales-Reyes
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México.
| | - Silvia Yalid Vargas-Roldán
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - José Luis Lezana-Fernández
- Laboratorio de Fisiología Respiratoria y Clínica de Fibrosis Quística, Hospital Infantil de México Federico Gómez, Ciudad de México, México; Dirección Médica, Asociación Mexicana de Fibrosis Quística, Ciudad de México, México
| | - José Ignacio Santos-Preciado
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
19
|
Heywood A, Lamont IL. Cell envelope proteases and peptidases of Pseudomonas aeruginosa: multiple roles, multiple mechanisms. FEMS Microbiol Rev 2020; 44:857-873. [PMID: 32804218 DOI: 10.1093/femsre/fuaa036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterium that is commonly isolated from damp environments. It is also a major opportunistic pathogen, causing a wide range of problematic infections. The cell envelope of P. aeruginosa, comprising the cytoplasmic membrane, periplasmic space, peptidoglycan layer and outer membrane, is critical to the bacteria's ability to adapt and thrive in a wide range of environments. Over 40 proteases and peptidases are located in the P. aeruginosa cell envelope. These enzymes play many crucial roles. They are required for protein secretion out of the cytoplasm to the periplasm, outer membrane, cell surface or the environment; for protein quality control and removal of misfolded proteins; for controlling gene expression, allowing adaptation to environmental changes; for modification and remodelling of peptidoglycan; and for metabolism of small molecules. The key roles of cell envelope proteases in ensuring normal cell functioning have prompted the development of inhibitors targeting some of these enzymes as potential new anti-Pseudomonas therapies. In this review, we summarise the current state of knowledge across the breadth of P. aeruginosa cell envelope proteases and peptidases, with an emphasis on recent findings, and highlight likely future directions in their study.
Collapse
Affiliation(s)
- Astra Heywood
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Iain L Lamont
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
20
|
Overproduction of the AlgT Sigma Factor Is Lethal to Mucoid Pseudomonas aeruginosa. J Bacteriol 2020; 202:JB.00445-20. [PMID: 32747430 DOI: 10.1128/jb.00445-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa isolates from chronic lung infections often overproduce alginate, giving rise to the mucoid phenotype. Isolation of mucoid strains from chronic lung infections correlates with a poor patient outcome. The most common mutation that causes the mucoid phenotype is called mucA22 and results in a truncated form of the anti-sigma factor MucA that is continuously subjected to proteolysis. When a functional MucA is absent, the cognate sigma factor, AlgT, is no longer sequestered and continuously transcribes the alginate biosynthesis operon, leading to alginate overproduction. In this work, we report that in the absence of wild-type MucA, providing exogenous AlgT is toxic. This is intriguing, since mucoid strains endogenously possess high levels of AlgT. Furthermore, we show that suppressors of toxic AlgT production have mutations in mucP, a protease involved in MucA degradation, and provide the first atomistic model of MucP. Based on our findings, we speculate that mutations in mucP stabilize the truncated form of MucA22, rendering it functional and therefore able to reduce toxicity by properly sequestering AlgT.IMPORTANCE Pseudomonas aeruginosa is an opportunistic bacterial pathogen capable of causing chronic lung infections. Phenotypes important for the long-term persistence and adaption to this unique lung ecosystem are largely regulated by the AlgT sigma factor. Chronic infection isolates often contain mutations in the anti-sigma factor mucA, resulting in uncontrolled AlgT and continuous production of alginate in addition to the expression of ∼300 additional genes. Here, we report that in the absence of wild-type MucA, AlgT overproduction is lethal and that suppressors of toxic AlgT production have mutations in the MucA protease, MucP. Since AlgT contributes to the establishment of chronic infections, understanding how AlgT is regulated will provide vital information on how P. aeruginosa is capable of causing long-term infections.
Collapse
|
21
|
Cai YM, Webb JS. Optimization of nitric oxide donors for investigating biofilm dispersal response in Pseudomonas aeruginosa clinical isolates. Appl Microbiol Biotechnol 2020; 104:8859-8869. [PMID: 32865612 PMCID: PMC7502453 DOI: 10.1007/s00253-020-10859-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/13/2020] [Accepted: 08/23/2020] [Indexed: 02/07/2023]
Abstract
Pseudomonas aeruginosa biofilms contribute heavily to chronic lung infection in cystic fibrosis patients, leading to morbidity and mortality. Nitric oxide (NO) has been shown to disperse P. aeruginosa biofilms in vitro, ex vivo and in clinical trials as a promising anti-biofilm agent. Traditional NO donors such as sodium nitroprusside (SNP) have been extensively employed in different studies. However, the dosage of SNP in different studies was not consistent, ranging from 500 nM to 500 μM. SNP is light sensitive and produces cyanide, which may lead to data misinterpretation and inaccurate predictions of dispersal responses in clinical settings. New NO donors and NO delivery methods have therefore been explored. Here we assessed 7 NO donors using P. aeruginosa PAO1 and determined that SNP and Spermine NONOate (S150) successfully reduced > 60% biomass within 24 and 2 h, respectively. While neither dosage posed toxicity towards bacterial cells, chemiluminescence assays showed that SNP only released NO upon light exposure in M9 media and S150 delivered much higher performance spontaneously. S150 was then tested on 13 different cystic fibrosis P. aeruginosa (CF-PA) isolates; most CF-PA biofilms were significantly dispersed by 250 μM S150. Our work therefore discovered a commercially available NO donor S150, which disperses CF-PA biofilms efficiently within a short period of time and without releasing cyanide, as an alternative of SNP in clinical trials in the future. KEY POINTS: • S150 performs the best in dispersing P. aeruginosa biofilms among 7 NO donors. • SNP only releases NO in the presence of light, while S150 releases NO spontaneously. • S150 successfully disperses biofilms formed by P. aeruginosa cystic fibrosis clinical isolates.
Collapse
Affiliation(s)
- Yu-Ming Cai
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Jeremy S Webb
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
22
|
Cross AR, Csatary EE, Raghuram V, Diggle FL, Whiteley M, Wuest WM, Goldberg JB. The histone-like protein AlgP regulon is distinct in mucoid and nonmucoid Pseudomonas aeruginosa and does not include alginate biosynthesis genes. MICROBIOLOGY-SGM 2020; 166:861-866. [PMID: 32634088 DOI: 10.1099/mic.0.000923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The opportunistic bacterial pathogen Pseudomonas aeruginosa causes acute and chronic infections that are notoriously difficult to treat. In people with cystic fibrosis, P. aeruginosa can cause lifelong lung infections, and isolation of mucoid P. aeruginosa, resulting from the overproduction of alginate, is associated with chronic infection. The histone-like protein AlgP has previously been implicated in the control of alginate gene expression in mucoid strains, but this regulation is unclear. To explore AlgP in further detail, we deleted algP in mucoid strains and demonstrated that the deletion of algP did not result in a nonmucoid phenotype or a decrease in alginate production. We showed that the algP promoter is expressed by both the nonmucoid strain PAO1 and the isogenic mucoid strain PDO300, suggesting that there may be genes that are differentially regulated between these strains. In support of this, using RNA sequencing, we identified a small AlgP regulon that has no significant overlap between PAO1 and PDO300 and established that alginate genes were not differentially regulated by the deletion of algP. Of note, we found that deleting algP in PAO1 increased expression of the nitric oxide operon norCBD and the nitrous oxide reductase genes nosRZ and subsequently promoted growth of PAO1 under anaerobic conditions. Altogether, we have defined a narrow regulon of genes controlled by AlgP and provided evidence that alginate production is not greatly affected by AlgP, countering the long-standing premise in the field.
Collapse
Affiliation(s)
- Ashley R Cross
- Emory+Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, USA
- Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Erika E Csatary
- Department of Chemistry, Emory University, Atlanta GA, USA
- Emory+Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, USA
| | - Vishnu Raghuram
- Emory+Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, USA
- Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Frances L Diggle
- Emory+Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta GA, USA
| | - Marvin Whiteley
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta GA, USA
- Emory+Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, USA
| | - William M Wuest
- Department of Chemistry, Emory University, Atlanta GA, USA
- Emory+Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, USA
| | - Joanna B Goldberg
- Emory+Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, USA
- Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
23
|
Kvich L, Fritz B, Crone S, Kragh KN, Kolpen M, Sønderholm M, Andersson M, Koch A, Jensen PØ, Bjarnsholt T. Oxygen Restriction Generates Difficult-to-Culture P. aeruginosa. Front Microbiol 2019; 10:1992. [PMID: 31555231 PMCID: PMC6727857 DOI: 10.3389/fmicb.2019.01992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/13/2019] [Indexed: 11/13/2022] Open
Abstract
Induction of a non-culturable state has been demonstrated for many bacteria, e.g., Escherichia coli and various Vibrio spp. In a clinical perspective, the lack of growth due to these non-culturable bacteria can have major consequences for the treatment of patients. Here, we show how anoxic conditioning (restriction of molecular oxygen, O2) generates difficult-to-culture (DTC) bacteria during biofilm growth. A significant subpopulation of Pseudomonas aeruginosa entered a DTC state after anoxic conditioning, ranging from 5 to 90% of the total culturable population, in both planktonic and biofilm models. Anoxic conditioning also generated DTC subpopulations of Staphylococcus aureus and Staphylococcus epidermidis (89 and 42% of the total culturable population, respectively). Growth of the DTC populations were achieved by substituting O2 with 10 mM NO3– as an alternative electron acceptor for anaerobic respiration or, in the case of P. aeruginosa, by adding sodium pyruvate or catalase as scavengers against reactive oxygen species (ROS) during aerobic respiration. An increase in normoxic plating due to addition of catalase suggests the molecule hydrogen peroxide as a possible mechanism for induction of DTC P. aeruginosa. Anoxic conditioning also generated a true viable but non-culturable (VBNC) population of P. aeruginosa that was not resurrected by substituting O2 with NO3– during anaerobic respiration. These results demonstrate that habituation to an anoxic micro-environment could complicate diagnostic culturing of bacteria, especially in the case of chronic infections where oxygen is restricted due to the host immune response.
Collapse
Affiliation(s)
- Lasse Kvich
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Blaine Fritz
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stephanie Crone
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper N Kragh
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Kolpen
- Department of Clinical Microbiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Majken Sønderholm
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikael Andersson
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Anders Koch
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Peter Ø Jensen
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Microbiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Microbiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
24
|
Malhotra S, Hayes D, Wozniak DJ. Mucoid Pseudomonas aeruginosa and regional inflammation in the cystic fibrosis lung. J Cyst Fibros 2019; 18:796-803. [PMID: 31036488 DOI: 10.1016/j.jcf.2019.04.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Pseudomonas aeruginosa is the prominent bacterial pathogen in the cystic fibrosis (CF) lung and contributes to significant morbidity and mortality. Though P. aeruginosa strains initially colonizing the CF lung have a nonmucoid colony morphology, they often mutate into mucoid variants that are associated with clinical deterioration. Both nonmucoid and mucoid P. aeruginosa variants are often co-isolated on microbiological cultures of sputum collected from CF patients. With regional variation in bronchiectasis, tissue damage, inflammation, and microbial colonization, lobar distribution of nonmucoid and mucoid P. aeruginosa variants may impact local microenvironments in the CF lung, but this has not been well-studied. METHODS We prospectively collected lobe-specific bronchoalveolar lavage (BAL) fluid from a CF patient cohort (n = 14) using a standardized bronchoscopic protocol where collection was performed in 6 lobar regions. The lobar BAL specimens were plated on P. aeruginosa-selective media and proinflammatory cytokines (IL-1, TNF, IL-6 and IL-8) were measured via cytokine array. Correlations between infecting P. aeruginosa variants (nonmucoid, mucoid, or mixed-variant populations), the lobar regions in which these variants were found, and regional proinflammatory cytokine concentrations were measured. RESULTS P. aeruginosa mucoid and nonmucoid variants were homogenously distributed throughout the CF lung. However, infection with mucoid variants (found within single- or mixed-variant populations) was associated with significantly greater regional inflammation. The upper and lower lobes of the CF lung did not exhibit differences in inflammatory cytokine concentrations. CONCLUSIONS Mucoid P. aeruginosa infection is a microbial determinant of regional inflammation within the CF lung.
Collapse
Affiliation(s)
- Sankalp Malhotra
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA; The Ohio State University College of Medicine, Columbus, OH, USA
| | - Don Hayes
- The Ohio State University College of Medicine, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA; Section. of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Daniel J Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA; The Ohio State University College of Medicine, Columbus, OH, USA; Department of Microbiology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
25
|
Abstract
Detection of mucoid Pseudomonas aeruginosa, characterized by the overproduction of alginate, is correlated with the establishment of a chronic pulmonary infection and disease progression in people with cystic fibrosis (CF). In addition to the overproduction of alginate, loss of O antigen lipopolysaccharide production is also selected for in chronic infection isolates. In this study, we have identified the regulatory network that inversely regulates O antigen and alginate production. Understanding the regulation of these chronic phenotypes will elucidate mechanisms that are important for the establishment of a long-term P. aeruginosa lung infection and ultimately provide an opportunity for intervention. Preventing P. aeruginosa from chronically adapting to the CF lung environment could provide a better outcome for people who are infected. Pseudomonas aeruginosa is an opportunistic pathogen that causes chronic lung infections in people with cystic fibrosis (CF). Chronic P. aeruginosa isolates generally do not express O antigen and often have a mucoid phenotype, which is characterized by the overproduction of the exopolysaccharide alginate. Therefore, O antigen expression and the mucoid phenotype may be coordinately regulated upon chronic adaption to the CF lung. Here we demonstrate that PDO300, a mucoid strain derived from the nonmucoid laboratory isolate PAO1, does not produce very long O antigen due to decreased expression of Wzz2, the very long O antigen chain length control protein, and that mucoid clinical isolates express reduced levels of Wzz2 compared to nonmucoid isolates. Further, we show that forcing the expression of very long O antigen by PDO300, by providing wzz2 in trans, does not alter alginate production, suggesting that sugar precursors are not limited between the two biosynthesis pathways. Moreover, we confirm that AmrZ, a transcription factor highly expressed in mucoid strains, is a negative regulator of wzz2 promoter activity and very long O antigen expression. These experiments identify the first transcriptional regulator of O antigen chain length in P. aeruginosa and support a model where transition to a chronic mucoid phenotype is correlated with downregulation of very long O antigen through decreased Wzz2 production.
Collapse
|